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Abstract

This paper contains a mathematical analysis of the structure of
weak shocks with the presence of viscosity. A simple one-dimensional
model is explored and an attempt is made to fit the structure of such
shocks as the theoretical background to computational applications using

an extension of the shock propogation conditions currently used.



1. Description

Before any theory, it is necessary to define the variables used and

the concepts of a weak shock and a non-symmetric shock.

1.0 Preliminary Definitions

X ~ space co-ordinate.

u - fluid velocity.

p — density.

p — pressure.

a - sound speed.

v Py By still air values of p,p.a respectively.
t — time.

6 - diffusivity of airl.

v - ratio of specific heats.



1.1 Introduction

Let ¢ be a generalised thermodynamic quantity. Let [y] be the

jump in ¢ over the discontinuity (a shock).

Y, € )

r\w/

Let <y > be a scale value for

Hence
{(u?>=a
o
<p>=po
<p > = P,
a>=a



Then, we define weak shocks as those with the property

[v] (1.1)

<y 2

< £ 1

Now, this definition needs to be relaxed to include non-discontinuous,

approximate shocks; and for this we need to introduce new notation.

1.2 Non-symmetric, Asymptotic Functions and (a), (l-a) Points.
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Firstly, let Q(O) . $(1) be 2 values of @ with 3(0) < $(1) =

Define

V 2e(0,1) . ‘7’(7\) = 7\\71(1) +(1-2) 3(0) (1.2)



Consider a function @ of a variable x . Let @(x) have the

following properties:

(1) %%-) ov x} #»@(x) is strictly monotonic increasing (1.3)
(i1) lim ¥ = Yoy| . A .
K00 =)\p(x) is asymptotic to VY = w(O) . ¢(1)
(iii) lim @ = $(1) as X » - , © respectively (1.4)
X->+00

(iv) x = 0 & @ S Q(%) = %(3(0) + 3(1))} > x 1is normalised. (1.5)

(v) Vae (0,%) .

A

@ w(a) S X = x(a) - defines the (a) , (1-a)

(1.6)

I _ points of @ and x .
V= ¥1-a) € X = X(1-0)

¥(x) 1is a non-symmetric asymptotic function in the sense that

|x(1_a)| # |x(a)| for a general point a€(0.%) . (1.7)



1.3 Curve-fittine for Continuous Approximate_ Shocks

' L.

N

It seems sensible to fit y(x,t) with our curve-fitting
function @(x.t) within an interval Ia(t) , where the ends
of Ia(t) correspond to the (a) , (1-a) points of ¥(x) = y¥(x.t) .

Introduce a mid-shock variable §(t) defined by

b
]

E(t) ﬁ‘?’ = \7’(%) vt (1.8)

Let x = x - E(t) (1.9)

Then Ia(t) = [X(a) , X(l—a)] (1.10)



Now this definition of y(X) includes the assumption that the
approximate shock is fitted with a function with constant

asymptotes ¢(0) . ¢(1) . Hence a more general definition of ¥ is

b= 906G Y0y (8 ¥(1y(0) (1.11)

From now on, the dependence of ¢(0) . 3(1) will be kept implicit until

a distinction needs to be made.

1.4 Relaxation of the Weak Shock Condition to Continuous Approximate

Shocks
Let y(x,t) be fitted by ¥(x) . corresponding to ¢ having an

approximate continuous shock (a-c shock). This a-c shock is considered

weak if

0<a<<%, and

Y (1.12)
(1)~
——w—>—)| 51 J

The modulus sign here is unnecessary as $(1) > $(O) (<y> > 0 is
assumed), but we can generalise the definition of the curve-fitting
function @ to strictly monotonic functions (i.e. not necessarily
increasing). by making Q(l) < Q(O) and d@/dx <0.

Also, 3(1) = $(0) can be represented by a jump notation with the

definition

[¥1, = $(1_a) - $(a) V a € [0.%) (1.13)



Then, as o« < ¥ in (1.12) we can write it as

0<Ca<< <%, and

[v1,
l <y o>

(1.14)

| «1

(c.f. equation (1.1)).

