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Introduction

The aim of this paper 1s to provide a review of the Rapid
Elliptic Solvers (RES) for the solution of elliptic partial differential
equations (e.p.d.e.) in one, two or three dimensions. [We shall use
the expression "e.p.d.e.” for one dimensional equations even though it 1is
not correct.] The review 1s neither complete nor comprehensive but,

hopefully, indicates the developments in this area in the last 15 years.

First of all the term "rapid” in RES requires a definition. With
the aid of the finite element method (FEM) or finite difference method
(FDM), the e.p.d.e. can be approximated by a set of linear equations
Ax = b, where A 1s an N x N matrix (usually very sparse) and X
and b are vectors length N of unknowns and RHS's respectively. To
classify as a RES the algorithm must be able to provide the solution
x = A”lb in a N floating point operations* (f.p.o0.) and use no more
than ﬁ to 2N memory storage locations, where a 1s a constant
(or slowly varying function of N ) of the order of 10 . This last
requirement excludes various sparse matrix techniques which often result

in algorithms with a ~ Ni {13, C21, (3] .

It is clear that with such stringent conditions imposed on the
performance of the algorithms not all e.p.d.e.'s on arbitrary domains
can be solved with RES. In particular, there 1s no RES capable of
solving general non-separable e.p.d.e. in 2 or 3 dimensions. What 1s

more the author feels that no such algorithm is possible.

The most general e.p.d.e. for which RES exists, at least on special

domains, is the general separable e.p.d.e.:

* the term f.p.o. means here a single floating point operation of the type
*q_n.n/s
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} (o, 32 +b 8, +c)u=+, (1.1
a=1
where ay° bu and c, are arbitrary functions of one variable only
(al(xll. aztxZI and so on) 3 = 3/3x® and d is the number of

dimensions. The a,'s have to be all of the same sign for equation (1.1]
to be elliptic. For certain boundary conditions (b.c.) the function f

on the RHS may have to satisfy compatibility conditions. The equation (1.1]
is to be satisfied on domain D with appropriate b.c. on 3D (Dirichlet,

Neuman, periodic or mixture of the three).

The equation (1.1) can be symmetrized by transforming out the terms
d

VN - 1 y a
ba aa u with u” =ug, where g = 621 exp(2 f ba/aa dx ) .

Therefore without a loss of generality we shall assume ba =0,

In the case of isotropic diffusion, altxll = a2[x2] = aatx3) = const ,
we have a separable Helmholtz equation:

d :
(v2+ § e, (xMu =f. (1.2)
a=

Finally, when all the coefficients are constant we have constant
coefficient Helmholtz equation

(V2 + g)uy = F (1.3)

and if c = 0 it becomes the Poisson eguation. In the following sections
we shall discuss methods of solving these equations depending on the
dimension d of the domain. We shall see that for d = 1 there is a
number of RES's for the most general equation (1.1) while for d = 2

and 3 some of these methods are no longer RES even for the simplest

Poisson equation.



2. One dimensional equation.

The equation (1.1) in one dimension may be reduced to
(d2/7dx2 + c(x)) ulx) = f(x) £2:1)

on a domain 0 < x £1 with b.c. at x =0 and X =1.

Discretizing it on a uniform mesh with h2 accuracy gilves

u + C

11 1 Ui + U =F, ., (2.2)

1+1 i

where C, = -2 + h%c(ih) , F, = h2f(h) , U, =U(Lh) , h = 1/n and
i=2,3,...,n-1. For 1 =0 and 1 = n the equation (2.2) has
to be suplemented by the b.c. We shall consider homogeneous Dirichlet

b.c. U0 = Un = 0 unless otherwise stated.

The equation (2.2) is the simplest approximation to (2.1), we
could use higher order formulae which would result in, say, 5-diagonal
matrix in equation (2.2). This does not increase the work for some

algorithms as will be indicated later.

We shall now review methods of solving equation (2.2) bearing in

mind possible applicability to higher dimensions.

2.1 Fast Fourier Transform (FFT).

The functions sin (wki/n) are the eigenfunctions of
equation (2.2) provided that the coefficient Ci is a constant Ci= cC .
Taking FFT of equation (2.2) gives G = Gk Ek , where Gk =(C + 2 cos wk/n )3

3

is the influence function. We note that the higher order schemes would

merely change this function without increasing the op. count.



