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ABSTRACT

Given a time-invariant state matrix A, the Most Economical Structural
Synthesis (MESS) calls for the construction of the controller matrix B and
observer matrix C such that (I) the matrices B and C are as sparse as
possible and (II) the resulting linear time-invariant control systems are
completely controllable and completely observable.

A numerically stable algorithm for the MESS problem is suggested. Three
numerical examples are given.

Generalisations of MESS are also discussed.



1. INTRODUCT ION

Consider the linear time-invariant control system described by the

equations
X = Ax + Bu (1.1a)
y = Cx (1.1b)
where X 1s an n state vector;
u an r input vector;
y an m output vector;

A an nxn state matrix;
B an nxr controller matrix
and C an mxn observer matrix

Given an A, the Most Economical Structural Synthesis (MESS) calls for the

construction of a B and a C such that
(1) the system (1.1) is completely controllable and completely
observable,
and (II) the matrices B and C are as sparse as possible.
Because of duality, one only needs to consider the MESS of B.
The concept of MESS was first introduced by Tu [11], [12]. If one wants to
minimise the costs of investment and maintenance for the controller and observer

mechanisms, the following indices have to be minimised:

n,r
= . d i
$B Z . ”ij sym[bij] min (1.2)
i,j=1
m, N
and $C = Z g nij . sym(cij] + min (1.3)
i,j=1
where B = (b,.), C = (c,,), u,, and n,, are positive cost coefficients for b..
ij ij ij ij 1J
and c,., respectively, and

1]

1, if x # 0;
sym(x]} =
o, if x = 0



Simplify the problem by assuming that all cost coefficients are equal, i.e.

H.. = H 3 MN.,., =7 ; Vi,ji

the indices in (1.2) and (1.3) become

]
o

.
=

By = ”'E sym(by ;) B (1.4)

(1.5)
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3

L]
=
-

. ij C

and $_ = n-z sym(c, )
i,]

where NB and NC are the numbers of non-zero elements in B and C respectively.

(The case when Pij and nij are not constant is called the Generalised MESS
problem (GMESS) and will be discussed in §6.)

(1.4) and (1.5) indicate that making B and C as sparse as possible
will minimise costs. In other words, MESS means that the number of controller
and observer units are kept to the minimum and yet the complete controllability
and complete observability properties of the system are preserved. Note also
that max{uij}'NB =) uij-sym[bijJ and minimising Ny is thus equivalent to
minimising an upper bound of the cost functional $B in (1.2). (A similar observation
holds for NC]'

In Tu [12], a method of the MESS was introduced. Another algorithm was
suggested by Cheng and Zhang [3]. Both of these algorithms are not suitable for
computer implementations. (Chen and Zhang's algorithm requires the transformation
of A into Jordan canonical form and the rank-determinations by inspections of
determinants. See §3).

The aim of this paper is to suggest a numerically stable algorithm for
the MESS problem.

The MESS problem for the descriptor system

Jx = Ax + Bu, vy =2Cx ;

where J may be singular, will be discussed in another paper.



In 82, a brief summary of theoretical results concerning the MESS is
contained. Chen and Zhang's algorithm is described in §3, with the help of a
numerical example. A numerical algorithm for the MESS is suggested in §4 and some
numerical results are given in 85. The GMESS of B and C 1is discussed in

§6 and §7 concludes the paper.

2. SUMMARY OF THEORETICAL RESULTS ON MESS

(Most of the results in this section were guoted from Cheng and Zhang [31).
The problem of the MESS of B is equivalent to finding a B which is as sparse
as possible and that

rank <A/B> = rank [B,AB,...,An—qB] =n ; (2.1a)

or rank [AI-A,B]l = n, VYA . (2.1b)

(See Rosenbrock [8]. Numerical algorithms based on (2.1a) are unstable because
of the powering of A; see Paige [7]. The algorithm in §4 is based on (2.1b)).

The existence of such a B is trivial. Consider B = In and obviously
(2.1) are satisfied. Partition all B's, which satisfy (2.1) and whose number
of non-zero elements NB £ n, into equivalent classes with each class contains
only those B's with the same NB' There are only finite number of such

classes (at most (n-1) of them) and the class with the smallest NB contains the

solutions of the MESS problem. So we have the following lemma:

LEMMA 2.1 There exists at least one solution to the problem of MESS of B.

1000(T
Assume that B = 1010l * with NB = 3, be a solution to the MESS problem.
(MT denotes the transpose of M™M). (AI-A) is not of full-rank for some XA and the
. 1000|T
column space of B has to make up the deficiency. However, B = 0010

I
N

spans the same column space as B and thus B is also a solution. But Né
and so B cannot be a solution. Based on these abservations, a solution B
to the MESS problem has at most one non-zero element on any row. It leads to

the concept of a columnwise uni-non-zero matrix solution to the MESS problem.