1.5 Definition of Shock Width

Given an a—c shock in y(x,t) . there exists a family of
functions = {i(a) : ae (0,4)} which could be used to
approximate  , where @ is approximated over the region Ia by the

function w(a) . Within this family ¥ , there exists a 'best-fit’

Ny ¥
function w(a ) , where 'best-fit’' is defined in some way to

make a* unique. Then the shock-width of (x,t) 1is defined as Aa* ;

where

A ¥ = I)((l_a*) )((a*)l (1.15)
Notation for a*
Let E(y. @(a)) be the error measure for &(a) . Let
E = E(y, @(a)) . Then
*
a : E = min {Ea} . (1.16)



b <
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2. Ceneralisation of the Rankine-Hugoniot Jump Conditions to A-C Shocks.

2.1 Resumé of Jump Conditions for Digcontinuoug_Shocksz.

W’
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The conservation of mass, momentum and energy, and the increase or

conservation of entropy can all be decribed by considering a jump

quantity

a,(t)
J = Y(x.t) dx , (2.1)

a (t)

where E(t) . the shock co-ordinate satisfies

E(t) € [a,(t) . ay(t)] (2.2)
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Y(x,t) 1is again a generalised thermodynamic quantity.

a,(t)
Then

e
Q

i Hx.t) + v E(1) - v(a . t) ula,.t)
(o]

+ ¥(ag.t) u(ag.t) = v, (1)

where Y = W(E .t)

o
v = ¥(E)
Let E(t) = U(t) - the shock speed (2.3)
Let vy =g - u , i=0,1 (2.4)
Write %% as J(¥)
Then, Iim JW) = ¥y vy Y, Y, = [yv] (2.5)
(al—ao)ﬁo

The four thermodynamic laws apply V ao(t) , al(t) provided (2.2)

holds, and are
i) Conservation of mass:
J(p) = 0 (2.6)

ii) Conservation of momentum:

J(pu) = - [p1 " (2.7)
[o]
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iii) Conservation of energy:

X=a
J(p{%a® + e}) = - [pul ' (2.8)
(o]

iv) Increase or conservation of entropy:
J(ps) 2 0 (2.9)

where S 1is entropy and e 1is internal energy.

2.2 Derivation of Shock Speed
From (2.5) and (2.6)

[pv] =02 [p(u-U)]=0
> [pu] - U[p] =0
_ [pu]
> U=1F4 (2.10)

There are also two other derivations using (2.7) and (2.8), but these do

not hold for a viscous fluid; whereas (2.6) does.

2.3 The Generalised Jump Conditions

2.3a Steady Flow

As viscous affects are being considered, of the 4 relations in

(2.1), only conservation of mass is important.
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steady flow => p = p(x)
(2.11)
u = (x)
The continuity equation is
9 _ _9_
at = Ox (pu)
So in steady state,
Op _dp Ox _ yde
3t = dx 3t = U ax (U must be constant).
i) _d_ ox _d
acPe) = ILP) 3y = a;(ﬂll)
_pde__d
> Ua = gg(Pu)
> g—{pv) =0 v =u-U
dx
> pv = PV, (po. v constants)
(2.12)
> p(u-U) = po(u0 - U) (Uo constant)
pu_— pu
3 0O L. A (2.13)
Py = P
2.3b Unsteady Flow
Consider an interval Ix(t) in x with the properties:
I(t) = [x (t) . xp(t)]
. ]
% (t) = U(t) (2.14)
(1) = U(t)
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p(x.t)

:
1

x (t) xp(t)

Let M be the mass in this interval, so

I

*R
M (t) = L¥L p dx . (2.15)

By considering the mass flow at the two ends we obtain:

M (t + 8t) ~ M(t) = (u - V)8t p; - (up - V)bt pp + 0(5t?)

dMI R

£ T = (vaR - vaL) = - [vp]L , say (2.16)

XR
M (t) = X, p dx
XR=xR_E(t)

X
=
H
l_.N
|
oy
7~~~
ot
A
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Noting iR =X = O, and writing p = p(x,t) . we obtain by

differentiation;
X
dMI ? a
3T = 5%(>(,t)|d>(-
X1, X

Hence by (2.16) we obtain

XR
[ %0x.6)| ax = 0(e) 1o} - Tuplf
X

XL
R
> U(t) =1—R [up]E+ { g’tl(x.t)| dx (2.17)
el X X

This result is true V(xR(t), xL(t)) V(XR, xL) . As we approach
steady state, the second term in the bracket tends to zero relative to
the first.