Originally the FFT algorithm existed for n = 2* only [4] but

}ater [5] the FFT was extended to any value of n . The op. count of
FFT is a n logé n, where a in the latest methods is about 2-2.5.

Hence the algorithm has the op. count of 1 + 5 log2 n f.p.o. per mesh
point. It is stable for all values of C provided that the influence

function Gn is not singular.

2.2 LU decomposition.
If we write equation (2.2) in the matrix form Au = F , the

matrix A can be decomposed into A = LU , where

A1 1 A
1 1
-]
L= |1 A , U = 1 A , (2.3)
. 2 o« 2
. [ ]
[ 2 ® -
T i «
| ] i A

} for 1 =2, 3,600, N &

where ll = 1/C1 s Ai 1/[Ci- A

i-1
The solution is then obtained in two stages

= '-1 = = bl =
1) vaL"*F (Vl F1 f vy (Fy Vi-1]ki for 1=2,3, ...n)
and then
a -1 = = - = - -
2) u=U"v (un Voo Uy vy Ai U 41 for 1 =n-1, N2 ..., 1)

The op. count is 4n plus 2n for precalculation of A’s regardless

of whether Ci is constant or not.

There is one exception [6] to this - if we retain the Dirichlet

b.c. at x =1 but impose mixed b.c. at x = 0, npamely wu + UO =0,
-1
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where u = > + (E = ‘D and C = Ci is a constant, then the matrix A

takes takes the form

M 1
1 c 1
1 c 1
A Lo L] L -
1 c

which has a particularly simple LU decomposition (2.3) with all
Ai = u'l o We note that for the Poisson equation C = -2, hencs

u = -1 and the b.c. at x = 0 is simply the Neuman condition, but for
the Helmholtz equation C * -2, the mixed b.c. is less obvious. The
memory required in this case is one location per mesh point whereas in

’
the general case an additional storage is needed for A s .

2.3 Cyclic reductions (CR).
We shall consider equation (2.2) with Ci= C although the CR

algorithm for variable Ci is only slightly more complicated. By

taking an appropriate linear combination of 3 consecutive equations
(1-1, 1 and 1+1) we get

(1) (13 _
U + C u, + U = Fi = F -1 -C Fi + F (2.4)

i-2 i 1+2 i i+’

(H

whers c =2-C2. Thus only U at every second point are

]
;8
connected. This process can be repeated £-1 times for n = 2%
resulting in a single equation, connecting boundary values U0 and Un

with the centre point Un/2‘ which can be solved. Then using in the



reverse order the reduced equations the remaining U's can be

calculated. We note that for Poisson equation, C = -2, hence

c®) . _2 for all levels & . On the other hand, the most unstable

harmonic will grow by a factor of 4 at each level of reduced densities

th]. Therefore for C = -2 the algorithm is upstable with error ¢

growlng as € ~ 42 = n2 , For C + -2, the fastest harmonic grows in
2-1 :
the reduced density as pEO (2 + |C(p)|], whereas the solution is found

by dividing it by C'*). Since for C << -2 the constants c¥) g2t

the algorithm is stable but for |C + 2| << 1 the error growth may be

appreciable and needs evaluating especially for large n .

The CR method has been extended (7] to cope with every value

of n.

The op. count is 6n ..with additional storage of IOgEn

for Ctl]'s

In the variable coefficient case the op. count grows to 18n with

additional storage of 2n .

2.4 Marching algorithms.
Marching methods are based on the fact that 1f solution is known
at two consecutive points then equation (2.2) may be used as a recursive

formula

u =F, -C, U - U (2.5)

i+1 i i i-1 °

Assuming a value for U1 with given Uo we can calculate u®*, u* ,..., u; '
2 3

The calculated u; differs from the given boundary value Lh but this

difference can be used to find the correct solution U and then repeat
1



the march to find the corrected solution. In order to study the

stability let us solve equation (2.5) for Ci = C and Fi = 0:
+ Bu_ " (2.6)

whefe M, = -g e 3 %— -1 and A and B are constants. For C <0,
u, is the larger root, hence the error grows as u+i . After marching
over p points we loose D decimal places of accuracy where

D=p loglg U, . With the exception of the Polsson equation, where
C=-2 and M, =u_-= 1 and the march is stable, the procedure for

C $-2 is exponentially unstable. One étrategy (Lorenz march [8] )
is to do partial marches of length p = D/logID u, » where D 1s the
number of digits we are prepared to loose, over n/p separate regions.
The resulting n/p equations are then solved to get correct starting

values. This could be an efficient method providied that w, is not

too large.

