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1 Introduction

The advection equation is widely encountered in the field of atmospheric and
fluid modeling, often as a significant component of a more complex equation.
It’s significance and regular occurrence in these problems make it an important
equation to model accurately and efficiently. Many methods have been proposed
and accepted as suitable approximations to the one-dimensional equation [6]
but few, if any, of these have simple and equally successful extensions to two or
more dimensions. Most of these extensions rely on reducing the two-dimensional
equation to two one-dimensional equations which may be formally as accurate
as the one dimensional methods under certain conditions but neglect corner
effects when flow is at an angle to the grid giving poor shape preservation of the
advected profile. Fully two (and higher) dimensional finite volume schemes have
been developed but for many applications the method of directional splitting is
still used.

One benefit of many of the one-dimensional schemes is the ease with which
they may be extended to produce higher order, more accurate schemes. For
example, schemes based around the Taylor expansion can often be made more
accurate by retaining more terms in the approximation. In a similar scheme in
two or more dimensions there are cross terms (e.g. fy X fy); it is not so clear
which of these should be retained and what effect they have on the scheme. One-
dimensional schemes also lend themselves to easy analysis of the ’best’ stencil
to use, usually centred or upwinded stencils are used. With a two-dimensional
scheme the upwind direction is unlikely to align with the grid, making selecting
the ’best’ stencil a less straightforward task. The ’best’ stencil is one which
provides the best approximation over all possible flow speeds and directions,
not just for a specific case.

A problem that occurs when using high order advection schemes is that the
numerical solution will often produce non-physical oscillations close to steep
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gradients. These oscillations cause spurious maxima and minima in the numer-
ical solution which can in turn cause negative values of the advected quantity
which may be physically impossible, such as water vapour amounts in the at-
mosphere. There have been several methods suggested for removing these oscil-
lations (see [11]) of which the flux-limiting method lends itself most readily to
this method as it is separate from the scheme being used and has an extension
to higher dimensions [10].

This report discusses the automatic generation of high order schemes in one
and two dimensions using Transient Interpolation Modeling [2] in one dimension
and an extension of this and Leonard’s UTOPIA scheme [3] in two dimensions.
Different schemes will be generated for different directions and speeds of the
flow across the faces on a regular grid, automation enables all these scheme to
be generated and stored should the same flow arise elsewhere in space or time.
Along with an assessment of the accuracy of these schemes a cost/accuracy
comparison is carried out between higher order schemes and increased grid res-
olution. In two dimensions a multidimensional flux-limiter is used to prevent
spurious oscillations occurring in the numerical solutions, it’s effects on error
measurements are also noted. It is hoped that this method can be extended to
work on unstructured grids on the sphere where the automation will be required.

The results in one-dimension concur with those of Leonard [2] and the two-
dimensional results show a similar behaviour. There appears to be a level beyond
which there is little increase in accuracy from increasing the order and this
is certainly not cost effective. The results also highlight a number of other
considerations which must be taken into account, including the representation
of the flow-field and the stability of the matrix inversion routine used.

2 One-Dimensional Advection

The one-dimensional advection equation for advection of tracer ¢ with non-
uniform, constant velocity u is

¢ = —u(e)ds . (1)

This can be integrated over a time step At and a control volume in space from
—AZ—’ to % (on a uniform grid) across cell boundary i. This integration leads
to an exact formula for the update equation

A A G T (2)

where ¢7 is the total amount of tracer in the i*" grid box at the n** time step,
a = 5o¢ is the Courant number and the fluxes at the left and right volume faces
are the a¢*. The value of ¢* is difficult to determine but may be approximated
in many different ways, several of which come under the heading of Transient
Interpolation Modeling. This involves fitting a polynomial over a region around
the boundary in question and integrating it over the length swept across the
boundary in one time step (a full description and derivation of the process can




be found in [2]). In order to fit an N** order polynomial across a boundary
N + 1 conditions are required; these come from insisting that the integral of
the polynomial sought over a control volume is equal to the amount of tracer
in that volume (¢Az). If N is odd then this is done for the ﬁrst L volumes
each side of the face (a centred scheme), while if N is even 7 boxes each side
of the face are used plus one more from the upwind side of the face (an upwind
scheme). This can be done for a general distribution of ¢ which will lead to the
generation of a general set of coefficients which can be applied to the values of
« and ¢ in the region of each face.

