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Abstract

Pedestrian models have been studied for about 40 years. Initially focusing on macro-
scopic models which consider a crowd as a fluid or granular flow, more recent research
has developed microscopic models of individual pedestrian behaviour in crowds.
These include terms to model human psychology such as the desire to keep a cer-
tain distance from other people. This dissertation uses a transformation developed
within a traffic context to move from a microscopic to a macroscopic model whilst
retaining some of the psychological factors. Primarily in a 1-dimensional framework,
Lax-Friedrichs, Upwind and Lax-Wendroff numerical schemes are used to solve the
resulting system of hyperbolic equations numerically. Some work is also undertaken
on a 2-dimensional model, developing an analogous transformation which is used to
derive a more sophisticated model of pedestrian behaviour. This is solved using di-

mensional splitting techniques.
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Chapter 1

Introduction

Pedestrian crowd modelling has been studied for over 40 years. The models are
particularly used for evacuation and disaster scenario modelling, but can be a key
part of any building development or emergency planning procedures.

The main models used here are those developed by Dirk Helbing [6] - [9] but
there are a range of other approaches which will be reviewed briefly. The subject
area cuts across mathematics, psychology and computer science and many of the
approaches developed focus on their use as a practical tool to non-mathematicians:
their benchmark is purely to mirror observational data. However as many of the
models are analogous to those developed for traffic modelling, they can be solved

numerically as systems of hyperbolic equations in conservation law form

Ou  Of(u) _
Bt + oz s(u) (1.1)

where u is the conserved quantity, f(u) is the flux and s(u) is a source term.

There are two main types of model: macroscopic models which model crowd
behaviour as an entity in itself and draw from gas and fluid flow approaches, and
microscopic models which consider each pedestrian and his or her individual prefer-
ences. The latter are considered to be advantageous as they are more sensitive and

better reflect the effects of collision and interaction behaviour. However mMacroscopic
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models can be more computationally efficient. A number of ways of moving from
micro to macro models (and vice versa) have been developed, mainly for traffic mod-
els. This report will consider in detail the approach developed by Peter Berg and
Anthony Woods [2] for traffic where a microscopic model is 'converted’ into a system
of conservation laws. These can then be solved using standard numerical techniques
and their stability and behaviour investigated. If this approach works, it will provide
a simpler macroscopic model than those previously developed whilst incorporating
some of the strengths of the microscopic model.

Chapter 2 contains a brief literature review on pedestrian modelling, particularly
focusing on microscopic and macroscopic models and the relationship between them.
Helbing [9] has developed a social force model which takes into account some of the
psychology of crowd interaction on a microscopic level. We define this model and
explain the Berg and Woods approach for moving between a microscopic and macro-
scopic traffic model. Chapter 3 looks briefly at the numerical methods which can be
used in solving hyperbolic equations and explains how to derive the truncation error
and stability region for the schemes we shall use. One of the challenges of the model
is the complexity of the source term and how this can be dealt with. In Chapter 4 we
apply the approach to the model, looking at a one-dimensional case of people moving
along a corridor. For some initial results we make various simplifying assumptions
and then use some numerical schemes including Lax-Friedrichs and Upwinding to
look at solutions and their stability. Both initial and boundary conditions are varied
in order to see how this affects the results and whether they have a physical inter-
pretation. In Chapter 5 we extend the model further to consider a two-dimensional
situation, where people are able to overtake each other and, for example, move to-
wards a doorway or specified exit. Finally Chapter 6 will outline the conclusions

which can be drawn from both the approach and the results.



Chapter 2

Pedestrian Modelling Research

2.1 Introduction

Pedestrian or crowd modelling has been of interest to the scientific community for
many years. Initially, models were developed from observational data, and pho-
tographs and videotapes studied to assess the movement and behaviour of people in
crowd situations. It was noticed that crowds reflected the flow of fluids or granules
in certain cases and this inspired people to model crowds using equations based on
physical phenomena. Many of these models used some sort of conservation equation
but over time it was shown that these fluid or granular based models did not capture
enough of the psychological behaviour of humans. For example, molecules do not keep
their distance from other molecules they do not like, or get distracted by interesting
events at the boundary, whereas people generally prefer to maintain some personal
space between themselves and others and may be attracted to, for example, an attrac-
tive shop window display in a pedestrian street. Modelling whole crowd behaviour
rather than individual preferences results in what are known as macroscopic models,
whereas those which simulate individual pedestrian behaviour are called microscopic.

Research covers modelling both normal pedestrian behaviour, and evacuation and

10



panic activity. The latter is more complicated as people generally cease to behave in
a rational manner, and exhibit herd like behaviour [19], following each other rather
than thinking a course of action through, which can lead to overcrowding and injury.
People catching others up and bunching can, mathematically, produce waves and
shocks.

There are clearly parallels between traffic and pedestrian modelling both in the
nature of the modelling and psychology of behaviour of pedestrians and drivers, and in
the divide between macroscopic and microscopic models. Macroscopic traffic models
are often used as they give insight into throughput, density distributions and the
onset of jams. Lighthill and Witham [18] developed probably the most famous. The
macroscopic /microscopic analogy for traffic models is the continuum model where
traffic flow is modelled on an open road and individual vehicles are smoothed out into
continuous velocity and density fields (macroscopic), and the car following approach
where the behaviour of each vehicle is linked to that of the vehicle in front by a
mathematical rule (microscopic).

For microscopic or car following approaches, individual psychologies can be in-
corporated and these models can distinguish between the behaviour of, for example,
trucks and cars, slow and fast moving cars or vehicles in different weather conditions
[14]. The microscopic to macroscopic conversion by Berg and Woods [2] which is used
here has been developed specifically for a traffic model but we adapt it for crowd flow.

We will now consider some of the main macro and micro models in more detail.

2.2 Macroscopic Models

These treat the dynamics of the crowd as one body, often in a similar way to a fluid
or gas flow, although others have been developed using queuing theory, transition
matrices or route choice behaviour models.

In 1971, Henderson [16] developed a statistical model of crowd flow and showed

11
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that a loosely packed crowd would flow like a gas whilst a densely packed crowd was
more similar to liquid flow. His model used Maxwell Boltzmann Theory to define a

probability density function of velocity:

1 1 V2
P(V) = —gm—eap( 555 (1)

rm.s.
where

Vz = component of the mean velocity of the flux

Ur.m.s. = Y00t mean square of the speed L v.
He compared his results to observational data and found it matched the behaviour
of certain groups such as students. However it struggles near maximum values and
further research showed that behaviour changes depending on the gender balance of
the crowd. The microscopic model incorporating preferences has much more scope
for modelling this.

In 1999, Helbing and Viscek [8] developed a continuum model looking at the
interactions between two sub-populations. In this a and b are two sub populations
with different desired walking directions and the equation for a population a is given

by:

228D 1 2 [ou(a, Vale, 0] =0 (2:2)
where

pa(z,t) = density

Va(z,t) = average velocity of pedestrians of population a perpendicular to their
desired walking direction.
Va(z, t) is proportional to the frequency of interactions that a pedestrian of population

a encounters with other pedestrians and the average amount Az that a pedestrian

moves aside when evading another pedestrian, giving an expression of the form

8pa 6/)1,
[ R 2 —— ——
Va(z,t) &~ —c(Ax) (C’aa o + Cap 83:)
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where

¢ = prefactor allowing for slowing down in crowded areas

Cup > Cy, relates to the spatial areas used. This is developed in terms of a param-
eter measuring the effects of ’crowdedness’, and the conditions for self-organisation.
This adds a diffusion term to the above equation and it@stabﬂity can be investigated.

