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A technique of approximate symmetrization is used to derive
altest space from a given trial space faf a Petrov-Galerkin
method. This is applied to one-dimensional diffusion-con-
vection problems to give approximations which are near optimal
in an energy norm. Rigorous and precise error bounds are
derived to demonstrate the uniformly good behavibur anﬁ near
optimality of the procedure over all values of the mesh

Péclet number.

1. Introduction

The success of finite element methods with elliptic problems Lu = f
stems largely from their optimality properties in the self-adjoint case.
Of all members of a trial space Sh, the approximation obtained through
the Galerkin formulation is the closest in the energy norm to the true
solution - as a general reference see Strang & Fix (1973{. Several
valuable consequences follow from this fact: the coarsest possible mesh
may be used with confidence; supérconvergence phenomena allow more
accurate and detailed information about the solution te be recovered,

as in the work of Douglas & Dupont (1873a, b), Wheeler (1874), Dupont
(1976), Bramble & Schatz (1977), Zienkiewicz (1977), Moan (1979), Le-
saint & Z1dmal (1979); and localised mesh refinement can be introduced,
sea Babuska & Rheinboldt (1978) and Rheinhardt (4980).

However, a lack of self-adjointness in the operator L erodes these



properties and eventually the Galerkin approximation becomes useless.
Several techniques have been proposed to overcome this difficulty, most
of them based on some sort of Petrov-Galerkin method. That 1s, one
sets to zero the projection of the error LU - f into some test space,
which 1s in general different from the trial space. The rapidly grow-
ing literature on these techniques centres on the solution of convection
dominated flow problems - see, for example, Guymon et al (13870), Christie
et al (19768), Heinrich et al (1877), Hemker (1977}, Barrett (1977),
Hughes (1978) and the survey by Heinrich & Zienkiewicz {1979}. Accept-
able solutions can often be obtained to such problems but there is a
lack of rigorous error estimates, certainly of the degree of sharpness
possible in the self-adjoint case. Much of the existing analysis, and
a good deal of the motivation in deriving the schemes, is based on view-
ing the discrete equations as finite difference approximations: as such,
they are related to the schemes of Allen & éouthwell (1955), I1l’'in (1969)
and others, for which extensive analysis in the one-dimensional case has
been carried out by Miller and his associates (see Miller, 13978).

In any Petrov-Galerkin method the main problem is the selecticn of the
test-space and, ideally, one would like to select this without having to
analyse the resulting discrete equations for truncation ;rror. The
present authors proposed in an earlier paper (Barrett & Morton, 1978) a
Petrov-Galerkin technique based on approximately symmetrizing the bilin-
gar form assoclated with a problem. In effect, the symmetrizing operator
defines a test space Th by a mapping from the trial space
h h

N ¢S

B SO that. when the original problem is approximated by a

> T
Petrov-Galerkin method using this test space, the symmetrized problem is

treated by the Galerkin method: the subscript € here denotes the extent




to which the symmetrizing operator Ne is only approximate. If the
symmetrization were exact, the resulting approximation would be optimal
in an energy norm derived from the symmetric operatof NSL, where Ng
is the formal adjoint of the operator Ne with € = 0. Numerical experi-
ments on one dimensional problems presented in the earlier paper showed
that effectively optimal approximations could be achieved in practice
even for some turning-point problems. The task of recovering super-
convergent information was also addressed there. In a later paper
(Morton & Barrett, 1980} preliminary consideration was given to two-dim-
ensional problems.

The aim of.the present paper is to derive rigorous and precise error
estimates when the procedure is applied to the one-dimensional diffusion-
convection problem for wu(x):

-(atxaur () + (bCxdulx})* = flx) on (0, 1) (1.1)

ul0) =g , yu(1) + (1 - YJu'(1) = vg_, (1.2)
L’ R .

where either y = 1, gilving a Dirichlet problem, or y = 0, giving a
homogeneous Neumann condition at x = 1. These error estimates will
take various forms but the particular aim 1s to establish the extent to
which the proposed procedure achieves optimality and to do this with a
bound which is uniform with regard to the ratio b/a so that the results
are valid for singular perturbation problems. Only linear slements are
studied in detail: though the analytical framework is presented for
general elements and similar detailed results could be derived for higher
order elements, it could be arg&;a»that there is less need to exploit the
property of optimality in such cases and a weaker property such as uniform
stability of the approximation, is adequate.

The arrangement of the paper is as follows. In the next section the sym-




metrization technigue is described and basic error estimates derived.
Then in section 3 the special case in which the coefficients a and b
are positive constants is studied in detail. The precise analysis pos-
sible then shows how to choose the perturbation function e(x) involved
in the symmetrization: i1t turns cut that an appropriately positioned
§-function (in this case at x = 0) gives both practical advantages over
the choice used in the earlier paper as well as sharper srror bounds,
though the method then lies outside the usual Petrov-Galerkin framework.

An a posteriori bound on the difference between the nodal values UN

J

*
of the approximation UN and those of the optimal approximation U is

given in the form

N

U - ¢ il = B

Iug - U;I s 2l : - L= féq]l " f e /8|50 - f(0)]| + 0(e7®/9).
o

(1.3)
. -b/a . ,
Terms which are 0(3 ) are entirely negligible for the problems con-
gidered since, as shown by Schatz (1974), Galerkin methods still have
optimal order of accuracy even for non-self-adjoint problems, the loss of
absolute optimality for (1.1) being just proportional to b/a: thus Petrov-
Galerkin methods need only be used when b/a 1is quite 1érge, typically
the order of unity.
when the "mesh Péclet number” bh/a is of / Typical a priori error bounds
in section 3 show the extent to which optimality is lost with the present
technique: in terms of the energy norm
2 1
||v||S = I (a2v'2 + b2y2)dx (1.4)
0
one such bound is given by

*

2 »
+ a2[u'(0) - " (0)12. (1.5)

NZ
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For singular perturbation problems, normalisation is carried out relative to
we suppose

b and/a + 0: as boundary layers occur at x = 1 rather than x = 0,

(1.5) becomes increasingly sharp.

Finally, in section 4 the variable coefficient problems are considered,
firstly non-turning-point problems and then problems involving a single
turning point, with b(x) £ 0 for x <& and bi(x) 20 for x >§&§ -
the so-called 'accelerating flow' case. The form of the srror bounds is
‘very little changed and, most importantly, the uniformly good behaviour
of the approximation as b/a -+ « is retained. Some preecision in the
estimates is lost of course so attention is concentrated on the a post-

eriori bounds with the a priori bounds merely related to those for associ-

ated self-adjoint problems.

2. The Symmetrization Technique and Basic Error Estimates

Weak Formulatiaon.

For the solution of the problems (1.1}, (1.2) we introduce the following

sets of functions:

Hé ={veHl(o, 0 | vio) =0, and v(1) =0 if y =1} (2.1a)
Hé = {v e Hl(O, 1) | v(D) = g, and v(1) =g, ifiy = 1},(2.1b)

of
where Hm(D, 1) is the usual Sobolev space/functions with mth derivatives

square integrable. The bilinear form associated with (1.1) and (1.2) is

given by
B(w1, w2] = <awp, wy> + <(bw, )", wy>, (2.2)
1
where the inner product <w1, w2> denotes the integral j w1w2dx.
0o
Then the weak form of the problems is: find u € Hé such that

Blu, v) = <f, v>, vV V€ Hé. (2.3)



The existence and uniqueness of a solution to (2.3) is guaranteed by the
generalised Lax-Milgram theorem (Babuska & Aziz, 1972) under the follow-
ing conditions:

Assumptions 1

(1) a(x) >0 v x € [0, 11, (2.4a)

(11) a, b e H(O, 1), (2.4b)
(111) F e L2[O, i (2.4c)
Symmetrization

We define a symmetric bilinear form with a positive weight function
p(x) as

BS(w1. w2] = <[aw!