This process can readily be done by hand for low order polynomials to
produce the First-Order Upwind scheme using a zeroth order polynomial, the
second order scheme of Lax and Wendroff using a first order polynomial and
Leonard’s QUICKEST scheme using a second order polynomial. Leonard went
on to calculate the coefficients for schemes up to ninth order (eighth order poly-
nomial) using this method (see [2]). The method employed in this work was
to write a computer program in FORTRAN90 to perform these integrations,
tabulate the results and then use them in a time-stepping routine. The method
begins by finding the coefficients a; of the interpolating polynomial given by
insisting that

N

/ .Zajmj de = ¢;Az; , (3)
cell i 0

for each cell in the stencil. The grid need not be uniform, hence the subscript
on the Az. This may be re-written as

N Si+Ax; .
¢piAz; = Z/ ajz’ dz (4)
j=0v95i

where S; is the distance of the left boundary of the grid box from an arbitrary
origin. Taking the origin to be the boundary across which the flux is being
approximated, the following N + 1 equations for the N + 1 a;’s can be derived;
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The solution of these equations for the a;’s is a matrix inversion problem of the



form
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Assuming S; is O(Aw;), i.e. N is much less than the number of boxes in the
domain, P is a polynomial of order (Az;)* making the matrix ill-conditioned.
This ill-conditioning can be lessened by factoring out a diagonal matrix of gen-
eral Az’s (found either by averaging or inspired guess), rewriting eq 6 in this
way gives

Q Diag[l, Az, Az? -, AzV"Ya=¢, (7
SO
1 N+1
a; = ‘A? Z Q,_]1¢z 1 (8)
=1

where ijl is the i,j + 1** element of @Q~!. The closer to unity the ratio
%ﬂu is, the better the conditioning of the matrix, Q. This procedure gives

the coeficients of the interpolating polynomial in terms of a general tracer
distribution, ¢ (z). @ must be non-singular if N + 1 distinct boxes are used in
the stencil, (i.e. boxes can only be counted once in each stencil and only have
one value of tracer amount) and Az; # 0. The flux across the boundary, o;¢,

can now be calculated from

r o A
al¢I:—/ a;zd dz . 9
UAt —uAtjgo J ( )

Substituting in the a;’s and integrating gives

- —(=a)f ¢ 1
mr = ]TX_; Qi ¢i - (10)

=0

Note that the general Az is used in the « on the right hand side of eq 10, which
may be different from «; on a non-uniform grid.

This enables coeflicients of o and the ¢;’s to be calculated for all boxes
and time and thus coeflicients for ¢; to be calculated for all time at each grid
box (under constant flow conditions). The coefficients of « depend on the grid



size and so need only be calculated once for a regular grid, in which case the
coefficients of ¢ depend only on o and need only be calculated once for uniform,
constant flow. These coefficients are used to calculate the fluxes for the update
equation which are used to approximate the tracer distribution at the next time
step. This last step is repeated for each time step.

Unsurprisingly the results from the schemes generated in this way are the
same as those found by Leonard [2] for the regular grid case. The main difference
is that irregularly sized grid cells have been allowed in this computation due to
the process being automated. This means more thought must be given to the
choice of a suitable time step. A smaller time step will generally improve the
accuracy but in this case appear to have a bigger improvement in the smaller
cells than the larger ones. If a limiter is to be used then this will impose a
maximum time step dependent on the size of the smallest cell.

3 Two-Dimensional Advection

In two dimensions, the advection equation for a fluid of density p and mixing
ratio ¢ can be writien in two ways, either in the advective form

D
'E% =0, (11)
where,
% = % 479, (12)
or in the flux form,
0 .
5 (P +V - (pig) =0 . (13)

The flux form is the conservation form of the equation and tells us that the total
amount of the advected substance must be conserved under suitable boundary
conditions. The advective form tells us that, following a fluid parcel, the mixing
ratio does not change and thus that extrema are not amplified. A scheme with
these desirable, physical properties as well as good accuracy, is now sought.

