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Abstract

Aircraft systems are highly nonlinear and time varying. High performance aircraft at high
angles of incidence experience undesired coupling of the lateral and longitudinal variables,
resulting in departure from normal controlled flight. The aim of this work is to construct a
robust closed loop control that extends the stable and decoupled flight envelope as far as
possible. For the study of these systems nonlinear analysis methods are needed. Previously,
bifurcation techniques have been used mainly to analyse open loop nonlinear aircraft models
and to investigate control effects on dynamic behaviour. In this work linear feedback control
designs constructed by eigenstructure assignment methods at a fixed flight condition are
investigated for a simple nonlinear aircraft model. Bifurcation analysis in conjunction with
linear control design methods is shown to aid control law design for the nonlinear system.

Nomenclature
A,B,C linear system matrices
GO0d desired decoupling vectors
I identity matrix
I .1 ,1 moments of inertia

K linear feedback matrix

L,M,N rolling, pitching and yawing moments
L set of prescribed eigenvalues

m,n number of states, inputs

D-q,r roll, pitch and yaw rates

R,3I real and complex spaces

S, space of eigenvectors corresponding to A,
u,v linearized system input, reference input
14 modal matrix of eigenvectors

V, trim velocity

X,y linearized system state, output
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Y,.Z force in Y, Z direction

o,p angles of incidence (attack) and sideslip
8 denotes perturbation

d,,6,,0, elevator, aileron and rudder deflection

ALV, eigenvalue and right eigenvector
Gor open loop
O, 0 time-differentiation, partial differential

1. Introduction

Aircraft systems are inherently highly nonlinear and time varying. Robust control design
techniques are required to cope with these characteristics and with the model uncertainty. Of
particular interest is the control of high performance aircraft at high angles of incidence,
where inertial, kinematic and aerodynamic nonlinearities are increasingly significant.
Qualitative changes in the dynamic behaviour of the aircraft may then occur that can induce
the onset of departure from controlled flight. Motivated by the coupling of the lateral and
longitudinal variables at high angles of incidence, we seek methods for constructing a robust
control that optimally extends the stable and decoupled flight envelope. The aim is to find
conditions and design parameters for which the best controller can be achieved for the
nonlinear system.

Linearized models only represent the local dynamics of the nonlinear system.
Incorporation of nonlinearities gives a more global view of the aircraft dynamics and
consequently the insight to achieve control solutions effective over a wider flight envelope.
Suitable techniques are required to investigate the effects of the nonlinearities. Bifurcation
analysis is an established technique used to investigate nonlinear aircraft models"*>**¢. It
gives information regarding the equilibrium and periodic solutions of the aircraft system with
respect to some bifurcation parameter, usually a control variable in aircraft models.

Bifurcation analysis, applied mainly to open loop models thus far, has highlighted the
effects of the nonlinearities in flight dynamics. This advance knowledge of specific dynamic
behaviour to be focused on gives direction to flight simulations, saving time and reducing
costs’. Control combinations have also been investigated by using these techniques, e.g.
combinations that avoid jumps when traversing the flight envelope to obtain a smooth route,
or combinations that utilise such jumps to increase agility. Bifurcation analysis has helped to
show how particular dynamics, i.e. departure and post departure dynamics such as spin, are
entered with regard to the aircraft states and controls™. Possible recovery methods from such
post departure dynamics can be obtained by investigating where these dynamics undergo a
qualitative change in behaviour and allow a possible jump back to normal flight. Such
analysis of aircraft systems has related common dynamics to particular bifurcation
phenomena4.

Some closed loop models have also been investigated by bifurcation techniques. A simple
nonlinear aircraft model using classical control methods has been examined’ and a high
performance aircraft model augmented by a full-authority control system has been analyzeds.
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Comparative effects of different linear design procedures on the nonlinear dynamics of an
aircraft have not, however, been studied previously.

