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1. INTRODUCTION

It has been illustrated by H.M.S.0. (1981) that the generation of
electrical energy using tidal energy is economically viable. An
important factor associated with assessing a tidal-power scheme is
knowing that the plant is operating at maximum efficiency; Count
(1980), Wilson et al. (1981), Jefferys (1981), and Berry (1982) have
recently investigated aspects of this topic, utilising a number of
mathematical models and techniques.

A particularly attractive tool for solving tidal-power-—generation
problems is the mathematical theory of Optimal Control. Birkett and
Nichols (1983a, 1986), Berry, Birkett, Count, and Nicol (1984), Birkett,
Count, and Nichols (1984), Birkett, Count, Nichols, and Nicol (1984),
and Birkett (1985b, 1986) have applied optimal-control methods to the
problem of maximising the average-power or revenue functional subject to
the satisfaction of fluid-flow equations in an estuary. These workers
then apply numerical techniques, including finite differences and an
iterative Conditional Gradient algorithm, to the resulting
optimal-control problem. This approach has been proven to be
computationally feasible, and may be generalised to accommodate, for
example, ebb or two-way schemes, nonlinear headflow relationships, and
variable estuarine geometries.

In this report we describe the recent work conducted on the
tidal-power—-generation models of the Reading University Group, which
include either ordinary differential equations or partial differential

equations. Section 2 contains work on the



ordinary-differential-equation models, on which almost all attention has
been focussed recently. In Section 3 we describe the models governed
by partial differential equations, and in Section 4 we draw conclusions

and suggest future work.



2. ORDINARY-DIFFERENTTAL-FQUATION MODELS

Consider an estuary across which there is a barrier containing Kl
turbines and K2 sluices. Let us assume that the tidal elevation is

constant on either side of the barrier, and that it is a known function

of time on the seaward side. Then the water—surface elevation above

the datum level, 7, satisfies

S(n(t)) n(t) = K; a;(t) P(£(t) - n(t)) +

Ky ao(t) R(E(E) - m(£)), 0 < t<T, (2.1)

and
n(0) = =(T). (2.2)

where T 1is the tidal period and f 1is the elevation above the datum
level on the seaward side of the barrier (and is periodic with period
T). The functions S, P, and R denote the horizontal surface-area

of the water, the flow through a turbine, and the flow through a sluice

respectively. The proportions of turbines and sluices in operation are
respectively ay and Qg which satisfy
0 ¢ al(t) < 1
. 0<Ct<T. (2.3)

[7aN
—

0 ¢ a2(t)



Let C be a tariff function, then the energy, E. obtained is given by

T
E = K1 J C(t) al(t) F(f(t) - n(t)) dt, (2.4)
0

in which % 1is a function representative of the instantaneous power (at
a particular head difference). Throughout this report, we take C to
be unity, corresponding to the maximisation of energy (as opposed to
revenue).

The Optimal Control Problem (Birkett, 1985a) is that of determining
a and ag SO that E of (2.4) is maximised subject to (2.1)-(2.3).

The Reading Group has three ordinary-differential-equation models
for optimising the generation of tidal power. A simple model, referred
to as Model OD1, can simulate ebb or two-way generation for a single
tide (with one constant amplitude), and maximises either power or
revenue. Model OD2, on the other hand, simulates only ebb generation,
but may optimise over a sequence of tides with different amplitudes;
again, either power or revenue may be maximised. In addition, Model OD2
includes options for pumping water into the basin (i.e., upstream of the
barrier) and expansion losses (the latter requiring testing). A
hybrid, Model OD3, is essentially Model OD1, but has the capacity for
optimising over a series of tides, as in Model OD2. A computer program
describing the original Model ODl1, written by Dr. Nick Birkett, was
adjusted by Dr. Ian Johnson and the author to produce programs
representing Models OD2 and OD3 respectively.

There are three sets of data for use on the three models: one set

representing the Severn estuary; another set, the Mersey estuary; and



a third set of test data (referred to as Test), which requires smoothing
as this data is quite severe (see Section 2.4). The Mersey and Test
data sets may be incorporated in all three models, whereas the Severn
set is compatible only with Model OD1. It is intended to replace the
three models by a sophisticated one which includes all options of the
existing models, and which admits the use of all three data sets.

In the ensuing subsections we perform a variety of experiments on
the ordinary-differential-equation models and discuss the outcomes.
The experiments consist of analysing the variation of the generated
energy with respect to (i) perturbations in the tide, (ii) ebb or
two-way generation, (iii) the initial choices of controls for the
turbines and sluices, and (iv) the technique used to smooth certain
data. The tests corresponding to (i), (ii), (iii), and (iv) are
described in Subsections 2.1, 2.2, 2.3, and 2.4 respectively. In

Subsection 2.1 we vary the tide, but in 2.2, 2.3, and 2.4, it is given
by

To(t) = A cos(2mt/T) , 0<Ct<T, (2.5)

where A 1is the tidal amplitude and the tidal period, T, 1is taken to

be 12.42 hours in all experiments.