DEFINITION 2.2 A columnwise uni-non-zero (CUNZ)} matrix is a matrix with one

and only one non-zero element on each column and at most one
non-zero element on each row.
Note that a CUNZ matrix is always full-ranked. Concerning the CUNZ matrix solution
to the MESS praoblem, we have the following theorem:
THEOREM 2.3 [3] There exists at least one CUNZ matrix solution to the MESS problem.

Proof: From Lemma 2.1, there existsat least one solution B = [bij], 121, 0 ee,ns

j=1,ea.,r.
(1) _ T {(2) _ T
Construct b1 = [b11,0,...,O] 5 b,l = [O,b21,0, ,01 ,
(n) _ T
-y b1 - [D;---;Dan,l] »
(1) T (23 _ T
b2 = [b12,0,...,0] s b2 = [D,bZZ,D,...,U] ,
(n) _ T
2 b2 - [D,--.,O,bnzl 3
(1) _ T (2) _ T
br = [b1r’0""’D] , br = [D'bZP'O""’O] .
Lobt™ 0,00 17,
i nr
=y _ (1) _(2) (n) (1) (2} (n) (1) _(2) (n)
and B = [b,I ’b1 ,...,b1 ,b2 ,b2 ,...,b2 ,...,br ’br ""'br 1.

It is clear that rank <A/B> < rank <A/B> . Since rank <A/B> = n, one has

rank <A/B> = n; i.e. (A,B) is completely controllable. From B, delete zero
columns and redundant multiples to form é. From the construction,

all the columns of B are with one and only one non-zero element and no two

columns in B are the same and so there is at most one non-zero element on each

row. Thus B is a CUNZ matrix solution to the MESS problem.
Q.E.D.

Let t1 be the minimum number of non-zero elements in B for the MESS
problem. Let o, be the maximum number of eigenvectors any eigenvalue Ai of
A bhas. It is clear from Theorem 2.3 that r, the number of columns of B,
satisfies

0<o, Erst (2.2)



The numerical algorithm suggested in §4 will produce a CUNZ matrix solution B,
which has r=1:,I columns, with values of the non-zero elements all equal to
unity. A corresponding uq—columns solution can be obtained from the CUNZ

solution easily. (See step (V) in the example in §3).

3. THE CHEN AND ZHANG ALGORITHM [3]

Transform A into Jordan canonical form:

(
-1 o
T 'AT = diag {Jq,JZ, .,JG} , (3.1)
1o _ 2T =T ~T.T
T B = [51’82""’501 3 (3.2)
where the mj X mj matrix Jj has the form
J, = diag 1J,,,3..,...,3,. 1} (3.3)
J & 31052 Jo,
J
and mj X r matrix Bj has the form
~ ~T ~T ~T i
B. = [B.,, B.qy,u«..,B, p (3.4)
J [ J1’ Ti2 J“j]

Assume that A has ¢ -eigenvalues and each eigenvalue Xj has aj eigenvectors.
Thus ij in (3.3) can be a Jordan sub-block or just a scalar.

Further assume that the eigenvalues are arranged in such a way that

It is well known that (1.1) is completely controllable if and only if

T LT T .7

rank [B JB J"‘JB.. ] = 0,, .=1‘---,05 [3-5]
317712 Jo g
where B, is the last row of é. .
Jjk Jk
Let 77 = (ty,), and ?j, 3=1,...,9; be defined by
[lekl = th,,Q, 5 K=’|,...,0bj;
=1, »N

(3.5) <=> %jB full-ranked for j=1,...,0; which means there must be at least

one non-singular aj X aj minor of Tj’ for j=1,...,0.



1 o,
J
the non-singular minor, eyd » k = 1,...,uj; can be chosen as columns of B.
K

The steps in Chen and Zhang's algorithm can be illustrated with the following

If [VJ,V%,...,vJ ) are the indices of the columns of %j which form

example [3]:

A = r 2 0 0 C 0
0 1 =1 0 0

0 0 2 0 0

1 0 -1 1 -1

| 0 0 0 C 1

Step (i). Transforming A into Jordan canonical form:-

( ) -1 ( )
T=|0 0 0 0 1 5 T = 1 0 -1 -1 0
0 0 1 -1 0 0 0 o 0 1
0 0 0 1 0 0 1 1 0 0
& il 0 0 -1 1 0 0 1 0 0
0 1 0] 0 0 1 0 0 0 0
L | J
-1 [ )
J =T AT = 1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
Lo 0 0 0 2
Step (ii). Aq = 1; AZ =2y 0O = 2.
d1 = 2; a2 = 23 (both eigenvalues have two eigenvectors).
. 00001 -1
T,l = 01100 ° (2nd & 3rd rows of T ).
5 00100 .
T2 - 1 0000l° (4th & 5th rows of T J.
Step (iii). For Tq, 2nd and 5th columns, or 3rd and 5th columns form a nonsingular
minor.
For %2, 1st and 3rd columns form a nonsingular minor.



n
[S2]
—
[w]
e}
<
i
w
.
<
n

5;)

Step (div). For the first set of Vv’s,

B = TS0 Bow 257 85 Ng = 4

For the second set of V's,

B =Ile,

41 83’ e:l. Ny = 3.