In this paper bifurcation techniques are used to analyse linear feedback controllers,
constructed by eigenstructure assignment, applied to a simple nonlinear aircraft model. The
aim is to incorporate the bifurcation analysis into the design procedure in order to investigate
the effects of the control designs at equilibrium flight conditions and to improve the resulting
controllers. Two eigenstructure assignment methods for controller design have been
implemented. A new modified eigenstructure assignment procedure is also introduced. This
technique is similar to methods proposed in”*>'°, but is more efficient in the case where an
appropriate feasible point can first be selected. The feedback gain matrices are constructed
using:

1. eigenstructure assignment by a decoupling method , which locally stabilizes and
decouples the inputs from the outputs, reducing the undesired coupling of the lateral
and longitudinal control variables;

2. robust eigenstructure assignmentl3’14’15’16’9, which reduces the sensitivity of the closed
loop system and hence increases the region over which the closed loop system remains
stable, but does not achieve the desired decoupling properties;

3. the new modified eigenstructure assignment technique, which achieves the desired
decoupling and at the same time reduces the sensitivity of the closed loop system, hence
increasing the stability envelope and improving the departure characteristics of the
aircraft.

The bifurcation analysis reveals that satisfactory designs for the linear systems can exhibit
very different nonlinear departure characteristics and illustrates the importance of the
robustness of the closed loop system. The analysis also demonstrates that the robust
decoupling controllers designed by the new modified eigenstructure assignment technique
can successfully extend the stable and decoupled flight envelope and improve the nonlinear
behaviour of the aircraft.

In the following sections relevant concepts in bifurcation analysis are first given, followed
by a description of the eigenstructure assignment control design methods for linear systems.
The application of the design methods to the nonlinear system is outlined. A simple
nonlinear aircraft model is then presented. Results are given, including bifurcation diagrams
of the open loop system and of the closed loop system for various controllers designed by the
eigenstructure assignment methods. The conclusions are summarized in the final section.

11,12,9

2. Bifurcation Analysis

Bifurcation analysis is a technique used to investigate the behaviour of nonlinear systems.
The technique calculates equilibrium (steady state) and periodic (limit cycle) solutions of the
nonlinear system as a bifurcation parameter is varied, usually a control variable in the study
of aircraft systems, such as elevator, aileron or rudder deflections. A bifurcation occurs
where there is a qualitative change in the system dynamics involving a change in stability of
the system and often the creation or annihilation of possible solutions. At a bifurcation, an
aircraft system experiences departure from its current dynamics and can jump to another
equilibrium solution and a new dynamic situation. For example, at a bifurcation, the aircraft
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can depart from normal controlled equilibrium flight and jump into a spin, which is another
steady, but undesirable, dynamic state.

The stability of the equilibrium solutions can be determined by considering the
eigenvalues of the linearization of the system at the equilibrium point. A stability change,
and hence a bifurcation, occurs where the eigenvalues of the linearized system cross the
imaginary axis. Several types of bifurcation can occur. Possible steady state bifurcations'’,
where a single zero eigenvalue crosses the imaginary axis, are:

1. the limit point (turning point, saddle node) bifurcation, where a single solution branch
changes stability and beyond the critical value of the bifurcation parameter the solution
branch no longer exists;

2. the pitchfork bifurcation (in symmetric systems only, such as in some aircraft models)
where at the critical parameter value the steady state solution branch changes in
stability, and two new solution branches begin;

3. the transcritical bifurcation where two existing solution branches of opposite stability
cross and both change in stability.

A further bifurcation of a steady state equilibrium solution is a Hopf bifurcation. This occurs
where a complex conjugate pair of eigenvalues cross the imaginary axis. The steady state
equilibrium solution changes stability, and periodic solution (limit cycle) branches evolve
from the bifurcation point.

Several software packages for bifurcation analysis exist. These use numerical continuation
schemes for path following of steady state solution branches, usually by some predictor-
corrector method. An approximate initial equilibrium solution for the continuation routine to
begin from is normally needed, and Newton iteration is performed if it is not accurate enough
for the scheme to start from. Techniques for bifurcation detection and path following past
critical points are also required in the numerical procedure. The software packages produce
output files containing bifurcation information in the form of data lists, including lists of
equilibrium point values, stability properties, bifurcation locations and bifurcation types, from
which bifurcation diagrams of the solution branches, displaying stability and labelled
bifurcation points, can be plotted.

In this work the bifurcation analysis package AUTO094"® has been used to investigate the
changes in the equilibrium states of the system with respect to changes in the elevator
deflection control. The other two control inputs are assumed constant at zero. Results of
bifurcation data from the package are given in the form of bifurcation diagrams in Section 6.

