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Abstract

Optimal meshes and solutions for steady conservation laws and systems
within a finite volume fluctuation distribution framework are obtained by least
squares methods incorporating mesh movement. The problem of spurious modes
is alleviated through adaptive mesh movement, the least squares minimisation
giving an obvious way of determining the movement of the nodes and also pro-
viding a link with equidistribution. The iterations are carried out locally node
by node which yields good control of the moving mesh. For scalar equations
an iteration which respects the flow of information in the problem significantly
accelerates the convergence.

The method is demonstrated on a scalar advection problem and a Shallow
Water channel flow problem. For discontinuous solutions we introduce a least
squares shock fitting approach which greatly improves the treatment of dis-
continuites at little extra expense by using degenerate triangles and moving the
nodes. Examples are shown for a discontinuous Shallow Water channel flow and
a shocked flow in gasdynamics governed by the compressible Euler equations.

1 Introduction

Finite volume schemes of fluctuation distribution type for the approximation
of steady first order hyperbolic equations and systems are now well established
[5]. In particular the class of multidimensional upwind schemes on unstructured
triangular meshes has been very successful [6]. The least squares methods of
finite volume type discussed in this paper also belong to this family, although
their properties differ.

Roe was the first to suggest the fluctuation-distribution framework for steady
first order hyperbolic PDEs and systems in multidimensions [11]. In this ap-
proach a fluctuation (proportional to the PDE residual) is defined on each cell
of the mesh and distributed by signals to the nodes of the cell, i.e. weighted
fractions of the fluctuation are added to the solution values at the nodes of the
cell. This distribution is carried out for each cell and the cumulative update at
a node is the sum of the weighted contributions from cells with that node as a
target. To reach steady state the procedure is repeated, updating the solution
values until the total increments at every node have become zero, at which point
the process is said to have converged.

As pointed out in [12], a descent method applied to the least squares method
within a finite volume framework is also a fluctuation-distribution scheme. In



the present paper this idea is developed further, using among other things the
connection between least squares minimisation and equidistribution [1], and in
particular is extended to nonlinear systems of PDEs.

For fluctuation distribution schemes in general, even though the total incre-
ments at a node may have converged to zero, the individual cell residuals (or
fluctuations) need not have vanished but only their weighted sums, leading to
an unsatisfactory solution. One way to alleviate the difficulty is to increase the
number of degrees of freedom available by including the mesh locations as addi-
tional variables in the least squares minimisation and hence moving the mesh.
As a consequence, when the total increments at a node converge, the individual
fluctuations in a cell are closer to zero and yield a better approximation to the
PDE and the solution. In the case of scalar problems spurous solutions may be
eliminated altogether and the outcome identified with an approximate method
of characteristics.

Repositioning the nodes in this way leads to conservation and a measure
of equidistribution, the latter ensuring that convergence takes place uniformly
with respect to the mesh.

In this paper the method is applied to a scalar PDE problem and a Shallow
Water channel flow problem, both of whose solutions are smooth.

For problems with non-smooth solutions, least squares methods are known
to give poor solutions close to discontinuities. Here we take a shock fitting ap-
proach and use a least squares moving mesh method to improve the position
of the shock. In recent years a great deal of effort has been put into mesh
refinement near shocks using mesh subdivision but substantial improvements
in shock resolution can also be obtained by making minor adjustments to the
mesh. We introduce degenerate cells in the vicinity of the shock and a least
squares shock fitting procedure to adjust its position. A multidimensional up-
winding shock capturing scheme [6] is used to generate an initial solution and
a first approximation to the position of the shock. A least squares shock-fitting
approach is then used, to improve the position of the shock ([4],[9]). This is
achieved by a least squares minimisation of a measure of the jump condition
over nodal positions in degenerate cells. In the smooth regions either side of the
shock the least squares method may then be expected to work well.

Results are shown for a scalar problem with a contact discontinuity, a Shallow
Water problem in a constricted channel with a hydraulic jump, and an Euler
gasdynamics problem with an exact solution including a shock reflection.

The layout of the paper is as follows. In section 2 we give the definition
of the fluctuation and its functional form in certain cases. Section 3 describes
fluctuation distribution schemes and least squares methods (with descent) in a
finite volume framework. In section 4 we discuss the role of node movement
in improving the accuracy of solutions and exploiting the link between least
squares and equidistribution. Details of the descent methods used for achieving
least squares minima are described in section 5 and an upwinding strategy is
described in section 6. Results are shown in section 7 for a scalar advection
example and a problem involving a nonlinear system of equations, the Shallow
Water equations.