3 B

Obviously, the second set of v's gives the CUNZ matrix solution

to the MESS problem.

The example indicates that one has to choose the v's in such a way

that Ng, the number of distinct elements in u-=u {vi}. should be
Jsk
as small as possible.
b, 000 bz\T
Step (v). Obviously, B can be chosen to be B = which is a
0 0b, OO

uq - columns MESS solution. For some cases, t%e b's should be chosen

with care to make sure that (1.1) is controllable.

(Using the language in [4], the system (A,B) is potentially
contrallable. By choosing the values of b's carefully, the
system will be completely controllable).

(e.g. If span (A-2I) = span [24 e,, e,1, B =1[e, + e.,e.]

* 850 Bys By

will not be satisfactory; but B = [§4 - 8cs 851 will be).

In this example, any values for the b's will do, as

)

e

span (A-2I) = span (92, ec

9_41

- e e,l.

and span (A-I) = span [EM, 84 By

22
The above algorithm is not numerically robust enough for the following reasons:
(1) Transformation of a matrix to Jordan canonical for in step (i) is not

numerically stable, especially if A has defective eigen-structures.



(2) The indices o and aj's in step (ii) may not be determined accurately
for ill-conditioned eigenvalues.

(3) The inspection of determinants in step (iii) may not be adequate for determining
whether a certain minor is singular or not. In addition, a non-singular minor
with a small eigenvalue may force the resulting system near an uncontrollable

one.

Finally, T ! in the above example is guite sparse and conseguently step
(iii) can be carried out with ease. It will not be the case for a general A.
In the next section, a numerical algorithm for the MESS problem is
suggested. Only stable decompositions like the singular value decomposition

(SVD) or QR will be used.

4, THE NUMERICAL ALGORITHM

Observing the example in §3, the problem of finding a CUNZ matrix
solution to the MESS problem is reduced to finding the indices
3, - . k=
{vK, J=1,...,05 K 1,...,aj}.
We work from the criterion (2.1b) and observe that (2.1b) is equivalent
to

1
(span(AI-A)) = N((AI-A)™) < span(B), VA ; (4.1)

where WN(e) denote the corresponding right null-space and MH the Hermitian

transpose of M.
Note that N[(AI—A]H] = {0} unless A = Aj, an eigenvalue of A. As

a result, we are looking for a B such that
H
NébAjI—AJ ) < span(B), (4.2)
Jj=1,...,0.

Note also that dimension of N[[XjI-A]H] satisfies

dim{N((AjI-A]H)} =0y, J=..n0 (4.3)



It is clear that v K=1,...,aj; for some j, can be chosen such that
B=(e,j, J=1,...,0; k=1,...,uj] (4.4)

satisfies (4.2).

There may be more than one possible set of feasible v's, as shown in
step (iii) in the example in §3. As a result, we try all possible combinations
of vi for some j, store the angles ej between span (e _j} and

=V
<1 k
R[AjI—A] = N[[AjI—AJHJ and choose the v's in such a way that

(a) sinej should be greater than a prescribed positive tolerance

(Sinemin; see step 1 below), to avoid making (1.1) uncontrollable
or near to an uncontrollable system;

(b) z sin29j is maximized;
J

- Juy e e
(c) NB N [g,K{vk}] is minimized.

and

(N(S) denotes the number of distinct elements in the set S and {'}L the orthogonal
complement; R(¢) c span (°*).)
By decomposing span (B) into the two components R[AjI-AJ and {R[AjI—A]}L, observe
that ej > 0 <=>_Epan {(B) 1is not deficient in {R[AjI-A]TL<=>(4.2].

{R (,>‘I-A )} b o= o, unwn‘[ro/(aéle;

/
e >0, controllalle.

gpaﬂ(fa?/}

AL -
k A'[ A

Fipure 1

By using the SVD or QR, the range, null-space and angles between various
subspacescan be calculated easily and in a numerically stable manner. The SVD

can also be used for rank-determinations. ([5]1).



The numerical algorithm is summarized as follows:-
:_ F i e I} F > L]

Step (1) Input A, sin min’ ©PS 1, eps 2

Step (2):- Find the eigenvalues of A using a numerically stable method.
(e.g. QR; see [131).
Rearrange the eigenvalues into {A1,...,AO}. (Any eigenvalueg which are
differed in no more than eps 1 may be considered to be multiple and
their arithmetic mean can be used to construct the ¢.'s; but see
comment (ii) on page 12). J

For j=1,...,0; do steps (3) and (4).