Helbing [7] also developed a fluid dynamic model based on a Boltzmann-like gas
kinetic model, with equivalent expressions modelling pressure and temperature, re-
sulting in equations for mass density, momentum density and energy density. However
the equations are somewhat complex although they do give reasonable results.

The primary difficulty with macroscopic models is that they do not allow for
individual behaviour, e.g. deceleration or avoidance by people. As explained earlier,
although at high densities there is evidence to suggest that crowds act like fluid
or granular flow, macroscopic models do not take into account the self-organisation
effects of people or their manoeuvrability. In panic situations [19], it can be shown
that people tend not to take the most rational course of action. For example, people
tend to follow the crowd and will follow each other and bunch around an already
blocked exit in a smoke filled room regardless of other exits which may be available:

a flow model would show people moving equally to all exits.

2.3 Microscopic Models

Behavioural models can be used as a basis for a range of situations where responses
depend on individual preferences. A good review of work in this area is provided by
Helbing, Farkas, Molnar and Viscek [6]. Current research is focused on microcopic

simulation and the main approaches are:
e behavioural/social force models
o cellular automata models
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e Artificial Intelligence - based models

We shall not consider the latter but references for them are given in [6].
The effectiveness of a microscopic model, like the behaviour force one, depends
on its ability to reflect the preferences and behaviours of each person. Helbing et al

[6] have studied observational data in detail and concluded that people:

e tend to choose the fastest not the shortest route, although they are not keen to

take detours even if the way ahead is crowded

e have a preferred individual desired walking speed which is generally the most
comfortable (i.e. least energy consuming) unless they need to be somewhere by
a certain time. Within pedestrian crowds, these speeds are normally distributed
with mean 1.34m/s and standard deviation 0.26m/s [16]. These figures are used

in our model.

e keep a certain distance to other pedestrians and borders, depending on the

extent to which a person is in a hurry and the density.

e get nervous in panic situations, move faster than normal, bump into others and

exhibit herd behaviour

e show oscillatory behaviour at bottlenecks and the appearance of shocks in dense

pedestrian crowds pushing forward.

e become obstacles if injured in panic situations, overlook alternative exits and

can build up pressure to dangerous levels.

The behavioural force model reflects most of these behaviours.

2.3.1 Behavioural Force Model

This is one of the main microscopic models and has been developed from social

field approaches in social psychology which allow for different behaviours [9]. These

14



assume that behaviour in conflict situations can be described by the addition of
forces reflecting different environment influences. The approach has been applied to
opinion formation, migration and traffic modelling as well as pedestrians. Although
the model describes the interaction of specific individuals, Helbing [6] also comments
that reliable crowd models can come from knowing the proportion of people exhibiting
certain characteristics and that ’In some sense, the uncertainty about the individual
behaviours is averaged out at the macroscopic level of description’. This is important
for work in subsequent chapters.

The behaviour force model is:

d(t) _ ROSQ | 6O =5 | ey iy 4 o
B - g 8 = o) + )+ (2.3)

~ J

driving term friction term

where

i,j = two bodies

v;(t) = velocity of body i

v2(t) = desired speed
e?(t) = desired direction of motion
7; = relaxation time

&(t) = fluctuations
i7°(t) = forces associated with socio-psychological contribution

f}'}h(t) = forces associated with physical interactions

b
ij

= forces associated with boundary interactions.
The repulsive social force term f*(t) is the socio-psychological contribution, reflect-
ing the tendency of pedestrians to keep a certain distance from other pedestrians and

can be written as:

1+ cos wij)

(e = Aiemp[( L= ”)]mJ ()\ +(1—X) s

= (2.4)
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where

interaction strength
radius ¢ + radius j

| #; — z; || ,distance between centres of mass of pedestrians i and j

range of repulsive interactions, can be culturally dependent

zi(t) — 2;5(2)
di;(t)

allows for anisotropic characters of pedestrian interactions, < 1

normalized vector pointing from j to i

angle between ¢;(t) = H%:(?)TI and direction —n;;(t) of the

object exerting the repulsive force.

A; would take a value between 0 and 1. Measures for the radius of a person come

from Fruin data (see [23] or[5]), for example

Type Breadth(cm) Depth(cm) Area(m?)

British male 51 32.5 0.26
British female 43.5 30.5 0.21
Average(European) 45.58 28.2 0.2
Maximum 51.5 32.5 0.26

fi';-h(t) is the physical interaction term which only plays a part if pedestrians have

physical contact with each other, for example in a panic situation:

where

f,g-h(t) = !{;e(rij = dm)nml HHr I&.@ (7‘1'3' — dij)AU;iti_;i (25)
body force sliding friction force
k,k = large constants

©(z) = zif z >0, otherwise 0

16



A’l);~ = (’Uj—’Ui)tij.

There is also possible interaction with boundaries such as walls,

r' — 13
fin = (Az'exp(z—B.dZL) + kO(r; - ib))nib — kO(r; — dp) (vitin )t (2.6)
where
dyp = distance to boundary\tl
ng = direction perpendicular to boundary
ty = direction tangential to boundary.

In addition terms can be added for time-dependent attractive interactions such as
being drawn to window displays, or to reflect the joining behaviour of families, friends
or tourist groups.

Simulation of the model shows

e pedestrians tend to organise themselves into lanes of people with the same

desired direction, eventually self organizing themselves into an optimal state [8]

e oscillations at bottlenecks, assuming people do not panic where small groups of

people take it in turns to past through an exit in different directions
In panic situations the nonlinearity of pedestrian interactions exhibits

¢ ’freezing by heating’ (increased energy leads to increased order, jamming and
freezing giving a metastable state. This can be modelled by 7; = (1 — 5;)no +

NiTmaz (Where 0 < 7; < 1 measures the nervousness of pedestrian i ) [12])

o faster-is-slower effect, i.e. the faster people move the more they get in the way

of others and cause bunching and blockages

17



e phantom panics where a delay at the front, perhaps due to the faster-is-slower
effect, causes those behind who cannot see a reason for the delay to begin to

push and cause panic

e herding behaviour where people cease to act as individuals and follow their
neighbours. This can be modelled by considering the desired direction €2(t) =
N((1 —ni)e; + ny < €)(t) >;) where each pedestrian can follow an individual
direction e; or the average direction < €)(t) > of his neighbours j in a certain
radius and his options are weighted with a ’nervousness’ factor n;. If n; is high

we get herding behaviour.

Helbing uses the behavioural force model to produce simulations illustrating be-
haviour at intersections and avoidance of others. This suggests that it can work in
two dimensions although still based around the interactions of just two people. To
move properly into two dimensions, we would need to look at the interactions between
more than two people and introduce more sophisticated terms for position, radius,
direction etc. Some of Helbing’s results can be found on-line at www.helbing.org and
are simulated through Java applets.