The role of degenerate cells in generating discontinuous solutions is discussed
in section 8. Results for some discontinuous scalar problems and nonlinear
gystems are shown in section 9 with conclusions in section 10.

2 Fluctuations

We consider the two-dimensional conservation law
div(f(u)) = 0 (1)
with integral form

]4 f(u).AdT = 0 @)
N

where # is the inward normal to an arbitrary closed surface I' in a domain €.
The boundary condition is an inflow condition over I'y, the part of the surface
for which %ﬁ.ﬁ > 0.

Let the domain be divided into triangles 2, and let f be approximated by a
piecewise linear function F. Then we define the fluctuation in triangle Q. to be

6= § Faar 3)

where T', is the perimeter of Q..
We also define the average residual

= 1 . 1 de
= — df)l = — N - —
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where S, is the area of triangle e.
Since F is linear in the triangle we can use a trapezium rule quadrature to
write (3) as

1
de = 3 {(Foy + Fop)nos+ (Fop+ Fog)ngr + (Foz + F,)n.)}, (5)

where n_; (i = 1,2,3) is the inward unit normal to the i** edge of triangle e
(opposite the vertex ei), as shown in figure 1, multiplied by the length of that
edge. It is easy to verify that, for any triangle,

Ry + Moz + 3 = 0, (6)
so the fluctuation (5) may be written as
b=~ {Fu s + Eupmg + Py s} ™)
or, since n,; = (AY.;,—AX;),
13
be=—73 2 (FeiAYes — GeiAXei) (8)



where F = (F,G) and A1 X = X,y — X.3 denotes the difference in X taken
across the side opposite node el in an anticlockwise sense (and similarly for
AesX and A3X). A dual form of the fluctuation is obtained by rewriting (7)
as

1 3
be =5 D (YeiAFei — XeiAGe:) (9)

ei=1

We aim to set the fluctuations ¢. to zero in order to satisfy (1).

Figure 1: A general triangular cell e
In the case where i is of the form
fi= a(z)u (10)

where a(z) is a divergence-free velocity field, the PDE (1) reduces to the advec-
tion equation

a(z).Yu=0 (11)
Then the fluctuation may be written
e = = 23: (0eiUes AYe; — beiUei AXe;) (12)
=

where a = (a,b) = (a(Xei, Yei), b(Xes, Yei)).
Now consider systems of nonlinear hyperbolic equations

divf(u) =0 = A(u).Vu (13)

where A is a vector of the Jacobian matrices (A, B)T.. The integral form is

}{ £(w).AdT = 0 (14)
IN



and the fluctuation (with f approximated by F) is

¢ = —% (Eo1-Rey + Fop iy + Fogones) (15)
13
=-3 3 (FeilYe — GeAXei) (16)
ei=1
with dual form i
Bo= 3 2 (YulFui = XsAGu) (17)
ei=1

Two systems of interest are the Euler equations of gasdynamics and the Shallow
Water equations.

3 Fluctuation Distribution Schemes and Least
Squares

In fluctuation distribution schemes we seek to set the fluctuations ¢, to zero via
an iterative procedure with an index n, say. In this procedure the ¢7, obtained
by substituting an estimate U™ into the (F, G) in (8), are distributed to nodes of
the mesh in order to give a U"*! for which the ¢7 are smaller. At each stage of
the iteration, for each triangle 2., a weighted amount of ¢, is added to the values
of the solution at the vertices of the triangle. In the Multidimensional Upwind
schemes ([6],[10]) the weights are chosen so that the schemes are conservative,
positive and linearity preserving. Conservation is assured if the weights in each
triangle sum to unity.

In the least squares descent method we seek to minimise either the Ly norm
of the average residual (see 4) or the Iy norm of the vector of fluctuations, using
a gradient descent method. The I3 norm is useful since it is bounded even for
the degenerate triangles considered in section 7.

The square of the Ly norm of the average residual, from (4), is

.7-'1:2/ RidQ:ZSeRz:Zg—z (18)
e Y« e e ¢

or, in the systems case,

t
F=Y 22 (19)

For the I3 norm of the vector of fluctuations we have

Fo= Z 5 or Fa = Z bee (20)

in the systems case.