Step (3):- Find the SVD of (AjI-AJ, i.e.

H
zn—oc 0 qu H
AJI-A = (U.,,U. d j ® = ubv , (4.5)
J [ J1 J2] J i
Jj2
0 Za

where U and V are nxn unitary matrices; D = diag {d1""’dn}
is an nxn diagonal matrix and z and z are o, X o, and
o n-aj J J

[n-dj) x (n - aj] diagonal matrices respectively.

Let the diagonal elements of DB be arranged in descending order and

(Zn_aj]n_a > cl,I * eps?

and [Za ), Sd, * eps2 . (4.8)

(4.6) implies that (XjI—AJ is of eps2 - numerical rank [n—aj).

Note that

f

H. L
R(A,I-A) = {N((X,I-A)Y )} = span (U.,) ;
J J J1

4 H
R(A.I- = ALI- = )3
{R( JI A} N(( JI A) ) span [UJZJ

V(A = A i TL
( jI-A] = {R(( jI-A] ) span [ijl;

4
{N(AjI—AJ} = R((AjI—AJHJ span (vqu : (4.7)

_/ID_



Step (4):-

Step (5):-

Let ij be the angle between

L

N[[K.I-A]H] and span (e, , £31,..., .J);
J —KZ j
for each of the "C_ combinations of K = (k,, =1, 004),
J
I
- U, ing, = . s .
e, ) 32 and sin ik ou.(MJE? (4.8)

o, .
3 J

calculate Mjb_z (EK1"'

where g (M, ) 1is the smallest singular value of M, . sinf8,
oy 3k ik Jk

can be viewed as a distance between the subspaces span [EK] and

H. -
N[[XJI—A) 1 . (See [1]1).

Store the Kk's so that the combinations of indices corresponding

to the larger sinejK appear earlier and discard any Kk when

sinb, < sin® . ; d1.e. one ignores any k which gives rise to e

ik min K’

which in turn has span nearly orthogonal to N[[AjI-A]H] . Note that

» » U .
Miﬁ %s just the Kk rows of i
Choose the indices vi. The indices can be chosen by inspecting
the indices Kk stored in step (4) such that Ng = N(U {vi}) is

JsK
minimised.

The CUNZ matrix solution B can be constructed as
B=1I[e s, j=1,..4,0; k=1,...,0.]
_\)ﬂ J J

with repetitions deleted.

A more algorithmic presentation of the above algorithm, written in MATLAB

[5], is included as an appendix to this paper.

Some practical details concerning the computer implementation of the

algorithms are:-

(i) o .
min

needs only to be non-zero theoretically but it should be reasonably

large so that (A,B) will not be close to an uncontrollable system.

(e.g. The n-th singular value of (AI-A,B) is non-zero but very small for

some

Ad.

-11-



(ii)

(iii)

(iv)

(v)

emin should not be too large as it will reduce the number of feasible

k in step (4) and thus increase N_ . Values of sinemin between 0.1 and

B

0.3 were used in the numerical examples in §6; experimenting with different

values of Sinemin may be necessary in general. (See also §5).

The determination of o and o, are difficult [51, [10] and should be avoided.
Note that only a good estimate of Sinemin is required and a reasonably
accurate N[[KjI—A]H) will provide such an estimate. From [10], it is

known that perturbing A slightly will only perturb N([AjI—AJH] slightly.
Thus it will be safer to perturb A slightly so that all the Aj's are

simple and the null spaces one dimensional. In this case, steps (3) and

{4) have to be carried out for j=1,...,n; and more work is required in the

search in step (5). (See Example 2 in §6).

eps 2, the tolerance for numerical rank determinations should be set near
to machine accuracy.
Note that some users may prefer to replace (4.6), which takes account

of the scaling of AjI-A, by

(z”‘dj]n-aj > eps2 and [ij],l < eps2.

Step (3) can be carried out using either QR or SVD. SVD's have been used in
the programs in the appendix because it gives out more information.
In most applications, the extra information is not required and the cheaper

QR should be used.

Producing the indices k in step 4 for the nCa combinations of uj
J
elements from a total of n can be easily done, using the algorithms in

[8]. The Revolving Door algorithm produces a sequence of k’s  in which

_12_



successive indices differ in only one component.

Let k and k be two successive sets of indices. M, and M,
—1 . ALY L)

will differ in only one row and the updating SVD [12] or QR technique

may be used to find the smallest singular value of M, more efficiently

JEQ
from the available information on l"ljK .
-1

(vi) There may exist more than one MESS solution and the optimal one is chosen

by maximizing ) 51?0, (Recall §4, and see also §5).