This result has no meaning unless U(t) is defined more clearly,
i.e. the evaluation of U involves an arbitrary interval with ends that
move with speed U(t) .

The t-dependence of p independent of Xx may be expressed in a

general form as

p=p(x, &),

where ¢ = (¢1.....¢n) = ¢(t)
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The analogue of (2.17) is then clearly

XR

n
1 R s d
U(t) = — {[up], + ¢, [ gL (x, ¢) dx (2.18)
[P]E { L izl 1 XL a¢i IX'?*’ }

This relates with (1.11) when
¢1(t) fore ¢(0)(t)

¢2(t) . \’L(l)(t)
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3. An Example of Weak Non-Symmetric Shock Theory.

3.1 Resumé of M. Lighthill's Work on Weak Shocks in 1D

After careful argument, Lighthill arrives at the system of

differential equations:

Gu, Bu_ 2 _Ba 3%u

=+ uz—+ —a =06
at gx -1~ Ox %2 ) (3.1)
da fa -1 Ou
a_t + u &' + ——2 a 'a? =0
where
v-1
a=a, [';L] 2 is the local sound speed
o]
2, is the still - air sound speed
Po is the still - air density, and
1 (4 ('r—l)ko
§ = —<{5pn_ +pun -+ ———————} is the 'diffusivity’ of sound, which
Po 3% Vo cp

resembles kinematic viscosity
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For a steady shock, = y(x) , where x = x - Ut is the
modified x co-ordinate and Yy =u , a , p etc.

For a 1-D analogy to a steady shock on an aeroplane wing,

limu=20 > lim a=ao. etc.
e X (3.2)
limu:u*
X%
] d‘#
Let =-&,\p=u,a. p.... . Then (3.1) becomes
] ) 2 ) "
-~ Uu' +w' + — aa' =6u
~v-1
~-1 , 0

—Ua'+ua'+—2—au =

Define v = U - u , which leads to:

] 2 L] "
vv + ﬁ aa' =-06v (3.3)
[ ’7—1 [
- va - T av' = 0 (3.4)

In order to solve (3.4), the weak shock condition is introduced:
0<us «U (3.5)

So, v > 0 1in (3.4). Hence

(3.4) » -va' = lé-l—av'
a' v-1| v'
4 a - [’2—] v
> 1na=-[’7—;1-]lnv+A (as v > 0)

X 20> a->a0,v—>U
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Hence In a, = - EI:lJ InU+ A

Substitute for aa' in (3.3):

x-1 _["r_;tl_]
= — Elél] U 2 v 2 v'
N aa' = - a2 U7—1 [_%lJ g
Hence (3.3) 2 wvv' - a§ Uq—lv_qv' ==-6v"
Integrating w.r.t. v gives
v + fg— U'\(_1 v_(q—l) =-6v' +B

~=1

lim v' =0, limv =70
X0 X

(3.6)
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Re-substitute u for v :

25 u' = (U-u)? - U2 + ?;—":; [[%]7—1 - 1] (3.7)

22 eyl
> —25u'=2Uu—u2—7—_-1-[[ﬂ] —1]=f(u)

»*
Let u = %—- when x =0

(N.B. could also have used v = a when x =0 , which yields the same

first order approximation).

du
> - 26 ) = dx
u ~ X
=>—25J df=Jd><=><.
uﬁ f(u) 5
2
u . .
i.e.>(=—26J' Ty
*  f(u)
u | (3.8)
2a2 U v-1
where f(u) = 2Uu - u® - T [&f;ﬂ = 1]

Now u' =0 when u=0 and u = wt , so (3.7) yields the equation

f(u) =0,

for U, i.e.

2 2a? r=1
oy - ut - —2 [[ﬁlj—un] - 1] =0 (3.9)
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As we shall see, U =~ a for small u* . So, introducing small

variables

h =
1]
ole

with

S
I
GIG

a first order approximation to U can be found from (3.9):

2 2a>
(3.9) > 29" - ¢ - e [(1—¢*)

=G 1]

=(v-1)

2 3
Now, (1-¢7) =1+ (1) + 111§ll_¢* +0(¢ ) .

