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Abstract

Eigenvalue assignment methods are used widely in the design of
control and state-estimation systems. The corresponding eigenvectors
can be selected to ensure robustness. For specific applications, eigen-
structure assignment can also be applied to to achieve more general
performance criteria. In this paper a new output feedback design ap-
proach using robust eigenstructure assignment to achieve prescribed
mode input and output coupling is described. A minimisation tech-
nique is developed to improve both the mode coupling and the ro-
bustness of the system, whilst allowing the precision of the eigenvalue
placement to be relaxed. An application to the design of an automatic
flight control system is demonstrated.

Keywords control systems, output feedback, robust eigenstructure assign-
ment, modal coupling

1 Introduction

The inverse problem of eigenvalue (or pole) assignment by output feedback
arises frequently in control system design. Robustness of the design can
be ensured by assigning the eigenvectors (or modal vectors), as well as the
eigenvalues, of the system [3, 2]. For specific applications, eigenstructure as-
signment can be used to achieve more general performance criteria [8]. In the
design of aircraft guidance and control systems, prescribed mode input and
mode output coupling is a major objective. Current techniques for achieving
the desired coupling do not, however, ensure the robustness of the system
and, although exact mode output coupling can be partially attained, the
mode input coupling may be unsatisfactory [1, 7].
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A new design approach is developed in this paper, which exploits fully the
degrees of freedom in the system in order to improve both mode input/output
coupling and robustness, whilst allowing the precision of the eigenvalue place-
ment to be relaxed. The corresponding nonlinear eigenstructure assignment
problem is shown to be equivalent to a linear least-squares problem that can
be solved directly by standard techniques. The application of this procedure
to an aircraft design problem is described. In the next section notation is
introduced and the mathematical problem is stated. Current methods for
treating the problem are reviewed in Section 3. The new algorithm is estab-
lished in Section 4 and its application is illustrated in Section 5. Section 6
concludes with a summary of the results.

2 Statement of the Problem

We consider the linear time-invariant system governed by the equations
x = Ax + Bu

1
{ y = Cx, (1)

where x € R*, u € R™, y € R? are the state, input and output variables,
respectively. Matrices A, B, C are assumed constant with B and C of full
rank.

In practice we are concerned with nonlinear systems. The governing
equations (1) for the nonlinear problem are obtained by linearization about
a steady-state or equilibrium condition, and the system variables x, u, y
then denote displacements from the equilibrium.

The output response of the system (1) can be written

n

y(0) = Ox(t) = Y (CviewTxo + Y (CV(WTB) / CMy(9)ds, (2)

=1 0

where ); are the eigenvalues and v;,w’ are the corresponding right and
left eigenvectors of A, respectively. We write V = [vq,...,v,], WT =
[W1,...,w,]T and assume that V™! = W7T, where the columns of V are

normalised to unit length.
From (2) it is seen that the response of the system depends on:

e the eigenvalues, which determine the decay/growth rate of the response;
e the eigenvectors, which determine the shape of the response;

e theinitial condition of the system, which determines the degree to which
each mode participates in the free response.
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We note that the vector (C'v;) in (2) determines the outputs participating
in the response of each mode and the vector (w7 B) determines those state
variables in each mode that are affected by each input. These vectors are
defined, (as in [7]), to be the mode output coupling vectors and the mode
input coupling vectors, respectively.

The interactions between the outputs and inputs of the system are depen-
dent upon the mode coupling vectors and can be determined directly from
the matrices CV and WTB. Specifically, since the i** mode of the system is
excited by the j** input in proportion to the element (WTB);; and the kt
output depends on the i** mode in proportion to the element (CV ), then
the j** input u; and the k™ output yx are completely decoupled if and only
if the mode coupling vectors of the system are such that

> (CV)iiWTB);; =0.
i=1
It is immediately apparent that it is not possible to specify all of the mode
output and input coupling vectors independently because of the relationship
V-1 = WT. In practice, only the mode coupling vectors associated with a
subset of the eigenvalues may be of significance in the design process. We
denote
Go=CVi , Gy=W{B,
where the columns of Vi = [vy,...,v,] and WT = [wy,...,w,]T correspond,
respectively, to the right and left eigenvectors associated with a specified
subset L, = {)1,...,A;} of the eigenvalues of the system. The aim of the
design process is to achieve the desired mode output and mode input coupling
of the system, as defined by the matrices Gg and Gy, respectively, by assigning
the eigenstructure of the system appropriately.
The following example illustrates the interactions between the modes and
the inputs/outputs for a specific choice of Gy and G.

