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Abstract

The Bauer-Fike Theorem for diagonalizable matrices is
generalized to cases where (i) non-diagonalizable matrices or
(11) only part of the spectrum, is considered.
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§1. Introduction.

For a non-defective matrix A (a matrix with only linear elementary
divisors, and thus scalar Jordan blocks) the Bauer-Fike Theorem [1]

states that

Theorem 1 [Bauer-Fikel:-

Let A = XA X—1 . A = diag (Ai); i.e. the columns x\j or X

are eigenvectors of A corresponding to Aj . Assume that the

eigenvalues of (A + eB) are . Then
MR -] s elB] s k(x) (1)
i i
where k(X) = “X . X_1“ and |+|| is any norm which satisfies

G- o= (MK - )T (2)

-1

can be the 1, 2 or « norm, and e does not have to be small.

From Theorem 1, one can investigate the condition of the eigenvalues
of A by looking at «k(X) , the condition number of the eigenvector
matrix. In some applications [2] [3] [B1, the eigenvectors x, can be

chosen and the conditioning is thus improved by minimizing «(X)

For defective matrices A , a generalization involving the
condition number does not exist. A close analogy to Theorem 1 is as

follows:- [4]

Theorem 2:- Let QHAQ =D+ N, where Q 1is unitary, D 1is diagonal
and N upper triangular with zero diagonal, with [-]H

denoting the Hermitian transpose. Then for

XeX (A+eB) (= spectrum of (A+eB)) ,



min, s $§
R - xil s max{e,,6,""} (3)
p=1 -
where 6, = |eBf, - ) INIK, and NP =0 with NP1 20
1 Za & Bl

Note that the columns of @ are the Schur vectors of A.
From the proof of Theorem 2 [4], € again does not have to be small.

The theorem alsoc holds for other norms which satisfy (2).

Theorem 2 indicates that a small ”N" will ensure the well-
conditioning of the eigenvalues of A. However, in terms of some
applications [2] (3] (6], the minimization of |N| when choosing the

eigen and principal-vectors ><j of the matrix A 1is most inconvenient.

Nevertheless, inequalities of the types in (1) and (3) are important
in various applications. In §2, a generalization of Theorem 1,

involving «k(X) where columns X of X are the eigen- and principal-

N

vectors of the matrix A , is presented in Theorem 3. Similar to (3],

one has

. V4
miny~ = P
) | X Ail s max{6,,0, } 4)

where 6, = Ce"B

5 «k(X), with p similar tao that in (3) and C a

constant specified in Theorem 3. e does not have to be small.
In §3, a brief comparison of the bounds on the RHS's of (3) and (4)
is carried out, by experimenting on some trivial examples of A .

Some comments on the numerical aspects are included.



In §4, Theorem 1 is further generalized to cope with the situation

when

A(X1,X2] = (X1.X2] ’ 1\,I B dlag[k1i1
and one is only interested in the behaviour of A1 under perturbation,
or when only X,I is available. If the eigenvalues of A1 and A2
are disjoint and the perturbation € B to A is small {(i.e. € small),

then it can be proved that, similar to (4),

<o, Vioe O (18)

with « (X) in 6, replaced by ||X1

2 Y1” in © and columns of Y,I

3 r
are the left eigen- and principal-vectors corresponding to A1 and X1

P, is the dimension of the biggest Jordan Block in A1 ;

Thus (18) indicates that |[X] . [[Y] reflects the conditioning of the

eigenvalues A1i of A1 . The result in (18) is important especially

in the case when only part of the spectrum (A in this case) is

/I
sensitive to perturbation.

§5 concludes the paper.

This paper is written with applications in mind, in particular the
eigensystem assignment for defective matrices [7]1, with the deadbeat control
problem [3] a notable example. Given the set of eigenvalues {Ai} i
{xi} have to be chosen from various subspaces, and it will be sensible
to choose the {xi} to improve the conditioning of the eigenvalue problem,
if the degrees of freedom allow. Applications of results in this paper to

the deadbeat control problem will appear in [3].



§2, The Main Theorem.

Let X_1AX = diag(JA ] = J , where columns xj of X are

J
eigenvectors or principal vectors of A , and JA the Jordan blocks

J

corresponding to A, .