The first of these issues examined is good accuracy. One way of generating
a scheme would be to apply the high order, one-dimensional schemes already
discussed separately in each coordinate direction. This directional splitting ap-
proach often gives unsatisfactory results [4, 10], especially in strong deformation
flows and will not work on unstructured grids, so a fully two-dimensional ap-
proach, extendable to higher dimensions, is sought here. The flux-limiter that
is used adjusts only the fluxes across cell boundaries. Other limiting methods
are largely ’built in’ to the schemes from the beginning and form an integral
part of those schemes and so would require simultaneous consideration.

The idea behind this method is the same as for the one-dimensional case,
i.e. fit a polynomial of order N over a stencil, then integrate it over the region



swept across the face in one time step. In this case, however, a two-dimensional
polynomial must be fitted over K grid-boxes where K is given by;
N
k=301 WA+
=1

; . (14)

The first problem is to choose a suitable stencil over which to fit the polynomial.
The fitting is again done by insisting that the integral of the polynomial over
a box is equal to the total tracer amount in that box. This again leads to a
matrix which requires inversion, but in this case the matrix will be singular if
certain stencils are used and ill-conditioned for many more stencils. Looking
at why these stencils give singular matrices suggest some rules for choosing a
suitable stencil, although the final restrictions used to select a unique stencil
could be viewed as intuitive. The first restriction is that boxes from at least
N +1 different rows and N + 1 different columns must be chosen. If this is not
fulfilled then row operations on the matrix generated can reduce the problem
to a one-dimensional case with fewer equations than unknowns. If more than
N +1 boxes are used in any row or column then the matrix can again be reduced
to a one-dimensional problem, this time with as many equations as unknowns
though the equations are not independent.

With this restriction in mind we can now begin to choose a stencil by se-
lecting N + 1 grid boxes in each of the z and y directions, centred about the
face in question or the cell upwind of it. These 2N + 1 boxes are enough to
generate the coefficients of the terms 2™ and y” for 0 < n,m < N, leaving
only the cross terms, z™y", where n + m < N. Without loss of generality,
the origin can be defined as the centre of the cell upwind of the face in ques-
tion, this allows the matrix being generated to be written in the reduced form;

= | (1) (Az)™ | (Ay)" (Az)f(Ay) \ izizo
0 NxN =0
0
NxN 0 =0
‘ f K—-2N—-1xK~-2N -1
\ o /

Where elements are non-zero, the size of the block is given and the first row
shows the order of the terms, k,{,n,m=1,2,... , Nk+I<N.

Each of the terms in the lower right block of the matrix can be written as
zyatyl (¢,j = 0,1,2,.., N — 1) so, as neither z nor y is equal to zero in this
block, dividing through by zy shows that this block is similar to the original
un-reduced matrix but for an order N — 1 polynomial. Selecting another cross
of N boxes in the  and y directions, not entirely coincident with the first, and



Figure 1: Stencils for the flow directions across the faces shown for a) Third
order scheme and b) Fourth order scheme. Upwind boxes are in bold and O is
the local origin (see text)

performing row operations to make the upper left block upper triangular as
before, transforms the upper right block to a zero matrix. This allows the lower
right block of this matrix to be decomposed in the same form as the full matrix.
The cross of boxes should be upwinded about the face if the last was centred and
downwinded if the last was upwinded. Repeating this process as many times as
the matrix will allow yields a square stencil at 45° to the grid with extra boxes
along one/three sides if the polynomial is even/odd order. The extra boxes are
downwind of the flow across the face and upwind of the flow perpendicular to
it for an even order polynomial, and also along the two sides perpendicular to
this for an odd order polynomial. Figure 1 shows two examples of such stencils.

This method generates four stencils for flows from each quadrant for faces in
each direction, a total of seven stencils since flow from the NW quadrant across
a N-S face has the same stencil as flow from the SE quadrant across a E-W
face. Three of these are the same shape as three of the others with the centre
shifted by one cell due to changes in flow direction. There are other ways of
selecting a stencil but they are more likely to lead to ill-conditioned and even
singular matrices. One such way which leads to a singular matrix is to select
boxes whose indices lie on a polynomial of order N or less, this leads to the loss
of independence of the K equations generated.