Example 1. We consider a system of dimensions n = 7,m = 2,p = 4;
the desired ¢ = p = 4 mode input and output coupling vectors are

Inputs(j)
10
10 . 3
01 Modes(1), (3)
0 1

Modes(i)
* x 0

Gy = WIB =

Go = CV; = Outputs(k), (4)

o = O
o = O
— o

— O ¥ O
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where * denotes an arbitrary value. Here the first input excites the first mode
(since (G1)1,1 = 1), which is directly coupled to the first output ((Go)1,1 = *)
but does not affect the second output ((Go)2,1 = 0). The second input, how-
ever, excites the third mode ((G1)s2 = 1), which does affect the second
output ((Go)z,3 = *). Examining all of the elements (GoG1)x,; shows that
the first and third outputs are coupled only to the first input, while the sec-
ond and fourth outputs are coupled only to the second input. O

In order to achieve the desired mode output and input coupling, output
feedback is used to alter the response of the system and to assign the required
eigenstructure. The feedback takes the form

u=Ky—-r=KCx-—r,

where r is the reference (or demand) vector. The system (1) is transformed
by the feedback into the closed loop system

% = (A+ BKC)x — Br. (5)

The design objective is to select the feedback gain matrix K to assign a
specified set of eigenvalues and corresponding sets of mode output and input
coupling vectors to the closed loop system matrix (A+ BKC). As previously
indicated, the entire eigenstructure cannot be assigned arbitrarily and only
a subset of the eigenvalues and eigenvectors may be specified. Robustness
of the closed loop system is also important, in the sense that the assigned
eigenstructure needs to be insensitive to perturbations in the system matrices.
The design problem can be stated as follows:

Problem 2.1 Given the real triple (A, B,C) and a self-conjugate set of
scalars Ly = {1, ..., A}, together with corresponding self-conjugate sets of
n-dimensional mode coupling vectors, Go = [go1, - - - » 8oq), G1 = [811,- - -1 814,
find a real (m X p) matriz K such that L, is a subset of the eigenvalues of
the closed loop system matriz (A + BKC) with corresponding mode output
and input coupling vectors, Gy and G, respectively, and such that the closed
loop system is stable and some measure of the robustness of the system is
minimized.

It can be shown [2] that the right and left eigenvectors v;, wT
ing to an assigned eigenvalue A; of A + BIKXC must be such that

V,‘GSiEN[UlT(A—/\iI)] o WiGIEEN[PlT(AT'_)‘iI)]a (6)

respectively, where A/(-) denotes right null space, and U], P, are determined
by the QR decompositions of B and C', given respectively by

correspond-

B:[UO,UI][ZOB] , 0=[zc,o][1;§]. (7)
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These conditions are both necessary and sufficient for the existence of a
real feedback matrix K that assigns a set L, = {A1,...,A.} of n pre-
scribed eigenvalues and a corresponding nonsingular matrix of prescribed
right eigenvectors V = [vy,...,V,], where the left eigenvectors are deter-
mined by W = [wy,...,w,] = VT,

It is evident from this result that for a given set of eigenvalues, it is not
possible to assign arbitrary eigenvectors to the closed loop system. If the sys-
tem is controllable and observable, it is possible to construct a feedback to
assign exactly p eigenvalues and p corresponding right eigenvectors, (where at
most min{m, p} components are specified in each eigenvector) 1, 7}. Alterna-
tively, it is possible to assign a full set of n arbitrarily prescribed eigenvalues
and corresponding right eigenvectors approximately and to control the sen-
sitivity of the whole eigenstructure so as to ensure the desired accuracy of
the eigenvalues [2]. In the next section we review numerical algorithms for
achieving these results, and in the following section we develop a new ap-
proach for assigning both right and left eigenvectors to match desired mode
output and input coupling vectors as accurately as possible in a least squares
sense.

3 Eigenstructure Assignment Methods

We now review two techniques that are frequently used in practice to treat
the eigenstructure assignment problem. The first of these exactly assigns a
prescribed set of p eigenvalues and assigns as accurately as possible a corre-
sponding prescribed set of p right eigenvectors. This approach is commonly
used to achieve desired output coupling vectors [1, 7]. The alternative ap-
proach is to assign a full set of n prescribed eigenvalues approximately. The
corresponding eigenvectors are selected to ensure the robustness of the closed
loop system [2].

3.1 Exact Partial Assignment for Output Coupling

The aim is to assign p prescribed eigenvalues ); and p desired right eigen-
vectors vg;, 1 = 1,...,p. Each eigenvector must lie in the corresponding
subspace S;, given by (6) and, therefore, an arbitrary vector vg may not
be achievable. The best achievable vector v,;, in a least squares sense, is
given by the projection of the desired vector into the required subspace. If
the columns of the matrix S; give an orthonormal basis for S;, then the best
achievable (unnormalised) vector can be written

Vai = S,'S;'-Vdi, (8)

where (-)* denotes the Moore-Penrose pseudo-inverse.
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We let Vi = [Va1,..., Vap) be the matrix of achievable eigenvectors and let
Ay = diag{\i,...,A,}. It can be shown [1, 5] that if V4 is of full rank and C'V}
is invertible, the prescribed eigenvalues and the best achievable eigenvectors
are assigned exactly by the feedback matrix

K = 25'UL (Vihs — AV)(CVA) ™, (9)

where Zg and U are determined by the decomposition (7) of B.