3

We state the main result of this paper as follows:-

Theorem 3:- For AeA(A+eB) , one has
mins lﬁ
i [x - ki[ < max{6,,6,"}
where 62 = Ce"B ck(X) . p 1s the largest dimensilon of all
JA (i.e. the smallest integer such that [J-diag(xi]]p = 0.)
J

with (i) C = /Ei%;ll. for the 2- and F- (Frobenius) norms;

(ii) C = p for the 1- and - norms.

Note that Theorem 1 is a special case of Theorem 3, when p = 1,

{(Proof):- Consider only the 1-, 2- and «- norms.

One has

-1 1

X (A +€B - X)X = J + eX 'BX - AI

~

If X 1is an eigenvalue of J , then (4) 1s trivial, as
the LHS of (4) vanishes. Thus assume that (J - XI) 1is

non-singular. Then

1

X 1A + 8- X)X = (J - XTI + e(J - 513" Yex YBx3

= (J - XI)(T + M)

(4)



As the LHS of the previous equation is singular, (I + M) has to

be singular and thus “M" z 1, 1i.e.

i, g

lets - Xm) " 'ex"BX | 21 .

T I xE el 2

= ef(J - XD

1

= E'"B“'K[X]' 2 ————
| -3

Obviously for the norms we are considering,

I -3 - maxll(JA -0
i i
Assume that the maximum occurs at Ai .
let z = A, - X\
il
~ ) -1 -1 -2 _-3 =P
z 1 ' ) z -z z -(-2)
S -1 1 8 42
(Jx - ) = z % = z -z .
i .
N z 1 2-1 -2_2
<H_J % i -1
z
\
Note that (in - N is Py X Py
From (6) and (7), | (J - XI)'1M§ s |- XIJ'1H§
- -2py

pz 2, (p - 1)2—4 t ool +t Z

1l

A

(py *+ (py=1) *+ wuu 1)¢2

i pi(pi+1)
S o,

(5)

(8)

(7)

(8)



where ¢ = max(|z '], |z"P]3 . (An estimation of | (J - XI)_qué
directly using the Gerschgorin Theorem yields the same result.) For the

1- or oe-pnorm, similarly

¢ - XI]'1||1 = | - XIJ'1||m
P
=Z|Z|J§p¢, (9)
3=1
If |3 - XIJ_qu = m§x|l(JA - X)—qﬂ occurs simultaneously as
. i
m}nli - Xi| , (5) to (9) prove the theorem. p in (4) will then be the
dimension of JA or the largest one if Ai has more than one Jordan
i

block

max o E , ~ min ~
IR II(JAi - X7 ocours at Nooowith R -]z UK -]
(5) to (9) still imply

1
X - AKI < max[62,6£6]

and thus the theorem.

However, p 1is now the largest dimension of the Jordan blocks corresponding

to KK 0

@.E.D.

Note that € does not have to be small.

§3. Some Numerical Experiments.

In this section, we look at the quantities

p-1 K
B, = Z In] (from (3])
k=0
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and B, = Cek(X) (from (3))

for some simple matrices.

Note that B3 = B1 = g(X) in (1), for non-defective cases.

(i) For diagonal matrices, it is obvious that

B2 = 1 and B3 =1 (for 1,2, and F norms.)

(ii) For a Jordan block A = {t. which is n x n , one has
° '1
by
1-norm Z2-norm ©-narm F-norm
B n n n nvn-1

nin+1) n
By n /= n 75 /e

Thus, for large n, B, =2 B

2 3
(1ii) Consider A = | 2
0 b
BZ = 2 for 1,2, and F norms
and
([ |b - al| +2|b - a|_’| , for the F-norm
max{1 + |b - a|l , 2+ |b - al—q} , 1-norm
B3 = 1

max{2(1 + |b - a|_1] , 1+ |b-al}, «-norm

—aB
/4 ¥ [bqa] v 2 * (% ¥ ?—i—— ]f[b-a]i + 4,

2 (b-a)? b-a)?

.

Z2-norm .

Figures 1-4 indicate that, B3 is always greater than 52' and B8 > o

as (b-a) + 0. This is not surprising, as A becomes nearly defective



when b » a and the eigenvectors in «k(X) in B, converge to each

3
other. Thus X is nearly rank 1 and B3 > oo . When (b-a) >0, it
will be more sensible to consider A to be ( g ; ] + 0(b-a) and get
the bound as in (ii), 1i.e.
1-norm 2-norm ®-norm F-norm
B2 2 2 2 2
B, 2 V3 2 V6

Then B3 < B2 for the norms we considered.
This example indicates the problem of using the Jordan form in numerical

analysis. Care has to be taken when estimating the principal vectors

in X , if they are not available. (See [51, [81).