i bw1].b[awé - bw2]> + [pabw1w2](1] (2.5a)

<paw', w'> + <[pb2 + (pab)'Iw,, w.>,
2 1

1
] . (2.5b)
] vw, € H (o, 1), W, € HU'
Then the symmetrizing operator N : Ha > Hé has to satisfy
= 1 1
B(w1, Nw2] BS[W1’ w2], VW, € H(0, 1), W, € HD' (2.6)

and the mapping has to be onto for (2.3) to be equivalent to the following

symmetric problem: find u € Hé such that

Bglu, v) = <f, Nv>, Vve Hé. (2.7)

Unfortunately this is not always possible. Comparing (2.2) with (2.5a)
we see that it requires that

(Nv)' = plav' - bvl in (0, 1), {2.8)
together with the two boundary conditions

(Nv)(0) = O, (NvI(1) = (pav)(1). (2.9)
This can be achieved only with an operator N consisting of mﬁltiplication

by an exponential of large argument and leading to an energy norm with this



exponential as the weighting factor p - see Barrett & Morton (1978) for
details. Though exponential test functions are used with some methods -
for instance, with those of Hemker (1977) and Barrett (1977) which directly
seek accurate nodal values - this choice would be unduly restrictive in

the present context: for the exponentially weighted norm will often

lead tq an ill-conditioned recovery problem from a best fit which has
concentrated information away from the main regions of interest, though

it should be noted that Dixon et al (1979) have used this choice for
certain model problems. We therefore consider a.generai weight function

and, for a problem with no turning points, introduce a non-negative per-

turbation function e(x), normalised by qu dx = 1, and a corresponding
operator Ne H Hé -+ Hé given by: °
[Nev]' = plav’ - bv] + <a, v>¢ 1in (0, 1], (2.10)
where settgng
a = pb + (pa)’ (2.11)
will allow the imposition of
[Nev]IOJ =0, [Nev][1] = (pav)(1). (2.12)

Thus we have

B(w1.h£w2] = BS(Wi’ w2] + <aw1 - bwq,e>'<u,w

Y w

2>

1 1
e H (O, 1), W, € HU'

(2.143)
1
It is also convenient to introduce the operator NO given by
(Nov]' = plav' - bv]l in (0, 1), [NDV](1] = (pav) (1)
o (2.14)
for which (2.13) holds with €(x) set equal to the Dirac delta function

at x = 0.
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Trial and test spaces.

We use standard trial spaces Sh, where h 1is a mesh parameter, which
satlsfy the usual approximation properties, as given by Babuska & Aziz
(1972):

(1) sMculto, 1, 0<h <1,

(44) for each w e H(0, 1), 3I W e S" such that

lw - wil < ch™ % |ul| for % =0, 1 (2.15)
0, 1) H (o, 1)

where r 2 2 1is a given integer.

To apply the Petrov-Galerkin method we then coﬁstruct test spaces by
setting Th = NESh. From a practical viewpoint the set of functions
{N€¢J} does not form the most convenient basis for Th: appropriate

linear combinations of successive test functions have the advantage of

better localisation as well as being independent of the perturbation e(xJ).

If we define ' “
aJ = <q, ¢j> (2.16)
then we have from (2.10)
XJ(x] = aj_1[Ns¢j][x] - aj[N€¢j_1J[x]
(2.17)
= aj_1(N0¢j)(x] - aj(ND¢j](x). \

Depending on the problem being considered, and assuming that it has no

turning points, Th can be based on {Xj} for an appropriate set of

j-values plus just one function Na¢j for some choice of jD. Thus the
0
perturbation function affects only one element of the basis and the

numerical examples in Barrett & Morton (1878) demonstrate how appropriate
choices of e€(x) and jo can achieve an almost optimal approximation
N

u to u. This will also be clear from the error analysis below.

For turning point problems, the interval is subdivided into subinter-
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vals in which either b(x) =2 0 or b(x) £ 0 and an appropriate pertur-
bation function, together with the attendent set of test functions,
constructed for each.

Basic error estimates.

For the error analysis it is more convenient to work directly with

{Ne¢j}' Then the Petrov-Galerkin method becomes: find uN ¢ SE such
that
BN, N o) = <F, N_§,>, Vo, esn (2.18)
€] €] J v
We introduce the following assumptions for later use:
Assumptions 2
(1) p(x) >0 vxe [0, 11 and J;pdx = 1; (2.19a)
(11) p e HC(O, 1); '- (2.19b)
(111) [pb? + (pab)'1(x) > O, v xe [0, 17; (2.19¢)
() b + tpa)*|| g = sup |<ob ¢ If?le]" vl o Ky » (2.19d)
veHD S

where by (2.5b), (2.19a) and (2.19c) we can deduce that Bs[u, v] is co-

ercive and define the energy norm “.IIS on H(O, 1) by

llvll 2

Bg(v, v) = <plav’ - bv), (av’ - bv)> + [pabv2](1) (2.20a)

\
= <pav', v'> + <[pb2 + (pab)'lv, v>, V€ Hé. (2.20b)

Assumption (2.19c) is really only necessary at this stage when y =0

and even then by (2.20a) it can be obviated by assuming that b(1) 2 0:
note that in the context of diffusion convection problems this latter cond-
ition corresponds to the common assumption that Neumann conditions are im-
posed only at an outflow boundary. Assumption (2.19d) is also only nec-
essary for the Neumann problem and when pa or pab are non;constant:

in the Dirichlet case we have
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|<pb + (pa)’, v>| = kp%, p%(bv - av')>]
< llottov - avall, = vl
i.e. lleb + tpad*|| <1, for v =1; (2.21)

and when (pal’' = (pab)' = 0 comparison of (2.19d) with (2.20b) shows
immediately that again we have Kp < 1.
Assumptions (2.4b) and (2.19b) guarantee that N€¢J € Hé and hence,

for non-turning point problems, from (2.13) and (2.16) we have

0 =Bu - Y, Ng¢y) = Bglu - N, 6 + ag2lu - oy, v by e sg
(2.22)
where
2(v) = <av' - bv, €>. : (2.23)
We also introduce U‘ € Sg » the optimal approximation to u in the energy
norm, give; by
* h
BS[u -u, ¢j) =0, v ¢j € SO' (2.24)
and decompose the error into an approximation error eA € Hé and a
perturbation error et e Sg:
u - UN = eA + %, (2.25)
where eA =u - U*, e = U* = UN. \

Combining (2.22) and (2.24) we obtain

BS[ee, 440 = -aj[z(eA] + 2e5)1, Vo, e SE. (2.25)
* h
Suppose now we define V € SD by
BV, 4.) sh (2.27)
» . i . € : .
S ¢J % v ¢j 0
*
from the definition of a in (2.11) we see immediately that ||V ||S <K,

Then we have the following results:
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* *

Theorem 1 Suppose Assumptions 1 and 2 hold, and u, U and V are
. *

defined by (2.3), (2.24) and (2.27). Then if 1 + (V) > 0, there

exists a unlque solution UN to (2.18) which satisfies

TARSRTRE § YORRTL S VA (2.28)
and
lu - UNlI; < u - U*llé K0+ 2w %00 - 0D, (2.29)
Proof: As (2.18) generates a finite system of linear equations, exist-
ence follows from unigueness, for which we have fo show that Uto] =0 is

the only solution of (2.18) with £ = 0. Substituting from (2.27) into
(2.22) with u =0 gives

s 7 ¢j] = -o, %(U

J

- -2[U(D)

*
]BS(V 5 ¢j).