2a2 2
So 2—¢*——-*9—[1+7¢*+0(¢*)]=0

u? 2
2
221+ 3 ¢+ 0(¢)
> U% = -
2-9¢
a2(1+ % ¢+ 0(6™))
__o 2
- *
1-9¢
/2
2
5> U2 = a? [1-+ E§-+ %}¢* + 0(¢" )]

(3.10)



- 29 -

Also, f(u) may be approximated as follows:

2a2

Uz[zqs - ¢ —T;N» [1 tz o+ 0(¢2)]]

f(u)

2 2

U2¢[2[1 - Sg—] - ¢[1 + Zzg] + 0(¢2)]

U2¢[2[1 = offll = [%]f‘ + 0(¢*2)}] - o1+ v+ 0(¢*)]

+ 0(¢2)]
0o[(v + 8% - (2 + 1o + 0]

(~+1) u(u* -u) + O(¢*u*2)

Let the superscript (n) correspond to the nth order approximation,

hence
t ) = (r+1) w@® - ) (3.11)
from (3.8):
u
(1)=_25 &.
i l; ¢ )
/5

1

u
= 26 5 J [,'1:‘—' + *IA] du
(v+1)u X u -u
/9

26
(7+1)u*

1l

u
[ln u-In (u* = u)] 2
u

/9
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26 ‘u
o (r+1)u [ln —u] o o —-]
> () o = 28 In | J : 3.12
y (v+1)u —u] ( )

This can be converted into an equation for u(l)(x) .

Let #, == —22 , then (3.13)

@ (v+1)u”

e

= _ XX
u*—u(l) al

(o)

> u(l)(l + e_xlxo) . u*e—x/xo

*
=>u(1)=——u/—'
1+e)< ><o
u* X
= = |1 - tanh . 3.14
2[ x] ( )

0

The first order shock width Kél) can be easily found:

Aél) = lxgiza) - xgigl , as in (1.15), where

ngg = x(M ™y v efo.1]

A = M (1-a30™) - x) (@]

1o a
’(olln[T] - In [l——a] |

2 x, m[57]

46 1-a
('7+1)u* 1In [-—a--] (3.15)
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3.2) Calculation of U(2) . f(2) . x(2) and Agz)

The 2nd order calculations are important because they lead to
non-symmetric curves and can be calculated analytically.

It is not necessary to calculate U(2) explicitly as the
condition f(2) (u*) = 0 will yield the unknown coefficient. A more

suitable variable change here is

*
€ =u— , and
a
° (3.16)
6=% 3 0¢€[o,1]
u
Let U= ao[l + %('7 + 1)e + Ae® + 0(e°)] (3.17)

(2)

From now on, terms in e® will be omitted, and the superfix

used. (3.17) is obtained from (3.10).

Now, [[%]h_l) - 1] = (@ = 1)¢[1 + 29+ ﬂz:é_l_L ¢z]

So the last term of f(2) is

=u—[1+

v+ 1)e + A&z]_1 g
o

.ﬂ\»—-

But ¢ =

cle
)
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Therefore the right hand side of (3.18) is

-1
26‘011[1 * ?11'("’ + 1)e + Aez] [1 + %9 e{l - -‘li(q + l)e} + %’-ﬂzez]

- 2aou[1 - ‘17(7 + 1l)e + [Té(w +1)% - A]ez] [1 + %e + [ﬂﬂ)—ﬂz

[ 2
=-2a0u1—%(7+1)e+{-@;%)-—A}62][ o ﬂi’ﬂleme—s)ez]

[ 2
=—2aou1+{—%(1+1)+ﬁ} {—@)—e i%l-A

+ ”—%)- 0 (46 - 3)} ez]

2
Let x = - ”’—(%)-e + 1"—’1’615-1 ﬂﬂle (46 - 3) . then (3.19)
f(2)(u) = 2U0u - u? - 2a u[l + e{;—e- - -L;ll} + er]

2aou[1+-(%)-e+Aez]—u —2au[1+e——-(ﬂ)-}+xe]

_1 _z2, 1 _ 2,4 _
= §('¥ + l)eaou u® + -2—('7 + l)eaou 'vaouee + 2aoue (A -x) .