1 i 1
{iv) Consider A = 3 .35 i.e. all entries in A are one
0 1 except the lower triangular
part.
n-1 K
Then B, = Y OIN|® ., with  [N], increasing
k=0 )

with respect to increasing n

e.g. n =10, B, =1.3x 107 , with ||N||2 = 6.0548 ,

2

10 . (1 0 - 0)
For By, X=| 1 -1 and X = [0 1-1 1-1-- -
1 -1 N e
.‘ ..;I ‘ -~ . A Y . - \1
~1J + O DY

- 1
0----0 1
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One has
(BZ,BB] 1-norm Z2-norm ©-norm
n= 2 2, 2 2, 1.7 2, 2
3 7, 1:201) 5.2, 6.4 7, 1.2(1)
4 4.0 (1), 2.4(1) 2.0 (1), 1.3(1) 4.0 (1), 2.4(1)
5 3.4 (2), 4.0(1) 1.0 (2), 2.1(1) 3.4 (2), 4.001)
6 3.9 (1), 6.0(1) 7.5 (2), 3.1(1) 3.9 (3), 68.0(M)
7 5.6 (4), 8.4(1) 6.7 (3), 4.3(1) 5.6 (4), 8.4(1)
8 9.8 (5), 1.1(2) 7.2 (4), 5.6(1) g.6 (5}, 1.1(2)
g 1.9 (7), 1.4(2) 9.1 (53, 7.1(1) 1.9 (7), 1.4(2)
10 4.4 (8), 1.8(2) 1.3 (7), 8.8(1) 4.4 (8), 1.8(2)
11 1.1010), 2.2(2) 2.1 (8), 1.1(2) 1.1 (10}, 2.2(2)
12 3.1(11), 2.6(2) 3.8 (9), 1.3(2) 3.14011), 2.6(2)
13 9.7(12), 3.1(2) 7.4(10), 1.5(2) 9.7 (12), 3.1(2)
14 3.3(14), 3.6(2) 1.6(12), 1.8(2) 3.3 (14), 3.6(2)
15 1.2(18), 4.2(2) 3.7(13), 2.0(2) 1.2 (18], 4.2(2)
16  4.7(17), 4.8(2) 9.2(14), 2.3(2) 4.7 (17), 4.8(2)
17 2.0(19), 5.4(2) 2.4(16), 2.6(2) 2.0 (19), 5.4(2)
18  8.9(20), 6.1(2) 6.9(17), 2.9(2) 8.8 (20),8.12(2)
19  4.17(22),6.8(2) 2.1018), 3.2(2) 4,2 (22), 6.8(2)
20 2.1(24), 7.6(2) 6.7(20), 3.68(2) 2.1 (24}, 7.8(2)

(atb) denotes a x 1Db.]

Contrary to example (iii}, B3 is far better than B2 as
guite rapidly.
B 1 a _ 0 =a B 1 0 -1
One has
1-norm 2-norm ©-norm
B2 1+ |a 1+ |a| 1+ |a|
_'] _/| -
B max{1, |al,|a|l '} max{1, |al,|al '} max{1,lal,]al

o W N a2

_

N L i s L e N o) I \N |

N O &> N N ;O B

5.7,
(13,
(23,
(31,
(4],
(5)5
(83,
(73,

.8 (8],
.2010),
50117,
1012),
.6(14),
.3015),
.3(17),
.001873,
.4(20),
.80217,

.001)
.6(1)
.8(1)
.6(1)
.2(2)
.6(2)
.1(2)
.7(2)
L402)
.2(2)
.0(2)
.0(2)
.0(2)
.2(2)
5(2)
.1(3)
.2(3)



...']D...

When |a| is large, B, =1 + |a] > la] = B3 , but they are only different

R

by 1 . {(For F-narm, B lal )

3

When Ja| is small, B, =1 and By = lal_lI . Similar to example (ii),

A 1is better to be treated as I2 for very small |a|

Figures 5-6 indicate that B3 provides a tighter bound than 52 when

|lal 2 0.7 for the 1,2 and «-norms

v
[N

or |a| for the F-norm .

Otherwise, 52 increases to infinity quite rapidly as a - O
This example, like example (iii), highlights the difficulties in using

Jordan Canonical form in numerical analysis.
This section only sketches out the weaknesses of the inegualities in
(3) and (4) using a few trivial examples. More work is required for a

detail study.