’
The coercivity of BS(-, )] ensures that this system is non-singular and

hence that

(0)

o0 o gul®

*
Vo,
so that
0011 + 2evhy1 = 0.
(0)

2(
\

3
Thus if 1 + &(V ) > 0, we have (U }] =0 and U[O) = 0.

By a similar manipulation (2.28) follows from (2.22) and (2.27). Thence
by operating on (2.28) with & and using the decomposition (2.25) we have

2ef) + avirece™ + 2517 = 0, (2.30)

€ RET A -[1 + z[v*j]'1z(eA)v* (2.31)

e = U -
and from (2.26)

2 -
lefll g = -t1 + v <o, %

A

1+ 201 e | lall g le®l g (2.32)
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From (2.24) and (2.25) we have
N'Z .‘A 2. 2
lu - llg =lle"llg + Ne®lig (2.33)

and the final result (2.29) therefore follows from (2.32) by using the

llob + [pa)'”_s assumed in (2.19d). @

bound on ”a|l_s

A posteriori and a priori estimates.

*®
It is relatively easy to estimate V and in any case it can be cal-

~culated from (2.27) for the same effort as calculating UN. Fram
(2.28), we therefore see that N is close to U‘ 1f 2u - UM 1s
small. The choice of the perturbation function‘is guided by this aim
and a check on the success of a given choice is provided by a calcula-
tion of Q(UN), with an a posteriori error bound following if &(u) is
also estimated. To obtain an a priori estimate from (2.29) we need
also to eﬁyimate Q(V*] and 2[eA]. These estimates will be given in
the next two sections.

Turning point problems.

To complete this section we return to general turning point problems
and consider the effect of using several different perturbation func-
tions em[x). m=1, 2, «ss, M, each normalised as before. We define
\

the M-column matrix A by

<pb + (pal’, ¢j>, if Ne¢j is defined with €

Am = ™ (2.34)
0, otherwise,
and the M-row vector (v} by
2 (v} = <av' - bv, €_>. (2.35)
m —2"m
Then (2.26) generalises to
B_(eS, ¢.) = -{A[2(e™ + 2(e5) T} v ¢, €S, (2.36)
S J = = J J 0

*
Suppose now we define the M-row vector function V e [SE]M by



* _ h
Bg({V } . ;) = A v é, €8 (2.37)

jm’ 0

and denote by L the M x M matrix

®
Lo = & (1Y} ). (2.38)

Then we have the following generalisation of Theorem 1.

) * *
Theorem 2 Suppose Assumptions 1 and 2 hold and u, U and V are
defined by (2.3), (2.24) and (2.37). Then if the M X M matrix I + L

is non-singular, there exists a unique solution UN to (2.18) which

satisfies
TAETRR S YRR b L © (2.39)
and
lu - UN||; <|lu - U*”: + Kp”[I + L]_1£(u - u‘]lli 3 (2.40)
Proof: With the definitions and relations (2.34) - (2.38), the proof

14

follows the same lines as in Thegrem 1. When f = 0, we have

*
U[O] - '[£[U[0]]]T! )
which implies that
(x+ 2w®) <o
and hence U[O) = 0 under the given hypothesis. The result (2.39)
\

follows immediately from (2.36) and (2.37) by the coercivity of BS(',-J

and hence

(1 + Ue(e) = -Lece™. (2.41)

Substituting for 2(e®) in (2.36) then gives

2
lle® Il

1

€ . A
Ejej{A[I + L) ale ]}j

1

e+ w” &(eA) I, <a, e, (2.42)

A

since there is only one non-zero element in each row of A, because



each Ne¢ is defined with one and only one €n" The final argument to

J
obtain (2.40) is the same as in Theorem 1. ®

Further assumptions are needed to turn the basic error estimates of
Theorems 1 and 2 into precise error bounds, and this will be  done in
the next two sections. As implied by the characterisation of Sh in
(2.15), quite general basis functions can be used on a non-uniform mesh
but in these next sections we shall consider only linear elements on a
uniform mesh. It should be noted here too that the arguments used in
these two theorems may be used to establish the uniform stability of
the approximations UN as b/a -+ » when the discrete Green's function

associated with BS(°,°] can be estimated. Thus for the non-turning

point problem of Theorem 1, suppose Z € Sh satisfies the equation

E
Bg(Z, #,) = <F, N> Vo, e sg. Then from (2.18), (2.22) and (2.27)
7
N -z (2.43)
2™ = 2zy/r4 + 2V, (2.44)

*®
Since “V ||S = Kp. we have
Il < lizllg « k) la@ 7t + 2w (2.45)

and bounding ||Z||S and |2(Z)| in terms of f and the boundary data
"
establishes the stability of the approximation when 41 + %£(V ) has been

bounded from zero.

3. Constant Coefficient Problems

, [ *
Tn this section we establish the choice of e€(x) such that 1 + 2(V ) >0
and develop more precise error bounds under the assumption that the
coefficients a and b in (1.1) are constants;: there is no loss of

generality in assuming they are positive. The problem for ul(x) then
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reduces to
-au” +bu' =f on (0, 1); a, b>0; fe L,(0, 1) (3.1)

u(d) =g, (1 - Y]u'(1] + yu(1) = Yeg» . (3.2)

L’
where vy =0 or 1. We shall also assume that the weight function

p{x) 1s constant, in fact p(x) = 1, and that Sh is spanned by piece-
wise linear functions over a uniform mesh with interval h = 1/3J. First
of all we examine the method when the perturbation function is taken to

be constant over a single element.

E 3
Properties of V .

*
The subsidiary function V  defined in (2.27) can be constructed explic-
1tly with the following results.

" )
Lemma 3.1 (i) For constants a, b the function 'V is the Galerkin

approximation in Sh

’
-a2y" + b2y = b in (0, 1); v(0) =0, (1 - y)v'(1) + yv(1) = 0;

to v(x) defined by

(3.3)
(1i) with linear elements on a uniform mesh,
S oo - oha - P, 10 o | .
J b 1+ rJ(2—Y]
where \

) 1
r=v/[1+ (1-492)%], 9 = (BaZ - b2n?)/(Ba? + 2b2%h?);

(ii1) and for the perfurbation function ek(x) = h_1XI (x),

K
Ik = [kh, (k + 1)h],
* 1 ) * - '
V) = 75[[2a - bh]Vk+1 -(2a + bh]Vk]. (3.5)
*
Proof: The definition of V  in (2.27) and o, 1in (2.16) gives

J _
(3.3) immediately. Then a straight-forward computation gives (3.4) and

the integral (2.23) gives (3.5). =
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It is clear from (3.4) that, 1f b2h2 = Ba2 so that r = 0, then
V; b1 for 0<j<J. Hence, i1f 0 <k <J - 1, for this value of
bh/a we have 2(V*] = -1 and the existence and uniqueness of UN breaks
down in Theorem 1, as the governing equations become singular. This
indicates that the perturbation should be made near the ends of the interval
and, indeed, the uniform stability of the equations for UN will be lost
unless the integral of e(x) over the two end sub-intervals together
is uniformly bounded away from zero. Although V* itself only disting-
uishes between the two ends in the Neumann problem, 1 + z[V‘] is always
largest if we take k = 0. We now consider a class of perturbation func-
tions contained in the first interval.