Using a gradient descent method to carry out the minimisation, we find that
each step adds weighted amounts of the ¢, in each triangle to the values of the
solution at the vertices of the triangle, and hence has the form of a fluctuation
distribution scheme. For example, in the F, case, since the gradient of ¢2 with

respect to the nodal value U; is

a descent method will add a multiple of ¢, to U;. The weight (in the curly
bracket), from (8), is

0. _

=222 Z {FoiAYei — GiAX i} (22)
aU '7 ei=1
dFje dG G
= —-——AY}, ] AX e 23
dUJe J ( )
= —a,(Uje)AYje + b(Uje)AXje (24)
where je is the node of triangle e corresponding to 7 and we have used

dF dG) o

@), u0) = (5
In the case of differentiation with respect to X, the gradient of ¢? is

{ 66; }¢e (26)

and a descent method will add a multiple of ¢, to X;. This time the vector
weights, using (17), are

w;, = (0,1)TAF;e + (~1,0)T AGj. (27)

For systems of equations the corresponding matrix weights corresponding to
(24) and (27) are

Wie = —A(Uje)AYje + B(Uje)AX; (28)

and

= (0,1)TAF. + (-1,0)TAG,, (29)

Unlike multidimensional upwinding the sum of the weights in each triangle
is not equal to unity and a least squares descent step is not conservative in the
usual sense. However, the sum of the weights is zero for (27) and (29) and small
(of order h) for (24) and (28), giving another kind of conservation corresponding
to a redistribution of U or X values.

For the advection equation (10) we have from (12) the weights



Wje = —a(Xje, Yje) AYje + b(Xje, Yje) AXje (30)
for U variations and, using a dual form of (12),
5 &
Wie = 35~ > —{A (a(Xei, Yei)Uei) Yei + A (b(Xei, Yei)Uei) Xei}  (31)

) ei=1

for the X variations.
Similar sets of weights may be found in the minimisation of ;. In particular,

(26) generalises to
0 (42\_[2 06 _ 4 05,
oX, <5> - {se ox, ~ 570x, % (32)

4 Moving the Nodes

There are two motivations for moving the nodes. The first is the problem of
spurious solutions. The number of equations given by (3) is equal to the number
of triangles in the mesh but the number of unknowns is a multiple of the number
of nodes. In general these are different. If the number of equations exceeds the
number of unknowns it is impossible to satisfy all the equations and there exists
a null space and spurious modes. For any iteration of fluctuation distribution
type in which fluctuations are added to the vertices of the mesh with weights,
convergence of the nodal updates does not imply that the fluctuations vanish.
In particular, in the least squares descent approach the norms (18), (20) are
not necessarily driven down to zero. However, if we allow the coordinates of
the vertices to become additional unknowns of the problem, the size of the null
space is reduced and the solution improved.

For scalar problems the number of unknowns then exceeds the number of
equations and there are infinitely many solutions which make the norms zero,
although at convergence the least squares approach will yield a solution in a
best fit sense. A unique solution is obtained if the number of unknowns is equal
to the number of equations and this may be achieved in a scalar problem by
including just one coordinate per node in the list of unknowns. The fluctua-
tions may then be driven to zero by a fluctuation-distribution scheme without
encountering a null space. The result is an approximate method of characteris-
tics, as in Example 1 below. The accuracy of the approximate solution depends
only on the coarseness and/or connectivity of the mesh. For a system of two
equations in two dimensions, the number of unknowns is equal to the number
of equations when the nodes are allowed to move in both directions and this
has been studied in [12]. For systems such as the Shallow Water or the Euler
equations of gasdynamics the number of equations is always less than or equal
to the number of unknowns, but the inclusion of nodal variables significantly
reduces the dimension of the null space.



The second motivation comes from a link with equidistribution. As in [1],
the identity

(Zg: Se) (XB:SJ%E) = (Zﬁ: ¢e>2+ 37 SeiSes (Rey — Rey)”  (33)

e1>ea

shows that, if the total area of the domain y_, S, is fixed, then driving the norm
Fy (which from (18) equals ", S, R2), down to zero forces both terms on the
right hand side of (33) to zero, resulting in both global conservation and residual
”equidistribution”. The first follows because of the cancellation property

3
=Y 6= 2 33 (Rl + CulX.) (34)

e ei=1

Z (—FbAYb + GbAXb) (35)
b

N —

so that the total ¢ over the domain is equal to a sum over boundary values
b only. Hence the first term on the right hand side of (33) is a measure of
global conservation, while the second term is a measure of equidistribution of
the average residual R,.