3. Linear Control Design

Three eigenstructure assignment methods have been applied to the model. State feedback
is assumed possible, so that all eigenvalues can be assigned exactly. Firstly, decoupling
eigenstructure assignment is applied, where the freedom in the eigenvectors is used to
decouple the system modes. Secondly, robust eigenstructure assignment is applied, where the
freedom in the eigenvectors is used to optimise the robustness, making the eigenvalues of the
system as insensitive to perturbations in the system matrices as possible. Finally, a modified
method is introduced that combines both of these techniques to generate closed loop systems
that are both decoupled and robust.
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State Feedback Control
We consider the autonomous, linear, multivariable system with state space and output
equations

;( = Ax + Bu,, 1)
y =Cx,

where A4 eR™, BeR""and CeRP" are the state, input and output matrices,
respectively, and x, u and y are the state, input and output variables, respectively. Both
Band C are assumed to have full rank. In the state feedback case all state variables are
available as outputs and thus C =17 (the identity matrix), giving y =x. (See the Appendix
for a specific example of system matrices 4 and B.)

By consideration of the response equation of the system it can be shown that both the
eigenvalues and eigenvectors of the system state matrix determine the behaviour of the
response of the system'g. The aim is to find a feedback (or gain) matrix K to construct a
control

u=Kx+v, )

that gives a closed loop system with the required eigenstructure to meet or improve specified
system properties. From (2) and (1) the closed loop system has the form

X = (4 + BK)x+ Bv, 3)

where v is the reference input.

The matrix K must be chosen to give the state matrix 4+ BK of the closed loop system
the required set of eigenvalues. The eigenvalues are chosen to improve certain properties of
the system, in particular stability. A sufficient condition for stability is that the eigenvalues
have negative real partlg.

A multi-input system (n>m=>2) is assumed, giving some freedom in the choice of
eigenvectors to obtain the desired eigenvalues and making it possible to improve other
properties of the system. Conditions for the existence of solutions to the state feedback
eigenvalue assignment problem are well known'. The full objective, to assign the best

suitable eigenstructure, can be formulated as follows: given 4 e R, BeR™" and a set
2={A,Ap,...,A,} €T", closed under complex conjugation, find matrix K e R"" and

nonsingular matrix ¥ € R™" such that
(A+ BK)V =VA, “

where A =diag{A,,...,A,} and V' is the modal matrix of right eigenvectors of 4+ BK .

Solutions to this problem have been established". The feedback K can be calculated and
is dependent upon the modal matrix V' of right eigenvectors assigned, i.e. K=K(). A
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condition that the right eigenvectors must satisfy to assign the corresponding desired
eigenvalues is known'"P. If v ; denotes the i" column of ¥, the right eigenvector
corresponding to A,, then the vector v, must lie in a subspace S; of dimension m ; that is

v, €8, =8(4,B,\,). (5)

The matrix K is calculated using a suitably constructed ¥ satisfying this condition. As
previously stated, where m>1, there is some freedom in the choice of the vector v,,
allowing some other possible design requirements to be met.

Eigenstructure Assignment for Decoupling

Here, the eigenvector freedom is used to achieve a specified set of desired eigenvectors to
shape the response of the system, specifically to improve the flight handling qualities of the
aircraft. The vectors can be chosen to decouple the system inputs from the outputs via its
modes®®®®. In this work decoupling the outputs (states) from specific modes only is
attempted. In general, complete specification of the desired eigenvectors is neither known
nor required. The designers are normally only interested in certain elements, and the
remaining components are left unspecified.

Again K must be found to satisfy (4). A suitable V' is constructed from vectors in the
correct subspaces as close as possible, in the least squares sense, to the desired vectors by
taking their projection into the required subspaces. A set of eigenvalues £ and a set of
corresponding decoupling vectors GOd to be attained are chosen by the designer to achieve
stability and modal decoupling. The projection is repeated once for each desired vector,
generating matrix ¥ from which the feedback matrix is constructed. Note that for complex
conjugate pairs of desired eigenvalues the corresponding desired vectors must also be
complex conjugate.