Lemma 3.2 Under the assumptions of Lemma 3.1 but with

1

(AR) ", 0 <x <xh <h
E£lx) = (3.6)
1 0 s Ah < x <1
we have
- 3
1+ (V) =1 - E%, for all a, b and h > 0. (3.7)
Proof: From (2.23) and (3.6), we have
* _a_z\E*
V) = [ﬁ 2]V1. , (3.8)

Writing K = (2 - ¥)J, we obtain from (3.4)

S Ny ), ne 25
b 1 + rK 1+ rK

N 1-r)(1-r

ol

Since |r| €1 and K 2 2 we have

(1 + rK_2]/[1 + rK] < 2/(1 + r?),
and from the definitions of r and W,
2r/(1 + r2) = v and -i < v <1,

We therefore have the following bound
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*»
0D < V1 < 3/2b, (3.9)

and the desired bound (3.7) then follows immediately from (3.8): 1t is
attained for K = 2 as bh/a +~, & )

We can see from (3.7) that the sharpest results will be obtained
for A as small as possible, In fact from a practical and theoretical

point of view it is desirable to pass to the limit A = 0, when e(x)

becomes the Dirac delta function at 0, denoted by §&(x). The result-

(i1}

ing test functions for a, b >0 and p 1 are then given by

1
N€¢j(x) = a¢j(x] + be¢j(t]dt. © (3.10)

They satisfy the differential equation (2.8) but not the boundary condi-
tions (2.9), and thus have stepped outside the standard Petrov-Galerkin
framework since N_¢

v , € j

the previous results and definitions hold as we pass to this limiting choice

¢ Hé. It is afsimple exercise to check that all

of e(x). Below we draw together the assumptions used throughout the

remainder of this section:

Assumptions 3

(1) a and b are positive constants, and f € LZ(D, 1)
(11) p =1 \
(ii1) Sh 1s the space of piecewise linear fu;ctions on a uniform mesh
(iv)  e(x) = 8(x) giving &(v) = av'(0) - bv(0)

Estimates of &(u).

The solution u(x) of (3.1) and (3.2) can be expressed explicitly in terms
of integrals of f(x) and, as b/a becomes large, %(u) is seen to

depend principally on f(x) for values of x for which e(x} # Q.

Lemma 3.3 Under Assumptions 3 we have:

1
2lu - gL] = f e_bX/af(x]dx + 0(e Brg

0

) (3.11)



1
= (a/b)£(0) + f e P*/re(x) - £(0)7dx + 0te P79,
1] -

(3.12)

Proof: From Assumption 3(iv) and the boundary condition (3.2) at x = O,

L{u - gL) = au'(0], (3.13)
. . _ -bx/a !
so we need to calculate u'(0). Putting w(x) = ale ulx)] in (3.71)
gives
, i ~ bx/a X
au'(0) - bgL = w(0) = wix)e + | flyldy (3.14)
0

and the boundary condition (3.2) at x =1 leads to

. 1
Ty + (1 - v)b/allg + f a wdx] + (1 - YJa-1w(1] = e-b/aygh.[3.15]
. .
From (3.14) we obtain
] -1 -b/a 1 -bx}a
b I a wdx = (au’'(0) - bgL][1 -8 ) - J e fdx
0 ' 0
/
: - _-b/a !
* @ f fdx, - (3.16)
> 0
and also that
1
wl1) = e®rau(0) - bg, - I dx] = 0(e 27, (3.17)
' 0
: 1 =1 -b/a
It follows from (3.15) that g [ a wdx = 0(e ) and thence from
0

(3.16) that
! -bx/a -b/a
au’(0) = | e fdx + 0(e ).
0
giving (3.11): (3.12) follows directly. =

A posteriori error bounds.

The Petrov-Galerkin method is needed to overcome the deficiencies of a
Galerkin procedure only when the mesh Péclet number B = bh/a becomes

fairly large: for example, the linear Galerkin approximation starts to
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oscillate for B > 2. The estimate (3.11) for &(u - gL] is then ade-
quate for incorporation in an a posteriori error bound based on (2.28).

From (3.4) and the bounds given in the proof of Lemma 3.2, we have

. 3
< e =
0 < ij < 5 J=1,2, ceu, Ju (3.18)
Also, 1if U? ars the nodal parameters of UN[x), we have from (2.23)
2[UN -g ) = E-[UN -g) {3.19)
BL hoo1 ” 8L .

The following a posteriori result then follows immediately from substitu-
ting (3.12), (3.18) and (3.19) dnto (2.28):

Theorem 3 Under Assumptions 3, the differences bétween the nodal
parameters for the PetrovfGale;kin approximation UN and those for the

*
optimal approximation U satisfy

| - U*| <3 NN - g - o~ Tec0)] + o7 TgBre7 + 0te™/2). (3.20)
j, 3 "2 i i 2 h
3=1, 2, vuer J
where
. 1
,_‘,'r":[f] = J e'“"/hlf[x) - £(0) | dx- (3.21)

0
In a typical situation where there is a sharp boundary layer near
x =1 and the differential equation is well approximatéd near x =0
this bound will be quite small. In particular, when f 4is a constant
the second term in (3.20) drops out and later in this section the

first term will be shown to be O(PJ). More explicit bounds can be

obtained if it is assumed that _f € Sh: this is not unreasonable on

h

the assumption that S can as well approximate f(x) as u(x).

Theorem 4 Suppose f(x) € Sh, with nodal values f and Assump-

JJ

tions 3 are satisfied. Then we have for j =1, 2, ey J
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J

N d 3,-1 N -1 -b/a

Iuj - ujl <=8 I(u,I - g ) - (hb szonjfjl + 0(e ', (3.22)

where
ng = 1 + 8-1[9-8 - 1),

and n - 4871738 inn? 18, §=1, 2, vua, d.
Proof: In view of (3.18) and (3.19), it is necessary only to evaluate
the integrals in (3.11):

B e L iie e dan - 8720080 - 1 e gy

0 J J+1 J . J

-(j+1)8, B
+ 8 (8 = 1 - B].Fj""]].

The difference from n in the coefficient of can be absorbed in

J J
-b/a -b/a

J
the term 0O(e ) and we note that ) nj =1 + 0(e ).
J=0

A priori error bounds.

[J

All a priori error bounds for UN require local estimations of UN

* *
or U in order to calculate 2(UN] or 2{U). This requires esti-

mation of the discrete Green's function corresponding to the operator in
(3.3). A calculation similar to that yielding the expression in (3.4)

*
for V gives the following:

Lemma 3.4 Under Assumptions 3, the solution G e SB of
B(G", ¢.) = <6(x - mh), ¢,>, Y ¢. € Sh, (3.23)
S 3 i J 0
is given by
2J-m

yerd - oy,

IA
3

m Y
i 1 [1 _ r} ’ __J(r + (-1)'r
G, = 7

J b2h M [-1]Yr2Jl -m

(r - rm)(rj + (—1)Yr23-jl, m<j,

where r is as defined in Lemma 3.1. (3.24)

Then the error bound which is simplest to obtain is in terms of the

solution u and its derivatives.
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Theorem 5 Suppose |u"(x]| < MJ_% for (j - 1)h £ x £ jh with
J
M= max{Mj_%, 3=12, «e., J} and M = XhMg_%. Then under Assump-
1
tions 3, we have
S 2 2 2
lu - UNHSS “eAHS NICAR (3.25)
where
A - f 2 PRE
lle ||S =|lu-u ||S < (1/m)[a2 + (bh/m)2]1%Wh, (3.26)
and
|ace™ | < (sh/4)(2M, + 30/3 - Dnl. - . (3.27)
*
Proof: Substituting the uniform bound for 1 + &(V ) given by (3.7)

with A =0 into (2.29) and recalling that Kp = 1 1n the constant co-
efficient case yields (3.25). We then bound both 2(eA] and ”BA”S
by introducing the piecewise linear intérpolate UI of u. We note

’

first that

-1 I i
-a2h '62[uljh) - UJ] + b2 f

I ‘ 'I
Bglu - U7, ¢J] D(u U )¢jdx

1 I
b2 I (u - U)¢,dx,
0 o

where 62 1is the usual central difference operator. So
|Bg(u - ut, ¢j]| < b2h3m/8. (3.28)
We also have

2e® = atu - uh '@ + 2t - U5,

and hence

l2e™ | < tah/2am, + tamifu; - UE]. (3.29)
. 3 1 1

Now
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* " *
U, -U,I|=<6(x-h). u -UI>=BS[G1, u -u

Isy _ 1 e E

J ] I
= JZ GJBS(U - U » ¢j];

and substituting for G; from (3.24) and using the bound (3.28), we

have

3
Uy - Ul < h2mct - 2 )

17 "1 45

1 s (-1]Yr2”'j)]lr|j-1
1+ (-1)Yp

s h2(z - VNG - D20 - o]y,
and using bounds similar to those in Lemma 3.2, we obtain

*
x |U1

" uil < 2(/3 - 1)n2m. (3.30)
Therefore (3.23) and (3.30) completes the estimation of l[eA] given
A I
by (3.27).  Finally, by bounding |le IlS by Jlu-u ”s' (3.26) is
easily established using simple approximation theory (see Strang & Fix,
1973). =
It should be noted that, since we are considering problems in which

bh/a 1is fairly large, the norm ”'Il is most useful if preliminary

S
scaling sets b = 1. Then a = 0(h) and all the bounds in (3.25),

\
(3.268) and (3.27) are 0(h2). The bound (3.30) is pessimistic since

M will usually be largest near x = 1. To improve it we need to

j-3

consider estimating UN

) in terms of the forcing function f.