The op. count is 6n + 0(01) .

2.5 Conclusions.
It seems that in the one dimensional case all the methods are
rapid. The various properties of these methods are gathered together in

Table I and it is clear that LU decomposition is by far the best method.
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3. Two-dimensional equation.

The RES for two-dimensional equation (1.1) exist only for
regular domains either rectangle (x! = x, x2=y) orcircle
(x! =r, x2=¢) . The arbitrarily shaped boundary can be solved by
embedding the region of solution in a regular domain and applying RES
to the regular domain. The required b.c. are imposed in the interior
of the domain by a correction technique known as Capacity Matrix method.
This method requires numerical inversion of m X m matrix C, whers m
is the number of internal boundary points [8, 10]. Thersfore for all

but almost regular boundaries (small m ) it cannot be classified as RES.

Since equations described on a circle and a rectangle are similar

we shall continue this section considering rectangular b.c. only.

Discretizing equation (1.1) on a rectangular mesh one obtains the

following interaction molecule at the mesh point (1, 3)

! -
a4 r, + s a ( U Fij . (3.1)

The aone is the shorthand for the equation.

v ] o+ [ri + g U = F

qi[Ui-1,j * Ui+1,J] ML W B B * Ui,J+1 371 iyl ¥

N . = 2
where Q = al(ih). pJ aztjh). ry cltih)h 2qi ,

8, = Cztjh)hz - 2y F.. = h2f(dh, Jh)s 1,3 =1, 2 ,.ee, N1

J i3

We have chosen equal spacing on the square domain since the extensions to

the rectangle or different spacings in x- and y-directions are trivial.
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3.1 Fourier Transform.

The Fourier analysis can be applied in, say, x direction, only
if al(x] and cl(x) are constants which implies q; = 1, r, = -2 .
In that case the Fourier transform in i-variable results in a set of

n one-dimensional equations for each harmonic k:

-

F'J Uk,j-1 + [sJ— ZJUK.J+ pj Uk,j+1 = Fk,j (3.2)

7

which can be solved by any method of the previous section. Assuming the
op. count for solving (3.2) to be 6n the total is (5 n logzn + 6 nln .
Since this algorithm is a "product” of two one-dimensional algorithms

all the remarks of the previous section apply.

3.2 LU decomposition.

Unlike the one-dimensional case, where tri-diagonal matrix A
factorized into bi-diagonals L and U, the five diagonal matrix A
describing equation (3.1) does not factorize into tri-diagonal L and U .
This can only be done approximately [11] LU = A + E, where E
represents the two additional diagonals of "in-fill". Hence the squation

Au = F can be solved iteratively LUu[2*1) =F + Eu(zl. The efficiency

of this algorithm depends on choosing such LU decomposition as to '
minimize E . This is not RES algorithm and since it doss not depend

strongly on structure of matrix A it 1s best used for general e.p.d.e’'s.

3.3 Cyclic Reductions.
3.3.1 Global Cyclic Reductions.

The equation (3.1) may be written in guisi-one-dimensional form

+C\_{

Oy Vyq * 03 ¥y * 0y Vyuq "8y (3.3)
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where Q, and Ci are matrices Qi = I a; - Ci =pr,I+T, T 1s

i i

tri-diagonal [pj' sj' pJ] and v, and g, are n-vectors made up of

Uij and Fij f
equation (Qi =1, Ci = C, constant diagonal). In this case we can

carry on as in section 2.3 cyclicly reducing squation (3.3). Of course,

Let us first study a constant coefficient Helmholtz

this time the C's at higher levels cl1), cl2) ... are matrices,

C(l)

therefore the solution at level & requires inverting matrix

(2)

which is (1 + 2£+1)-diagonal. It was shown [12] that C can be

factorized into tri-diagonal matrices and solved as one-dimensional cases.
Because the ratio of the maximum to minimum eigenvalues of matrix C(z]
grows exponentially with & the algorithm is unstable: Buneman [13]

stabilized it by rephrasing the method of calculating reduced densities

on the RHS of equation (3.3). The resulting algorithm is stable with
op. count nZ(6 logzn + a) where a =1 or 3.5 depending on whether

an additional memory of % n2 is used or not.