2.1 The Effect of Tidal Perturbations

In this subsection we consider ebb generation in Model OD1 using
data describing the Severn estuary, with 216 turbines, 166 sluices, and

800 time steps. Consider the tides Tl' T2. T3. and T‘1 (for



t € [0,T]) defined by

Tl(t) = A cos(2mt/T) + €A , (2.6)
T2(t) = A cos(27t/T) + €A cos(4wt/T) , (2.7)
T3(t) = A sin(27rt/T) + €A , (2.8)
T4(t) = A sin(2rt/T) + €A sin(4mt/T) , (2.9)
where € is a perturbation parameter. Note that T1 and T3 are

essentially the same, since
T3(t + Tr74) = Tl(t) ’ t €R ; (2.10)

i.e., 'I‘1 and T3 differ only in phase, by an amount T/4 .

The purpose of the experiment in this subsection is to investigate
the variation of the obtained energy with € for different amplitudes.
We select a value for A then choose € as 0.00(0.01)0.10 .

Figures 1 and 2 illustrate the variation of energy with € (for
the four tides) with respective amplitudes of 3.25m and 4.25m . In
both figures, Curve A corresponds to both tides Tl and T3 (verifying
their equivalence), Curve B to T2. and Curve C to T4 N On each
particular graph the greatest amount of energy obtained corresponds to
€ = 0.10 (or 10%), the largest value of the parameter. For Figure 1,
the largest percentage increases for A, B, and C are respectively
1.01%, 3.97%, and 4.26% ; the corresponding values for Figure 2 are
1.12%, 6.15%, and 3.22% . These results show that the variation in
obtained energy, which is not highly significant, is greater in the case

of the harmonic perturbations than in that of the constant ones (i.e.,
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the €A terms).

2.2 Comparison of Ebb and Two—way Generation

The purpose of the experiment in this subsection is to compare the
energy generated from ebb and two-way schemes. On employing Model 0OD3
and the Mersey data with 300 time steps, we obtain the results in
Table 1. Columns 1, 2, and 3 correspond to Data 1, Data 2, and Data 3
(the turbine-sluice numbers of which are respectively (13,9), (26,18),
and (52,36)). The left-hand entry in each column is the ebb-generation
energy; the right-hand one is the two-way-generation energy. A
graphical form of the ebb-scheme results appears in Figure 3, in which
A, B, and C respectively correspond to Data 1, Data 2, and Data 3. A
two-way-scheme graph is not included, as its form is similar to that of
the ebb one.

With reference to Table 1, we see that (as expected), for a fixed
amplitude and data set, the energy generated from the two-way scheme is
not less than that from the ebb scheme. Also, the amplitude at which
the two-way energy first exceeds the ebb energy increases on increasing
the numbers of turbines and sluices.

Curves of instantaneous power against normalised time (i.e., time
divided by the tidal period) for an amplitude of 5.5m are present in
Figures 4 and 5 for ebb and two-way schemes respectively. It is
apparent that two-way is superior to ebb for this particular, large
amplitude. This is, however, not true for the case of the Severn data

with an amplitude of 5.5m: both schemes produce Figure 6.



Energy (GWh)

Amp.

(m) Data 1 Data 2 Data 3
1.625 | 0.260 0.260 | 0.346 0.346 | 0.360 0.360
1.875 | 0.370 0.370 | 0.524 0.524 | 0.574 0.574
2.125 | 0.487 0.487 | 0.727 0.727 | 0.825 0.825
2.375 | 0.613 0.613 | 0.953 0.953 | 1.107 1.107
2.625 | 0.738 0.738 | 1.183 1.183 | 1.415 1.415
2.875 | 0.861 0.861 | 1.417 1.417 | 1.752 1.752
3.125 | 0.984 0.984 | 1.657 1.657 | 2.113 2.113
3.375 | 1.108 1.108 | 1.904 1.904 | 2.496 2.496
3.625 | 1.232 1.232 | 2.1562 2.152 | 2.902 2.902
3.875 | 1.353 1.358 | 2.404 2.404 | 3.329 3.329
4.125 | 1.456 1.468 | 2.634 2.634 | 3.760 3.760
4.375 | 1.542 1.568 | 2.839 2.840 | 4.184 4.184
4.625 | 1.618 1.656 | 3.018 3.020 | 4.593 4.593
4.875 | 1.684 1.804 | 3.174 3.180 | 4.980 4.980
5.125 | 1.740 1.988 | 3.308 3.322 | 5.339 5.339