K

(vii)Some particular combinations of rows of U,

) may be ill-conditioned in

the sense that the rows are nearly linearly dependent. Such combinations
may be recorded during step (4) and will not be chosen to compose k. Less

searching will be needed in step (5}.

5. GENERALISED MESS

In (1.4), ”ij are assumed to be constant for all (i,j) and NB is
minimised to yield the MESS solution of B. One can delete this restriction and
call the corresponding synthesis of B for a general set of cost coefficients
{“ij} the generalised MESS (GMESS) of B.

It is then possible to replace an expensive controller unit by several
cheap ones, in spite of the fact that NB has been increased.

Instead of NB in (1.4), one can minimise the funcltional

) )

F, = w_ = H,. * sym(b,.)} + w,.cos2€ F (5.1)
B 0 1,3=1 ij ij 21 J 35

where uﬁ’ J=0,1,...,0; are non-hegative weights and ejk is the angle between

span (Ek] and span (LGZ]' (Recall (4.5) to (4.8)).

It is assumed that B 1is a uq-column GMESS solution and thus r = o

1°
The first term in (5.1) minimises the costs. The second term is essential when

more than one GMESS solutions with the same cost exist. The second term will

_13_



pick the GMESS solution B with its range space lies nearer to that of sz,

the null-space of [AjI-A]H, and thus force the resulting system further away from an

uncontrollable one. This situation arises quite often, especially with “ij = H,
and the resulting functional
. o
= 2 A
Fg = wyNg + §=1 wj cos eiﬁ (5.2)

has been used in the MESS programs in the appendix.

If one chooses Wy = 1 and wj = 0, j > 0, one returns to the original

situation in (1.4). If one chooses Wy = 0, the costs will be neglected and

one concentrates on the conditioning of the system. As costs are the main concern
in the MESS or the GMESS, [wj, J > 0) should be chosen to be guite small

when compared to wDuij} e.g.

w = 0(10) and wj =001}, >0 . (5.3)

oHij
In (5.2) for the MESS of B, the values
W, o= 1; wj = 1/20, j > 0; (5.4)

can be used. Note that the second term in (5.2) can be at most I and thus the

first term is always dominant. The situation when NB is increased by one with

~

a decrease in the value of FB can never occur.

Recall that the prescribed tolerance Sinemin has been used in 84 to filter

out solutions which yield systems which are close to uncontrollable ones. One

~

may choose sinemin to be very small and wj = W J > 0; to achieve the same

0’
goal. General wj's other than those suggested in (5.3) and (5.4) give rise
to a different problem and more analysis is required.

FB in (5.1) can be minimised by searching through all possibilities, as in
§4. Note that rearranging the columns of B yields different GMESS solutions
and changes the corresponding values of F

B’

_/14_



For the sake of simple presentation, the programs for the GMESS
of B are not included in the appendix.

Finally, it is unlikely that a system is designed based on only the
MESS of B. However, it may be helpful to the designer, who has the MESS
in mind, to use the suggested algorithm to generate a series of B's by choosing
different tolerances or functionals to minimise and choose one using additional
information. The algorithm can also be modified easily to cope with constraints,

like b,., =0 for some components b,, din B.
ij 1J

6. NUMERICAL EXAMPLES

Example 1. Consider the example in 83 [3]:-

A = [2 0 0o o O
001-1 0 0
00 2 0 0
10 -1 1 -1
00 0 0 1

“ 4

The matrix is lower Hessenberg and has eigenvalues {1,1,1,2,2}, with 2
eigenvectors for A= 2, but only 2 eigenvectors for A = 1.

The tolerances are chosen to be

eps1 = eps2 = eps

and minsin = 0.2,
where eps is the machine accuracy of the NORD-500 in the University of Reading
Computer Centre. (eps =5 x 10_18; see [51).

The program in the Appendix grouped the eigenvalues correctly into two
multiple eigenvalues of 1 and 2 (0 = 2) and determined Gy = 0, = 2 successfully.
(Steps (3) and (4) in §4).

The same answer as in 83 was produced:

1 _ 1
v =3, v2 = 5,
2 _ 2 _ ..
v1 =1, v2 = 3;

i

and NB 3

_/lS_



Example 2. Construct a matrix T such that

T = (-1 1 1 1 1)
1 -1 1 1 1
11 -1 1 1
11 1 -1 -1

11 1 11.4

{ p

and consider A = TAT_1, with A given in Example 1.
The similarity transform T makes A more ill-conditioned than A.
In addition, the structure of the null-space N[[AI-A]H] is relatively simple
because A 1is in lower Hessenberg form. The structure of N[(AI—A]H] will be more
complicated.
The following three sets of tolerance are chaosen:
eps1 = eps2 = (i) eps

(ii) 0.5 x 1070

(111) 0.5 x 10°°
and minsin = 0.2.

