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1. INTRODUCTION

The generation of electrical energy using tidal energy has been shown
by H.M.S.0. (1981) to be economically viable, and Count (1980), Wilson et
al. (1981), Jefferys (1981), and Berry (1982) have conducted extensive
investigations into the operation of tidal-power schemes at maximum

efficiency.

One such optimal approach is that using Optimal Control Theory, which
has been incorporated into the numerical algorithms of Birkett and Nichols
(1983,1986), Berry, Birkett, Count, and Nichols (1984), Birkett, Count,
Nichols, and Nicol (1984), and Birkett (1985,1986). These workers
maximise a functional (representing the revenue or average power) subject
to the satisfaction of fluid-flow equations in an estuary. They then
apply numerical techniques to solve the resulting problem. The
optimal-control loop incorporated into the numerical method is the
Conditional Gradient Algorithm, which requires the evaluation of
derivatives of turbine/sluice-characteristic functions. In certain data,
these characteristic functions are discontinuous, and Moody (1989)
encountered problems associated with smoothing such data. He concluded
that, for such problematic functions, a derivative—-free optimal-control

loop was required.

The work in this report is a continuation of that by Moody (1989).
An intended future task is to incorporate the optimal-control approach of

the Reading Group into the two-dimensional finite-element shallow-water
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program of the Bristol Group, for the purposes of the CEGB. Now the
Bristol Group anticipates difficulties in imposing barrier conditions into
its code, so valuable advice in this area may well be gained from the
coding of a one-dimensional shallow-water problem using a finite-element
method. A finite—element method which has achieved recent success in the
numerical solution of fluid-flow problems is the Taylor-Galerkin Method of

Donea (1984).

The aim of the work presented in this report is to produce a
finite-element code capable of simulating the flow in an estuary. In
Section 2 we describe the mathematical formulation of and the numerical
method used to solve the shallow-water problem without a barrier, then
analyse the numerical results. In Section 3 we introduce a barrier into
the problem, and derive an analytic solution for a simplified version. We
also describe additional necessary numerical techniques, then present
numerical results. Finally, we draw our conclusions and discuss future

work in Section 4.
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2. THE SHALLOW-WATER FROBLEM WITHOUT A BARRIER

This section contains the work on Problem 1, a one-dimensional
shallow-water problem in which there is no barrier. We begin in
Subsection 2.1 by describing the mathematical formulation of this simple
problem. Subsection 2.2 then consists of a detailed derivation of the
Taylor-Galerkin Method of Donea (1984), together with a discussion of
other numerical techniques utilised. Subsequently, in Subsection 2.3, we
report several simulations and analyse the numerical and graphical results

for Problem 1.

2.1 Mathematical Formulation of Problem 1

Suppose that a one—-dimensional estuary occupies the region [0,L] in
space. Let v denote the fluid flow (i.e., the product of velocity and
cross-sectional area) and let m be the elevation above the datum level.
Then the linearised shallow-water problem (governing v and m ), named

Problem 1, is formulated as

v.tga(x)n +px)v=0
, 0¢x<L, 0£t<T, (2.1)
b(x) MtV = 0]
V(L,t) =0
, 0<t<T, (2.2)
n(0.t) = £(t)



v(x,0)

n(x.0)

I
]
3

v(x,T) }
, (2.3)
n(x,T)

where g 1is the acceleration due to gravity and T is the tidal period.

The functions a and b are the cross-sectional area and breadth
respectively of the estuary, p represents the frictional force, and f
denotes the tide function (which is of period T ). The boundary
conditions are (2.2), and the "initial" conditions, (2.3), ensure a
periodic solution for v and 7. For simplicity, we take the friction

to be

p(x) = py/h(x). O < x <L, (2.4)

in which Py is a constant and h determines the depth of the estuary.

2.2 Numerical Techniques Applied to Problem 1

Here we supply a detailed derivation of the Euler-Taylor-Galerkin
Method of Donea (1984), as opposed to his other forms of Taylor-Galerkin.
The first stage of the method for the flow, v, is as follows. We expand
v 1in a Taylor series to obtain

1

v(x, t+6t) = v + Ot v, + 2 (6t)2 Ve t & (6t)° Veer T

o[ (5t)*], (2.5)
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where the right-hand side is evaluated at (x,t). Let

c(x)
d(x)

g a(x) }
. 0¢<¢x<L, (2.6)
1/b(x)

then we obtain from Equation (2.1)

v, == o(x) n - p(x) v (2.7)

and

n, =~ d(x) Vo (2.8)

for x € [O,L] and t € [0,T]. Equation (2.7) is an expression for v,

which invloves no time derivatives. We obtain an analagous one for Vet

by differentiating (2.7) partially with respect to t and (2.8) with

respect to x; 1i.e.,

<
1l

e = - o), - p(x) v, (2.9)

and

LS
11

—_— [d(x) Vx]x' (2.10)