Robust Eigenstructure Assignment

Here, the freedom available in the eigenvectors to be assigned is used to make the system
more robust, that is, to make the assigned eigenvalues as insensitive as possible to
perturbations in the system matrices. There are several different measures of robustness
relating to eigenvalue sensitivity, or eigenvalue condition number". With appropriate scaling

”V‘l Hr is used as the robustness measure in this work, where || -denotes the Frobenius

norm.

A robust solution is found by selecting suitable columns v, of V' from the subspaces S,
to achieve optimal conditioning of the system. An iterative method is applied to the columns
of V , attempting to make the vectors v, as orthogonal to one another as possible, a necessary
condition for optimal conditioningls. The stopping criterion for the iteration is that either a
pre-set maximum number of iterations have been performed, or a reduction in the robustness
measure has not been achieved. Note that this does not necessarily give a global minimum of
the robustness measure. If a complex conjugate pair of eigenvalues is specified, the first of
the complex pair is updated as normally, and the second is taken to be the complex conjugate
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of the first, retaining the complex conjugacy of the eigenvectors as well as the eigenvalues.
The resulting well conditioned matrix ¥ is used to calculate K.

Combining the two methods

A modified method is now introduced that combines the decoupling and robustness
methods. In this procedure a modal matrix V' is first calculated using the projection method
to obtain the desired output mode decoupling. Instead of using this V' to calculate the
feedback K, it is used as the initial ¥ in the robustness iteration process, with the aim of
retaining the decoupling whilst optimising the robustness of the closed loop system.

The robustness iteration algorithmn used here'® consists of the steps:
Step I: Select an initial set of linearly independent eigenvectors v, €S, i =1.2,..n,

corresponding to the prescribed eigenvalues A, .
Step 2: For i=12,..n,

(i) Find q orthogonal to {vj,j;ﬁi};

(ii) Set v, equal to the projection of q into the subspace S; , normalized to unit length.
Step 3: Repeat Step 2 until the measure of robustness fails to improve by a specified

tolerance.
In Step 2, the selected vector v, minimizes the sensitivity of the corresponding eigenvalue
A,, over all vectors in S;. Since altering one eigenvector affects the sensitivities of all the
eigenvalues of the system, the procedure must be iterated to achieve good conditioning of the
entire eigenstructure.

If the initial set of eigenvectors { v;} is selected to achieve the desired decoupling, then

the states (or outputs) and the modes can be ordered so that the eigenvectors form two
linearly independent sets

{ i:(vlt), i=1,2,...k}, {v’z(o ), i=k+1,...n}. 6)
0 Vai

In Step 2 of the algorithm, if 0 <i <k, then since q is orthogonal to the second set of vectors
in (6), it must take the form q" =(q,” 0). Similarly, if k+1<i <n, then q" = (0 o).

The projection v, of q into S; then preserves the desired decoupling. If the linear system is
already decoupled, then it is always possible to select an initial set of mode decoupling
eigenvectors from the required subspace for any choice of the desired eigenvalues.

For the nonlinear system, a linearization of the system at a specified equilibrium point is
used to design the linear feedback controller. (The linearization is described in Section 4.) If
the design point is selected to lie on a decoupled branch of the bifurcation diagram, then the
linearized system is decoupled at this point and a feasible set to initialize the robustness
iteration can always be found. The aim is then to select a robust feedback controller that
extends and stabilizes the decoupled branch of the nonlinear system for the entire input
parameter range.
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4. Control Design for the Nonlinear System

Application of the eigenstructure assignment design methods to the nonlinear model
requires a linearization of the system about an equilibrium point. A control design is then
calculated to make this particular linear approximation to the system stable and to satisfy
performance requirements specified by the design. Interest lies, for a given controller, in the
change in the stability, robustness and coupling of the closed loop equilibrium points of the
nonlinear system with varying reference control.