With (i), the tolerance eps1 was too small and, because of round-off error,
the program failed to group the eigenvalues {1,1,1,2,2} into two multiple eigenvalues
of 1 and 2. Instead, all eigenvalues are considered to be simple. (o = 5 instead
of 2).

With (ii), the eigenvalues are grouped into four eigenvalues {1,1,1,2}

(plus some round-off error). (0 = 4 instead of 2).

With (i) and (ii), some operations in steps (3) and (4) (§4) were repeated
because of the failure to determine the multiplicit¥&8*6F the eigenvalues
correctly. The amount of searching involved in step (5) was also increased
enormously, because of the wrong value of ¢ and a small eps2. Apart from the
above defects, (i) and (ii) produced the same answers as (iii):-

With eps1 = eps2 = 0.5 x 10_8, the eigenvalues were grouped correctly,
with A, =1, A, =2 and a, =0, = 2,

1 2 1 2

_18_



There are two feasible sets of V

1 H /l = . 1 = 1 =
v1 = 3, v2 = 4; and v1 1, v2 23
2 2 2 2 .
\)1 = 3, VZ - 4; \),l = /lj \)2 21
., O
with Ng = 2. For both sets of Vi, z Goszejk are the same (= 1.33) and
J=1 -

thus both sets are optimal in the sense that (5.2) is minimised.
Example 3. Construct T such that

ToadiEd 1A
1] 1

and consider A = TAT_q, with A given in Example 1.

The following three sets of tolerance are chosen:-

minsin = (1) 0.1,
(ii) 0.2,
(1ii) 0.4;
-6
and eps1 = eps2 = 0.5 x 10 .
The eigenvalues were grouped correctly {o = 2,A1 = 1,12 = 2) and the
dimensions of the null-spaces determined successfully (a1 =0, = 2).

With (i), 72 possibilities were searched through (in step (5) in §4) and

2 feasible sets of vi were produced:
f1_ - 1 1
v, E 2, v, = 3; and v, = 1 v, = 3;
2 ZNEE 2 2
v1 = 2, v2 3; v, 1, v, = 3

o
with Ny = 2 and z 00526jK both equal to 1.58. (There are 5 other sets
j Fris

=1
. g
of vﬂ which yield Ny =2 and Y cos*6,, = 1.62).
=t ul

wWith (ii), only 35 possibilities had to be searched through because of

a smaller minsin.

Two feasible sets of vﬂ were produced:
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c
with NB = 2 and z coszejk both equal to 1.62. (These are the only two

J

e

. 1
sets of v which yield N_ = 2).

K B

With (iii), minsin was too large (0.4) and NB was pushed to 3 instead of

2. DOnly 12 possibilities had to be tested.

7. CONCLUSIONS

A numerically stable algorithm for the Most Economical Structural Synthesis
of B and C of a linear time-invariant system has been suggested. The
tolerance (epsi, eps2 and minsin) have to be chosen carefully for individual
systems. Suitable B (or C) can be chosen from a feasible set, possibly based
on some additianal information concerning the system.

A generalisation of MESS (GMESS in §5) has also been discussed, but more
work has to be done.

Finally, for sparse A, the graph theory approach of Franksen, Falster and

Evans [4] may be applicable to the MESS problem.

_’la_
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. MINSIN=0.2j
SUFOR I=1t

APPENDIX MATLAB PROGRAMS

INFMESS-1 : Main-program for Example

PENTER SMS134WAKINGsKIGy s 10
@5 (SMS125)MLE
LXFC(’MES[NFUT’)?

EPS1=EFS;

EFGo=ERS1

&y FOR™J=1 85 TT Ty 1) =14
FOR T=115sTT(TyT)mm1}
TTCA S sl 8 TT (S5 =1, 13
SULN(A) » COND(A)
SUINCTTY s CONDNCTT)
A=TTRA/TT§
SUICA)Y s CONDIN(A)

TTmaf Lmasd Jman b

A

EPS1vEFS2yMINSIN
EXECC/ MESETGEN ) 3
LONG E

FY

SHORT E

EXECC MESSTGMA )
SIGMAYEY

EXEL(C MESLAMDA ) 5
ALF A MALEA
EXEC(MESTNIXR7 ) $

UN

TNXR

EXEC ¢ MESINIIXZ Y ) §
EXEC( MESINIEX ) s
EXEC ¢ MESANSWER 7 )
CLEAR

EXIT

FOR THE MESS PROBLEM

2 in 86, with eps1 =

eps2

eps.

i



MESINPUT : Input datas

e o  MEGTNPUT~MES

s o R2ND APRIL 1983,
RN

SHORT E?#

A=< 2 0 0 0 0
0 1=t 0 0
0 0 2 0 0
i 0«1 1 =
0 0 0 0 gn
Nt §
EFGL=0,50-43 EPFS2=ERG §
MINSIN=0, 23
co s ENIDOF MESINFUT-MES -
PRV 7-1983,

MESEIGEN : Solve eigenvalue problem for

descending order.