In practice, the mode output coupling vectors, are prescribed, instead of
the eigenvectors, in order to ensure the desired transient output response of
the closed loop system. A complete specification of the desired coupling vec-
tors is, in general, neither required nor known and the designer is interested
only in certain elements of each vector. Following the theory in [1] a desired
mode output coupling vector can be written in the form

T
Bod = [godl,---a*’godj,---,*,godk] )

where gog4; are designer specified components (usually 0 or 1 which represent
decoupling and coupling respectively) and * is an unspecified component.
From (6), the vector goq must reside in C'S;, where S; is associated with
the corresponding eigenvalue ;. The desired coupling vectors may not lie in
the required subspace, however, and hence may not be achievable. Instead a
‘best possible’ choice is made by projecting the specified part of go4 into the
corresponding part of CS;. We define a permutation matrix, P, such that

d D;
PgOd:[n], PCSl:[N,]’

where d and n are the vectors of specified and unspecified components, re-
spectively. The best achievable vector corresponding to a desired vector is
then

gos = CS;Dfd. (10)

This vector is exactly equal to the desired vector goq if the number of pre-
scribed elements is k¥ < m and the matrix D; has full rank equal to k.

From (10) we can construct the corresponding best achievable eigenvector
as Voi = S;DFd (since goa = Cvy). If the matrix Vi = [Va1,...,Vap],
constructed from these vectors, is of full rank and C'V; is invertible, then the
feedback matrix K given by (9) exactly assigns the prescribed eigenvalues and
the best achievable mode output coupling vectors to the closed loop system
(5) {5]. General conditions on Gg ensuring that C'V; is invertible for a given
choice of L, are difficult to formulate. An approximate result can, however,
always be achieved by using the Moore-Penrose pseudo-inverse of C'V;. (See
Section 4.2.) In practical applications it seems that realistic choices of Go
and L, lead generically to invertible matrices C'V}.

Although this approach allows us to assign some components in the out-
put coupling modes exactly, it suffers from a number of disadvantages:
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e the unspecified eigenvalues and eigenvectors cannot be controlled and
the resulting closed loop system may display poor behaviour, even be-
coming unstable;

o the robustness of the closed loop system is not guaranteed and the
system may be highly sensitive to small disturbances, parameter esti-
mations and/or nonlinear effects;

e the desired mode input coupling vectors are not generally achieved
through this procedure and the forced response of the closed loop sys-
tem to the inputs may be unacceptable.

An alternative approach is to assign all of the eigenvalues approximately,
and to select the eigenvectors to ensure robustness. A technique for achieving
this result is described in the next subsection.

3.2 Approximate Full Assignment for Robustness

The objective is now to assign a full set of n prescribed eigenvalues A; and
to assign a corresponding set of right eigenvectors v;, ¢ = 1,...,n, such that
the eigenstructure of the closed loop system is robust, or as insensitive as
possible to perturbations. In general, an arbitrary set of n eigenvalues cannot
be assigned exactly by output feedback, since the corresponding right and left
eigenvectors must lie simultaneously in the spaces S; and 7;, defined by (6).
We aim, therefore, to select n right eigenvectors from the subspaces S; such
that the distances of the corresponding left eigenvectors from the subspaces
7; are minimised and such that robustness is ensured. It can be shown [2]
that a feedback matrix can then be constructed so that the eigenvalues of
the closed loop system are approximately equal to the prescribed values.

A measure of the robustness of the eigenstructure of the closed loop sys-
tem is given by the Frobenius condition number of the matrix V' of its right
eigenvectors [9]. If the assigned eigenvectors v; are independent and normal-
ized to unit length, then the robustness measure is given by

Ji= V7 e (11)

If the prescribed eigenvalues are distinct and the system (1) is completely
controllable, then the right eigenvectors can be selected to be independent.
If multiple eigenvalues are to be assigned, then the maximum feasible mul-
tiplicity is equal to m, the number of inputs. If defective eigenvalues are
assigned then the system is not robust. If the system (1) is not completely
controllable, then, as long as the uncontrollable poles are included in the set
to be assigned, the corresponding eigenvectors can be reassigned to improve
the robustness (3].
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If wI' = eTV~1 are the left eigenvectors corresponding to the assigned
right eigenvectors vy, for 1 = 1,...,n, where e; denotes the s¢th unit vector,
and if the columns of the matrices T;, T give orthonormal bases for the space
7; and its complement, respectively, then |w7T}||, measures the minimum
distance between w; and the subspace 7;. The sum of the squares of the
distances is written

B=S eI VATE, (12)
i=1
To determine the required feedback, the right eigenvectors v; comprising
V are selected from the subspaces §; to minimize a weighted sum of the
robustness and distance measures. The objective functional is given by

J’:CUfJI +LU§J2, (13)

where J; and J, are given by (11) and (12), respectively, and w;, ¢ = 1,2,
are weights to be chosen. The aim is to minimize J over v; € S;, subject to
llvi]l2 = 1, for ¢ = 1,...,n. This problem can be reduced to a least squares
problem that is solvable by standard techniques [2].

