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Abstract

In this report a simple procedure is used to determine the best

continuous piecewise linear L2 fit to a convex function of a single

variable with adjustable nodes. An extension gives a very good

continuous piecewise linear L2 fit to non-convex functions, again with

adjustable nodes.



81. Theory
Let f(x) be a given function of x and denote by uk(x) the

best linear L2 fit to f(x) 1in the interval (xk—l’ xk) :

Then
Xk 2
) J {f(x)—uk(x)} dx =0 u e Sk (1)
*k-1
or

*x

6 Jxl 1{f(x)—uk(x)} 6uk(x) dx =0 6uk(x)e Sk (2)
e

where Sk is the family of straight lines on the interval (xk—l' xk)
For an interval (xo. xN+1) which is the union of intervals
(xk—l' xk) , (k=1, n+1) , the best L2 fit to f(x) amongst piecewise
linear functions discontinuous at X (k=1,n) , is also given by (1)
and (2), (k=1, n+l) , since the problems decouple.

Now consider the problem of determining the best L2 fit u(x) to
f(x) amongst all discontinous piecewise linear finctions on the fixed
interval (xo. Xn+1) on a variable partition (xl. Kosovon Koo X )

n
of the interval. Then

xn+1 n+l xk 5
5 J {f(x)—u(x)}z A =5 ) J {f(x)—u(x)} dx =0 (3)
%o k=1 k-1

where the xk.(k=1. n) , are also varied. It is convenient to introduce



here a new independent variable § which remains fixed, while x joins

u as a dependent variable, both now depending on § and denoted by x

and G . Then (3) becomes
n+l X . A
o ) | {reEnam) Eac-o (4
k=1 k-1

with () = u(x(§)) .

Taking the variations of the integral in (4) gives

~

J{z{f(?é(f))—ﬁ(f)} {ecen sesae} &+ fraene) & (62)} a.

(5)

Integrating the last term by parts leads to

~

- o {eceen - i) {rr ey -8 5 o

n+1
+) {(f(?c(f)) - (§)2_, tx_, + £(x(E)) - u(E))? 6§k} (8
k=1

Collecting terms and returning to the x,u notation, (4) yields

ntl “k n
> J 2{f(x) - u(x)} {6u—ux6x}dx + ) [(f(x) - u(x))z] 5, =0 (7)
k=l ¥ k=1 k

where the square bracket notation []k denotes the jump in the quantity



at the node k .
With 6x = O this leads back to (2) and equations for the best
piecewise linear discontinuous L2 fit to f(x) . The full conditions

are however

*k
I {f(x)—u(x)}ﬁu dx = 0 (8)
*k-1

Xk

J 2 {f(x)—u(x)} (—uX) 6xkdx + [(f(xk) - u(xk))z]k 6xk =0 Vk . (9)
k-1

With 6u in the space of piecewise linear discontinuous functions

the orthogonality condition (8) is equivalent [1] to the conditions

"

f(x)-u(x) ¢k1 dx = 0 (10)
ik {r0-uea)
-1
*k
J {f(x)—u(x)} ¢k2 dx = 0 (11)

Xpe-1

where ¢k1’ ¢k2 are the half linear basis functions in element k (see
fig. 1). On the other hand, since ©6x lies in the space of piecewise
linear continuous functions, we may set ©0x = @ du = uxéx in (7) to

obtain

[[f(xk)—u(xk)]z]k =0 . (12)



Using L,R for left and right values at the (variable) node k , it

follows from (13) that either

f - u = f - up = u =up (13)

and u 1is continuous at the new position of node k , or that

(f —uy)=f-u, = u +u, = 2f (14)

L) R L R
there.

Now it is known [2],[3] that for convex functions f(x) the best
L2 fit amongst discontinuous piecewise linear functions is continuous,
which clearly corresponds to (13). The case leading to (14) cannot
therefore correspond to convexity in f(x) and may apply only at
inflection points.

It follows that the solution of the problem (10),(11),(12) is the
set of best linear fits in separate elements which have the continuity
property (13) or the averaging property (14), the former in the presence

of convexity of f(x) .

§2. The Algorithm

The algorithm used here to find the best L2 fit with variable
nodes is in two stages (carried out repeatedly until convergence),

corresponding to the choices of variations referred to in §1 above.

Stage (i) 6x =0, &bu=¢ . or ¢ (k=1,2,..., ntl 15)
k1 k2



This stage of the algorithm corresponds to the best L2 fit amongst

linear functions discontinuous at prescribed nodes, as in (1),(2).

Stage (ii) 6x = @ Su- ux6x = 0 (k=1,2,..., n+l) (16)

This stage corresponds to finding X such that (12) holds, with
variations of x,u restricted to points lying on the piecewise linear
approximation (possibly linearly extrapolated) in element k .

The algorithm is analogous to minimising a quadratic function
f(x,y) using two search directions vl and v2 spanning the plane.
Starting from some initial guess we may alternately minimise f in the
directions vl and v2 . Similarly, to find the best L2 fit we may
begin with an initial guess {xk}.{uk}L,{uk}R . Stage (i) is to find
the minimum in the linear manifold specified by the variations given in

(15) and so solve (10)-(11) for new {xk},{u with the Xy

e (g
fixed. Stage (ii) is to find the minimum in the linear manifold
specified by the variations given in (16) and so solve (12) for new
{xk},{uk}L,{uk}R by the implementation of (13),(14), more fully
described below.