This model appears to be the most effective both in representing the psychological
behaviour of individuals but also in capturing the behaviours of crowds which match
observation data. In the following chapters we will use this model as a basis for
developing a macroscopic model, attempting to reflect some of the behavioural results
at the higher level with a more simple model than that seen in Section 2.2. Firstly

we outline the conversion process from microscopic to macroscopic models developed

by Berg and Woods.
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2.4 Microscopic to Macroscopic Models

The transistion between microscopic and macroscopic models (and back again) has
been explored by a number of people for traffic dynamics, in particular Helbing [13],
Zhang [30] and the approach used here by Berg and Woods [2]. This section outlines
the approach used by Berg and Woods for cars and in their paper they continue
further to analyse the stability and behaviour of the resulting macroscopic model.
The density of cars p is usually described as simply the inverse of the headway b
but this does not work when transferring from microscopic to macroscopic models so
some other way of mapping {z;} — [p : R — R] is needed, where z; is the position of
a vehicle at a given instant in time . Starting with the requirement [+ p(z,t)dz = 1
for all 4, we can use the definition of headway b = z;41 — ; to extend this function

to all points along the road to give

@+b(,t) ’ ’ bla,t)
[ e 0d = [T plo+y iy =1 (2.7)

Here we are considering a region of road (1,y) and hence the integral is with respect
to its length. Taking a Taylor expansion of p(z + y, t), integrating with respect to y

and truncating after the second order we get

1 2 1 3

By assuming that each term is of smaller magnitude than the one preceding it, we

can ignore the cubic terms and solving as a quadratic in b gives b = - — -23;—3 and

1
)

regarding the cubic term as a perturbation, expanding b gives a new expression in

terms of p:
1 Pz Pas P2
b = - =T, — — AL S T 2.
p 203 6p* +2p5 " (29)
N~ S~~~ S~~~

usual relationship pressure term dispersive term
Taking total time derivatives of % s z+ bp(y, t)dy from (2.7) shows that the velocity

is transformed consistently and that the conservation equation p; + (pv), = 0 holds.
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As an example, Berg applies the transformation to a microscopic model (the
optimal velocity traffic model developed by Bando at a! [1] and shown below), and
when evaluated against the original results, it produces comparable behaviour. The

Bando equation is

d’U,;
E = a[Ub (.’Ei+1 e 371;) —’Ui] (210)

b;—the headway

where the optimal velocity is a function of the distance between the~ith and the

(i+1)th particle and a is a positive constant. It has been shown by Bando et al [1]

that the optimal velocity function (optimal in that it is able to reproduce many of

the features of real life traffic situations) is
U(z) = tanh(z — 2) — tanh(2).

Applying the transformation gives an expression for the conservation of cars coupled

with an approximation of the microscopic equation:

pe+ (pv)a =0 (2.11)

2
v +vv, = a(V(p) —v) +aV (p)(g—; + g—;: - ;—;) (2.12)

with
1
Vi(p) = Ub(;)-

Berg shows that there are big efficiency and time savings in solving the macro-
scopic equation rather than the microscopic one.

Helbing illustrates another approach by defining the average velocity of a car by
linear interpolation between the velocities of neighbouring cars and differentiating
with respect to time. In [13], he moves from a social force model of traffic dynamics
to a macroscopic model using probabilities and calculus to obtain a three equation
model of the form

9p , 9(pV)

E-'_ or

=0

20



a(pV)
ot

2
gt—[p(Vz +0)] + %[p(vf’ +8V0) = L2V 47D~ V? - 6) + o

0. 1 _ P
+ 5PV +0)] = 2(V = V) + Ty

where p = density, r = position, ¢ = time, D = diffusion function, w future velocity

V(r,t) = average velocity and 6(r,t) = velocity variance with

v

Fr(r,t) = ——k/dAr/dv - dwv’“‘lexp(—Ar — S(U))

—w /
7 p X P (Ar,w|r,v,t) P(v;r,t)

and

Ve = [dor [dv [ awV (A0 P (Arwlr v, P

where P denotes a probability.
The next chapter considers some of the numerical methods we will use and then

we will use the findings of Berg and Woods to develop the behavioural force model.
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Chapter 3

Numerical Methods

3.1 Introduction

When an equation cannot be solved analytically, we can use a variety of numerical

methods such as
o finite elements
e finite volumes
o finite differences.

For hyperbolic equations such as conservation laws, finite differences are often used.
These aim to construct an approximate solution ™! at time n + 1 from previous
solutions 4™, u™! etc depending on the level of the scheme. A typical grid is shown

overleaf.

The standard conservation law in one dimension for a system without a source term

is

and f'(u) = A which is the Jacobian matrix. The solution can be approximated

numerically by replacing the derivatives with finite difference approximations, taking
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S—

1
n+1
im

n

Ax

n-1 -
. —>
J-1 i j*l X
Example Grid

forward, backward or central differences to, hopefully, maximise the accuracy and

stability of the scheme. There are two types of scheme:

e explicit - where the current approximation depends only on previous ones, e.g.
replacing u; with a forward in time approximation and u, with a central in

n+1

space one gives u; ' = u} — 3 AZA(y‘J Y — U1)

e implicit - which has the current approximation on both the left and right hand
sides of the equation, e.g. using the central in space approximation at n + 1

n+1l _ u” n+1 n+1
instead of n gives u; — At A(

=1L Yjpy — Ui

For the crowd model we will use a Lax-Friedrichs scheme, an Upwind scheme and

a Lax-Wendroff scheme as outlined below.

3.1.1 Truncation Error

The local truncation error measures how well the discrete equation models the dif-
ferential equation locally. It is derived by replacing the approximate solution in the
discrete equation by the true solution, i.e. assuming the values at the grid points are

exact, and expanding in a Taylor series. Recall that u} = u(jAz, nAt) and so Taylor
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expansions at time n give:

Azx? Axd
u;-"_i_l ~ u(a; + ASL', t) =u-+ Al"u/z + Tuxz + Tuwzx +...
At? A3
wit mou(z, t+ At) = u— Aty + — Unt g Ut

Once we collect terms and use the definition of the original equation we are left with
an expression for the truncation error in terms of powers of At and Az (in 1-d). This
gives the order of accuracy of the scheme. If the method is stable, the global error
is of the same order as the local error. A method is consistent with the differential

equation if the truncation error goes to zero as the timestep goes to zero.

3.1.2 Scheme Stability

A scheme is stable if the local error does not grow ’excessively’ as each step is applied,
i.e the difference between the actual and approximated solution has bounded growth.
Le Veque [26] tells us that we can use the Lax Equivalence Theorem to deduce a
stability bound for a numerical scheme. The Lax Equivalence Theorem says that for
a consistent linear method and a well posed problem, stability is necessary and suffi-
cient for convergence, so if the scheme is stable it will converge to the true solution.

Stability holds for a system of equations if
At
< i
Nl <c (3.1)

where ); are the eigenvalues of the Jacobian matrix A and C is some bound constant.
This is known as the CFL condition (after Courant, Friedrichs and Lewy who first
devised it) and enables us to choose values of At so that the scheme remains stable,
although it is a necessary and not a sufficient condition for stability.

There are two other types of instability that may arise: instability due to the dif-
fusion term and instability due to the relaxation term. The first may occur when the

model has an explicit viscosity term D?;T‘; and necessitates an additional diffusional
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CFL condition:
D(Ax)?
<1
VAN A

Instabilities can also develop when there is a relaxation term as a source term in the

model. We will see an example of this later.

3.2 Lax-Friedrichs Method

For the Lax-Friedrichs scheme we use a spatially centred approximation together with

a time approximation that averages values at the current timestep to give the explicit

scheme:
1 (u?, +u?,) u, —ul
= (gl M -1 A= -1y —
At 7 ) HACTE =0
i.e.
n wi, tul, At n
uj+1 _ = > g+l 2AmA(uj_l —l&j+1)-
An alternative way of writing this for the general form of the conservative law is
uy_ +uy At
ntl __ =g=1 ' =41 n o
% =T ang i~ Lima (3.2)

The truncation error for Lax Friedrich is

At Ag? A2 B f 3 2
I3 =—Fun — gt t —c 55+ O(Az?) + O(AF) (3.3)

and hence Lax-Friedrichs is 1st order in time and 2nd order in space. It has a stability

condition of |)\1%| <1 Vi where ); are the eigenvalues of the Jacobian matrix A.