To apply the linear design methods to a nonlinear autonomous system

x=f(x,u), %

the equation (7) must first be linearized about a specific equilibrium point. A general
equilibrium state x, is dependent upon the control parameter u, that is x, =x,(u). More
than one equilibrium state may be associated with each control parameter. For a fixed control

u=u’ aspecific equilibrium point can be written as

(xe(u‘)ﬂu.)OL =(x‘9u‘)0L‘ (8

Linearizing about this fixed equilibrium point by a Taylor’s expansion and ignoring the
nonlinear terms gives a linear system which approximates (7) locally to (8). If x=x" +8x
and u =u’ +3u, then the linear approximation to the nonlinear system is given by

Sx=A'5x+ B'du, ©)
where
A‘=% ~and B‘=—aa-f; . (10)
(x",u)g (x"u)g
The output equation is
8y = Cox = dx.. (11)

A control design method can now be applied to (9). A feedback matrix K" is calculated
such that the closed loop state matrix A" + B'K~ of the linear approximation satisfies the

design requirements. The closed loop control u=u"+8u=K'x+v is applied to the
nonlinear system, giving

x = £(,K'x+v) =f . (X,V). (12)
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Bifurcation techniques are applied to (12) to investigate how well this particular design
controls the nonlinear system.

5. The Aircraft Model

The aircraft model used in these studies is a simple autonomous, fifth order nonlinear
system using flight data to model a twin-engined, jet fighter aircraft at a fixed flight condition
in straight and level flight at a height of 1065m, a Mach number of 09, a trim velocity
V, =265ms™", a zero flightpath angle and an angle of incidence of 2.6° , giving constant
stability derivatives corresponding to one flight condition. The data is found in?!.

The longitudinal equations are

cosQ (Za o +Zs, SE)

o =q—(rsina + pcosa) tan 3 +

3

VycosP
7 ] (13)
Yy
and the lateral equations are
. cosP(Pp+Y 6 ,+X O
B = psino —r cosa. + (B 34 £ & R),
4
Iyy_fZZ
p= = qr+LgB+L,p+Lr+L; &,+Ls dg,
xx (14)
I -1 i
zz

The equations (13)-(14) together take the nonlinear form (7), where x=(c,q,p, p,r)’ and

u=(5;,8,.5p"

A full aircraft model would have available a set of discretised aerodynamic data at many
flight conditions, hence modelling the aerodynamic and kinematic nonlinearities due to the
flow field around the aircraft. In this model only inertial and kinematic nonlinearities, found
in the equations of motion, are represented. Thrust and gravitational effects have been
neglected. The stability derivatives are determined by linearization about the specified
equilibrium flight conditions, and thus the nonlinear model applies only locally to these
conditions. Hence this model is in fact not truly valid at high angles of attack. Despite the
simplicity of this model, it is considered suitable for this study, as in the open loop it exhibits
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a bifurcation characteristic similar to more realistic aircraft models such as the High
Incidence Research Model (HIRM)Z. A simplified model allows a greater insight into the
design procedure, with the aim of eventually extending the techniques to more complicated
and realistic systems.

6. Results

Open Loop
The nonlinear model is first run in AUT094'® with no feedback control applied, and the

equilibrium state variables are found over the elevator deflection range +29° . The aileron
and rudder control surface deflections are constantly zero. The five plots in Figure 1
correspond to the five state variables of the model; thus branches shown are projections of
the five dimensional equilibrium state. Therefore the crossing of two separate branches does
not necessarily imply coinciding equilibrium states at that particular elevator value.

In the open loop case, two separate branches are found. The straight branch corresponds to
decoupled longitudinal and lateral state variables. This branch eventually becomes unstable
at the Hopf bifurcation, where periodic solution branches begin (not shown in these figures).
The second branch corresponds to coupled lateral and longitudinal variables and a change in
stability occurs at a limit point.

Figure 1 shows that, in the open loop, a decoupled branch already exists; however, it
becomes unstable at the critical elevator deflection of approximately 5°. Beyond this
elevator deflection the decoupled equilibrium solution becomes unstable and the system if
perturbed could jump to the stable, but coupled equilibrium solution shown to exist along the
second solution branch. Thus the aim is to calculate a robust and decoupling control design
that will extend the stable and decoupled branch to the complete elevator deflection range and
move away or remove stable coupled branches to which the system could jump if perturbed.
Note that results from such a simplified model cannot be used to make any realistic
quantitative conclusions about the system dynamics.