This argument assumes powers of & and y are being used as basis functions.
The conditioning of the matrix being generated shuld be improved if orthogonal
basis functions were used. If Legendre polynomials in ¢ and y are used instead
of powers of  and y respectively then the structure of the matrix is different
but it must still be non-singular as the same unique solution is being sought.
In all of what follows, Legendre polynomials (written as Py = 2?:0 D s 2°) are
used along with a LU decomposition method for finding the inverse matrix.

The seven matrices of polynomials associated with these seven stencils are
non-singular and can now be inverted. The inversions may be done either by



standard techniques or by a solver designed for matrices with the structure
given by the method of selection of the stencil. The inverse matrix gives the
coeflicients of the interpolated polynomial in terms of the values of the tracer
in the stencil, i.e. a = B71q. This allows the polynomial to be integrated over
an approximation to the area swept across the face to give the flux across that
face in one time-step. This can be done exactly for a general B allowing the
equation for the flux;

2

1 4z wp—wozy by N r
FLUX, = uAtA:c/ uAt/ =Ozaz r—k(2) Py (y)dzdy (15)
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to be evaluated, where w = %, with a similar equation for FLUX,. FLUX, and
FLUX, are fluxes across boundaries perpendicular to the z and y directions
respectively. By performing these integrations, the flux across a boundary can
be found for a general g¢-field from;

)les 21
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where oy = “Am is the Courant number in the z-direction. This depends on the

flow velocity and direction as well as the time step and can also be written as
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These equations hold for uniform Az and a not necessarily equal but still uni-
form Ay. If different sized boxes are allowed, as in the one-dimensional case,
then similar equations will hold if the matrix of polynomials remains invertible.

Equation 16 or 17 can be used to calculate the coeflicients of the ¢; in the
stencil and then the flux across a face. When the fluxes have been calculated
the g¢-field can be updated by;

gt =qt+ Y FLUX- Y FLUX, (18)

in flow out flow

where fluxes are summed over the inflow and outflow faces. The flux across
each boundary is both inflow into one box and outflow from another, ensuring
that the total amount of ¢ is conserved. In general, if the update is done now
the result will probably contain oscillations and spurious negative values that
we wish to avoid. For this reason, before this update is done the Universal



Limiter [2, 4, 10] is applied to constrain the fluxes and ensure these spurious
effects do not occur when the ¢-distribution is updated.

The idea of the limiter is to prevent oscillations occurring by limiting the
outflow fluxes subject to suitable constraint of the inflow fluxes. The bounds
on the inflow fluxes are found from the g-distribution at the current time-step
and are used to calculate suitable bounds for the flux across the outflow faces.
There is always a value that will satisfy these conditions, i.e.the value in the box
upwind of a face, so in the worst case the limiter acts like the first order upwind
scheme at a face. In practice the limiter rarely imposes such severe conditions
and often does not alter the flux given by the scheme. Once the limited fluxes
are known they can be used in the update equation 18. The updated g¢-field
is then used with the same coefficients as before to calculate new fluxes for
each boundary. These are limited as before and then applied to eq 18. In the
following test cases the full limiter together with the refinements of [10] is used.

One other consideration, not unique to this method, is how to store the
velocity field. The three most obvious methods are similar to the A, C and
E grids of Arakawa [1]. Firstly, the flow may be stored at the centre of each
cell and averaged to each face when needed, which is equivalent to the A-grid.
The second way is to store the flow in each direction at the centre of the faces
perpendicular to the flow, in a similar way to the Arakawa C-grid. The final
way considered is to store the flow in both directions at the centre of each face
in a similar fashion to the E-grid of Arakawa. Each of these is a valid choice
for storing the flow but after a few experiments and consideration of [1] the
third/E-grid method was used. For the first two test cases used all three grids
are equivalent but the E-grid gives a better approximation to the area swept
across each boundary for the third case.