Lemma 3.5 Under Assumptions 3, we have

gV - g

)= uv')J'1f~a/hJ<f,,Nesl> + 0(yr"), (3.31)

(a/b)f(0) + Ef\[f] +0trJL (3.32)

where



® -
efrel = 11« 21 N a/m) <f - £00), NG, (3.33)
Proof: From (2.18), (2.13) and the fact that BS[1, W) = -<a, W>2(1),
v We Sg, we have

N v N ~h
BS[U - W) + <a, W>R(U" - gL] = <f, NCW> V We S, (3.34)

Firstly consider the case vy = 0: then UN - g € SB and applying (3.34)
*
with W = 6! and using the definitions of V  in (2.27) and gl 1in
(3.23) yields
N _ 2w o 1
Up - g = -V U - g )+ <f, NG, - (3.35)

Multiplying both sides by (a/h) and rearranging, we obtain (3.31). In

“the case Yy = 1, the Dirichlet case, [UN - g - x[gR - gL)] € Sh, so

0
by subtracting [gR N gL]BS[x, W) from both sides of (3.34) and with the
cholce W = G! we have in place of (3.35)

N - g -hig -g) = -voatuN - g3+ <f, NGL>
1 L R L 1 L >

- - 1
[gR gLJBS(x, G*). (3.36)
From the expression for G! in (3.24), we see that
17 _ J
Bs(x. G') = h + 0(r"), (3.37)

since x ¢ Sg; and hence (3.36) leads to (3.31).
Splitting f(x) into F(0) + [f(x) - f(0)] in expression (3.31), we
obtain

B

Prel + atyr).

N * 4-1 1
gU” - g ) =[1+ (V)] "(a/h)<f(0), NEG > + E

L

Therefore to aobtain the result (3.32), it is required to show that
1 * J ‘
<1, NeG > = (h/b)[1 + &(V )] + 0(r7). (3.38)

Now
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<1, NeGl> = <a + bx, G!>, (3.39)
. ‘ |
and from the definitions of a, V and” 6! 1in (2.18), (2.27) and
(3.23) respectively, we have
*
<a, G!> = (a/bl<b, Gl> = (a/bV,. (3.40)
Also from (3.23) and (3.24) we obtain
Bg (X, Gl) = <a2, gl!'> + <b2x, Gl>
= <b2x, Gl> + 0(rY). (3.41)
Therefore combining (3.37) and (3.41) yields
<bx, Gl> = (h/b) + 0(rY), (3.42)

énd combining (3.39), (3.40) and (3.42) with the definition of &(¢) in
(2.23), we obtain (3.38). m

Comparing Lemmas 3.3 and 3.5 when f 1s a constant, we obtain
2y - UN] ; U[e-b/a + rJJ and hence N - U* = O[e_b/a + rJ]. For

general f, we have the following a priori error bound.

Theorem 6 Under Assumptions 3, we have
2 *, 2
lu - Mg < llu - U'llg + [ued P2, (3.43)
where
3 Jjh ' \
|2te)] =latu - UM< § I wj(x1|f(x] - ft0)|ax + 0(e™®/® + 7y,
J=1 1.
(3-1n (3.44)
with
uy(x) = e PX/a 4 3iy3 - gt pmexl3-2.0), =1, 2, vees J,
and
|r| <2 - V3 =20.27 if 8 2 V3/2.
Proof: Expression (3.43) follows directly from (2.33) and (2.28) with

*
v ilg < K, s 1. Combining (3.12), (3.21) and (3.32) we then obtain



() = 2(u - gL] - Q[UN - gL] = gﬁ[f] - EE[?] + O(B_b/a + rJ). (3.45)

B
h

from (3.4) and Assumption 3(iv), we have

In bounding E _[f] we require the following estimates:

) ¢ -1 J :
1+(V)=1+8 (1-1r)+0(r), (3.46)
and from (3.24)
6} = (1/b2n) (1 - 20371 . o). (3.47)
*
Therefore substituting for G! from (3.47) and 1 + 2(V ) from (3.46)

J
into (3.33) we obtain

872(1 - r)2 Ji1 1

1= 1
~ 7 <f - £L0), ¢ +J
[1+8 (1 -1r)] j=1

B =
Eh[f] N (B/h)¢jdt>

X

+ 00rY), (3.48)

It can be shown easily that

B :
J 1 .
2 rj-1[¢ + J (B/h]¢jdt]‘ < [1_:_J£J_i;§]Irlmax[J'Z,U]

j:‘] j X 1 - Irl

(3.49)
for x € [(J - 1)h, jh], j=1,2, ..., J,

and applying (3.49) to (3.48) we obtain

h .

J

B -1 (1 - r]2[1 - |r| + s} } h )

IEh[f]I <8 =T 75 jz1 wjlf(ﬁ] £(0) |dx
(3-1)h

(3.50)
+ D(rJ],

where

= |p|max{3-2,0), $=1, 2, vue, I

Wl
J
Using bounds in (3,50) similar to those in Lemma 3.2 and incorporating

the bound (3.21) on fiﬁ[f] yields the desired result (3.44) from (3.45). ®

The results obtained above can be used to establish the uniform stability

of the approximation. For ease of presentation, we only consider the case




of homogeneous boundary data, that 1is UN € Sg. Then from (2.44), (2.45)
and since Kp = 1 we havse
N N
WVl = llzllg + etu™, (3.51)
where Z € Sh' satisfies B_(Z, ¢,) = <f, N _¢,> YV ¢, € Sh.
0 o S » j » eJJ J 0

Bounding "Z”S is straightforward, since with F(x) = Tf[t)dt

5 (1]
lzlly - <¢. n 2>

' s||s||2"z||s, . (3.52)

(3.31), (3.33), (3.44) and hence

where 2 denotes the standard L2 norm. To bound Q[UN], we use

h
J
lacdM | < wglf[xlldx + o(e)y, (3.53)
’ 3=1 {3-1n
where *
wg = 3(Y3 - 1]8-1|r|mGX[j_2’0] 3=1, 2, «ous Ju (3.54)

By preliminary scaling, setting b = 1, and combining (3.51), (3.52),

(3.53) we establish the uniform stability of the apprbximation UN as

b/a + » in the L2 norm; that is \

h
T wglf[xlldx + O[rJ], {3.55)
(j-1)h

N
ML < Mg < F L

(4%
n~1G
KN

where wg is defined by (3.54).

4, Variable Coefficient Problems

We return in this section to considering the more general problems in which

a and b are variable coefficients and p a variable weighting factor.



We consider first problems with no turning points, i.e. b(x) 2 0 for
x € [0, 1], and then those with a single turning point (and Dirichlst
boundary conditions) such that b(x) <0 for x <& and b(x) 20 for
x 2 E. In each case only one perturbation function is needed, V‘[x]
is therefore.a scalar function and the first step is to establish that
1 + £[V*] > 0, 1indeed we shall give conditions under which R(V*J 2 0;
hence by Theorems 1 and 2 the Petrov-Galerkin approximations are uniguely
defined. Then we shall give a posteriori errcr bounds of the same form
as in Theorem 3, though there will be some loss of precision through taking
account of the variability of &, b and p. For a priori bounds, we
shall confine ourselves to relating them to bounds for an associated ,
self-adjoint problem.