In a similar way the identity

(Z 1) (Z ¢5) = (Z ¢e)2+ Y (fey — ¢en)’ (36)

e1>ez

(see [1]) ensures that, provided that the number of triangles ), 1 remains fixed,
the act of driving the norm }_, ¢2 down to zero also forces global conservation
and a measure of equidistribution of the fluctuations ¢, to go to zero. These
statements generalise immediately to systems of equations.

The global conservation term (35) is evidently unaffected by any adjustment
to the the values at the interior nodes. Therefore a reduction in the sum of squares
term on the left hand side of (33) or (36) due to such adjustments simply serves
to improve the quality of the equidistribution.

We shall discuss the use of least squares descent methods as fluctuation
distribution schemes in this context. Unlike multidimensional upwinding, such
an approach has the advantage of a norm to minimise which can readily be used
to generate the movement of the mesh as well as inducing global conservation
and equidistribution in the sense described above.

5 The Descent Methods

We give now the details of the minimisation of F5 with respect to the nodal
values U; and coordinates X, using a gradient descent method. The steepest



descent method generates contributions from the set of triangles je surrounding
node j, to be added to the values of U; and X ;, of the form

722{ 8¢“}¢,e, §X 022{ 6¢“}¢,e (37)

(see (21) and (26)) where 72 and o3 are suitably chosen relaxation factors and the
negative sign ensures that we go down the gradient. The relaxation parameters
control the step taken in the descent direction and are generally chosen via a
line search or a local quadratic model. Sometimes, however, it is necessary to
take an empirical approach to the choices of these factors.

In this paper we use a splitting technique, first minimising F» with respect
to U; with X; held constant and then minimising 7, with respect to X; with
U; held constant (It is possible, though unlikely, that the constrained nature
of the minimisation may lead to a saddle point.)

Consequently for the minimisation over U we may construct a quadratic
model in which the relaxation parameter is

—1 -1
O Fy 6?
(aT) = | 5oz 2% (38)
J J je
-1

o? 1
= W ZZ 4—3; Fez-EZ; De; (39)
J je

by (7). Let us now linearise F,; as a,;Ue; so that the relaxation factor becomes

~1

6U2 EZ 4—CZ Qey ez ez ne; (40)

je et

-1

24 Zje —' ]e —]e (41)

For the X minimisation of F; the functional is already quadratic, giving the
relaxation factor

AN
('@) - ZZ 4= n; Fei (42)

—J je et

which is )

= Z (FfelFJel L] FJe2F]e2) (43)
je



for each coordinate, where jel, je2 are the vertices of the triangle je other than
J. Alternatively, a line search may be carried out on each X,

For the advection equation (10) a quadratic model may be obtained by
freezing the advection speed in calculating the second derivative in the quadratic
model (see (12)).

For the minimisation of F; rather than F, we obtain an approximate quadratic
model simply by inserting the factor Sj'el between the a;je’s or Aj.’s.

These choices generalise to systems of equations where (41) becomes

-1

1
Z Zﬁjre Aje .A_feﬂje (44)
je

where A = (A, B) and F has been linearised as AU.

The iterations are carried out by continually sweeping through the nodes of
the mesh in a local manner. The identities (33) or (36) also hold on each palch
of triangles surrounding a node, showing that least squares minimisation leads
to local conservation over the boundary of the patch and equidistribution over
the triangles of the patch.

The sweeps through the nodes of the mesh may be carried out either in a
Jacobi or a Gauss-Seidel manner. The local approach is helpful in controlling
the mesh quality.

6 Upwinding

Generally the rate of convergence is slow or very slow. However, we can show
that in the scalar case convergence can be accelerated significantly by an aware-
ness of the origin of the problem. One consequence of minimising the least
squares norm of the residual or the fluctuation of the equation a.Vu = 0 is that
the original equation is embedded in the second order degenerate elliptic equa-
tion —a.V(a.Vu) = 0. The correct solution is picked out from the larger set
of solutions by the outflow condition, which is the original differential equation
a.Vu = 0 applied at the outflow boundary. Indeed we may write the second
order equation as the system

aVu=1v (45)

with U given on T's and
—aVv=0 (46)

with V' given on I';. The first of these is the solution of the original PDE with
a source term v which is the solution of the second equation. For the second
equation the analytic solution is ¥ = 0 but numericallly a nonzero v will be
generated building up from the outflow (the characteristics run backwards in
(46)), forcing a non-zero source term in (45).