4 'Test Cases

Three test cases were used to test the schemes produced by this method, uniform
flow, rotational flow and a strong deformational flow. These three cases are a set
which is frequently used, though not always together, in the literature to show
the strengths and weaknesses of numerical advection schemes. Here all three
have been used to show whether this method works well in a range of flows
or just one. All the test cases were performed on a square grid in a periodic
unit square domain. Error measurements were made along with a measure of
the cost of computing the results, the CPU runtime. Generally, higher order
schemes are more accurate, as are those run on more refined grids, and these
results should show when a higher order scheme is more cost effective than
increasing the resolution for this method. The cost of each part of the method
was recorded though only the total runtime is used as the measure of cost. A
discussion of this breakdown will follow the results.

These test cases give a measure of the success of the scheme which can
be compared with other schemes run under the same conditions. The tests
in themselves do not give a complete picture of how well the scheme would



perform in the atmospheric problem. The uniform flow, section 4.1, has little
resemblance to flows found in the real atmosphere but does provide an indication
of how well the scheme handles flow at an angle to the grid. The rotational flow,
section 4.2, has more in common with rotating systems in the atmosphere but
does not stretch parcels in the same way due to it’s constant angular momenturm.
The final test, section 4.3 deformational flow, does include vortices which stretch
fluid parcels but these are regular and do not interact with one another as in
the real atmosphere. Looking at the results of these tests together should give
a good idea of the strengths and weaknesses of the scheme and where it will
succeed or have problems in a realistic problem.

For completeness, several measurements were taken of errors and properties
of the advected profile. The error measures used were the Ly, Lg and L norms
and first and second moments of mass, along with a breakdown of the Ly norm
into diffusive and dispersive components. The L; norm behaves in the same
way as the Ly norm in these cases and so is not shown, nor is the first moment
of mass as this is always unity to machine accuracy because of the conservative
nature of this method. Other measures taken were of the final maximum and
minimum values of the distribution and of how well the scheme maintained the
symmetry of solutions (where it should). The first of these measures is used
primarily to check that the limiter is working and not allowing the maximum
or minimum values to grow, as was the case in all runs. For symmetric initial
conditions in a symmetric flow the solution should also be symmetric, and is to
machine accuracy for these test cases. These measures can also give an idea of
the amount of dissipation in the scheme but different error measures are used
to investigate that here.

In all the cases that follow the errors for 9** & 10** order schemes on higher
resolution grids are worse than those for most lower order schemes. This is
probably because of the ill-conditioning of the matrix of polynomials which
does not allow accurate inversion and subsequent evaluation of coefficients and
fluxes. There are methods by which the conditioning of these matrices may be
improved but this is not done here as the results for schemes lower than 9th
order provide enough information. These results do however show the success of
the limiter in not only preserving shape but also in keeping errors to a sensible
level for a scheme with pseudo-random errors.

4.1 Uniform Flow

For this test case an initial profile was advected by a constant uniform flow at an
angle of 45° to the grid. Three grids were used, each double the resolution of the
previous one; 20 x 20 (Az = 0.05), 40 x40 (Az = 0.025), 80 x 80 (Az = 0.0125).
The flow speed was 1 unit per second in each direction and a Courant number
of 0.25 was used in each direction, which means that each doubling of the
resolution requires twice the number of time steps to be used. The profile is
advected once around the periodic domain in 1 second requiring 80, 160 or 320
time steps depending on the grid size. Flow at an angle to the grid is difficult to
model accurately using directional splitting methods but a fully two-dimensional
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Figure 2: Error norms for step profile (left) and smooth profile (right) advected
by uniform constant flow. Grid sizes are as shown.

method such as this should perform equally as well as for flow at any angle to
the grid.

Two initial profiles were used for this test case, a square step and a smooth
cos? function. The square step was unity over % of the domain and zero else-
where giving an idea of how the schemes cope with sharp gradients. The
’smooth’ function was also defined on the same % of the domain and behaves as
cos?zcos?y with a continuous value, but discontinuous derivative at the bound-
ary of this region. The main difficulty for any numerical scheme here being to
avoid flattening the peak and maintaining it’s value.