The feedback matrix K is then constructed from the solution V to the
optimization problem using the decompositions (7). The feedback is given
explicitly by

K = Z5'UL(VAV™ — ARy 23", (14)

where A = diag{)\1,..., .}, and Uy, Zp, Py, and Z¢ are determined from
the decompositions of B and C, respectively. If the left eigenvectors corre-
sponding to V lie in the required subspaces, then (14) exactly assigns the
prescribed poles and J, = 0. If this is not the case, then the feedback K
satisfies the equation

(A+ BKC)V — VA = —EYV, (15)
where

E=V(AWT - wTA)P, P (16)
with P, given by (7). This holds since the right eigenvectors v; are selected
to lie in the required subspaces S; and therefore, for each ¢ = 1,...,n,

UoUL (NI — A)vi = (I — DU — A)v; = (M — A)v;.
From the definition of the spaces 7; we also find that
wl (M1 — AP PF = wITiR;
for some nonsingular matrix R;, 7=1,...,n, and it follows that

IEIG <> rillel VTS, (17)

i=1
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where the constants r;, ¢ =1,...,n, are independent of V. From this result
it can be deduced [2], using the Bauer-Fike Theorem [9], that the minimum
difference between an eigenvalue of the closed loop system and one of the
prescribed eigenvalues is bounded in terms of the robustness measure and
the distances between the left eigenvectors of the closed loop system and the
subspaces 7;. By adjusting the ratio w;/w; of the weights in the objective
functional (13) the robustness of the system can be traded off against the
accuracy of the eigenvalue assignment. (For examples, see [2].)

Although this approach allows all of the eigenvalues of the closed loop
system to be controlled and also ensures that the assigned eigenstructure is
robust to perturbations (within limits defined by the data), the freedom to
shape the mode output and input coupling is lost. In aircraft control system
design this is a significant restriction [6]. Ideally we should like to be able
both to shape the mode coupling vectors and to ensure that the closed loop
system is robust and displays satisfactory, stable behaviour overall. In the
next section, an algorithm is established that aims to combine the advantages
of the two different approaches currently used in practice.

4 Algorithm for Robust Modal Coupling

In general the modal coupling assignment problem, Problem 2.1, cannot be
solved exactly. We may assign precisely p output mode coupling vectors
corresponding to p prescribed eigenvalues, as described in Section 3.1, by
assigning p right eigenvectors to the closed loop system using an appropri-
ate feedback matrix K. The required input mode coupling vectors will not
generally be attained. If we relax the constraints on the exact placement of
the eigenvalues and output mode coupling vectors, however, then there exist
additional degrees of freedom in the problem that can be exploited in order
to assign the remaining n — p eigenvectors of the systein. We aim to use these
extra degrees of freedom to improve the mode input coupling vectors and to
cnsure that the closed loop system is robust.
We partition

V = [V, V] = Vs -+ s Vps Vptts - Vil

and
WT = Wi, W)™ = [w1, ..., Wy, Wpsa, -, Wal T

where we assume WT = V=1, We select ¥} as in Section 3.1 to obtain exactly
p prescribed output coupling vectors Goq = C'V; with p corresponding (self-
conjugate) eigenvalues. We then choose V; with n — p corresponding (self-
conjugate) eigenvalues in order to match p prescribed input mode coupling
vectors Giq = W'ITB and to ensure robustness of the eigenstructure. Since V;
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is not altered by this choice, the original output coupling vectors Gog = C'V
are unaffected.

Unfortunately, we cannot now find a feedback matrix that exactly assigns
the selected full set of eigenvalues and eigenvectors. If we select the vectors
in V; such that the corresponding vectors w;, ¢ = 1,...,n lie close to the
subspaces 7; corresponding to the prescribed eigenvalues, then a feedback
matrix K can be constructed that approzimately assigns the selected eigen-
structure to the closed loop system and retains the robustness property. The
construction follows as in Section 3.2.

The columns v;, 1 = p+1,...,n, of V; are selected from the subspaces
S;, defined in (6), to minimize a weighted sum of squares of three measures:

e the error in the mode input coupling vectors, measured by

Jo = |Gra = W Bl[f = [|Gra — [, 0]V ™" Bl (18)

e the conditioning of the eigenvectors, measured as in Section 3.2 by
Jo= IV 7HIE

e the distance of the left eigenvectors from the required subspaces T;,
measured by

n
Jo =Y el VT3,
=1
which controls the accuracy of the eigenvalue assignment as discussed
in Section 3.2.

The functional to be minimised is given by
J = (Wi 4 Wiy + Wiy, (19)

where V = [V4,V;] and the weights w?, ¢ = 0,1,2 are chosen according
to the design specifications. For given V;, the optimal V; to minimize J is
found by an iterative procedure. At each step of the iteration, the aim is
to minimize J over a column v; € &;, of V;, subject to ||vi||2 = 1, where
i € {p+1,...,n}. This problem is a nonlinear least squares problem. Using
a special structure for V=1 (see [4]), we can reduce the nonlinear problem
to a linear least squares problem, which can be solved by highly efficient
standard methods. The reduction is established in the following subsection.
The construction of the feedback matrix K is described subsequently.
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4.1 Main Results

The objective is to minimize the functional J with respect to one of the
columns of V, at each step of an iteration process. We consider the case
where v,, is the vector to be up-dated and assume throughout that p < n.
We show then that the problem can be reduced to a linear least squares
problem. The nonlinear problem is specified by:

Problem 4.1 Minimize J given by (19) over v, € S, subject to ||va||2 = 1.