As befits an elliptic solver, the Least-Squares descent method updates are
distributed to all the nodes in a triangle but it may be argued that, because of

10



the hyperbolic nature of the original equation, the updates should exhibit an
upwind bias, as in the case of multidimensional upwinding, and the nonzero v
solution should be suppressed.

One way of achieving the upwind bias (see [3], [9]) is to carry out the minimi-
sation of the functional over only downwind nodal values, allowing temporary
discontinuities in U. The updates resulting from this minimisation still reduce
the functional but at the expense of making U discontinuous. However, we may
follow this step by a second projection step which resets the upwind values of U
so as to restore continuity of U. This is not a descent step and may increase the
fluctuation. Nevertheless, we may iterate on the two steps, seeking convergence.
If convergence is attained the discontinuities have tended to zero and we have
a continuous U which also minimises the functional since its gradient is zero.
Since the minimisation is constrained a higher value of the functional may result
(the two projections cancelling each other out), but further improvement may
be found at this point by switching to the full least squares iteration.

By a similar argument on the dual form (9) of the fluctuation, the X contrib-
utons should also be upwinded (although the boundary conditions differ from
those on v).

Not surprisingly we find that convergence is much faster, not only for the
U variations but also for the X variations. The algorithm has a strong upwind
bias which reflects the nature of the original problem and its dependence on
characteristics. In fact the two steps taken together are equivalent to simply
suppressing the upwind updates in the least squares descent method. With an
appropriate scaling the U step is simply the LDA scheme of multidimensional
upwinding [6].

" We now give results for two problems in which these techniques are used.

7 Numerical Results for Continuous Solutions

Example 1

We first consider the scalar two-dimensional advection equation
a(z).Vu=0 (47
where g(z) = (y, —«) in a rectangle —1 < 2 < 1,0 <y < 1, which generates a

semicircular hump swept out by the initial data, here chosen to be

U:{1 —-06<z<-05 (48)

0 otherwise

Results are shown in Figures 2 and 3 on a fixed and moving mesh, respectively.
Fastest convergence occurs when the sweeping is upwinded, taking into account
the hyperbolic nature of the equation.
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As expected the solution on a fixed mesh is poor. On the other hand, when
the mesh takes part in the minimisation the norm Fj is driven down to machine
accuracy. The redistribution effected by the least squares minimisation forces
global conservation and equidistributes ¢ amongst the triangles [1] leading to
uniform convergence. Cell edges have approximately aligned with characteristics
in regions of non-zero ¢, allowing a highly accurate solution to be obtained.

# l‘!‘h{"&?‘:ﬁ};{ﬂ .
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Figure 2: Initial grid and solution for example 1.
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Figure 3: Final grid and solution for example 1.
The left hand graph in figure 4 shows the convergence of the solution up-
dating procedure using
(a) Steepest descent globally with 7, = 0.5
(b) Optimal local updates (quadratic model)

(c¢) Optimal local updates over downwind cells only.

Convergence is improved in (b) and (c¢). Even though (c) is not monotonic it

converges very quickly, albeit to a higher value, due to the minimisation being
constrained.
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Figure 4: Comparisons of convergence histories.

The convergence rates obtained when the nodes are allowed to move are
shown in figure 4 (right). Once again we start from the converged solution on
the fixed grid and use

(a) Steepest descent globally with 71 = 0.5 and o3 = 0.01
(b) Hessian local updates

(c) Hessian local updates over downwind cells only.

A small amount of mesh smoothing was included in (b) and (¢). In particular,
(b) became stuck in a local minimum if more iterations are used. Node locking
was a problem with the full least squares approach: node removal or steepest
descent updates could be used to alleviate this problem but when tried these
still took over 1000 iterations so were not competitive when compared to the
upwinding approach which yielded the best result.

Example 2

We now consider the system of equations (13) corresponding to a form of
the homogeneous Shallow Water equations written in conserved variables (see
[71, 18])-

We shall consider a smooth subcritical constricted channel flow governed by
these equations. The computational domain represents a channel of length 3
metres and width 1 metre with a 5% bump in the middle third. The freestream
Froude number is defined to be Fs, = 0.25 and the freestream depth is b = 1m.
The resulting flow is entirely subcritical and symmetric about the centre of the
constriction (the narrowest point in the channel).