Figure 2 shows the cost against the Ly and Lo, norms for both profiles, where
grid sizes are as shown and each order scheme is marked. The step profile shows
continued reduction in these error norms as higher order schemes are used.
In the L, norm this improvement is more cost effective than an increase in
resolution up to about the fifth order. The Lo norm, or the maximum error
in any cell, shows an increase with increasing resolution, probably due to a
better capture of the smoothing of the gradient of the numerical solution which
is effectively averaged out on a coarse grid. The smooth profile shows larger
improvements for all these errors as the order of the scheme is increased up to the
fifth order but little or no improvement as higher order schemes are used. In this
case an increase in the resolution does lead to a decrease in the maximum error
in one box. These results suggest that using a scheme higher than fifth order
will only improve accuracy near sharp gradients whereas increasing resolution
would be more cost effective as it would improve accuracy everywhere.

The Ly error measure may by written in terms of diffusion and dispersion

11
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Figure 3: Comparison of Diffusion and Dispersion components of L, norm for
step profile (left) and smooth profile (right) under uniform constant flow. Grid
sizes are as shown.

errors, deriving from writing the L, error in terms of mean and variance,

e E(¢§;T¢N)2 - zﬂi —[PGr =)+ Gr -], (19)

where ¢7 is the true solution and ¢y is the numerical solution. By expanding
and simplifying this expression it can be shown that

L= % (lo(2) = o(m))” + (Br — $n)? + 21 = p)o(dr)o(4n)) , (20)

where p is a coeflicient between zero and one, depending on the correlation
between the numerical and exact results. Due to the conservative nature of this
method, ¢7 — ¢n = 0 and if there is no diffusion o(¢r) —o(én) = 0 also, giving
the dispersion error as

Buip = 21— p)o(d1)(4n) (21)
So the diffusion error is
Eaiss = [o(¢r) — o(¢n)]” . (22)

Figure 3 shows these component parts for the Ly norm of both profiles. For
the step profile the diffusion error is an order of magnitude or two smaller than
the dispersion error and both show similar behaviour, the main difference being
the greater improvements in the diffusion error when going from even to odd

12
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Figure 4: Error norms for the split cylinder (left) and smooth profile (right) for
a constant rotational flow on an 80 x 80 grid

order schemes than from odd to even order schemes. The diffusion error for
the smooth profile also shows this stepping and, unlike the dispersion error,
continues to decrease beyond fifth order. The other remarkable feature is that
the diffusion error is anywhere up to five orders of magnitude smaller than the
dispersion error for this smooth case.

Schemes run on this test case without the limiter show the same trends in
the error measures but highlight the distinct differences between even and odd
order schemes. The stepping seen in the errors of the smooth profile for the
limited scheme is present for both cases, seen in this case as oscillations about
the general improving trend. The components of the Ly norm clearly show the
improved diffusion or dispersion of the odd and even order schemes.

4.2 Rotational Flow

For this test case a counterclockwise solid body rotation was applied to two
initial profiles. The rotation speed was = times the distance from the centre of
the rotation so the solution after two seconds was the initial distribution. A
square grid of 80 x 80 boxes was used with a maximum Courant number of 7/8
in each direction so one rotation took 640 time-steps. The first profile used was
a split cylinder of radius 15Az with a slit 6Az wide removed, while the second
profile was the same cos? function used for the uniform flow case.

The norm error measures for the split cylinder, fig 4, show similar behaviour,
as the order increases, to the step profile in a uniform flow, i.e. a continuing
decrease. This is again due to the higher order schemes maintaining a steeper

13



Etror Values

Spll Cylinder Inilal Profile Smooth Inital Profile

Eror Values

CPU lime {seconds) CPU time (seconds)

Figure 5: Comparison of Diffusion and Dispersion components of Ly norm for
the split cylinder (left) and smooth profile (right) for a constant rotational flow
on an 80 x 80 grid

gradient, but with the L, norm having a much shallower downward trend than
before and increasing slightly between 1** and 3" order. The same norms for
the rotation of the smooth profile show slightly different behaviour, the errors
being much smaller but not improving significantly beyond the third order or
at all beyond fifth order. This is most likely due to the approximation of the
area being swept across a face, which in the case of non-uniform flow does not
coincide exactly with the area over which the scheme integrates the polynomial
to approximate the flux.