OOOMLSF]FEN ﬁln;

s 0+ 22N APRIL 1983,
EV=ETG(A) »

IT=1%

IFL.AG=1$

WHILE IFLAGT>0rqess

WHILE I<=N~1re.s
IFLAG=0%4+ 4.

FOR J=N~1¢=12T9.s.

IF ABSC(EVIDNICARS(EV(I+1) )Y THEN
IFLAG 1?000

EV( J!J+1*)REU(fJ+17J Yiees
FNﬂv...

ENIIS o o0

I=1l4+148.40

 ENDSENDS

rI f“$J={”tIFLAG-’“3

2 : IQFIGFN HES.
ooox? 4“19830

+

*

+

and sort eigenvalues Ai




MESSIGMA : Calculate o

o o s MEGSTIGMA-MES
+ e

e« 22ND AFRIL 1983,

* e

SIGMA=13

TEMPCLy1)=EV(1) 4

NTEMF(1)=14"

L=y

WHILE T<=Ny,,,

IF ARG (TEMP (81GMAY L) -EV(1) ) o=ERgY THEN ..
NTEMF (STIGMA) =NTEMF (STGMAY+13, . .
TEMP(SIGMQ!NTEMP(SIGMA))=EU(I)3;4.
ELSE SIGMA=SIGMA+1S, ..,
NTEMP(SIGMAY =15 . .,
TEMF(SIGMA» 1) =FUCIY 8., ,

ENDE ., .

NNN=NTEME O Y S, L,
VECCLINNNY = TEME (T o 1 $ NN Y 3
EVCI)=8UM(VERY

se e P90,

MESLAMDA : Calculate mj and sz

L B

s s MESLAMDA-MES .

LI 2N 4

s o« 22N AFRIL 1983,
¢ b9

Uy Dy Ve=GUDNCEV CID)REYE (NY A $
ALFACLY=N~RANK (Dy (EPS2XDL 1)) 08

GFe=l) s

FOR T=2181GMAs ..

U Dy Ve=GUNEVCIIREYE(NY =AY 5.4

ALFACT) =N-RANK(I'y CEFS2%XDC121))) 3.4

GF==8FsUx§+s4, .

ENIS

MALF=NORM(ALFAy INF ‘)3
UZCIIN,LLALFACLI) ) =8P (L SNy N-ALFACLIY+1IN) §

FOR I=2:1816MAY 4.

TEMPC1)=(I~1)KMALF 41544,

TEMP(2)=TEMF C1)+ALFACTIY =13, 4.

TEMF'(4)”I*N; ¢ vy

TEMP(3)=TEMF (4)~ALFACI)I+15 ...
UQ(l:NvTEMP(l)3TEHP(2))=SP(13N7TEMP(3)3TENP(4))fgoo
END ¥

T=als g s g D=l § Ym0
SR S TEMP = G g

LR N
e cENDOF MESLAMDA-MES,
R N N R




MESINDX 2 : Form IDX2 which contains vi, sinzej and coszej

s ¢ o MESTINDX2~MES .

o 48

o v+ 22ND QPRIL 1983,

R

FOR J= 1 3IGNAV¢.o

Al.J= A' Fﬂ( .')7066?'

EXECCMESINDXL-MES ) d .,

TEMP CL) =01 %MALF+1 8 .
TEMFC2Y=TEMF CLY4+AL 1§ ..

TEMP ()=l 1)K OMALF Y225, .,

TEMP (A)=TEMP CEy+AL 26, o .

MUNz=QSF ¢ oW

FOR K=l NGy o

VECCEIAL. D =TNX1 Ky 1AL Y5, .,

MAT U”(ULLy’INI'1"V|Ml{”‘“+ea

"JF’ !’ L)

L= CUD(MﬁT‘, :

I U(ﬁLh,:“MlNQIN THEM MURMa=NUNST §ENTE .