Assumptions 1, 2 are supposed to hold and we strengthen them with the
following?

Assumptions 4

In addition to Assumptions 1, 2 we suppose that:

() sh

is the space of piecewise linear elements on a uniform mesh;
(11), 3 £ € [0, 1) such that b(x) €0 for 0 < x £ &, b(x) 20 for

£E £ x <1 and we take y

e(x) = 8(x - E) giving 2(v) = a(E)v'(E) - bLEIV(E); (4.1)
(i11) b[xj] # 0, v j, and
- L , h
b[xj)aj = b(xj] Jo[pb + [pa]’]¢jdx >0, v ¢J € S0 (4.2)

To satisfy Assumptions 4 it is sufficient to choose p(x) such that
both pb2 + (pab)’' > 0 and blpb + (pa)’']l >0 except where b(x) = 0.
This can be achieved for example by taking (pa)' = 0 where b' 20

and (pab)' = 0 where b' < 0. In addition we need certain smoothness



assumptions on a, b and ¢, or implicitly an upper bound on the mesh
size h, which are best given in hypotheses needed to establish bounds
*

on V.

*®
Properties of V .

*

As in Lemma 3.1, V 1s the Galerkin approximation in Sh to the solu-
tion v(x) of a self-adjoint problem for which we have the following
lemmas, firstly when there is no turning point in the original problem.

" We identify the coefficient p with pa2, g with pb2 + (pab)’' and

s with o = pb + (pa)' and recall that 1[V'] = a(O)V"(OJ = a[UJVI/h
in this case. Therefore 1 + Q(V*J >0 if V: 2 0: clearly this is
true for sufficiently small h when the system of equations for V*
satisfies a minimum principle, by assumption (4.2). .However for a

*

general choice of h, V1 2 0 still holds under mild smoothness condi-

tions on ’'p, g and s as given in the following lemma.

Lemma 4.1 Consider the following two-point boundary value problem on

. *
[0, 1] for the function v and 1ts Galerkin approximation V € SE:

0; (4.3)

-(pv*')’ + qvu =15, v(0) =0, yv(1) + (1-¥y)v'(1)
and

* h

* *
A Vv + BV, +A, ,V, ., =8, S., 4.,4)
tVyon BV AV = Sy v ¢y € S (

>
I

j'% - <p¢3_11 ¢3> M <Q¢j_1' ¢j>l Bj £ <p¢jl ¢;j> + <CI¢J-' ¢j>

wn
|

i = <sg, ¢j>.

For each j, define r, as the_.smaller root in absolute value of

J

2 +B,r, +A, , =0. (4.5)

AjegTy * B3Ty 7 Ay

Suppose that:

(1) p e H[O, 11 is a positive function and q, s € L2[D, 1] are
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non-negative functions such that S, > 0 vJ3, and

J
<q¢jl ¢.j = ¢j-1 = ¢J+1> 2 0! : <q¢Jl ¢J i ¢J_1 : ¢J+1> > 0
v 3 (4.6)
{11) there are real numbers r,r,o in (0, 1), with

r = max(r_, r ) such that

-r_ % r ST, v (4.7)
< - i < B
IAJ_%I (8, rIAJ+%|]mln[0r_, r) Af AL AL <0, (4.8)
-r_ < -AJ_%/BJ <r, if y=0 . (4.9)
and
) m=J-1
S, 2 r max[S, ,, ; -JT if A > 0. (4.10) ~/
J - j+1 Gm'—'§i'1 r* Sm] j+% .
Then we have
’
EY :
v, 20 (4.11)
and
s X -1 <s, ¢i>
-r V, < Vj sV, =01 -r) maxh ?E$;T"$;? s v J.
%<8 (4.12)
Proof: From hypothesis (i), (4.3) is a well-posed problem with a non-

negative solution wv. Suppose we solve the discrete equations (4.4) by

direct LU-decomposition. Formally we have

* * *

vJ = EjVj_1 + Fj, V, = 0, (4.13)
where ==
- S, - A,
R = It BN 12 e
h| BJ + Aj+%EJ+1 3 Bj + Aj+%Ej+1

and the boundary conditions at x =1 give
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Y=1:E5=F =0

= -A;_ /By, Fy = S;/B.

<
n

o

m
[

We show first, by induction, that

-1 <‘I‘_<EJ <I‘+<1, VJI [4-14]

By hypothesis (4.9) this is satisfied at j = J and the induction step

falls into two cases: >0 and EE < 0. Hypothesis {4.6)

"5Fe i1

together with p > 0 clearly implies diagonal dominance of the system

(4.4), i.e.

B, > |Aj_%| + IAj+%| - (4.15)

and thus ensures that lEjl < 1 and also that E_, has the opposite

J

sign to Aj-%' Thus the first case corresponds to Aj >0 and

A
-394
the recurrence for EJ can be regarded as one step in an iteration which

we see from Figure 1(a) is monotonically convergent to the root r‘j of

(4.5) from any point on the same side of the other root, R say. How-

i
1399

evef; hypothesis (4.6) ensuras that |le > 1 and hence < |R

j"

Specifically, when Aj-%’ Aj+% <0 and so Ej+1' rj, Ej >0, (4.15)
>0, so that r, <1 <R,,
becomes Aj+% & BJ + Aj-% 0 j i
and
\
[4
0O<r,, E <r <1=>(E,, - J)/E, -7, >1

1 R * J+1 J J J

=> (0 < E <r+-

J

The hypotheses (4.7), (4.9) ensure that the induction holds and a similar
argument obtains when all these quantities have opposite signs. In the
other case we have hypothesis (4.8) which is based on an assumption of
sufficient smoothness on the part of p and g to ensure that when

Aj—% and Aj+%

have opposite signs at least one of them is small relative



to B,. From this hypothesis,

J
< <
IEJ' < g min(or_, r,), when EjEj+1 <0, (4.18)
J j+i
see Figurs 1(b). The induction is now complete.
Turning now to the recurrence for FJ we write
G, = (B, + A, ,E . .
] ( 1 3+ j+1]FJ (4.17)
"to obtain
Gj = SJ’+ Ej+1GJ+1’ GJ = (1 - Y]SJ . (4.18)
from which we establish by induction that
J m-
06 s W S, v 3. (4.19)

m=j
The upper bound follows from the lower together with the bound (4:14) on Ej and

(4.18), anﬁ the induction on the lower bound for Gj can break down

only if Ej+1 < 0. It EJ+2 > 0, then bound (4.16) applies to EJ+1
and hence Gj 2 0 by hypothesis (4.10): on the other hand if Ej+2 <0,
we have
By = Sy * EyurSyen T EgaafianBiez 7 55 7 ByerByn
2 SJ = P—Sj+1 2 0, (4.20)

- by hypothesis (4.10). Hence (4.18) is established and thence it follows
that

Fy 20, V. (4.21)

x
Since V1 = F the first result (4.11) has been established. Now

1)
suppose that V+ and -V_ are respectively the largest and smallest

. ,
values attained by Vj' From (4.13) and the fact that Fj >0 it fol-

* * * * * *
= > =]
lows that Vj-1 <0 => Vj r+Vj_1 > Vj—1 and that Vj-1 >0 => Vj

*
> —r_VJ_1 2 -r_ V,. Hence
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*
V_ = max[-VJ] < r_ max VJ =rV,. (4.22)
J J
[ ]
If now Vm =V , ws have from (4.8), (4.22) and the fact that

+

AJ-;S<q¢j, ¢j-1> ,

Sm = Bmv; * Am-iv;—1 * Am+iv;+1
2V, B + At AL - (T )max(A 4, 0) + max(A L., 011}
=V, {<q, 6> - 1+ r_)[max[Am_%. 0) + max(Am+%, 0) 1} (4.23)
2V, {<q, ¢ > - (1 + 71 )<, 6 _,*+¢ >}
B V+<q¢m’ ¢m B r-[¢m-1 * ¢m+1]>
2

v,(1 - r_]<q¢m, ¢m>.