The diffusion and dispersion components of the Ly norm, shown in figure 5,
also behave in a similar fashion to the uniform flow case. Starting as being
roughly equal for the first order case, the diffusion error decreases more rapidly
with increasing order and for high order schemes is at least an order of magnitude
smaller than the dispersion error. For the smooth initial profile the diffusion
error continues to decrease with increasing order while the behaviour of the
Ly norm is dominated by that of the dispersion error. Again the un-limited
results show similar trends with the same differences between odd and even order
schemes as before. An additional problem in this case is that the oscillations
produced by the un-limited scheme cross the boundaries of the domain causing
extra interferance.

Both the uniform and rotational flows show similar behaviour when con-
sidering the second moment of mass. A scheme which conserves the second
moment of mass exactly will have a score of 1, anything below this value gives
an indication of the diffusivity of the scheme. As the previous plots suggest,
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Figure 6: Second moments of mass for uniform flow (left) and rotational flow
(right). Grid sizes are a s shown.

and figure 6 shows, the higher order schemes on more refined grids produce a
score very close to one for advecting the smooth profile. The profiles with large
gradients are not so well handled though with a few percent loss in the second
moment at best.

4.3 Deformational Flow

This test case is similar to that devised by Smolarkiewicz [7] in which an initial
profile is advected by a number of rotating vortices. In this case an 80 x 80
grid is used on a domain containing eight pairs of vortices rotating in opposite
directions, each in a 20 x 20 region. An initial tracer profile is centred on one
pair of vortices with a small amount in the pairs above and below. Staniforth
et al. [9] (see also [8]) presented a method for solving the problem exactly,
providing insights as to how the true solution behaves and desirable properties
of any numerical solution. Fluid elements must move along streamlines and
so must remain in the vortex in which they start. Moreover, the solution must
remain non-zero on the six vortices containing the initial tracer distribution and
zero elsewhere. In the centres’ of the four outer vortices the solution should also
remain zero and the non-zero part is confined to a region close to the boundary.
As the tracer field develops the tracer is stretched and becomes pulled out into
filaments that become infinitesimally small in infinite time and thinner than any
finite grid resolution in a finite time. In practice a numerical scheme would hope
to resolve these filaments down to the grid scale where, due to conservation, they
would decrease in magnitude. As the true solution cannot be discretised onto
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the grids used without aliasing it is not sensible to attempt to measure the errors
as in the previous tests. The oscillations produced by the un-limited schemes
would quickly destroy the filamentary structure being form and so these schemes
are ignored here.

The first two plots in figure 7 show the results of a third order scheme on
an 80 x 80 grid at two times. At ¢ = % the third order scheme barely shows
the filament that should be formed by this time as it is already decaying. At
t = 1 almost all of the filaments have decayed and spread to form an egg-cup
shape typical of numerical solutions of this problem. The fifth order scheme
in the next two plots shows how increasing the order has maintained steeper
gradients and allowed less decay at ¢t = % New maxima and minima can occur
due to a stretching flow and these are allowed by the limiter, for this case they
should only occur on the boundary. The small oscillations on the central ridges
here are caused by the discrete representation of the problem creating the same
conditions as at the boundary of the ’real’ problem. These should therefore
become smaller as Az — oo and are less noticeable on the higher resolution
plot. An improvement is also seen at ¢ = 1 where the filamentary structure
is still apparent but, due to decay of the filaments, is forming the often seen
egg-cup shape. These improvements are not as good as those shown in the final
two plots, showing a third order scheme on a grid with twice the resolution of
the last two cases. Unsurprisingly much steeper gradients are maintained and
the filamentary structure is still resolved in the centre of the vortex at ¢ = 1.
Small scales are being lost by this time at the edge of the vortices where the
deformation is stronger. This case also shows the smaller amounts of tracer in
the four outer boxes has been confined to the outer parts of the vortex, which
is also the case to a lesser extent for the other two cases, but is not captured by
the contours shown.

4.4 Cost

The implementation of this method can be viewed in three separate stages.
The first is the generation of the seven stencils and polynomial matrices along
with their inversion. For the relatively small matrices involved (55 x 55 for a
10" order scheme) this is not a time consuming operation and need only be
done once for each scheme. The second stage is to use the inverted matrices
to generate the coeflicients of the scheme, the time for which should increase
with the fourth power of the scheme order and the square of the number of
boxes in one direction. Assuming that the flow is different across each face this
procedure takes a significant amount of time for high order schemes or those
run on a fine grid but need only be done once if the flow is constant in time.
The final stage is the running of the scheme along with the limiter, the time for
which increases with the square of the order and the third power of the number
of grid boxes. A run of a few hundred time steps will mean that this stage is
the most expensive to run.