%
u u
But aef=a —= =1u,
0 0o a *
ou

%
and aoe =u

Therefore f(2)(u) (~ + 1)uu* - (v + 1)u® + 2uu*e(A - x)

(v + l)u(u* -u) + 2uu*(A - X)e (3.20)
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f(u*)=0$ f(2)(u*)=0.u=u*$9=

Hence x|9=1 =A,

_oalarl) (v;elsf A+ Y ;;1

ie )
_ (D)2 a(r1), _(rt1)? _ a(w1)
> 2A =g 52 (3~ 1) =5 12
50 Ca [1 4 Yy o+ 1)e + (v + 1)(B - e + 0(e%)|  (3.22)
o 4 96
2
A-x=2A- 7+1 1111116 leille (46 -
+1)2 1 1 62
= 2A - -('{—6)- + v(v+1)6 [§ + -8-] - (r+1) 5
(B (v+1)  (v1)? (1), (1) o2
= 18 6 +t g 9 3
- Zi%gll [- 1+ 30 - 292]
= -8 20 - 1) (0 - 1)
therefore

£ () = (v+1)u [(u ~u) - XX (28 - 1)(6- l)e] Y Y

= (v+1)u(u” - u) [1 - %e (1 - ze)]
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= (’7+1)u(u*' - u) [1 - -g—ao (u*- 2u)] .

6a

Let V = — , then
¥

f(2)(u) = [ﬁ] u(u* - u)(V - o+ 2u)

v

1

u( wu ) (V—u*+2u )

Let

whence

il
c|p

1= (0 - u)(

b c

+ +
%
V—u +2u

*
u -u

set u=0] 1 =u*(V—u*)a >a
set u = u*] 1= u*(V - u*)b >b
set V-u*+2u=0] 1=u(u*—u)c
u = u*;V here
#u*—u=u*—u*;f
_ u+V
2
> u(u* -u) = u*z‘_lvz

i

u*(V—u*)

il

@ (V=)

(3.23)

u 2u)a + (V - w4 2u)ub + u(u* - u)c

(3.24)

(3.25)

(3.26)
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u

Let I(u) = J' du

= = ~ (3.27)
e u(u*—u) (V—u*+2u)

W a <V 3 V- Krau>0.

u

=
0]
=]
—
~
c
~—
I

2 u*/

2

PN % ~ ~ v_*
[alnu¢—b1n(u —u)+21n [u+7u-]]

(3.28)

il
o
p—
=}
r."'l—teo‘
—
1
o
—
=}
[\
c
[=
—_—
+
0
—

[2u+V—u*]
n [/ .

><(2)=—26[ R
%*

} 25 V {(V+u*) In [i_u] —(V—-u*) In [2.&;“) ]-2u*1n [Yﬂ]} .
u

(1) (V) (V-0 g v

(3.29)

Note that in the limit wio0 , x(l)(u) = x(z) (u) as expected. The
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%
behaviour of x(2)(u) for u > V is interesting but unimportant as
the 2nd order approximation has no meaning in this region (it
corresponds to € > 6/’Y) 3

Calculation of Aéz)

2 2 2
- i
26 V
let K = -
(1)u (Ve ) (V-u™)
*
X(12a) = - K{(" + W)ln 2(1-a) - (V - u)ln 2 - 2u"1n [1 b (1-20) ¥ 1}

E
xgig - - K{(V s ) 2 - (V - <Yl 201 - a) ~ 2u*1n[1 e i) %}

therefore
7\% - KI(V + uw)In [%E] - (V- u)In [I‘f—a] - 2u*{1n[1 + (1—2a)%*]

1n [1 - (1—2a)%*]}|

o o 59 - 2o’ of T

2KV{ln [1;—“] - 2(1—2a)%:2+ o[[‘{ﬁ}

2

2

" o 9 -2 of )