Closed Loop Designs

In all the following control design examples the feedbacks are designed for a linearization
of the nonlinear system which is decoupled and stable. This linearization is made at the
equilibrium point (given in degrees)

((37.65
15.08 | (2690
(x ) =l 0 || o , (15)
0 0
\\ 0

and the open loop eigenvalues are reassigned at this point. The set of assigned eigenvalues is
given to four decimal accuracy by
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2 ={-0.4909 +2.7996i,-0.5580 + 3.9212i,-0.6699} . (16)

The system matrices of the linearized open loop model equations at the equilibrium point (15)
are displayed in the Appendix.

In the closed loop system the bifurcation parameter is no longer the elevator control
surface deflection, but the reference input which corresponds to the pilot’s longitudinal
control input. The relationship between these variables must be considered when evaluating
the effectiveness of a feedback control design. In our nonlinear model u represents the three
control surface deflections. In the open loop these values are input directly. In the closed
loop u= Kx+v, and the control surface deflections depend upon the reference input v, the
structure of the feedback K and the value of x. Therefore, in the closed loop system, careful
monitoring of the control surface deflection values should be made when considering the
validity of a control design at a particular reference input control value. Control surfaces are
limited to deflection angles within a certain range due to aircraft configuration and lack
control effectiveness beyond particular angles.

As in the open loop bifurcation diagrams, the periodic solution branches are not shown and
are left for investigation in future work.

Decoupling Method

Two feedback designs using the decoupling eigenstructure assignment method are
generated. The only difference in the design parameters is the choice of coupling vectors
GO0d . The choice of these vectors is made purely to decouple the longitudinal and lateral
variables.

Design I
In this design the desired decoupling vectors to be projected into the achievable subspaces
are

0)

GOd = (17)

O O X =
O O O K =

% = 8 O O
=% = ® O O

\0 1)
where the x’s denote unspecified elements. The 1’s and 0’s represent desired coupling and
decoupling, respectively. The first two columns of GOd represent the desired longitudinal
modal vectors, coupled to the outputs o,g, and the remaining three columns represent the
desired lateral-directional modal vectors, coupled to the outputs 8, p,r.

When projected, all specified elements are achieved exactly. The calculated design retains
the stability and decoupling at the design point, but Figure 2 shows that it does not achieve
these design requirements for the nonlinear system over the total elevator deflection range
and thus is not considered a good design.
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It can be seen that the decoupled branch is stable until it undergoes a pitchfork bifurcation
where two further unstable solution branches begin. In the plots of the two longitudinal
variables the two branches are identical and plotted over one another. The decoupled branch
becomes unstable after the bifurcation point. The coupled branches evolving from the
bifurcation point undergo a limit point bifurcation where they briefly become stable, and then
a Hopf bifurcation where they become unstable again.

If this control were applied to an aircraft for elevator deflection values greater than
approximately —8°, the aircraft is likely to jump either into one of the stable sections of the
two coupled branches or into some other dynamic behaviour not predicted by these results,
indicating that this is not a good design. This shows the care needed when choosing
decoupling vectors.

Design 2
For this design the desired mode output coupling vectors are

(1 1.0 0 0
1 000
God=|0 0 1 1 1}, (18)
0 0111
\0 0 1 1 1/

where all the zero elements specified are achieved exactly, but the 1’s specified are not.
Figure 3 shows that this design decouples and stabilises the system over the whole control
parameter range, indicating a good design. A second branch is also shown which is coupled
and unstable with a Hopf and limit point bifurcation. This is one of a pair of coupled
branches symmetrically located about the uncoupled branch. (Only one of the branches is
shown in the figure.)

Note that the set of vectors (18) is not unique in achieving a good design. Repeating
the same design method as Design 2 with the set of vectors

(1 1.0 00
x x 0 00
God={0 0 1 1 x|, (19
0 0 x x x
0 0 x x 1

also results in a feedback design that decouples and stabilises the nonlinear system over the
entire parameter range.

At the specified equilibrium point all of the linear closed loop designs generated by the
decoupling procedure are satisfactory, achieving exactly the specified eigenvalues and the
desired decoupling. The corresponding nonlinear closed loop systems display significantly
different bifurcation behaviour, however, over the whole reference input parameter range.
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Some designs successfully extend the stable flight envelope, whereas others are even less
satisfactory than the original open loop system. Applying the bifurcation analysis as part of
the design procedure thus enables better control designs to be selected.