Table 1
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2.3 Control-sensitivity Tests

We employ the two-way Mersey scheme and Model OD3 to investizate

how sensitive the generated energy is to the choice of the initial

sluice and turbine controls. Let fi , i =1(1)7 , be defined by
0 0<t<0.25
fl(t) =4 0.1, 0.25 ¢ t £ 0.75 ¢, (2.11)
(6 0.75<t(<1
0, 0 <t <0.75
f2(t) = . (2.12)
0.1 0.75 <t <1

(@]
—
o
I
ct
I~
o
g

£4(t) =90, 0.25 < t < 0.75 (2.13)
0.1 5 0.75 < t <1
(0.1, 0¢tg0.125 1
0, 0.125 < t < 0.375

£,(t) =90.1, 0.375 ¢ t £ 0.625 ¢ , (2.14)
0, 0.625 < t < 0.875
L 0.1, 0.875 < t ¢ 1 4
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0, 0<t<<O0.125 W
0.1 , 0.125 ¢ t £ 0.375
fS(t) =9 0 , 0.375 < t € 0.625 ¢ , (2.15)
0.1 , 0.625 { t ¢ 0.875
L O . 0.875 <t <1 ]
fe(t) = 0.1|cos(2rt)]| . 0<¢tg1 (2.186)
f7(t) = 0.1[1 - cos(27wt)] . 0<tgl, (2.17)
in which t is the normalised time variable. Then with 18 sluices, 27

turbines, 300 time steps, and a tidal amplitude of 3.625m, we obtain the

results in Table 2.

Initial Sluice Initial Turbine Number of Energy
Control Control Iterations (GWh)
fl f2 10 2.193
f3 fl 9 2.190
f4 f5 8 2.191
f6 f7 7 2.190
f7 f6 5 2.194
Table 2

Table 2 illustrates that, even though the number of iterations

required for convergence of the control may vary considerably, the



_12_

variation in obtained energy is insignificant. This conclusion zolds
also for initial-turbine-sluice-control combinations of functions not
defined in (2.11)-(2.17). (Note that, in every experiment conducted,
the initial turbine (or sluice) control did converge to the same turbine

(or sluice) control.)

2.4 Smoothing Discontinuous Functions

Let P(y) denote the flow through a turbine when the head

difference (i.e., f(t) - n(t) ., at time t , in Equation (2.1))
is vy . Then P is sufficiently smooth for the Severn and Mersey
cases, but not for the Test case. The function P which represents

the Test case is depicted in Figure 7.

P(y)

A

280 -

0.0 1.5 3.0 4.5 6.0

Figure 7
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We now focus our attention on previous and present methods for
smoothing P (and functions of similar character) in the Test case.
The data for P is supplied in the form of point values at several
selected head differences. The approach of Johnson (1988) is to

approximate P wusing (a) the value of zero in [O,yo] )

where O < Yo < 1.5, (b) piecewise—quadratic functions through three
consecutive points in [1.5,6] , and (c) a hyperbolic tangent function
to ensure the continuity of P in (y0.1.5) . The disadvantage with

this technique, however, is that P' 1is discontinuous at some nodes - a
severe drawback since the evaluation of P’ is necessary in the
Conditional Gradient algorithm (see Section 1). Consequently, the code
of Johnson (1988) is capable of simulating ebb generation but not
two-way generation.

As an alternative approach to that of Johnson (1988), the idea of a
cubic spline springs readily to mind, since P’ would then be
continuous. The singularity at 1.5, however, prevents sensible
approximations arising from this treatment. We therefore consider (a)
taking P to be zero on [0,1.5-€] , for some small number € (like
Johnson, (1988)). (b) implementing a natural cubic spline on [1.5,6] ,
and (c) introducing a linking function on (1.5-€,1.5) . The obvious
choice for the linking function is a cubic satisfying both function and
derivative values at 1.5~€ and 1.5 , thereby ensuring the continuity

of P' . This approximation to P 1is illustrated in Figure 8.
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P(y)
41\
280 4
0] > > Y
0.0 1.5-€ 1.5 3.0 4.5 6.0

Figure 8

For comparison purposes only, we consider modifying the previous
method to: (a) retain both the zero function on [0,1.5-€] and the
cubic spline on [1.5,6] , (b) replace the cubic on (1.5-€,1.5) by the
straight line which admits the continuity of P , and (c) force P' to
be continuous by appropriately defining it to be linear on
(1.5-€,1.5) .