This gives the final result but it should be noted that the intermediate
inequality (4.23) will be considerably sharper unless, as is implied by the
problems considered in this papsr, we have qh2 2p. 8

In appl;ing this result it should be noted that (4.6) implies a smooth-
ness constraint on q, (4.8) a constraint on p and g, and (4.10) a
constraint on s. These could all be expressed in terms of smoothness
conditions on a, b and p. The parameters rj correspond to the para-
meter r in the constant coefficient case which ranged from r = 1 when
b/a+0 to r =-2+ Y3 when b/a + =, Thus the constraints on r,
- and r_ needed to satisfy (4.7)-(4.10) are rather mild.

Very similar results hold when there is a single turning point as

allowed under Assumption 4. In this case we have

* 'Y * *
V) = alglv () = a(E](yk+1 = Vk)/h. (4.24)
* . * *
where Xy < < xk+1. Therefore, 1 + 2(V ) >0 1if VK+1 - Vk > 0,

and conditions under which this holds are given in the following lemma.

Lemma 4.2 Suppose the hypotheses for the two-point boundary value problem
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of Lemma 4.1 with Dirichlet boundary conditions are modified as follows:

(1) s(x) 20 for x 27, s(x) <0 for x <,

where 0 < x, <% <X

K <1, so that

k+1

SJ <0 for j <Kk, SJ >0 for jJ 2k + 1; (4.25)

and in addition to (4.6), for some C >1 and 1 =20, 1

<Ay Pog T Opogaq T (2:- clgy_y.4> 20

1]

<Oy pgeq® Okaied - Pt - (2 - el 4,p> 20, for 1 <c <G (4.26)

(11) rJ 1s defined as the smaller root in absolute value of

A,_,r2 +B,r, +A =0, ] 3, (4.27)

3787 T ByTy Ay v

with the upper sign being taken for j < k and the lower for

jJ2k+1, suchthat for r_, r, and o 1in (0, 1) with r: 2 2c”1- 1 and

r = max(r:, r+), we have, with the same sign convention

-T_ < I‘J < I‘+, Vj
< - < ]
IAJiil [Bj rlAJ$%|]min[or_, r,) if Aj-iAJ+% 0 4 (4.28)
and
' $(J:0) 2(m-3)-1
+ . \
.F
ISJI 2 r_ maxISJ;1, o m¥j¢1 r, ' Sm] i Aj;% > 0.
Then we have
* %
Vst = Ve 20 (4.29)
and o
| *l B J:f:—fizl (4.30)
S 2 - » . L]
Vj g = maxh T v 3

¢1eSD

*
Proof: We partition V formally into two parts, V =V + 1V,
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- * »
where {Vj} = V4o «ees Vs 0, ..oy 0} and
. * * . 5
Wi =40, ooy 0, Viyqe vens Vo Fo Then VT oand V' satisfy the

*
partitioned equations given by (4.4) for V , but with the right-hand

sides and boundary conditions changed as follows:

- - + - -
V H {SJ} = {811 LR ] Sk-1' Sk- Ak+%Vk+1}, VO = Vk+1 D,
(4.31)
+ + - + +
A {SJ} =18, - AcetVkr Skagr voe S;41» V= Vy;=0.

Suppose now we calculate E+, Ff and G+ as in Lemma 4.1 starting

AN J

f E* = F' =6 = 0. We obtain, with B. =B, + A, ,E.
rom J = J = ] = . e 0 aln, wil j = j j"'% j+1,
+ + + + + + + '
Fror = Cra1/Braq = (Siaq * ExanBran)Brars (4.32a)

Calculating E;, F; and 63 similarly, but starting from the left

with Ej = Fy =Gy =0 and with B, =B, + AJ_%EJ_1, we have
Fo = B /B, = (S *+ E G _,)/B. | (4.32b)
. E + + * . -
Thence, since Vk+1 = Vk+1 = Fk+1 and Vk = Vk = Fk’ we obtain by sub-
+ -
stituting from (4.31) for Sk+1 and Sk
BY V. +A WV =S ., +E 6 .20 (4.33a)
k+1 K+ k+i'k k1 k+2 k+2 = s
3 _ s - -
- <
AcssVisr ¥ BV = S * Ex 464 <0, \ (4.33b)

the inequalities following from the induction argument on the '{Gj} as

in Lemma 4.1. Multiplying (4.33a) by B, + A

K K+ and (4.33b) by

+
ket b Pgese

onal dominance condition {(4.6), and subtracting the two equations gives

B the positivity of each factor being guaranteed by the diag-

*

8t - a2 .
(BKBk+1 Ak+%][vk+1 Vk] > 0. (4.34)
Moreover, B, , > |A, ..] and B,
' Tk k+3 k

(4.34) is strictly positive and the main result (4.29) follows. This

> |A so the multiplying factor in

s
K+3

factor is just the determinant of the pair of equations (4.33a, b) which



* *
are therefore non-singular so that Vk' Vk+1 can be solved for and the
»
equivalence of (4.31) to the equations for V  established.
+
J
If the lower 1limit -V: and the upper limit V: are attained at other

+ + + -
Suppose now that -V_ <V, <V  and V, 2 V_ so we consider J 2 k + 1.

than j = k + 1, sxactly the same argument holds as in Lemma 4.1 to

show that V' < r_V. and hence the bound (4.12) obtalned for V,. If

0)}

V;+1 = V: P V:. we can bound VI from the egquation centred about Kk + 1:
_ + * + L+ + +
using (4.29) to get -V <V <V, the fact that -r V. < Vk+2 <V, and (4.26)
we have
S ., =B .V +A Ve ALY
k+1 k+1" + k+3/2 k+2 k+3 k
+
2 V+{[Bk+1 *Aaasa * Ak+%] = (1 + v dmax(A 4,5, 0) - 2 max(Ak+%,
+ o
2V {<q,¢ > - (1 +r)<ad .o 85> - 2<9d .. 4>}
5 .
R T N T
+
§£V+[1 = I‘_]<q¢k+1a ¢k+1>'
+ _ + . ' + . + '
If Vk+1 = -V_  then we still have Vj 2 -rV, for J2k+ 2 buttogeta
+ + . + -
similar bound when Vk+2 =V, we need (4.26) with i =1 and Vk+1 p-] Vk b3

- + -
-V_ 2 -V+ « This establishes (4.30) under all circumstances. ®

It should be noted that the condition (4.26) requires a slightly stronger
smoothness constraint on q about the turning point than (4.6).
*
At this stage it is worth noting that the bounding of &(V )} has reduced

the problem of finding a priori bounds on u - UN to an approximation

problem for u: and, moreover, estimates for u may be derived by consid-

ering it as the solution to an associated self-adjoint problem. Thus from

Theorem 2 and Lemmas 4.1, 4.2, we have

2 * 2
fu - Mg s flu- v

. * 2
g * Kpll[u -u, © (4.35)

%*
norm. That is, U is

E 3
where U is the best fit to u in the [-||g

the Galerkin approximation to u which, with the above definitions of p,
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g and s, satisfies

-(pu’)’ + qu = t, (4.36)

where t 1is given by setting

<t, w> BS[u, w) B(u, New] - <5, w>2(u)

<f, Nw> - <s, w>i(ul, ¥ w e H. (4.37)

In particular, if f = 0 and once A#(u) bhas been estimated (see below)
then this problem reduces to that considered in the two lemmas above.

A Posteriori Error Estimates.