3.3 Upwind Scheme

The Upwind scheme uses a backward or forward difference in space depending on
the sign of the eigenvalue. As we shall see, the eigenvalues for our model are both

positive in one dimension and so we only need to use a one sided scheme:

it =} — A_x(f ~ L) (3.4)

)
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It has a truncation error

At A
T = 5 e+ - W)z + O(AZ?) 4 O(AL?) (3.5)

and therefore is 1st order in time and space. The Upwind scheme has an interval of

stability \; At <l1.

3.4 Lax-Wendroff

Lax-Wendroff is one of the most well known second order schemes and for the linear

hyperbolic equation 2% 4 A%% = ( takes the form [26)

n n_ Dt Af?
wtt =l — Ao oAy, — Uy 1>+ Az g Wiy — 2uf +uf ) (3.6)
which is derived from a Taylor/s/ series expansion and the relationship £ o = A? g;’;

Taking centred difference approximations for the derivatives and rearranging gives
(3.6).
For a nonlinear conservation law A(u) = f (u) is the Jacobian matrix and so the

scheme becomes

2

/)

5 = = )L 0 D (A () L)~ Ay ()~ £0))

(3.7)
However we can avoid having to calculate the Jacobian matrix by using the Richtmyer

two step Lax-Wendroff method:

%5 - "(ﬁ +u ]+1) 2A (_( +1) ( ;l))
Wt =uf - —(f( f:f) — K( :ff)) (3.8)
For the linear equation (3.6) we can show Lax-Wendroff has a truncation error of
28%u 20%u 3 3
(At — ~ Az ﬁ) +O(AZ%) + O(AF) (3.9)

and hence is second order in both time and space. The interval of stability for the

scheme is the same as for Lax-Friedrichs.
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3.5 Source Terms

For our system of equations we will need to deal with source terms on the right hand

side, i.e.
B_Q
ot

Numerically the easiest way to deal with the source term is to add it to any of the

i % = s(u)

schemes outlined multiplied by At. So, for example, Lax-Friedrichs becomes

n n
ntl _ Y1 U A
Uy = 9 - 2Nz (ﬁ+1 - i;'l—l) + Atﬁ.;l

For more details on alternative ways of dealing with source terms see [17).

3.6 Modified Equation

To look at the behaviour of solutions in more detail, one approach is to model the
numerical equation by a differential equation [26]. This often results in a PDE which
is solved more accurately than the original equation being modelled (the 'modified’
equation), highlighting additional terms which may affect the solution. For example,
the modified equation for Lax-Friedrichs, found by similar analysis to that used to
find truncation errors, where u(x, t) is taken to be the exact solution to u; + Au, = 0
is

1 Az?
Uy + A + 5 (Dt — Txtuw) =0

which would have a truncation error of order (At)? and hence we would get a more
accurate solution to this than our original equation. Expressing uy in terms of z

derivatives gives

_ (Am)2< B (At)2A2>

an advection diffusion equation where the diffusion term will cause solutions to be-

(3.10)

come smeared out as time evolved. For the Upwind scheme the modified equation
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is

o e (311)

1

also an advection diffusion equation but here the scheme would be less diffusive. For
both, the equations are well posed only if the eigenvalues of the diffusion coefficient
matrix, D (multiplying the u,, term), are non negative. This also leads to the
stability criteria derived earlier. The Lax Wendroff scheme gives a 3rd order accurate
approximation to the modified equation

_ (Az)? ((A)2A?
6 ((Am)2 _I)”“’ (3.12)

U + Ay,

which is a dispersive equation. This leads to the oscillatory behaviour typical of Lax

Wendroff, with slow wave numbers causing lagging oscillations behind discontinuties.

3.7 2-D Equations and Dimensional Splitting

In two dimensions, conservation laws take the form
— =4 == 0) (3.13)

One approach to solving this numerically is to use any of the discrete one-dimensional
methods and apply them alternately on one-dimensional problems in the z and y
directions [4] [28]. For (3.13) with initial condition u(z, y,t") = 4", and denoting the
average of u(z,y,t") in each cell by ul%, we take an "x-sweep’

237
ou Of -1
ata -0 T oum

and then use this as the initial value for a ’y-sweep’ to take it to a full timestep.

8u ai_ n+1
o Tay =0 T

Any source terms can be dealt with in the same way. If the individual 1-D sweep
schemes are first order accurate then the sweep strategy is also first order accurate.

Similarly if the 1-D schemes are second order accurate, this is carried through.
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There are other ways of splitting the timesteps to improve the accuracy of the

scheme [29]. For example to obtain second order accuracy the splitting coefficients

LJ

Ty

would be 0.25, 0.5 and 0.25.

29



Chapter 4

A One Dimensional Crowd!

4.1 Introduction

Obviously crowds are not one-dimensional. However to initially test our approach
we will consider a one-dimensional flow of people for example along a corridor. (see

diagram overleaf)

4.2 A 1-D Model

Consider the behavioural force model decribed in Chapter 2:

dui(t) _ v()ed(t) | &(t) —ui(t)
dt T i T

+ 550 + £ @) + £ (4.1)
We can simplify it with the following assumptions:

e people are not panicking and do not bump into each other, i.e. we can disregard

h
Fi (@)
e people do not interact with the boundaries, i.e. ignore i’;-

e )\;; = 0 so interactions are isotropic.
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d;
f |
X=0 —> X X =X
A One-Dimensional Crowd
Then our microscopic equation becomes
dvi(t)  v2()ed(t) — ui(t) ri; — dij 1+ cosi;
at @ 0 i el JBi' i 2 .
In one dimension, people are moving in a straight line and so cost);; = 1 and n;; = —1
(as it points from pedestrian j to i), so we have
dv(t) v (2)ed(t) — vi(t) Ti; — di
L = == — Ajexp(—L—"2). 4.2
dt Ti iezp( B;; ) (42)

Berg and Woods’ conversion depends on linking the headway b to the density and
so for a pedestrian model we need to define an equivalent relationship. One option is
to take the distance between two pedestrians in a crowd given by d;; (= the distance

between the centres of mass of pedestrians 4 and j7), and hence define

1 x e .
s Pr _ Pox | P

For ease of calculation, we can express (4.2) as:
dv(t)  vd(8)ed(t) — vi(t

where f(d) = A,-exp(r—”'-'B;ij@) is a function of pedestrian 'headway’. Substituting 4.3

into 4.4 gives

do(t)  vD(t)ed(t) — vt 1 P Pz, P2
(t) _ wi(®) (? -()—f(—~—;,;—j- Loy (4.5)
dt Ti P 2p 6pt  2p
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Expanding the term in brackets in a Taylor Series around % and truncating gives

dvi(t) _ v)(0)ed(t) — vi(t) 4 Poe _ Poypd
T - - f= ) ( 6ot 2p5)f(p)~

Now, in a similar way to Berg and Woods [2] we can set f() = f(p) and f’(-;—) =

2F :
—p°f (p) to give

0,0

( 2
v = S = T() + T (o) (52 + 62— 7). (46)

For a macroscopic model we can take average values for the constants v°, ¢ and 7.

Multiplying equation (4.6) by p and using the conservation law gives

i)+ gten®) = E= ) Tl 4 e L2

ave

From (4.4), substituting back

£2) = T(p) = deap(BEZL)
70 = A% Leap( B

where r;; is taken to be equivalent to an occupancy term in traffic [27] and can be
defined as r = Rgyep With R, the average radius of a person and p the density.