The reduction to the linear problem is shown in three steps. First, the
problem is expressed in terms of the vector v,, using a QR decomposition.
Next the functional is rewritten using a Lemma from [4] and, finally, a scaling
technique developed in [3] is used to obtain the linear formulation.

We denote V_ = [vy,...,Vn_1] and let

c~a[4]

where @ = [Q1,q] is orthogonal and R is square and invertible. The inverse
of matrix V can then be written

-1 _ a_[ R Qfva - r_ | BY —pMv, QT
4 —[V_»Vn] —[OT qun Q" = o? p qT )

where p = (q¥'v,)~! and M = R7'QT. We have the following lemma.

Lemma 4.2 The functionals Jy, J, and J, given respectively by (18), (11)
and (12), can be written:

Jo = |[Lo+ Mopvnzg |I%,
Ji = ||Mpvall3 + lpvall3 + on,
2 2 (1)
n—1
Jo= Y llef(Li = Mpvazl I3+ lloz2 13,
=1
where
Mo = [I,,0|M, Lo=Gu—MB, z =q'B,
L,’Z]WT,‘, Z‘T:qTTi, i=1,2,...,
and a; = ||R7||% is constant, independent of v,.

Proof. The proof follows directly by substituting (20) for V! into (18),
(11) and (12) and simplifying. The definition of the Frobenius norm is used
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to expand J; and the assumption that ||v,|l2 = 1 is applied in order to write
lo|* = llpvalz- O

The next step in the reduction is established using the following lemma.

Lemma 4.3 (Kautsky and Nichols [{]) For matrices A,B of appropriale
orders and vectors z,w # 0,

|A+ Bwz"||% = (67" Az + BBw||; + o, (22)

where
n

B=llzls o= AU - g7 22" A e.

1=1

Proof. See [4]. O
Applying Lemma 4.3 then gives the next lemma.

Lemma 4.4 The functionals Jy and J, can be written:

Jo = ||BoMopvn + foll3 + ao,
(23)
Jo = |[DMpv, — |3+ 1|Bnpvalld + a2,

where

D= diag{ﬂl, NN ’IBTL—I}’ /Bi = ”ziHZa 1= 0) L,...,n,
fO:ﬂ(-)-lLOZOa f= {f%} ={ﬂi_1e?Lizi, i=1a-"3n_1},
and o and oy are constants independent of vy,
Proof. The first of (23) follows directly by applying Lemma 4.3 to the first

of (21) and using the definition given for By and fo. Applying Lemma 4.3 to
the third of (21) gives

n—1
Jo= 31T (B7 Lizi = BiMpva) [ + |Bupl? +
=1

where B; = ||zill2, ¢ = 1,...,n. The sum of squares is then just equal to
the square of the Ly—norm of the vector f — DMpv, , where f and D are
defined in the lemma. Finally, the assumption that ||v,]2 = 1 is used to

write |Bnp|? = ||BnpVall3- O

We summarize these results in the following Theorem.
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Theorem 4.5 The cost function J, defined by (19), can be written
J = wi(|BoMopvs + fol[3)

+wi([Mpvallz + llpvall2) (24)

+wi (DM pve — £1|7 + [|BapVall?) + ca,

where M = R71QT is determined by the QR decomposition of V_, My, D,
fo, £, Bo, B are as defined in Lemmata 4.2 and 4.4 and o4 is a constant,
independent of v,,.

Proof. The proof follows directly from Lemmata 4.2 and 4.4. O

The functional defined in (24) remains nonlinear due to the term p. To
reduce J to a linear form, finally, we use the fact that an eigenvector can be
arbitrarily scaled. At the same time we rewrite the constrained minimization
problem, Problem 4.1, as an unconstrained problem. The following theorem
gives the solution to Problem 4.1 in terms of the equivalent formulation.

Theorem 4.6 The solution to Problem 4.1 is given by

1 1
=St | 3] s | | |l (25)
where U minimizes
wofoMo Sy H, Io ?
) wMS, Hy ry
J = wlang u -+ o (26)
wo DM S, H, rs
woBnSnHy Iy 2

over u € R* 1. Here

rq = wOﬂoMosnh1+0'fo,

rr = wMS,hy,

Iy = wIthl, (27)
rs = wgDMthl = O'f,

ry = w2ﬂn5nhl)

and H = [hy, Hy] s a Householder matriz such that
afS.H = ge]. (28)

Proof. Since we require v, € S,, subject to |vn||2 = 1, we may write

-1 T T
Vo =SnSn, P =q Vp=( Spsn,
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where the columns of S, give an orthonormal basis for S,, s, € R" and
lszll2 = 1 must hold. From the definition (28) of the Householder matrix
H, we then have p~! = gel HTs,. Hence the first component of the vector
oH7ps, is unity and we may write