For regions in which f(x) 1is convex the solution for ¥, 1is
provided by (13), i.e. the intersections of lines in adjacent elements
(see fig. 2). In this case f(xk) & u(xk) is of the same sign when
approached from left or right. Where f(x) has an inflection point the
intersection construction may fail and need to be replaced by the
averaging construction (14). This will occur when values of
f(xk) - u(xk) are of opposite sign when approached from left or right,

as in fig. 3. Note that the calculation of Xy from (14) is implicit



since f depends on X and u are new values, but the main

L'"R
iteration may be used to move towards the converged X by simply using
the previous X and u values.

If f(x) 1is convex the result of the converged iteration
(stage (i) — stage (ii) - repeated) is the grid with the best continuous
L2 fit using piecewise linear approximation. If f(x) 1is not convex
there will in general be discontinuities in the fitted function but only
at inflection points. It is simple to replace such a discontinuity
locally by a continuous approximation (by say simply averaging the nodal
values - in which case the result is the function value). This is of
course at the expense of slightly moving away from the best fit
minimisation at isolated points; the resulting approximation may
however be used as an initialisation for more thorough algorithms [3].

The L2 error of the fit described here is never worse than the

error of the interpolant u, which is well known [4] to satisfy

I

-2
il
Il - £l < =111, (17)

on (0,1) . (See also Appendix).

83 Results

We show results for five examples,
-20(1-x)

(a) e 0¢x¢(1 11 interior nodes
(b) tanh{20(x-0.5)} O <(x <1 11 interior nodes
(c) sin 2mx 0<x<1 11 interior nodes
(d) sin 2mx 0({x¢1 10 interior nodes
e 0¢<x<O0.5
(e) .
(1.5x) e 0.6 {(x <1

11 interior nodes



In each case the initial grid is equally spaced. Examples (c) and
(d) distinguish between the constructions (13) & (14) (see figs. 2
and 3).

In each example the trajectories of the nodes towards the final
positions are shown together with the function and the fit obtained.
The process is said to have converged when the £ norm of the nodal
position updates is less than 10—4 . The number of iterations appears

on the ordinate axis of the trajectories.
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Appendix A
In this appendix, following [5], we give an asymptotic
equidistribution result for the convex case. From (11) and (12) it

follows that u—f vanishes at at least two points in each element, s

k
and tk say. Hence u'-f' vanishes at at least one point in each
element, r, say. Then, since u” =0,

X X o " , ,
f df =} (f —u)df = £f'(x) - u'(x) (A1)
Tk Tk
and
Jx (f'-u')dn = £(x) - u(x) . (A2)

sk or tk
Hence

"k K i N

J (f-u)3dx = J { Jx Jn f (E)df} dx (A3)

s, “or t T
-1 X1 K k
K 2 N
SJ {(xk-xk_ﬂ fmax.k} E% (A4)
*k-1
where f“ is the maximum norm of f" in element k .
max, k
Now, if E(x) 1is an equidistributing function

(xk—xk_l) E(Bk) = a constant, C , (A5)
where X, _, <8 <x . and we have

Xk Xk 2

J (f-u)2dx € C* I {E(G VR dx (A6)

k max, k

Xe-1 -1
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so that

xn i Xk =2
J (£-u)?ax ¢ ¢* ) J {E(ek)}'4 {f;ax’k} dx . (A7)
x0 k=1 X1

Finally, as in [5], we approximate the right hand side of (A7) by

the integral

n 2
4 -4 .1
C J {E(x)} {f .k} dx . (A.8)
and minimise over functions E(x) , yielding

oo} ()] -

or

E(x) = {f"(x)}z/s (A.10)

which may be regarded as the asymptotically equidistributed function.
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Appendix B
In this appendix we extend the result in the main body of the
report to general extremals.

For the problem of finding the extremal of the integral

JF(x,u)dx (B1)

over piecewise linear discontinuous functions u(x) with variable

nodes, we folllow the same procedure as in §1, obtaining

J Fu(x.u)ﬁu d« =0 (B2)
k-1

K
J Fu(x.u)(—ux)éu dx + [F(x,u)] Bxk =0 vk (B3)
X k

k-1

in place of (8) and (9). Then (10),(11) and (12) become

XK
J F, (x.u) ¢ 4 dx =0 i=1,2 (B4)
k-1
[F(x.u)] =0 . (B5)
k

The corresponding algorithm is to solve (B4) for u in each
element with fixed X (stage (i)) and then to solve (B5) for the X
with u restricted to the stage (i) solution, possibly extrapolated

(stage (ii)). Both problems are nonlinear and may or may not have
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unique solutions. An example in which

F(x,u) = Q(x).u + p(u) (BS)

where Q(x) 1is the given mass flow in a nozzle and wu,p(u) are the

velocity, pressure has been treated in [6].
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