So we get a system of conservation equations, analogous to (2.11) and (2.12):

Op O
a‘ + '%(p’u) =0 (47)
0 0, 4 _ (0% —w)p Rp? -1, ARP*+1) ps poc  p? Rp* —
g (PV)F5-(0v") = T~ Apexp( By )= B (g By 20 o —
(4.8)

In order to use the equations we need to define values for the constants:
e interaction strength A varies between 0 and 1
e initial desired velocity v° is taken to be equal to the mean value 1.34m/s

e the average radius of a person is taken to be 0.3m based on Fruin data
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National guidance suggests that critical density is one person per square metre with
the safety limit for crowds being 40 people per 10 square metres [23]. In a one-
dimensional case, it would be physically impossible to have a maximum density much

greater than 4. So from (4.7) and (4.8), letting pv = @ we have:

s

Op O
a2 _9 4.
at oz (4.9)
862 0Q? %% — Q Rp® —1\ A(Rp*+1 v Rp? -1
[p _ €% —prm( p )_ ( p %p Prz ) (22
Bt ox e Bp Bp 2 6p Bp
(4.10)
For the second equation, splitting the derivative terms gives:
0Q  0Q*/p v’ —-Q Rp* =1, A(Rp*+1) Py
e 4 - —A - £ -
ot + Ox Tave peap( Bp ) Bp? ( 6p
2 2 2
s Rp?—1, A(Rp*+1)p, Rp?* -1
Integrating the last term and gathering % terms onto the left hand side:
0Q 0 Q2 Rp*—1., %% —-Q p? —1
ot + Ox + 2 zp( Bp )= Tove Apeap( B )~
ABP+1) pe P R o

So we have

u= (pa Q)T
QA Rp? —1
= (Q, —p— + ——e:vp(_Bp_))T

v2elp — Rp?—1 A(R —I—l .
2= 0,22 ppeap( Rty - ABE L) e

Tave

2 2
Pz Bp”—1.r
)

To calculate the region of stability we need to look at the eigenvalues of -35 (see

section 3.1):

of ( 0 1
Ou "\ G 4 Al (B2 29
and so
) 1

—% + 45 eop(R2) 22—

|A—Aﬂ=' {:o
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Figure 4.1: Eigenvalues for the 1-D Model

(4.13)

Q ARF+1)  Rpf 1
A= \/ e ]

Hence the stability criteria, is

Az
A(Rp2+1) Rp?—1
% + \/ L2Bp2 ewp(%p )

The sign of the eigenvalues clearly depends on the size of the respective terms. For

At < |

realistic scenarios, density will range from 0 to about 4. Plotting the eigenvalues

shows (see Figure 4.2) that both are positive.

4.3 Numerics

From (4.9) and (4.12) we have a system of equations modelling one dimensional crowd

behaviour:

9 9Q _

o + 7 0 (4.14)
0Q 0 Q_2 A Rp®—1 e — Q Rp?—1
ot i oz + 2 zp( B )= Taw Apea:p(B_)

A(Rp* 4+ 1), pga
. —(—”—)U’— - L1, (4.15)



Applying any numerical scheme to this involves dealing with a complicated source
term

0%elp — Rp* -1, ARPP+1) pus
5= (0,2L=9  ppegpftr =1y AR+ fme

Rp* — 1))T
Tave Bp sz 6p

2
- 27;)65010( Bp

which numerically gives rise to two problems:

o how to deal with the derivative terms

e the impact of the relaxation term.

For the first, this was overcome by approximating each derivative directly and solving
as an integral part of the system. Using central second differences for ‘g—;, and an

upwind multiplied by a downwind scheme for -2335 gives

2 2 7 T ') Y 7 7
Pzz  Px 1 pfe— 207+ P54 1 pF =P, P — ]
ETE]  pErey e - X 44
( 6p 2p2) 60} (Ax)? 2(p2);’( Az X Az ) (416)

This results in an additional stability criteria
max(differentiation of RHS) At < 2.

The impact of the relaxation term caused more signficant problems, resulting (for
example when approximated using Lax-Friedrichs) in wild oscillations (see Figure
4.3) This implies that this part of the source term is stiff i.e. to maintain numerical
stability the timestep needs to be far smaller for the relaxation term than for the
rest of the system. However, whilst the system could be stabilised using a very small
timestep throughout this is impractical as to make any progress in the model the
number of steps needed would be very large. With a relaxation time of 0.5 seconds
and Az=1, At=0.00001 is needed to maintain stability, requiring 30,000 timesteps
to even reach a minute. (For further information on stiff source terms see [22] or
[25]). To overcome this, the numerical approximation occurred in two stages: firstly,
an explicit scheme (i.e. Lax-Friedrichs or Upwind) was applied to (4.9) without the
relaxation term included, and then an implicit scheme was used on the relaxation
term alone. As implicit schemes are unconditionally stable the above oscillatory

problems do not occur. The Trapezium method was used.
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Lax Friedrich Oscillations dx=1, di=0.05, 5000 timesteps every 500th shown
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Figure 4.2: Oscillations using Lax-Friedrichs when including relaxation term

4.3.1 Applying the schemes

We apply the Lax-Friedrichs, Upwind and Lax-Wendroff schemes to

Op  0Q
Eri 0 (4.17)
oQ 0.,Q* A Rp® -1, %% —Q Rp? —1
5 + 35\ p + 2ewp( Bp ) = — Apezxp( )
ARP*+1) pos P2 Rp? ~ 1
~ T Bp (6—p ~op exp( By ). (4.18)

Lax-Friedrichs

We saw from Chapter 3 that a conservation equation with a source term

8_u+.a;f——-s
ot Oz °
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can be approximated by the Lax Friedrich scheme

¥ ¥
ntl _ Y1 T

U 5 2A (JJrl I7 )+ AOts.
So applying it to (4.18) gives the system
ntl _ Pi-1t+ Pi At .
Pj+ = 2 - 2A.’B( 1T j-l) (4.19)
"L+ Q7 At R, —1 2
n+l _ ¥j—1 Jt+l A )i — 1, Q%
Q; F 2 e (Dpa+ e - (D +
A o FP i R —1,  A(R(;+1)
+ exp ——T— ) + At(—ApTtexp 2 - J
ern(IRE ) ) + At Apgeap ) - A
Rkl S S el AL TSl 1YW (R(p2)g -1
610? (Am)z 2(,02)? Nx Nx Bp;}
Upwind

The Upwind scheme is

n n At () n
_j+1 o - A_x(if . f3_1) +At§j.

Applied to (4.18) gives

PP = g~ Q- Q) (420)
o =@ - e ((Erp + feen ™2 1) - (P
+ gexp(%))) + At(—Apf e:vp((B)ig;_l) —

_ A(R(pz)) +1) (_1_'0;'1+1 — 2'0;'1 + p?—l 1 (p;l - ,0?_1)(P;-L+1 — p?) WJ(RUP);‘I —1

B(p®); 6} (Ax)?2 2%} A Az Bp}

Lax-Wendroff

The two step Lax-Wendroff scheme

un+
s

D=

1
=5 ) - A L (fr) — £) + Dt

[
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n L n
W =y — ( f(u J:lﬂ) = F(u]" 1)) + Ats) (4.21)

=2

applied to (4.18) gives

Step 1
n+l ]. n n At
Pj+§ = §(Pj + Pj+1) . m( j+1 Qn) (4-22)
nt+i 1 At (pz)".‘ -1
At = 5@+ Q) - e (L + Jean( L
Q? R(pz)
—((=)7 + —e p(—=L— )))
I
Step2
ntl_ oo Ot oty ot
Py =P; A*.’L‘(QJ"'% - Qj+%) (423)
2\Ti 5
Atf, Qi A B, 7—1
Q= @ — o (DN + Sean(——214 ) -
Az i+3 2 Nt
P ’ Bp i+t
20 A ROTE-1
(Dot s Aemp— )
p Bpj_%2
and for the source term
Qi = Q7 + Ats(o7, Q7). (4.24)

Trapezium

Each of these is coupled with the implicit Trapezium method for the relaxation term,

ie.
'n+1
25 - pr
AL 0 T A=

o —Qp _

1/At—1/27 1/10°%€%p"

At
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4.3.2 Initial and Boundary Conditions

To calculate pedestrian flows we need to calculate initial and boundary conditions.