The cases run here confirm the costs of these sections to be proportional
to the powers of the scheme order, O, and number of grid boxes, N, in one
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Figure 7: Numerical results of Smolakiewicz’s deformational flow problem at
(left) ¢ = /5 and (right) t = for a) 3"¢ order scheme, 80 x 80 grid, b) 5** order
scheme, 80 x 80 grid and c) 3"% order scheme, 160 x 160 grid, (only the nonzero
regions are shown)

direction as would be expected from consideration of the method. Generating
and inverting the seven matrices does not depend on the grid size and is an order
O* expense. Calculating the coefficients must be done for each face and so is
an order N20*. The grid size will effect the Courant number so that more time
steps are required for a more refined grid, which makes running the scheme an
order N30? expense. The overall runtime is difficult to calculate but appears
to increase with the order of N30% for higher order schemes.

5 Summary and Discussion

A general method for generating multidimensional advection schemes of any
order on a regular rectangular grid has been developed and implemented in
two dimensions. The resulting schemes have been run on a number of test
problems with a flux limiter to prevent spurious oscillations and negative values
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being generated. Numerical results show a large improvement in accuracy for a
relatively small cost by increasing the order of the scheme from 1%* to 3¢ order
accurate and less of an improvement for a greater increase in cost between
3" and 5" order schemes. For most cases, increasing the order of a scheme
beyond 5 would be less cost effective (in terms of CPU time) than increasing
the resolution of the grid on which the scheme is being run. One exception to
this may be the climate model where increasing the resolution increases the cost
not only of the advection scheme but many other parts of the model as well.
It may also be that the errors in other parts of the model are not sensitive to
small improvements in the advection scheme making the higher order schemes
more cost-ineffective.

The results of these schemes compare well, in terms of accuracy, with many
of the schemes in the literature, which is not surprising considering the lower or-
der schemes generated in this way are finite volume versions of known schemes.
The first order scheme can only be the diffusive First Order Upwind scheme and
the second order scheme turns out to be a two-dimensional generalisation of the
Lax-Wendroff scheme. The third order scheme is exactly the same as Leonard’s
UTOPIA scheme with higher order methods being based on the same method-
ology. The higher order methods also compare favourably with the results of
the Piecewise Parabolic Method given in [5].

These results show that in this case, and quite possibly others, increasing
the order of a scheme gives a larger improvement in the diffusion error than in
the dispersive part. This would suggest that at some point simply increasing
the order of a scheme will have little discernible effect on the error, which is
also shown in these results. Increasing the resolution will cause an improvement
in the dispersion error and a lower order scheme may be used for a saving in
the cost with little extra error. Finding the exact optimum balance between
cost and error for any given problem would be difficult and with the many
other considerations involved, probably unnecessary. These results should give
a rough guide to the optimum levels where this and perhaps other methods are
used.

The current implementation of this method has not yet been fully optimised
for constant flow conditions and is certainly unsuitable for variable flow prob-
lems. On a structured grid it is not too difficult to optimise the code for variable
flow. Only speed and direction will vary the coefficients needed, so these can
be stored when first generated and re-used when flow at another face or time
are near enough identical. On unstructured grids the same idea may be imple-
mented but with few if any identical faces storage of all coefficients may become
a problem.

The results that have been presented strongly suggest that there is a level at
which using a scheme of a higher order is not cost effective when compared to
increasing the resolution of the grid. In practice the advection equation is rarely
solved in isolation, particularly in the atmosphere, so the cost of increasing the
resolution is greater than that here, making the judgment less straightforward.
In this case there will also be other errors which may well outweigh those of
the advection part of the equation so reducing the error in this part could be
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unnecessary. The cost of generating coefficients for such a large model would
also impose a very large cost in the runtime which could be transferred to a
storage cost in the same way as for an unstructured grid.
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