The fixed mesh is shown at the top of figure 5 and the least squares descent
solution (depth contours) on the mesh beneath it. This is also the initial mesh

13



for the iteration when the mesh is moved. The other pictures in the figure show
the adapted mesh and solution on this mesh.
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Figure 5: Initial grid and solution for example 2.

Figure 6 shows convergence histories for this problem with and without mesh
movement. An improved minimum is achieved by incorporating mesh movement
in the minimisation process. However, F; is not dramatically decreased in this
subcritical problem because there are no particularly sharp features in the flow
which can be improved upon by the use of mesh movement.

8 Use of Degenerate Triangles

In the presence of shocks or contact discontinuities least squares methods give
inaccurate solutions which are unacceptable. One way to combat this problem is
to divide the region into a number of domains and introduce degenerate triangles
at the interface. We may then use a least squares method with moving nodes
to adjust the position of the discontinuity, as in shock fitting methods.
Consider again the scalar problem (1) as a PDE generating a shock or con-
tact discontinuity. We first obtain an initial approximate solution U to this
equation by the use of a multidimensional upwinding shock capturing scheme.
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Figure 6: Convergence histories with and without mesh movement.

An initial discontinuous solution may then be constructed by introducing de-
generate (vertical) triangles in the regions identified as shocks, using a shock
identification technique. In the results shown below this step was carried out
manually but the degenerate triangles can be added automatically using tech-
niques that exist in the shock fitting literature (see for example [14], [13]). The
corners of the degenerate triangles are designated as shocked nodes and these
form an internal boundary, on either side of which the least squares method
may be applied in two smooth regions where it is known to perform well. The
position of the discontinuity can then be improved by minimising a least squares
shock monitor based either on the fluctuation in the degenerate cells or on the
jump condition.
Consider then the jump condition at a shock associated with the conservation
law (1),
f(ur)oy + f(ur) g = O, (49)

where f(ur) and f(ug) are the fluxes to the left and right of a discontinuous
edge.

We obtain an improved location of the discontinuity in the discretised prob-
lem by minimising an L, measure of the residual of the jump condition with
respect to node positions using a piccewise linear approximation F' to f. Thus
consider minimisation of the norm

Fo= Y [ (PUD)ap+EWR) f)ar, (50)
Qen’Ta

to update the position of the discontinuity where I'g is the edge connecting
nodes i and j in figure 7 and F(Ur), F(Ug) are the values of I at the left and
right states.
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Figure 7: Cells either side of a discontinuous edge

We could have used degenerate triangles rather than quadrilaterals. When
updating the nodal positions X;, and X;_ we require that they have the same
update (so that the cell remains degenerate). The update comes from minimi-
sation with respect to their common position vector.

Consider the fluctuations ¢41 and ¢42 in the degenerate triangles dy and ds
on the edge containing nodes ¢ and j in figure 8.

JL
?
L d2
u g dq JR
Y £
Y in
Figure 8: Degenerate quadrilaterals @) and triangles dy, ds.
iFrom (7) these are
1 1
ba = =3 [E) m, ba = =5 [E] 1, (51)

where the square bracket denotes the jump across the discontinuity. (The con-
tributions from two edges vanish in each case due to the degeneracy of the

16



triangles.)
Then

$h+ 0% =7 {(E10,) + (B ny,)’) (52)

which is a trapezoidal rule approximation of F3. Hence we can also use

Fy= Z ¢ (53)

eelp

to improve the position of the shock, where p is the set of degenerate triangles.
(Note that Fy4 is bounded because ¢, in (3) is always bounded, even at shocks
where U is discontinuous. On the other hand, the average residual, given by
(4), is not bounded since S = 0 at shocks.)

A descent least squares method can then be used on F3 or F4 to move the
shocked nodes into a more accurate position. The procedure may be interleaved
with a descent least squares method on Fj or F3 for the smooth solution on
either side.

We now give some numerical results using this technique.

9 Numerical Results for Discontinuous Solutions

We now show results from three problems which exhibit discontinuities, one
scalar and the others for different nonlinear systems.