1

y ] = 07 ![hy, Hy] [ 111 ] =0~ '(hy + Hyu),  (29)

(psn) =t |

where u € R™!. Substituting pv, = S.(ps,) into (24) and using (29) then
gives

J = w(||Boo™ MoSn(hy + Hau) + f5[3)
+w(lo" M Sp(hy + Hau)||2 + |lo™'Sa(hy + Hau))|3)

+wi(lloT DM Sn(hy + Hau) — £I3 + || Bao ™' Su(hy + Hpu)|3) + ca.
(30)
Rearranging and combining terms and neglecting the constant term a4 then
gives the equivalent functional (26).
The vector v, = Sys, such that |[v,|[3 = 1 is reconstructed from the
solution u that minimizes J. From (29) we find that

v, = (op) 'S H [ 111 ] where op =||S.H [ 111 ] ll2,

which gives the solution (25). O

We have thus reduced the nonlinear problem of finding the vector v,
that minimizes the functional J to the linear problem of finding the vector
u that minimizes the functional J. The vectors v;, 7 =p+1,...,n—1,
can each be updated in turn by solving a corresponding linear least squares
problem. Since the value of the functional is reduced at each step of the
iteration, the process is convergent. We remark, however, that without any
further constraints on the solution, the computed columns of V, may not
form a self-conjugate set. To ensure the self-conjugacy property, if A; and
Ai+1 are prescribed complex conjugate eigenvalues, then we update v; by
solving the minimization problem and let v;4; = ¥;. The iteration process
is not guaranteed to converge in this case, but in practice convergence is
observed and good results are obtained after a small number of iterations.

If the eigenvalues A;, for 7 = p+ 1,...,n, are not explicitly prescribed,
then the same process can be applied, with §; = I and 7; = I for each ¢. The
rate of convergence of the iteration for determining V; is found to be faster in
this case, since the constraints on the solution are weaker. Both the matrix
K and the unspecified eigenvalues then have to be reconstructed, however,
subject to the constraint that the closed loop system is stable.
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The iteration process is easy to implement using a package such as Matlab
and, since only orthogonal transformations (QR and SVD decompositions)
are used, the steps of the procedure are all numerically stable. The algorithm
is found to be more efficient in general than the standard nonlinear packages
for solving the nonlinear minimization problem directly. In [5] results from
the process described here are compared to results from the Matlab Op-
timization Toolbox for a number of test problems, with different starting
vectors and different weightings in the objective functional and different con-
vergence tolerances. In the case where the eigenvalues are not prescribed,
the experiments show that the new process is two to four times faster than
the standard package.

4.2 Construction of Feedback

After determining the optimal set, V5, we must construct a feedback K to
assign the eigenvectors V = [V;, V,]. We consider two constructions given by

K =Ky, =BY VAV - A)C* |, K=K,=BYVA-AV)(CV)*,
(31)

where K is used when the left eigenspace error is small, and K3 is used
otherwise. Here the Moore-Penrose pseudo-inverses Bt = Z5'UZ and C+ =
PyZ3', are determined from the decompositions (7), and a further decompo-
sition is needed to determine (CV)*.

We remark that the first construction, K, is invariant under scalings of
the matrix V of right eigenvectors. The error introduced into the eigenstruc-
ture of the closed loop system satisfies (15), as shown in [2], where

E=E =VAWT —WwTA)I - C*0). (32)

A bound on the error F is given by (17), where the constants ry, 7 =1,...,n,
are independent of V. The error in the assigned eigenstructure can thus
be controlled by the selecting the weights w;, 7=10,1,2, in the objective
functional J appropriately and, in particular, by forcing the distance of the
left eigenvectors from the required subspaces to be small.

The second construction, K», is similar to the construction given by (9),
discussed in Section 3.1. The assumption that C'V is invertible is not re-
quired. It can be shown by arguments similar to those in [2] (see [5]) that
the error introduced by this construction also satisfies (15), where we now
have

E = E, =VAWT —wTA)(I - v(Cv)H(cv)wT). (33)

The error E can again be bounded by an expression of form (17), where the
constants r;, ¢ = 1,...,n, are different from those of the first construction
but remain independent of V.
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The errors introduced by the constructions K; and K, are related by
E, = Ey\(I - V(CV)*(CV)WT). (34)
This result is obtained using (CV)(CV)*(CV) = CV, which holds by the

definition of the Moore-Penrose pseudo-inverse (see [5]). It follows that if
the left eigenvectors are in the required subspaces, i.e. w; € 7; for all 4, then
F, =0 and hence E; = 0.

We remark also that the two feedback matrices Ky and K, are identical
in the case where the eigenvector matrix V' is unitary. In this case (CV)* =
V-1C* and the result follows immediately. In general the two constructions
lead to different closed loop systems. The second construction is not invariant
under scalings of the matrix V and an improved match to the input coupling
vectors can be achieved by an a posteriori scaling of the left eigenvectors
comprising Wj. If the scaled vectors are denoted by WiDy ! where D is
a diagonal matrix, then K, is constructed using V = [D1V;, V;]. Evidence
suggests that whilst the scaling improves the fit to the desired input coupling
vectors, the accuracy of the eigenvalue assignment is decreased, due to an
increase in the distance of the left eigenvectors from the required subspaces
(see [5] for details).