From the work of Helbing and Togawa we know that
o desired velocity for pedestrians has mean 1.34m/s and standard deviation 0.26m/s

e velocity can be related to density by v = vpp™*® where vy = 1.34 (Figure 4.3)

=

o L L 1 1 1 L — !
0 0.5 1 15 2 25 3 35 4
density

Figure 4.3: Initial relationship between velocity and density according to Togawa formula

These are used to relate different initial conditions. We will look at a number of

different scenarios:
o steady flow
¢ a low constant density increasing suddenly to high constant density

e a high constant density decreasing suddenly to low constant density
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e slowly increasing and decreasing densities

Obviously sudden changes in density are not that realistic in 1-D as they may involve
people disappearing or appearing through a trapdoor or hole in the ground, or ending
up in clinches, but these scenarios allow us to compare numerical results.

Boundary conditions allow us to look at how the model progresses under different
circumstances. There are many different types of boundary conditions but the main

ones are:

¢ Dirichlet boundary conditions where values are given at u(0, t) and u(L, t) where

L is the length of the corridor.

¢ Voii Neumann boundary conditions where flow at the boundary remains un-

changed g—fj(O, t)== %(L, t)=0
e free / smooth boundary conditions where %(0, == —ng%(L, t)=0
For our model we could use:
e periodic boundary conditions

e constant boundary conditions allowing for a steady stream of people into the

corridor

e a zero velocity boundary condition at the right hand end to simulate a blockage

or wall.

4.4 Results

Unless otherwise stated, results are based on timesteps of 0.02 seconds, spatial steps of
1 metre and a 1-D ’corridor’ of length 250 metres. Results are run for 9000 timesteps

(3 minutes) and every 500th timestep is shown.
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4.4.1 Steady Flow

Considering both constant initial and boundary conditions shows typical properties
of the three numerical schemes. This mirrors the unexciting situation of everyone
at a constant density with a steady flow of 1 person continually moving into the
scenario. Lax-Friedrichs (Figure 4.4) produces results showing that the stream of
people will gradually settle to a constant density of 1: the initial fastest moving people
will move out the space of interest and the arrivals will continue at constant speed,
maintaining their distance from others and not speeding up. However, although this
can be explained away, it could be more to do with the diffusive properties of the
numerical scheme than physical behaviour. Particularly as the boundary conditions
force a flattening of the results, the reduction in density could be numerically more
pronounced than it would be physically. Applying the Upwind scheme to an identical
problem (Figure 4.5) does not give the same diffusion: it gives a much sharper profile
where people arrive at a density of one per metre but then quickly increase their speed
to match the initial density profile. An even sharper profile is given by Lax-Wendroff
(Figure 4.6) although with the typical trailing edge oscillations.

4.4.2 Increasing initial density
Figures 4.7 to 4.16 show results for an initial increase in density where

0.5 if < 100
p(z,0) = { 0.015z — 1 if 100 < z < 200
2.0 if > 200.

Figure 4.7 considers the effects of varying values of g; the interaction strength,
whilst keeping At and Az fixed using Lax-Friedrichs. The graph shows that the
density reduces more slowly as the interaction strength increases. Results were also

calculated varying Az with constant At and showed that this makes little difference
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unless Az is small. At Az = 0.1, the system becomes unstable after about 25 seconds
and needs a smaller timestep.

Figure 4.8 shows an increasing density profile with a constant density feeding
into the beginning of the corridor at 0.5 people / metre. Again Lax-Friedrichs shows
diffusive effects where, physically, we would hope people would speed up. The Upwind
(Figure 4.10) and Lax-Wendroff (Figure 4.11) schemes show this speeding up effect
with people coming in able to increase their speed to minimise the time taken to
reach the far end of the corridor.

Figures 4.12 and 4.13 model zero velocity at the far end of the corridor. This is a
crude way of simulating a sudden pile up although may cause the problem to become
analytically ill-posed. Further work is needed on this effect, as the second derivative
term in the source equation may impact on this. Lax-Friedrichs mirrors the pile up
well. Obviously any density above about 4 would result in injury and crushing. A
practical model would limit the maximum density but we just aim to highlight the
nature of the behaviour. The upwind scheme does not really capture the ’pile up’,
with an increase in density occuring very suddenly right at the end. As the upwind
scheme only depends on the current and previous positions, the boundary condition
is not fed back into the process and only affects the last value. Unlike the central
Lax-Friedrichs scheme where both left and right numerical boundary conditions are
needed, the right hand boundary condition for the Upwind is unnecessary. Trying to
model the same situation with Lax-Wendroff causes instability. Figures 4.14 to 4.16
show a less severe scenario where velocity at the end point is half that at the end at
the previous timestep. Lax-Friedrichs models best what would be expected with an
increasing density, Upwind again does not feed the information back into the profile

but Lax-Wendroff, whilst not breaching its stability criteria, begins to oscillate wildly.
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4.4.3 Decreasing initial density

Figures 4.17 to 4.24 show results for an initial decrease in density where

'3

2.5 if x <100
45— 0.02z if 100 <z <150
p(z,0)=¢ 1.5 if 150 < z <200
7.5—0.03z if 200 < z < 250
| 0.01 if z = 250.

and people flow in at a constant density of 1.

Similar effects to before are observed. For Lax-Wendroff (Figures 4.19 and 4.20)
people come in at constant speed but do speed up, although taking longer and longer
to do so. With decreasing density, Lax-Friedrichs again simulates ’pile up’ situations
(Figures 4.21 and 4.22). Lax-Wendroff shows some interesting bifurcation type be-
haviour, oscillating between two values towards the end of the corridor. Bifurcation

occurs when one eigenvalue becomes zero and equilibrium states collide.

4.4.4 Simulating a blockage

Figures 4.25 to 4.27 show, for each of the initial condition scenarios, what happens
when a 'blockage’ occurs along the corridor. For the area 170-175 metres, the velocity
is defined as half of the velocity at the previous timestep (rather than zero so the
blockage is not insurmountable). Lax-Friedrichs is used and shows an increase in

density as expected, followed by a recovery period to go back to a constant density.
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Figure 4.4: Lax-Friedrichs: Constant Initial (v = 0,p = 1.5) and Boundary Conditions (p(0) =
1,Q(0) = 1.34)
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Figure 4.5: Upwind: Constant Initial (v = 0, p = 1.5) and Boundary Conditions (p(0) = 1, Q(0) =
1.34)
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Figure 4.6: Lax Wendroff: Constant Initial (v = 0,p = 1.5) and Boundary Conditions (p(0) =
1,Q(0) = 1.34)
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Chapter 5

Moving to Two Dimensions

5.1 Introduction

Two dimensional models are much more complicated but far more realistic. Whereas
traffic moves naturally in a one lane situation, people will almost always move in an
environment which facilitates overtaking, multi-directional and free movement. There
would be many different approaches to tackling a 2-D crowd problem. However we
will use a similar approach to before and develop a 2-D transformation analogous to
Berg’s 1-D one and apply it to the Social Force model. Due to time constraints, a
simplified numerical scheme is tried where, instead of a full two dimensional scheme,
a dimensional splitting approach is used (as outlined in Section 3.6) which treats the
2 and y components separately; applying say the Lax-Freidrichs scheme first in the x

—

direction alone and then in the y direction alone. Another approach would be to work
L

out z and y values simultaneously on the grid. An example grid is shown overleaf.