As 1in the constant coefficient case, the solutioﬁ ulx) of (1.1) and
(1.2) can be expressed explicitly in terms of integrals of f, leading
to the following generalisation of Lemma 3.3.

Lemma 4.3 Under Assumbtions 4,

X

Mutg) - H[f [£(t) - b'(t)g Jat)/H(1) + 0te My, 1p £ -0
0
(4.38a)
X -a(0) _-A(1)
£Qu) = H[I flt)dt)}/H(1) + 0O(e , € }, 4if E # 0; (4.38b)
3

where the functional H(v) = H(v(x)) 1is given by

T 5w \
H(v) = I e [vix)/a(x) Jdx, (4.39)
0
and
X
Alx) = J [b(t)/alt) Idt. (4.40)
g
Proof: From the definition of A(x) in (4.40), setting
-A(x)

wix) = alx)le ulx)] in edquation (1.1) implies that

X
w[x]extx} + J flyldy. (4.41)
£

alE)u'(g) - blgIul(g) = w(E)

We also have



A p——— = e e

1
J [wix}Zalx)1dx = e AV yu1) - o A0

0

u(ol, (4.42)

and combining this with (4.41), we obtain

-1
1 1 X
2u) = w(0) = [J e_k(xj/a[x]dﬁ] [J e"*[XJ{J #(y)dy}/alx)dx - g

0 Jo £ |

8—1(1]]

+ 0( s =1f & = 0; (4.43a)

1 -1 m X '
B_A(X]/a[x]dx] J e'*[X]{I £(y)dy}/a(x)dx
0 £

R R ST T I (4.43b)

2{u) = w(g) = J
0

+ 0(
Therefore incorporating the definition of H(v) from (4.39) with

(4.43a, b) and noting that H(b) =1 + D[e_A[1]

] if E = 0 we obtain the
desired results (4.38a, b). @

These a priori estimates on £(u) 1lead directly to the following é
posteriori error bounds. First of all consider the case of a non-turning

point problem, that is & = 0O; Ehen we have the following generalisation

of Theorem 3.

Theorem 7 Under Assumptions 4 with £ = 0 and assuming the hypotheses of

L ]
Lemma 4.1 hold for V , the difference between the nodal parameters for the

Petrov-Galerkin approximation - UN and those for the opq;mal approximation
»

U satisfy, if b(0) # a'(0),

N -
u, - g f(0) - b'(0)g

Nt 1 L _ L -2 (1)

|uj ujl < M{ . lb[U] — ) ] + E0F13+ ace 23,
J =1, 2;---,J; (4-44]

where o '
R <pb + (pal’, ¢,>
M=al0)(1-r]) max 2 s . (4.45)
¢1€SE <(pb= + (pab) ]¢i.¢i>

with r_ defined as in Lemma 4.1, and

e e itk T S — P — S S VO F——
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Ecel = H{IF M, _ . (4.46)

with

X 1
F(x) = !{[ftt] - br(t)g 3 - BBt - altll

b(0) - a'(0) -

f£(0) - b'[D]gL]}dt. (4.47)

Proof: In the constant coefficient problem, we made use of the fact
that a constant forcing function +F results in a linear solution, u to
(3.1), with certain - boundary data. The generalisatlon of this to
the variable coefficient problem is to note that a multiple of

[b(x)x - a(x)]' as the forcing function produces a linear solution to:
(1.1).  This leads to the following splitting of f(t) - b'[t]gL in

(4.38a):

,|[£(0) - b’(D)g.
f(t) - b'(t)g = Lb(tlt - alt)] (oo + F'(t), (4.48)

4
where F(x) 1is as defined in (4.47), the multiple of [b(t)t - a(t)]’

having been chosen to set F/(0) = 0. We then have

i | £(0) - b'(D]gL]
H(Jo[f[t] - b'(t)g 1dt) = [HIbOx)x - alx) * H(a(0)) ]| —mr——m

+ HCF). (4.49)
\

Now from the definition of H(v) in (4.39), we see that

-A(1)
e

H(b(x)x - alx)) = 0( ), (4.50)

and therefore (4.43a), (4.49) and (4.50) imply that

a(0)

i L o -A (1)
2lu - g ) = [D[U] . a,(o]][ftol b*(0)g 1 + HIF) + 0le

]I

(4.51)
Combining the expression for 2.[UN - gL] with (4.51) and using the bound

*
on Vj from Lemma 4.1 in (2.28), the desired result (4.44) is obtained. W
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The bound (4.44) 1is a direct generalisation of the constant coefficient
case (3.20). Note that the first term in (4.44) is a forward difference
approximation to the differential equation (1.1), ignoring the second
derivative term at the point x =0 and this will be quite small in a
typical situation where there is a boundary layer at x = 1. The second
term will be negligible in many circumstances since it is an integral of
a funetion with an exponentially decaying weight away from the origin,
and the function with its first derivative are zero at the origin. The
corresponding a posteriori error bound for the turning point problem is given

in the following theorem.

Theorem 8 Under Assumptions 4 with x, <k <x ., and with Lemma 4.2

k+1
*
holding for V.  the difference between the nodal parameters for the Petrov-

R .
Galerkin approximation UN and those for the optimal approximation U satisfy

' TP
T PR . b'(£)f1E) - b"(E)F(E)
S L h b'(E)(2b'(£) - a"(E)} * a'(E)b"(E)
+€0e1} + 00 MO 4 Ay g g, 2, L, T - 1 (4u52)
where
1 [ <ob + Cpa)’, ¢,>]
M= 2alg)(1 - r_ ) ~ max = » (4.53)
¢feSh <(pb2 + (pab]']¢i, ¢i> \
1570
with r_ defined as in Lemma 4.2  and
Ere1 = H{IF|)H, (4.54)
with .
[blt)(t - 1) - alt)]

B E)(E = W) - a'(g) (5)hdt, (4.55)

X
F(x) = I{f[t] -
12
and
p-€={a'(e)f'(g) + [a"(E) - 2b'(E)IF(EI}/{b"(EIF(E) - b'(E)F'(ED}.

(4.56)
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Proof: When & # 0, we have H(b(x))= 0[9—1[0] +e-xt1]

-A[D]} B-A(1]

) as well as
H(b(x)x - a(x))= 0(e ), this leads to considering the fol-

lowing splitting of f(t) in (4.38b):

O IbE)(E - W) - a(t)]’
fE) = T - 2 )

F(E) + F'(t), (4.57)

where F(x) is as defined in {(4.55) with an arbitrary choice of u; the

:
constant as before has been chosen so that F(§) = 0. We then have

X \
H(I F(t)dt) = [H(b(x)(x - u) - alx))
3

o o FLE)
HIBEEI(E - W) - alE) b = = 0

+ H(F). (4.58)

The properties of H(v) stated above and the fact that b(E) = 0 dimply

that
’

X
H(I F(£)dt) /H(1) = a(E)F(E)/IB (EN(E - w) - a'(§)] + £LF1, (4.59)
3

where ELF] is defined by (4.54). The expression (4.59) holds for all
B # &, we fix this degree of freedom by requiring F’(£) = 0, this
leads to the choice of u given in (4.58B). Substituting for u into
(4.59) yields an expression for #(u), combining this with R[UNJ and
using the bound on V; from Lemma 4.2 in (2.28), the desired result (4.52)
is obtained. ®

The first term in (4.53) is the difference between a difference and an
asymptotic representation of ql£§), and this will be small in a typical
situation as the differential equation will be well approximated near

x = £, whereas boundary layers may occur at x = 0 and 1.

To conclude, we have shown how the perturbation functlon, which determines

the effect of approximate symmetrization, can be chosen to guarantee
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existence and uniqueness for the Petrov-Galerkin method and can also be
placed where the underlying solution to the differential equation is not
rapidly varying. This leads to &(u - UN]_ being small and thus a near

optimal approximation being obtained.
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