= :-(317 {1 + ‘vlz + o[%: ]} {ln [1—;2] - 2(1—2&)%: + o[%f ]}

=————46 [l_u—:
(7+1)u* M
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4

o A(2) _ 48 - {ln [1;a] + [1n [177“] - 2(1-2a)]‘\;_:2+ O[%t ]}

N (v+1)u

(3.30)

so, a=~% > a2 ¢ Alb)
a a
a=0 = a2 5 A1)
a a

3.3 Observations

An important feature of this analysis is

kgn) = O(l/u*) as u -0 for n=1,2, and presumably for

all n . If the superscript (=) represents the exact solution then we
assert
AL = ot (3.31)

i.e. the shock width is asymptotically inversely proportional to the
velocity jump. The order approximations require progressively more work
and yield progressively less knowledge.

Equation (3.6) may be written

a

-2
Fa ] ~-1 U-u
o

>0U =
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therefore

o

= - ;_

[a]_% 0

(&)

S0

U pu P ~ P

= == = - , where u0 =0 .
PP, Po [

This is result (2.12), which means there is a constant mass flux in

the frame moving with the shock.

3.4 Relationship Between Lighthill's Work and the Polytropic

Navier—-Stokes Equations

The 1-D Navier-Stokes equations are :

. 9 .0 0=
mass conservation 3¢t 3% (pu) = 0 (3.31)
2
momentum conservation: QE-+ uQE-= = l-QB-+ vg—E
at ax p Ox 8x2

The polytropic assumption is
e« T, and leads to the equation

PP T constant.

This can be written as

pp | =D p_ (3.32)

Now, P =P, [——-
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27
_ [a_]"r-l
ola
o
._Fil 2y _ 1]
Therefore /- a & 2v_ a = fa
b x - Po %o 7-1 9x
[1_21] [_2 v+l
1p ~v-1 -1 -1 ~=1
= ldp "0 2 = da
p dx Py ~1 "o dx

This is the condition for the 1-D Polytropic Navier-Stokes

equations to be identical to the original 1-D Lighthill system.

But a® = %% (by definition)
_ = Tr=il
= PyPy P
therefore
a2 = Lo
o P,

Thus the two systems of equations are identical, apart for the

definition of the diffusive constant - being either v or 6 .
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4. Curve Fitting Theory

4.1 General Theory

In §1.2, a function @(x) was defined by

lim \7} = QJ(O)

X0
lim ¢ = ¢ 1.4
V= V¥a) X X1-a)

(1.6)

V= Y(1-a) ©X=X(1-a)

The a 1in (1.6) is assumed fixed, and (X(a) X a(a)) is known as
the (a) point, (similarly for the (1-a) point).

Now, if a function Z(x) 1is introduced with the property:

-

W) = 2P+ 7o V(o) (4.1)

Il
8

then (1.4) = lim Z :
X

lim Z
X0

(4.2)

I
(@)

, and (1.5) gives

Z'><=o =
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So Z(x) 1is similar to eX 1in some sense. In the case
where |>((a)| = lx(l—a)l , i.e. the curve is symmetric, Z(x) 1is
exactly

Z = eﬂx ” I
where

1-«

4 ln[TIJ : (4.3)
and

X=X X

IX(a)I Ix(l—a)l J

Now, a sensible generalisation of this function to the non-symmetric use

is
z = 2T(X) (4.4)

where f(x) behaves like x as x 2+ ® . The (a) . (1-a)

conditions become

f(x(l_a)) =-1
f(x(a)) =1 . (4.5)

Also, Z{(0) =1 = f£(0)=0



A sensible general definition of f 1is then

£(x) = xm(x) .,

where (4.6)

lim m(x) =m
X

lim m(x) =m
X 3

Clearly, from the diagram, in this case

m,>1, m <1.

|X(1_a)l > |X(a)| ’

But the converse is true. To represent this, the following notation is

introduced:

b
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a> = max { I)((l_a) | ’ lX(a) |}
e = min {l’((l_a)l ’ |X(a) I} (4.7)

7 ” Mw

- \
m(x)
Pq-00
T I }
- O

% ¢ Coe i)

e ﬂﬁ%ﬁhﬂhﬁhﬂ“‘mmxaaxxh -
|

Cose i)

Here we have case i). In both cases, wm(X) appears to have a similar
non-symmetric asymptotic behaviour as that of the y(x) it is dependent

on.
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This leads to the definition of a new function V(x) . In its

definition there is the implicit assumption that

m,+m_, = 2
Define $ by:
Tix) = g |L=Zx) .
¥(x) = B [1"'2(7() . Where
o<pg1, and
Z = e¢X(1i¢) ) with the condition that
'+’ wused for |x(1_a)| » = ie left hand end sharper,
’~' used for Ix(l—a)l RN ie left hand end shallower,

and ¢ 1is a constant > O .