5.2 A 2-D Model

As explained above, one way to tackle the two dimensional problem is to calculate

an equivalent transformation to the 1-D one of Berg and Woods and substitute it
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into the social force model. Following the approach of Berg and Woods, we need an
expression for ’headway’, b. Working through in a similar way to Section 2.4, we
require for a person following model in 2-D that [+ [*** p(z,y, t)dzdy = 1 and can

extend this along and up a corridor of length z) and width yy to give

//p(w + N,y + yn, t)dzndyn.

Taking a Taylor expansion in two variables of p(z + zn,y + yn, t) gives
1
/ / (p(w, Y,8) + Znpe(@, 9,1) +ynpy (@, 9, 1) + 5 (TN 0es(, Y, ) + 20NYN Py (3, Y, ) +

ylz\fpw/(ma Y, t) Sl = )) dedyN (51)

and now we need to integrate over limits appropriate to the 2-D situation. One
approach to tackling this is to convert (5.1) into radial coordinates (r,#) and hence

integrate over () to 27 for § and 0 to b for r. Setting x = rcos, y = rsinf and
= vzZ + 3% we get

pecost

2T b 3
/0 /0 (p(r, 0,t) + rncosln(prcosd — pLsr'm_G) + rysinfy(p-sind + )+
Opr O &r  Opy 00 5% 0 0?
—(rNco.920N[ P ar +org3 r o2 d ] i 8/)08 +p Pog 3 2]+2rNcos0stn0N[ apr 87' TP B—E;z/+
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e p—

Ops 00 %0 prOr | Or  0ps 8

20 — — ) d =1
(,9?}(,))30—1-%)(,7(9 ]+ r3sin N[a Em +pa +8y8y+ o ]) rydrydfy
(56.2)
which, after some algebra, can be expressed as
2r b
/0 /0 (p(r, 0,t) + rycosOn(prcosd — pgsmé?) + rysindy(prsind + p9c039)+

. 2 - 2 -
sin®d 2p,.sin“0 4pesinfcosl
2 Poo + PrS n Po

1
3 (r2,cos*0n[prrcos 0+ 3 4212 cosOn sinfx [ prrsinfcosfd—

r2
2 %0 2ppsin’f 2 Osind fsind 20
pgcg.s " pesin®  2p.cosfsind  pggcosfsin 1+ 2 5in26u | prasin?0 -+ PeeCOS n
T 2 T r2 72
2 29 4 Ocost
Prcros Pesz;l cos ]))?”N drydiy = 1. (5.3)
Integrating with respect to ry and 6y results in
bir sin%0  2p,sin?0  4pgsinfcost, bt
(ﬂbzp + ?(prrcos% + peé e 1 = + L 3 )+ —W(prrsin20+
T T T 8
cos®0  2p,cos?  4pgsinfcosld
ﬁosrfz n PM; _ ,008171‘7,2 cos )) _1 (5.4)
which can be simplified to
bir b bir
o+ — - — =1 )
moep + 8 Prr + 8r2 Pog + ir (5 5)

We can solve for b using perturbation analysis by assuming the form b= A + Bp, +

Cpeo + Dprr, substituting into (5.5) and solving to give

1 VTPPr  \/TPPe0  \/TPPrr (5.6)

~ - — —_

JTp  8ra2pd  16r2n2p8  16m2p8

Transforming back into z and y coordinates we have

il AV TPPr z | VT
b p ( 'Tp + ypy ) p00

VTP 8rm2pP P g2 Ay 16r2np (0 Pr—UPy =20y Py~ P2 )~

Y prrr( xzpa:w 2xypxy y Pyy )
16m2p% "22 + 92 22 + 2 w2+y

B Gl _ ypy _ (Pes + pyy)
\/71'_,0 16p5/27r3/2(:n2 + yz) 16p5/27r3/2(a:2 + yZ) 167r3/2p5/2 »

(5.7)
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Now as before (see Section 4.2) we take d to equal the headway and use Helbing’s
Behavioural Force Model giving

du;(t) _ ) ()ed(t) — u(t)
dt Ti

+ f(d) (5.8)

where f(d) = Asexp(“E; j"" )2j (1"'0;’3"’1'), d = b and v and e are now in vector form.

Substituting (5.7) in and expanding in a Taylor series around \/% gives

duy(t)  v(H)ed(t) — vi(t) +f( 1 ) — ZPz _ Ypy _
&= 77~ e ) 160 1 )
(pww =+ P )

As before we can set f(\/+r_P) = 7(,/7rp) and f'(\/%_p.) = —2ﬁp3/2?,(,/7rp) to give

dv e —v; — TPz +Ypy (Pzs + Pyy)
g =7 = = a3 5.10
di 0 + f(vmp) + f (V7P (8p7r(3:2 + y?) 8mp ) (510)

Multiplying by p, using the conservation law and substituting back for f(,/7p) and
7(, /Tp) we get a 2-dimensional system of equations

pi + (pu)s + (pv)y =0

(puw)t + (pu?)s + (puv)y = i T_ ue

R\/mp*? — 1) 1+ cosy
+Ape:1,‘p( NG n—g +

+(Az 11 + costp Rmp*? + 2/ (Rﬁ el 1) o + YPy | Pax T+ Pyy
=3 2Bmp? ' By/mp 8m(z? +y?) 8m(z? +y?) 8mp

1

0,0 _ 3/2 _
o (0% —v)p ( Ry/7p 1) 1+ cosy |
(pv)e + (puv)s + (pv°)y = ~———— + Apeap| — 5 g )23
3/2 3/2 _
P Lo B +2\/_ew(3ﬁﬂ 1) s Py Pes Py
2 2B p? By/mp 8m(z? + y?)  8m(z? +y?) 8np

As an initial approach we are going to numerically solve the above equations
by dimensional splitting. As explained before this involves considering only the z
direction followed by only the y direction. Therefore we can simplify the model by
taking n = —1 and ¥ = 0 = cosy) = 1 for the x-sweep and ¢ = 7 =>2‘sﬁ/) = ( for
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the ' y-sweep. Letting pu = @ and pv = P, and, as before, splitting the derivative on

the right hand side, integrating up and taking over to the left gives:

P+ Q:v + Py =0
Q? TP R/mp*? -1 QP _ (W -Q)
(@) + ( i 8m(z? + y?) exp( By/7p ))a: ( T

Ry p3/2—1) ( Rup®? + 2/ (Rﬁpw—l) ypy pm+pyy)
Azpea:p( By/mp & 2Bmp? SR By/mp {87r(x2+y2) 8mp }

ypy  (Rymp*? —1 (v°% - P)
(P)H_(—w+(—+Az87r(m2+y2)°xp( By/mp )))y T

_ Azpexp(Rf ,,3/2_1> ( Aerp3/2+2\/7re$p(Rﬁpm~ 1) Tps pu+pyy})
By/mp 2Brp? By/mp 81r(w2+y2) 8mp

where z = 1 for the x-sweep and z = 0.5 for the y-sweep.