§4. Further Generalizations.

Consider the case where

} Ay O
ALK, X)) (xq,x21[01 Az] P (10a)
H . H
Y1 A1 0 Y1
H A = H (10b)
YZ g] A2 Y2
and A1 = diag[kqi], which is n, xn,



Y

_’I']_

Apply Theorem 3 to the matrix YTAX1 = A,| , one has

/]
/ﬁ1

- AL s 6 , for small e , (11)

min; o
i |A 11 3

A

where XA is an eigenvalue of YT[A + &:ESJX,| = A1 + EYTBX1 ’

P4 is the dimension of the biggest Jordan block in A, ,

1
0, - celB| -Ix1 v, °K(In1) g
P1[P1 +1)
cC = — for 2 or F-norm
= Py for 1 or . -norm . {(12)

Note that the eigen- and principal-vectors of A1 are columns

of In
1

However one is interested in the eigenvalues of (A + eB) , instead

of that of YT(A + s:Ei]X,I ; One can prove the following Lemma:-
(c.f. [8])
Lemma 4:- Llet € be a small perturbation parameter and
A,I = d1ag(k1i] , Wwith A1i of A perturbed
to A,. of A+ eB. If
11
AK ) nAh, + eviBX) = @ (13a)
1 2 2772
and
-1
o™ = ot (13b)

>1
"

>
+

a

~

m

11 11 (14)
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A

where A1i are the eigenvalues of [A1 + EYTBX1] with the same

ordering as for A1i
Note that (13) is equivalent to

A(A1] n A(AZ) = ¢ (15a)

[Tl? In,. - a0 = o (15b)
i,J 11 2]

and € small enough.

(Proof):- Consider
YT A, e, E,
(A + eB)(X,,X.) = +
M 1772 L 4 B3 By
2
with E. = 0(e)
1
A, O e, E, z, z, ).
ISR o A | Yl E E z =z Mo
2 3 B4 2 2
(hy + E)Z, *+ EZ, = Z,F, (16a)
>
EgZy *+ Ay + EZ, = K, (16b)

(13) and (16b) = Z, = ¢'1(E321) , with

o() = Aqf-] = [-)(A2 + E4] : (17)

(13) ensures that ¢ is invertible.
Substitute (17) into (16a) implies (14), after some simple perturbation

analysis ([81([10].)
Q.E.D.

Lemma 4 and (11) imply the following generalization of Theorem 1.
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Theorem 5:- If conditions in Lemma 4 as well as (10) hold,
one has
1 2
min e /61 /61
o P SN - + 0(e ) (18)
i 11 3

with X e A[qu, by ieA(AﬂJ and © specified in (11) and (12).

1 3

Note that Theorem 5 holds for all norms for which Theorem 3 holds. For

symmetric cases, YT = XT s X+

; and ||X1”fl|Y1" in 6, in (18) can be

replaced by K(Xq] i In addition, YT is a left inverse of X,l and
X: is the left inverse of X1 with minimum norm (in 2 and F-norms).

k(X) can be used as a rough estimate of l[xqg

vY1” . As k(X) is a

lower bound for ")(,l Y1” in the 2- and F-riorms, a large «k(X) will

Y

indicate a large ||X1 , and thus ill-conditioning. (0f course, we

cannot be sure of a small ||X1 Y1“ when. k(X) 1is small.) For

non-defective cases, Py = 1 and (18) collapses to

min? 2
3 I = Al s e85+ 00e?)
= Cee-|B] - X 0 Y1” + 0(e?) , (19)
with €= [T |2
"
The result in (19) is trivial for n, =1, as "x1” -”y1" is just

the usual condition number related to the individual eigenvalues, in this

case A, . (e.f. s, in [101.)
1 i

By applying Theorem 5, one can break up the spectrum of a matrix into

Y, |

% subgroups (1 £ 2 £n) and & condition numbers of the form ||X2
can be used to represent the conditioning of the eigenvalue problem, instead
of using one condition number k(X) as in Theorems 1 and 3, or using n

condition numbers s. as in [10). An obvious choice for & will be to
i

group the multiple eigenvalues together.



,./]4_

§5. Conclusions.

This paper generalizes the classic Bauer-Fike Theorem for
diagonalizable or non-defective matrices, to cases where (i) the matrix
is defective, or (ii) only part of spectrum is considered. A few trivial
examples have also been considered to compare the results in this

paper with a closely-related one in [4].
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