Robustness Method

Desion 3
In Figure 4, the results are given in the case where a robust feedback design is applied to
the nonlinear system. The closed loop system remains stable over the entire bifurcation
parameter range and no bifurcation points occur; however, the system is entirely coupled in
this region, which is expected since the control is not designed to decouple the system. Thus
if this design were applied to an aircraft system, it is unlikely that the system would depart to
some undesired dynamic regime, but the longitudinal and lateral variables would be coupled.

Decoupling and Robustness Method

The modified technique, as described in Section 3, is now applied to obtain a robust
decoupled design. The two modal matrices calculated by the decoupling method are used as
initial starting matrices in the robustness iteration. The feedback K is then constructed from
the resulting V.

Design 4

Starting from the matrix ¥ calculated in the bad feedback design, Design 1, the new V'
found by the iteration method results in a feedback control that decouples and stabilizes the
nonlinear model over the whole reference input range. The matrices V' and hence K
calculated are not equal to the matrices ¥ and K found in the good design, Design 2, using
the projection method only. Bifurcation diagrams of the system states are shown in Figure 5.
No coupled branches were found in the given input parameter range, indicating that departure
to another stable equilibrium state is not likely to occur with this control law.

Design 5
The same procedure is repeated on the matrix V' found in the good feedback design,

Design 2, using the projection method only. This results in matrices ¥ and K not equal to,
but containing entries close in value to those of the matrices ¥ and K found in Design 4.
The resulting bifurcation diagrams are also very similar, and again the feedback gives a stable
and decoupled system over the whole reference input range. The bifurcation diagram for this
design is virtually identical to the diagram for Design 4 (see Figure 5).

Additional experiments have shown that the new modified eigenstructure assignment
method gives similar satisfactory designs if applied at various points on the decoupled open
loop equilibrium branch, regardless of whether the corresponding linearized system is stable
or unstable at the selected equilibrium point. In all cases the calculated robust feedback
successfully stabilizes and decouples the system over the full reference input range.

Robustness of the feedback design at the specified equilibrium point ensures that the
linearized closed loop system is insensitive to perturbations arising, in particular, from
neglected nonlinearities. The corresponding nonlinear closed loop system is therefore
expected to retain the assigned properties over a wider range of the reference input parameter

13

American Institute of Aeronautics and Astronautics



than less robust designs. The results presented here confirm that the robust designs
successfully extend the stable and decoupled flight envelope and improve the departure
characteristics of the nonlinear system, thus demonstrating the importance of robustness for
nonlinear as well as linear systems.

7. Conclusions

The effects of linear feedback controllers on the nonlinear dynamics of a simple aircraft
model are investigated here using bifurcation techniques. The controllers are synthesized by
various eigenstructure assignment procedures, applied to a linearization of the aircraft model
at an equilibrium point of the nonlinear system. A new modified technique is introduced that
enables the design of closed loop systems that are both robust and decoupled.

The bifurcation analysis reveals that feedback control designs that all appear satisfactory
for the linearized system can exhibit very different nonlinear departure characteristics. The
analysis also demonstrates that robust designs that minimize the eigenvalue sensitivity of the
closed loop system can improve the effective parameter range of the control laws acting on
the nonlinear aircraft. The robust decoupling controllers designed by the new eigenstructure
assignment technique are shown by the analysis to extend the stable and decoupled flight
envelope successfully and to improve the nonlinear dynamical behaviour of the aircraft.
Bifurcation analysis thus aids the design process, resulting in more effective control laws for
the nonlinear aircraft over the entire parameter range.
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Appendix

The system matrices of the fifth-order aircraft model (13)-(14) linearized about the specified

open loop equilibrium point (15) are given to four figures accuracy by

(02297
—7.389
0
0

. 0

(-0.04513
-1139
0
0

0

1.000 0 0 0
-0.7520 0 0 0
0 -0.3038 06108 —0.7918
0 -18.77 -1237 02307
0 5266 02139 -0.2450
0 0 )
0 0
—0.6993¢ — 03 —0.4296e — 02
9.010 1994
0.05800 -2634 )
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