$e(—ﬁ,ﬁ) so PB#l > Z >0 as x ->®
>

Vo-B as x>,

(4.8)

(4.9)

The motivation for this is to linearise $(x) to form y(x) in

such a way that the (a) , (1 - a) points are preserved. Then
Z (X(100) = Z1ay = (1) 1120081}

Z (X(a)) = Z(a) = exp{¢>((a)[1=l-'(1—2a)ﬁ]}



B+d

21y = To5 = e
and Z(a) e —éﬁ = e9 ;
Therefore

$ X(1qy [12(1-20)p] = - 8

$ X(gy [1 7 (1-2)B] = 0

> ga, [1+ (1-20)p] = 0
¢y [1 - (1-2a)B] = 6

Hence

o [1+ (1-22)p] = &, [1 - (1-20)B]

o, —a
> K
5 (1-20)B =
a>+a<
= 1 BT
& (1-2a) agta, )

(4.11) > ¢ [1 + (1-2a)B] = 3

$ [1 - (1-20)B] = 2}
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(4.10)

(4.11)

(4.12)
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> 2¢=9i—+a1—]
< >
01 1
R S
2 oy o,

$(x) cannot be found analytically, but x($) can:

(4.9), (4.10) » ¢ x (1 £¥) =1In [MN]

By
> x(¥) = ——In [*B‘f] (4.14)
¢(1+)) B+
From $ , @ may be generated as follows:
"I’(X) . ‘7’(%) + [:2&% $(X) ,

where [¥] = \7,(1) - ‘7’(0) (4.15)

$ can be seen as parameterising x and @ over the range of their
values.

Naturally, by the definition of f(x) 1in (4.6), the fitting

function @(x) can only be expected to behave well for approximating
functions with the same symptotic behaviour.

Note also that (4.15) >

N Y Z Y
v(x) = éii + é}% as before

+

So in the limit ay =X /0

a<—>>(

(=]

/0

o 1
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So we recover the tanh-curve shape in the limit B -0 .

It is also possible to write x as a function of :

A

1 ¥
() 2 =S ﬂ(m*wu) + 5 Oy - Wmﬁ

s 3.2 Yol
Y1) T ¥(0)
N 1_%=WU‘¢w)‘Wf¢wau)
(1) ™ ¥(0)
2("’(1) ‘f)
Yy = Y0y
~ 2
> 1 + % = _Ef___figl) .
¥y = Y0y
Therefore
29 - by ¥ T
(4.14) = x(¥) ";13¢ Lk (0 *(1) In %———,(1),\ ] (4.16)
Yy ~ o) = ¥(0)

4.2 Relationship with 2nd Order Solution in §3.2

Here., v , the generalised thermodynamic quantity, is just the fluid
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velocity u !

v=u,

by =
Yy

Yoy =0 -

A

Let @ =u - the fitted fluid velocity. (4.16) gives x as a function
of ¢ . We are assuming the velocity bounds (u* and O), so it is

consistent to write

5, = IX([1-au’) + x(a™)] .

Here, we are fitting the 2nd order solution, so we are concerned with

A =2
a a
65 = 6(2)
a a

It is possible to show that for u* KV,



x@) ~ xP ) as L -0"

e c

and ;(u) ~ x(2)(u) as — - 1

=

This is because both curves are tending to the same tanh curve.

(Here ~ represents approximate asymptotic behaviour.)
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5. Conclusion

This paper ties together a number of ideas concerning the structure
of weak shocks in one-dimension. The theory produced needs to be backed
up by experimental results, numerical application and thermodynamical
theory in order to be more convincing. An extension into

higher-dimensional flows is also required.
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