Stability analysis again requires calculation of the Jacobian matrix, but with a

2-dimensional system [21]

Bu Of(u) dg(w)

EjL 8x+3y =0

we have two matrices: A = 0f/0u and B = 8g/0u. For our system,

0 1 0)
of
_— = 2
A a@ 5@.:: _:? 0
L
T (’E)
0 0 1\
89 2
8 du % PP
2P
§P,y 0 ? )
where
B w

)(R7rp3/2 + 2ﬁ)ex (R\/??p“f'” —1
8m(z? + y?) 2Bmp? P B\/mp )

However, calculating stability criteria depends on certain properties of A and B and

)
fs,rw - ? + AZ(

would require further work.
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5.3 Numerics

To solve the system, a dimensional splitting approach using Lax-Friedrichs is adopted.

Again we have derivative terms as part of the source term and approximate these as

before
0p = Pit1 — Pi-1 B= Pet1 — Pi-1
’ 20z v 2Ay
Prm = Piv1 — 205 + Pia o == Pir1 — 2P% + P
i Az L4 Ay? ’
Using these, and the abbreviations { = exp(%) and n = (%@), our
scheme becomes
X-sweep
i1 _ Pi-ik i, "
j,?cq = ~i-Lk 9 IrLk 2A (Q;+1k j—l,k) (5-11)
n+l Q:’;—l,k W Q?—i—l,k - At ([( ) ( -’E(j) )]__
ik 2 2Nz ik T Al 8m(x(4)? + y(k)?)
Q? z(4) ) ( P )
n n At — Aol™, —
[( -1,k + C 1k(87r(x(j)2 + y(k)z) )] + At ng,k ng,k B (87TPJ )
n FPlax+ B QP QP n n
Pj,,;H I e 1. . ik A (( )J+1k ( . )j—l,k) + At( — Apgj’k_
pmw(]) Pz )
An™, (T
B GG+ 967 By
y-sweep
i1 _ Pik-1t 05, At
pj’+1 = Lkl 2 as AL ( Jrk+1 Pnk——l) (512)
Q1 + Q% At (,QP Ap
n+l __ f Jk+1 n
Q== 5 . —2Am(( 5 Skl T ( )jk 1>+At< > e
Ann ( pyy (k) Py ))
ik 87r(-’r(j)2+y(k)2) 8rp}
P _,+ P} JAN (k)
prtt — Sake1 T ke ( Y _
ik 2 IAT [( k:+1 e Cj,k-l—l(sﬂ_(m( + y(k)2) )]
A y(k) Ap A p
—\n At( _ n n vy )
[( )_7,10 1 + k 1(871'(.’17(]) +y(k)2))]) + 2 7.k 2773,k Gy (871’,01)

where values from the x-sweep are fed into the y-sweep, and the relaxation term is

dealt with by the Trapezium rule as before.
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54 Results

Although the above scheme has been programmed up, time constraints mean that
results are very preliminary at this stage. Significant further work needs to be under-
taken on boundary conditions and stability criteria. Multi-dimensional hyperbolic
schemes can cause difficulties at the boundaries. The results shown are based on
initial data

plz,y) =1 at tirhe zero

and left hand boundary conditions

2.0 ify<3
p(0,y) =
05 ify>3

representing a large flow of people into the corridor from one corner and fewer along
the rest of the boundary. At other boundaries, ghost points are identified equal to
the boundary value except for P(z,—1) = —P(z,0) and P(z,yn + 1) = —P(z,yn)
as an attempt to simulate the walls of a corridor. Figures 5.1 to 5.2 show some
initial results, with a constant initial density changing, after a period of time, the
distribution of people within the corridor created. Figure 5.1 shows the distribution
of density in a corridor of length 50 metres and width 10 metres running for 2 seconds,
whereas Figure 5.2 shows a corridor of 100 metres (broken into 5 metre spatial steps)
with width 10 metres after 10 seconds. Despite the non-smoothness of the graphs,
they do appear to exhibit some expected behaviour. This is easier to observe in
Figure 5.2 where the high density at one corner feeding into the corridor fans out:
we would expect people coming into a corridor at high density to spread out into the
space available. It also shows a slight speeding up and bunching effect towards the
far end where people catch up others to create a high density but then are able to
overtake or spread out to reduce density before catching up the next slow moving

group. Computational problems currently arise at the origin or in areas of zero
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density, resulting in floating point errors, and also if the program is run for long time

periods.

Attime=0

After 100 timesteps

Figure 5.1: Dimensional Stepping - 50m x 10m corridor, Az = 1, Ay = 1, At = 0.02
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Figure 5.2: Dimensional Stepping - a longer time run, Az =5, Ay =1, At = 0.1
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Chapter 6

Conclusions and Further Research

The aim of this dissertation has been to use a transformation developed by Berg
and Woods in a traffic context to move from a microscopic to a macroscopic model
of pedestrian dynamics and then to solve this model numerically. It applies the
techniques of numerical analysis to a modelling problem linking the psychological
behaviour of humans with the rigor of mathematics, drawing heavily on Helbing’s
Behavioural Force Model. The majority of the work focuses on a 1-dimensional
model and excludes physical interactions with other pedestrians and hence is very
much a first step.

In 1-D, the transformation is applied to give a system of equations which model
movement in one direction in a corridor like scenario. The nature of the model
highlighted some interesting numerical problems, with a complicated source term
and a stiff relaxation term. Applying the three numerical schemes (Lax-Friedrichs,

Upwind and Lax Wendroff) to the model showed that

o for normal movement Upwind gives the most robust results whilst Lax-Friedrichs
suffers from diffusion and Lax-Wendroff, although giving a sharp profile, suffers

from trailing edge oscillation

e when attempting to model a sudden pile up situation at one end, Lax-Friedrichs
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gives results which most closely mirror what we would physically expect

e modelling a gradual pile-up by halving velocity at one end gives physically
reasonable results when using Lax-Friedrichs but interesting bifurcation with

Lax-Wendroff. This latter behaviour deserves further exploration.

Of course, modelling crowds in 1-D is not physically realistic but it does high-
light some of the challenges with this approach, for example trying to force numerical
schemes into quasi-physical behaviour, particularly at the boundary, leads to diffi-
culties. However it can be difficult to interpret results if the model is too simplified,
although there is scope for developing the 1-D approach further both in terms of the

model and numerically:
e including terms for panic and pedestrians bumping into each other

e lifting the assumption that interactions are isotrophic to allow some influence

from those behind
e varying constant values and further work into more accurate values
o extending the schemes used for numerically solving the model
e alternative approaches to dealing with the source term and the relaxation term.

However all these will be limited by the 1-D view. Moving into 2-D, interactions
with other pedestrians, multi-directional movement and avoidance and attraction
components all became relevant and need to be developed. The 2-D work undertaken
in chapter 5 merely scratches the surface of a huge topic but does show that a 2-
D transformation can be developed and a model deduced from this. It would be
beneficial to use the 2-D transformation constructed here in a traffic situation for
which there is real life data to test its effectiveness. The model is fairly robust but

further work needs to be done on developing the numerics to solve it. Additional
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anaylsis needs to be undertaken on stability and setting up boundary conditions to
ensure that the problem remains well-posed.

We set out to develop a robust and fairly simple macroscopic model: our model
is not that simple but is computationally efficient. Comparisions with other models
and assessment for legitimate crowd behaviour is needed to evaluate whether this

approach is an improvement on others. There is much scope for further development.
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