Example 3

The first of these problems is the advection of a contact discontinuity. We
consider circular advection as in example 1 but with initial data

1 z<-05
UE { -1 z>-05 (54)

on the inflow side. This represents the circular advection of a-contact disconti-
nuity.

Degenerate triangles are inserted vertically to connect the triangles on either
side of the discontinuity. The solution updates come from a least squares descent
method taken over non-degenerate elements (the least-squares updates to the
solution come from non-degenerate elements). The shock node adaptation is
by the mimimisation of Fy (see (53)). Results are shown in figures 9 and 10
for a fixed mesh and a moving mesh using degenerate triangles. Convergence
histories are shown in figure 11. The contact discontinuity has been accurately
located through the use of the degenerate elements.

17



Figure 9: Fixed mesh and solution for example 3.
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Figure 10: Moved mesh and solution for example 3.
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Figure 11: Convergence histories.
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and the freestream velocity is

(
An initial solution for the least squares shock fitting approach is found by

the Elliptic-Hyperbolic Lax-Wendroff multidimensional upwinding scheme of

o = lm

(1.72,0).)

the freestream depth is h
Voo )

Ueo

3

(

0.55

Results are shown in figure 12, which shows the meshes and solution depth

Consider again the Shallow Water equations system of example 2. The
problem which interests us here is that of a transcritical constricted channel
contours obtained. A bow-shaped hydraulic jump which is strongest at the

Example 4
Mesaros and Roe, see [10]. This time we seek to locate the hydraulic jump by

adding degenerate quadrilaterals at the approximate position of the shock and

domain represents a channel of length 3 metres and width 1 metre with a 10%
seeking the best position of the shocked nodes. This is again achieved using a

bump in the middle third. The freestream Froude number is defined to be

Foo

given by
least squares descent method on Fs with degenerate triangles to improve the

position of the shock. Virtually identical results are obtained using F3 with

quadrilaterals.
boundaries is predicted which agrees with solutions obtained using a shock cap-

flow which exhibits a hydraulic jump in the constriction. The computational
turing solution on a very fine mesh. Here it is achieved at little cost.
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Figure 12: Results for example 4.
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Example 5

Finally we consider the system (13) again, but this time corresponding to
the Euler equations of gasdynamics written in conserved variables [7].

This example is chosen to exhibit the shock fitting capabilities of the method
for a purely supersonic flow which has an exact solution [15]. The computational
domain is of length 3 metres and width 1 metre. Supersonic inflow boundary
conditions, given by

U@0,y) = (1.0,2.9,0,5.99073)"
Uz, 1) (1.69997, 4.45280, —0.86073,9.87007)", (55)

are imposed on the left and upper boundaries, respectively. At the right hand
boundary supersonic outflow conditions are applied, while the lower boundary
is treated as a solid wall.

The boundary conditions are chosen so that the shock enters the top left
hand corner at an angle of 29° to the horizontal and is reflected by a flat plate
on the lower boundary. The flow in regions away from shocks is constant. The
same strategy is employed as in the previous example, with the results shown
in figure 13 where the density contours are plotted. The predicted shock comes
in from the top left hand at an angle of 29.2° to the horizontal and the solution
is virtually constant apart from the discontinuities, in close agreement with the
analytic solution.
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10 Conclusion

In this paper we have considered the approximate solution of steady first order
PDEs by a least squares finite volume fluctuation distribution scheme with
mesh movement. On fixed meshes, by the nature of the fluctuation distribution
technique, the fluctuations on triangular meshes are not driven to zero because
of the existence of a null space. The solution may be improved by introducing
extra degrees of freedom by adding node locations to the list of unknowns and
moving the mesh. As a result, for scalar problems the fluctuations are driven
down to zero (to machine accuracy), while for systems of equations the errors
are much reduced. The descent least squares procedure with mesh movement
also induces global conservation and equidistributes the fluctuation amongst the
triangles, thus proceeding down to the steady limit in a uniform way.
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Figure 14: Solution (density) in 3D.
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For scalar problems convergence can be greatly accelerated by carrying out
the iterations in an upwind manner.

For problems with discontinuities the descent least squares method does not
give good solutions but the mesh movement technique enables improvement of
the location of the discontinuity in a manner akin to shock fitting. By minimising
a measure of the jump condition an approximate position of the shock can be
manoeuvred into an accurate position. This allows the descent least squares
method to be used on either side of the shock to gain a good approximation of
the smooth regions of the flow.
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