The numerical computation of the feedback matrices K; and K, requires
the inversion of the matrices V and CV, respectively. The accuracy of the
computation thus depends on the conditioning of these matrices, reinforcing
the need for a robust solution to the problem. The effects of the numerical
error introduced by the computation can be represented by additional terms
in the errors E; and E; dependent on the machine precision and on V! and
(CV)*, respectively.

If the eigenvalues associated with the unspecified coupling modes are not
prescribed, then another method for constructing the feedback matrix K is
needed. We now aim to select both K = K3 and A = diag{)1,...,A.} to
solve the equations

VY (A+ BE;C)V —A=0

subject to Re{\;} < v < 0 for all ¢, where « is a specified tolerance. These
equations are written as an over-determined linear system for the mp + n
unknown variables consisting of the components of K3 together with the di-
agonal elements of A. The equations are then solved in a least squares sense,
subject to the constraints, using a standard procedure. If complex conjugate
pairs of eigenvalues are allowed, then A is written as a block diagonal matrix,
with 2 x 2 diagonal blocks representing the complex conjugate pairs. The
matrix V of eigenvectors is written in real form, where the columns of V
represent the real and imaginary parts of the corresponding pairs of complex
conjugate eigenvectors. Details of the procedure are described in [5]. Ex-
perimental evidence shows that in practice this approach is more successful
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in some cases than in others. The results that can be achieved depend ulti-
mately on the prescribed eigenvalues associated with the desired output and
input mode coupling vectors.

5 Examples

The test system considered here is a lateral axis model of an L-1011 aircraft
at cruise condition taken from [1]. For this systemn =7, m =2, p = 4, and
the model matrices are given by

—20 0 0 0 0 0 0]
0 —25 0 0 0 0 0
0 0 0 0 1 0 0
A= | —0.744 —0.032 0 —0.154 —0.0042 154 0 |,
0.337 —1.12 0 0.249 -1 =52 0
0.02 0 0.0386 —0.996 —0.0003 —0.1170 0
i 0 0 0 05 0 0 —0.5 |
(35)
20 0]
8 22 000100 -1
000010 0
3‘33'0‘0000010 (36)
0 0 001000 O
L. 0 0_

5.1 Examplel

In the first test case the prescribed eigenvalues are L, = {—6 £ 1, —1 £ 2i},
and the corresponding desired mode input and output coupling vectors are
those given by (3) and (4), respectively.

The method of Section 3.1 is applied initially to obtain Vj. The corre-
sponding matrix K that assigns the required output coupling vectors is then
determined. With this feedback the closed loop eigenvalues, to four decimal
places, are given by L, = {—6 £i,—1 + 2¢,—23.9954, —8.1679, —0.6077}.
The prescribed eigenvalues are thus attained and, although the desired out-
put coupling cannot be achieved exactly, only a small amount of coupling
between the second and third outputs is introduced. The sensitivity of the
closed loop eigenstructure is proportional to kr(V) = 6.66 x 10*, however,
and the robustness of the system is poor. The input coupling is also unsatis-
factory, with undesirable coupling between the first input and the third and
fourth modes. The errors in the matching of the output and input coupling
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vectors are given by

|Goa — Goa||% = 4.5860 x 1074,

|G14 — Gial|% = 23.0735, (37)

respectively.

The objective now is find a feedback to reduce the error, ||Gia — G1.|%,
whilst retaining the accuracy of the mode output coupling vectors and achiev-
ing robustness. The full set of eigenvalues

L, = {—6%14,—1+2:,—23.9954, —8.1679, —0.6077}

obtained in the first step of the process is reassigned. Since the aim is primar-
ily to match the desired input coupling vectors, the weights in the objective
functional J are selected to be

(we,wi wi) = (10%,1,1).

The minimization algorithm described in Section 4.1 is applied and a new
matrix V, of corresponding eigenvectors is found. The feedback gain matrix
K is determined from V = [V;,V;] by the first construction described in
Section 4.2.

The feedback obtained by this procedure is

e 12.7270 —0.4798 —56.7815 —1.2742 (38)
17| —1.5221  0.4292 —1.4384 1.4316 |-

The eigenvalues of the corresponding closed loop system are given by
L, = {—7.29 4 9.28:,—0.7070 & 1.01443, —24.6274, —5.5598, —0.5859 }
and the sensitivity of the closed loop eigenstructure is proportional to
kr(V) = 3.80 x 10%,°

giving a considerable improvement. The corresponding mode input coupling
vectors are

il —0.0130 — 0.0133:
Gia =1 00271 +10.0443i e N i P (39)
0.0271 — 0.0443: il
and the output coupling vectors are
1 0 F 0.0296:
Gou = —0.687 £ 0.123: 1 (40)

0.027 £ 0.064z  0.002 £ 0.0072
0.028 ¥ 0.052: —0.463 F 0.663:



Modal Coupling by Robust Eigenstructure Assignment 19

We have thus calculated a feedback that gives the desired level of in-
put coupling at the expense of increased coupling between the second and
third outputs. The assigned eigenvalues are not close to those prescribed,
as expected with the relatively low weighting of w3, but the robustness of
the closed loop system is increased. The improvement in the input coupling
and the system robustness is therefore balanced by a loss of accuracy in the
output coupling and in the prescribed eigenvalues. The new result gives a
more satisfactory over-all design, however, with improved input-output de-
coupling.