FOR L= 8ALSy TOUX2 K TEMP CED L Y=T0X L (R LY SENDE o
T2y TEMPCI AL JF1 Ys=D AL IYR¥E8 .,

TIM2 Ky TEMP CEY AL JF2 Y= 0y

TINC2 R y TEMP (3 YEALIFLYE . 2

ENDE .o

TFLAG=1§,

FOR K=3 $NQ- 1v¢a«

WHTLE TFLAG=0» ¢ oy

”" ACJ ()'V LR

FOR L=NO-138-13Ke 00

TF X200y TEMPCXI4AL I+,

TOX2 O +1 » TEMFP (I +HAL 1D THIN e

TFLAG=1F 44

TOX2CEL s ALy TEMP (Y1 ITEMP (4Y )= 4

TOX2CL 41 o Ly TEMPCEI D ETEMPCAY ) E o o e

EENIVS & 0 o

ENING oo

ENDE oo

ENDF .o

UNCJY=NUNS, o,

ENID e
VEC=x5
IFLAG=3
AL Jmes
NUN=3 5

oo JEND OF MESINIX2-MES,
++,04-08-1983,




MESINDX 1 : The Revolving Door algorithm

o ¢ s MESTINDXL~-MES ,
s 0 22NN AFRIL 1983,
IHXlwa;
IF ALJ=1eNO=NSFOR I=1 Ny TIXLCL 1 =TS ENDSENDS
IF AlJ=1 THEN I=>jRETURNS
IF ALJ=1 THEN ...
TEMF(1)=—~138N0=08 ..,
FOR I=1¢ALJs TEMFCI41)Y=T3ENDS .4
.l .| 1 [
WHTLE D200 o os
NQ=pMOELE . s
TIOCLOND e L EAL Y =TEMPC28ML 441§ ...
BN K22 S I
WHILE S TEMP CIJH 1) sl S
U 20 N R R
EMOE .
TEMP(JJ+1)“TEMP(JJ+1)+];e&
3l T=ob 4 2 Al
TEME (D41 =T EMP (f)H
INr'V L
MG
TEMP e s
e s END OF MESTNOY D -MES .,
s e s Q4R RER,

MESINDX 3 : Form IDX3 which contains a full list of all possible

¢ MESTNOXZ-ME G,

LI AR

ce e QNI APRTL 1983,

NIN=03%

FOR I=1!SIGMAsVEC(I)=13END;
WHILE VEC(SIGMA) <=UNCSTGMAY v o0
NIN=NIN+13,. .,

IDX3(NINy 13SIGMA) =VEC(1ISIGMA) ‘5 ...
VECCL)=VECCL)Y+146,..

FOR T=12:8T6MA~1s..,

ITF VECCII®UNCT)Y THEN ..

VECCI) =) 3 VECCTH1) =VEC I+ 04450
ENITG .o

ENIIS o o s

ENINS

Tl S VR Qo § UNmeal e §

so o NI OF MESINDXE~ME €
e o?() .;7 ' (‘“‘ 'ﬂ




MESINDEX : Minimise FB

¢ o « MEGTNIDEX~MES .

e o 2N AFRTL 198X,

FMIN=N3

MLINME=M $

CCOTNDEXZy NEe Foo MINMNEB AND FMIN 70
O TMaEt NN o

TOXZCINe LS TEMAY § 2 o s

FOR J=1 28 T6MA « /-

TEMFCHY = )=1 YK (MALF+2 041 5 TEMP (2 =TEMP I HALF A 418 ., .,
VECCIr 1 3ALFACD 2 mIDX2 COECT (Y s TEMP CLY STEMF C2 38, ..
ENDS TEMP =58, o .

EXEC O MESD

TF NBC=MINNE THEN ..

FaOfFOR J=1iSTOMAF=F+VEC Iy ALFA I E2Y SENTIS , .
ENDS . s

TF ONHEMINNE THEN ..
MEINNE=NMES TMIN=TN FMI N
ENDE S o

TF NE=MINNE THEN ...

TF FSFMIN THEN ..
MINNR=NES TMIN=INFFMIN=F§, ., .
AN) (E I

TVECL s NE s F o MINNEy FMING ¢, « o
ENIS o s

FNI &
N f YR §
NIN=<>§ NE=%3
[ 3 Y
+ «sEND OF MESINDEX-MES, 7
00028“7*19830

RT3

S A

JEe G el AN e g




MESCOUNT : Count NB’ given vi

+ ¢

¢ 0@ M'S(:U“N""M’So

Co o REND APRIL 1983,

NE=03 TEMF (13N =0, OXKEYE (1N §

FOR T=12SI0MAFOR J=1 tALFAIT) y. .,
IND=TEMF (VEC (T )2 8., .

TF IMD=0 THEN

TEME CVEC (I 0 =1 §NR=NREL 7, 4
ENIG . oo

LT

s MEECOUNT -MES,
s 0 e QR-08-] 23%

MESANSWR : Output answers

L N 4

oo e MEGANSWR-MES ,
LI I 4

oo s ZANDD ARREL 1983,
¢+

VECL=TOXI CIMINGL 8T GMA) ¢

FOR d=1 3GT0MA TEMFP = (=1 0% (MALF+2) 5 4 0 s
FOR K=1tMALF ...

IF K<=ALFAC(J) THEN ...,
OUTCIyR)=INX2CVECL () y TEMPHK Y $ 00 o
EENINS o 0 o

IF K:ALFACJY THEN ..
QUTCIsKI=0% 4 s

EENITS oo

ENIG W

ENIY S

£V

SIGMA

AlFA

MALF

FMIN

MINNE

ouT

se s N MESANSWR-~MES

sa e 171983,