The algorithm has been extended to cope with mesh sizes of

arbitrary n [7] .

The gensral equation (3.3) with variable coefficients has also

been solved [14] but the factorization of Ctz]

matrices is no longer

a simple process and requires numerical calculation of coefficients of

the tri-diagonal matrices. This can be done in the preprocessing stage and .
then the solution is found as in constant cosfficient case. The op.

count for the solution phase alone is (32 1og2n - 88)n2 while the

preprocessing phase takass usually twice as long.
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3.3.1.1 FACR algorithm.

The equation (3.3) and the reduced equation have the same form,
therefore after r reductions the n/2r equations can be Fouriler
analized [15] as in section 3.2, provided that the coefficients are
constant. Since the FFT algorithm has large op. count for large n
while GCR is efficient at low levels & of cyclic reductions one can
find the optimal & algorithm, the so called FACR(%]. Its optimal
op. count is 4n2 logztlogzn). that is to say 8-12 operations per mesh
point. In practice this optimal value 1s never reached and the realistic
op. count is 20-24 operations per mesh point [161 . This algorithm is

the most efficient combination of FFT, CR and LU decomposition.

3,3.2 Point Cyclic Reductions.
The two-dimensional e.p.d.e. was descretized to obtain equation
(3.1) using one h2-accurate formula, but for the constant coefficient

Helmholtz equation there is another h2-accurate formula.

Let us write both tnteraction molecules in this case

1 1 1
1 ct 1 o (3.4)
1 1 1

where c’ and Cx are constants. In order to simplify notation let

us introduce S+ and Sx operators

st = &1 10 and §° = %
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We can now write the two types of the descretized equations as

+ + + x X x
(s +¢C ]uiJ = FiJ and (s +C ]uiJ = Fij 5 (3.5)

where F+ and Fx are chosen in such a way as to minimise the differencs
between the two solutions of equations (3.5]. If we note [17] that
(6932 = §2* + 25% + 4 and (512 = §2° + 252" + 4, where $2° and S%7
stand for interaction molecules connecting points on the mesh twice
removed from the centre, the two-dimensional cyclic reductions are evident.

The first reduced densities will be
F2* = (5" - cIFt - F,
F2* - (s* - c9F" - 272" (3.6)

and the higher level reductions follow from the form of the reduced

equations )
(s2* + c2"yu = F2',
(s2* + ¢y = F2°

4 - 2% - 2 , c2" =4 - 202" - (2.

+
where C2

This is an "n2-algorithm" and the op. count depends on the choice of

Fi; and Fi; R If we choose the standard formulae: the "5-point”
d "rotated 5-point”, i F,© =F d FX =1+ 8HE,, th
and "rotate point”, i.e. 13 1j an iy ° 35 Py e

op. count is 9.5 n? .,

The stability can be studied by noting that in the Poisson case,
C+ = Cx = -4 , the fastest growing harmonic in the reduced densities

(3.6) grows by a factor of 16 at each level of PCR. Therefore after
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2-1 point reductions, where 2% = logzn the error is € ~ (n2)2 ,
This result is identical to that for one-dimensional CR where error
growth was proportional to the square of the number of mesh points.

But the algorifhm is stabilized for C+ < -4 since then the solution

grows faster than the reduced densities. The same applies to the error

due to the difference in the two descretizations, equation (3.4).