The smoothing techniques of the previous two paragraphs are
incorporated in the Test data (comprising 160 turbines and 166 sluices)
to produce simulations for a tide of which the amplitudes vary from
1.95m to 3.75m . In both cases, the smallest value of € that does
not cause the simulation to fail is 0.5 - an unacceptably high value!

Table 3 contains a comparison of ebb and two-way results using this
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optimal value of € .

Approximation Ebb Energy Two-way Energy
for P (GWh) (GWh)
Spline + cubic 63.815 76.372
Spline + line 63.900 76.461
Table 3

The results in Table 3 illustrate that the two approximation
methods described above give rise to similar results. This conclusion
is also present when other approximation techniques (e.g., a cubic
spline and a quadratic for P , and the derivative of the spline and a
linear for P') are employed. The use of a centred interval (i.e.,
(1.5-%4€,1.5+4€)) also produces results which are very similar to those
in Table 3; the same trend is followed when different numbers of
turbines and sluices are used. The problem appears to be a consequence
of the stability of the finite-difference scheme (the Trapezoidal Rule),
which requires that the time increment be less than 2/||P'||°° : This

stability restriction is consistent with the conjecture that the value

of ||P'||w increases as € 1is decreased.
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3. PARTIAL-DIFFERENTTAIL-FQUATION MODELS

The Optimal Control problems of this section are of the same form

as the one described in Section 2, but are more sophisticated.

Suppose that a one-dimensional estuary begins at x = —81 . ends
at x = 22 , and has a barrier located at x = 0 (21 and 22 are
positive constants). Then for x € [—81.82]\{0} , the analogy to

Equation (2.1) is the pair of one-dimensional shallow-water equations:
two coupled partial differential equations in terms of 7 , the water
elevation above a datum level, and u , the velocity. In addition,
there are periodic conditions for n and u (see Equation (2.2)),
together with a boundary condition for 7 at one end of the estuary and
one for u at the other. The flow across the barrier (i.e., at

x = 0) 1is continuous and 1is prescribed, thereby supplying the two
required interface conditions. The turbine and sluice controls, ay
and ag ., are constrained according to (2.3), as they are in the
previous models.

As is the case in Section 2, the Optimal Control problem is to
determine oy and aqg to maximise the energy derived from the scheme
(Birkett and Nichols, 1983b; Birkett, 1985a, 1986).

The Reading Group has three one-dimensional partial-differential-
equation models for the generation of tidal power. All models (which
were translated into computer programs by Dr. Nick Birkett) are capable
of simulating ebb or two-way generation, and can maximise either power

or revenue. The simplest model, named LPD, contains linearised

shallow-water equations and optimises the energy over a single tide.
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Model NPD is a nonlinear shallow-water model which allows for the
possibility of optimising over a sequence of tides; it also has options
for the inclusion of pumping and losses. The most sophisticated model,
which is still under development, is CFD. Like NPD, CPD is a nonlinear
model which can optimise over many tides and allows pumping: unlike
NPD, CPD attempts to optimise the route through the turbine hill chart
(i.e., the function P 1is not prescribed, but is solved for in an
optimal way).

Each of the three models can simulate only with data describing the
Severn estuary. At present, work is being performed on the NPD model
to facilitate compatibility with Mersey data. More recent work on this
model includes interpolating sets of point values for low-water

breadths, high-water breadths, and mean cross-sectional areas onto

equispaced meshes.
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4. CONCLUSIONS

In this report we have described the generation of tidal power, and
have presented the Optimal Control approach of the Reading University
Group. This approach has been applied to both the three ordinary-
differential-equation and three partial-differential-equation models,

with several data sets (not all data sets being compatible with each

model). We have outlined recent work, and experiments, all of which
were conducted on the simpler models. These experiments, reported in
Section 2, resulted in the following conclusions: (i) smll

perturbations in the tide do not produce significant effects in the
energy obtained from the scheme, (ii) in certain circumstances, more
energy may be extracted from a two-way scheme than from an ebb one,
(iii) the models are virtually insemsitive to the initial choices for
the turbine and sluice controls, and (iv) it 1is very difficult to
adequately smooth the severe Test data.

Future work should include replacing the three ordinary-
differential—equation models with one model which incorporates all their
features, and can run with either data set. The Test data set will,
however, certainly cause problems in this setup. It is therefore
desirable to investigate the possibility of utilising a derivative-free
optimal-control algorithm (i.e., one which does not require the
evaluation of P').

Regarding the partial-differential-equation models, we need to
carry out more work on NPD and CPD, including an amalgamation to produce

one model which can simulate generation with any of the three data sets.
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(This latter task may require the previously mentioned derivative-free
control loop.) Finally, a two-dimensional model would be a useful

contribution to the Reading work.
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