5.2 Example 2

In the second test case the set of prescribed poles is L, = {—7+5i, —15+4:},
and the corresponding desired mode input and output coupling vectors are
again given by (3) and (4), respectively. The partial eigenstructure as-
signment method of Scetion 3.1 in this case produces a highly unstable
closed loop system with closed loop eigenvalues given, to four decimals, by
L, = {-7 4 51,—15 + 41, —6.2805, —0.5785,4.0879}. The sensitivity of the
assigned eigenstructure is proportional to kr(V) = 6.43 x 10* and the ro-
bustness of the closed loop system is thus also very poor. The errors in the
matching of the mode output and input coupling vectors are

|Goa — Goal|% = 3.7495 x 1072,

G4 — Gial|% = 5.0074, (41)

respectively.

The objective now is to find a stable closed loop system which is also
robust and has the desired mode coupling behaviour. The minimization
algorithm described in Section 4.1 is applied, without constraints on the
prescribed poles, to find the matrix V3. The iteration is initiated using an
orthogonal basis for the complement of the space spanned by the matrix V;,
selected in the first stage of the process to assign the prescribed set L,. The
weights in the objective functional J are chosen to be

(W, w?, wi) = (100, 1,0).

The feedback gain matrix K = K3 and a matrix A = diag{)\1,..., A} are
then determined from V = [V}, V3] by the third construction method de-
scribed in Section 4.2. (We remark that the eigenvalues of the closed loop
system A + BK3C are not, in general, equal to the diagonal components of
A, since a least squares fit is used in the construction.)

The feedback produced by this procedure is

Ko — 9.0815 —0.1286 -—28.9725 0.1228 (42)
871 3.1673  5.5682 —14.3302 1.0733 |-
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The eigenvalues of the corresponding closed loop system are
L, = {—7.41 £ 4.39:,-12.91 & 3.36¢, —5.3813, —0.5908, —0.1607},
and the sensitivity of the eigenstructure is proportional to
kr(V) = 6.85 x 10°.

The new mode input and output coupling vectors are

1 0.0297 + 0.0278i
] 0.0297 — 0.02784
Gia = | _0.0769 + 0.0843; ] ) (43)
—0.0769 — 0.0843i ]
1 0.0048 F 0.0143;
Go. = | —0-0580 F 0.0602: 1 m

0.0717 £ 0.0547¢  0.0014 ¥ 0.0005z |’
0.0022 £ 0.0094: —0.0725 F 0.0189:

respectively. The system has thus been made stable and more robust. In ad-
dition we have retained the desired level of output coupling and also reduced
the level of input coupling to a satisfactory level.

These two examples demonstrate that the additional freedom in the de-
sign problem obtained by mildly relaxing the requirements on the output
coupling and on the prescribed eigenvalues can be used effectively to improve
stability, robustness and input coupling. Additional examples illustrating the
behaviour of the algorithm are presented in [5)].

6 Conclusions

We have developed a new feedback design technique for achieving mode in-
put and output coupling by eigenstructure assignment. A linear least squares
minimization procedure has been derived for simultaneously improving the
mode coupling and the robustness of the system, whilst controlling the pre-
cision of the eigenvalue assignment. The method allows the accuracy of the
prescribed output mode coupling and the corresponding eigenvalues of the
system to be balanced against the accuracy of the prescribed mode input cou-
pling and the robustness of the system. The balance is achieved by selecting
the weights in the objective functional to be minimized. An application of
the method to the design of an automatic flight control system has been
presented.

Whilst allowing for flexibility in the design process, the weights in the
objective functional are not easy to select in order to obtain the desired
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balance, although rules of thumb can be provided. The initial selection of
the right eigenvectors to ensure the desired output coupling, on the other
hand, imposes a strong restriction on the freedom to achieve a good balance.
A better strategy might be to include the error in the output coupling vectors
in the objective functional, as a weak constraint, and then to minimize over
the entire set of right eigenvectors.

The optimal solution that can be obtained ultimately depends on the
prescribed eigenvalues associated with the system. The alternative technique
described here for constructing the feedback (the third method of Section 4.2)
allows the assigned eigenvalues to be determined as part of the optimization
process, although this process is expensive and may only be suitable for small
problems. The scaling of the eigenvectors used in matching the desired input
and output coupling vectors also affects the accuracy of the solution and
deserves further investigation. The method derived here offers advantages
over the processes currently used in practice, but the design process could
be improved by further development. The test results demonstrate clearly
that the freedom in the design problem can be used effectively to improve
stability, robustness and input coupling of the closed loop system with only
a small loss in the desired output coupling.
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