3.4 Marching algorithms.
The two dimensional marching method is identical in principle to
the one described in 2.4, the difference being in that we now march over

whole lines:

Upg,g = (Fygm Pylug guq 9y 5oq)7 00 s,0ugg)/aym g g g

This also means that the instability is growing faster. For the Poilsson
equation the error now grows as ¢ ~ (3 + v8)P = 5.8° for p lines
marched. In practice, it means that we loose D digits of accuracy for

p lines marched, where D = 0.77p If we are prepared to loose D
digits in the result we have to do 1.3n/D partial marches and solve

the equations over 1.3n/D lines to get corrected starting values.
Therefore the op. count is of the order of (10 + a/D)n? and (14 + a/D)n?
for constant. and variable coefficient cases respectively, where "o depends
on the method of solution for the correét starting values for partial
marches. If we use FFT for the constant coefficient case then

~

o 10 + 4 1og2n . In the variable coefficient case the solution has to

be obtained iteratively, which means a ~ n in practice.
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In any event this algorithm is only suitable for the computers with
very long word length since only then we can afford a loss of reasonably

large number D of decimal digits of accuracy.

3.5 Conclusions.

There is only one RES capable of solving general separable
e.p.d.e 1n two dimensions on a rectangle {141 . On the other hand
there are several algorithms for the constant coefficient Helmholtz
equation. The best two seem to be FACR and PCR. Both of them are
in practice "n2 -algorithms”, the former being twice as slow as the latter

but also far more accurate.
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4, Three dimensional equation.
Descretising equation (1.1) on a regular grid with uniform spacing
gives an equation which written in "two-dimensional form” is

Py

g, Ty * > + t z, (U

K B1(Vgk * WY, 5,61 T Y, g,ke1) T Fagke

P3

where the interaction molecule acts on the first pair of indices i and
only. The notation here is the same as in equation (3.1) and z = a3[kh],

- VATS
tk ca(kh]h 2z

K

There does not seem to be a RES algorithm capable of solving this
general equation but if the coefficients are independent of one variable,
say K, z = 1, tk = -2, then we can Fourier analyse it in that coordinate
using FFT. This reduces the problem to n -two-dimensional equations each
of which can be solved as in section 3.

In particular, we note that in the constant coefficient case the
PCR method is stable for both Helmholtz and Poisson equation since in the
later case the FT in the z-direction results in 2-D Helmholtz equations.
This should then give an efficient Poisson solver with op. count

(3.5 + 5 1og2nln3.

On the other hand the marching algorithm is even more unstable loosing
one decimal digit of accuracy per plane marched. (The error grows as 9.9p,

where p 1is the number of planes.)

To conclude it is instructive to compare the op. counts per mesh point

for the best RES algorithms in different dimensions for the constant coefficient
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Helmholtz equation. In other words, we would like to compare the op. counts
per mesh point for the solution of Au = f equation, where A 1is the finite
difference matrix approximating e.p.d.e. To make the comparison meaningful
we should calculate the op. count of the discretization, or in other words,

the op. count of the product A.u and then take the ratio of the two.

number of discretization solution
dimensions f.p.o./mesh point f.p.0./mesh point ratio
1 3 6 (LU, CR) 2
2 5 9.5(PCR) 1.9
~ 20 (FACR) 4
3 7 ~ 30 (FFT + PCR) ~ 4.3
~ 40 (FFT + FACR) ~ 5.7

We are comparing algorithms dealing with problems of different complexity so

we should account for that someﬁow.

It is difficult to imagine a one-dimensional RES with lower op. count
than the known ones hence we take the ratioc of 2 as the limit. This limit
has been reached also for the two-dimensional problems but it would appear

that it is still to be found for the three-dimensional equation.

One hopes that the future 3-D RES would have an op. count of the order
of 15n3 or twice as good as the best existing ones. It will, most likely,

be based on the cyclic reductions.
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5. Conclusions.

In this very short review of RES algorithms only a few most important
methods used for solving e.p.d.e's have been outlined. Their importance is
far greater than it would seem at first. It is true they only solve simple
"Ppisson-1like” eqguations on a rectangle with uniform meshes, but many other
methods for solving general eguations on arbitrary domains use RES iteratiVely
hence their efficiency depends on the performance of the simple RES. Just
to mention one example: the whole rich field of the molecular dynamics
simulations was severely restricted until an efficient RES algorithm tailor-

made for that purpose was developed, the so called P3M method due to Hockney

and Eastwood.
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