Substitution of (2.7) and (2.10) into (2.9) produces

v,, = o) [4) v 1 + p() o(x) n + [p(x)]° v. (2.11)
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In order to obtain an analagous form for v we differentiate (2.11)

ttt’

partially with respect to t, then replace the v_ and Mt terms using

t
(2.7) and (2.10) to give

Ve, = o(x) [A(x) v, 1 - p(x) e(x) [d(x) v, ], -

[p(x)]? e(x) n, - [p(x)]° v, (2.12)

As it is our intention to use piecewise—-linear basis functions in space,
we cannot eliminate the Vet term in the same way as before, since this
act would introduce a v term (which is meaningless when v is

piecewise linear). Instead, we include an Euler-type approximation:
vxt(x,t) = [vx(x,t+5t) B vx(x,t)]/ét (2.13)

(where 6t 1is an increment in time), which we represent numerically by

n n+l n
Vet = [vX - vx]/ét, (2.14)
for each time level, n. Hence, substitution of (2.7), (2.11), and

(2.12) into (2.5), then discretising and including (2.14), produces

V2 VP - Bt {o(x) M+ p(x) VP) + 3 (66)2 {e(x) [d(x) VDI +

p(x) o(x) 2 + [p()]% v} + & (68)° {e(x) (d(x) [v2'" -

n
X

<

1),/6t = p(x) e(x) [d(x) v 1 - [p(x)]* c(x) n, -



[p(x)1° v} (2.15)
on ignoring the error term. The expression for 1, corresponding to
(2.15), is

+1
= - st {d(x) Vo) + 3 (56)7 {d(x) [e(x) m], +

d(x) [p(x) "1} + & (66)° {d(x) (e(x) Mo - ma]) /8¢ -
a(x) [p(x) o(x) 21 - d(x)[(p(x))* v1}- (2.16)

At this point we have discretised v and 7 in time only; we now
apply the Galerkin finite—element approach using piecewise-linear basis
functions. Let xj. j = 1(1)N be the nodes of a mesh fixed in space.
Then we seek approximations ; and % to v and 7 respectively, in

the form

N

Yo t) = ) vy(t) ay(x). (2.17)
j=1
N

G t) = ) my(t) ay(x). (2.18)
j=1

(for x€[0L] and t € [0,T] ) in which Vi Ty j = 1(1)N, are
unknown amplitudes, and aj, j = 1(1)N, are piecewise-linear basis

functions, one of which is depicted in Figure 1.



Figure 1

We now (i) take the Galerkin weak-form (i.e., multiply by a, for
i = 1(1)N 1in turn, then integrate over the spatial domain) of (2.15) and
(2.16), (ii) replace v and 71 by v and ; respectively (using (2.17)
and (2.18)), then (iii) apply the usual integration-by-parts technique (to

eliminate difficulties associated with second-order spatial derivatives).

These operations result in

N

) i<y . a /6t + & 6t <[e(x) ai]' . d(x) a;.>} [v‘J?*l - i1 =
3=1

N

z {- <ay s p(x) aj> - 3 6t <[c(x) ai] , d(x) aj> +

j=1

3 6t <ai . [p(x)]? aj> + & (6t)2 <[p(x) c(x) ai]' , d(x) aé) -



and
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N
& (6t)2 G [p(x)]° aj>} V? + E {- <a; , c(x) a;> +
j=1
3 6t <ai , p(x) c(x) a;> - & (61)% <ai , [P(x)]? c(x) aé)} n? +

& o5t [c(x) d(x) (vz+1 - vﬁ) ai]:N + 3 &t [c(x) d(x) vz ai]zT =
1 2 n_ XN
& (6t)% [p(x) e(x) d(x) Ve ai]x1 (2.19)
N
) (< . a /8t + & 5t <[A(x) o] . o(x) ap) [ng.l*l - 3] =
j=1
N
Y (- <ay . d(x) ap + 4 6t dx) oy . [p(x) aj]'> -
j=1
N
§(6t)* @) ap . [(P(x))7 o] ) vh - z {- 3 6t <[d(x) @]
j=1
e(x) a;.> + 4 (56)% <[d(x) @] . p(x) o(x) aJ'.>} )+
& ot [A() o(x) (- ) aif,?j + 5 6t [A(x) o(x) ailxle -

N

xl'

[T

(6t)% [d(x) p(x) o(x) m, ;] (2-20)
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for 1 = 1(1)N, in which <+ , <> 1is defined by

*N
KE ., x = J E(x) x(x) dx, (2.21)
X
1
for integrable functions § and X. Note that the last three terms on

the right-hand sides of (2.19) and (2.20) are boundary terms, which effect

only the boundary nodes at which Dirichlet conditions are not prescribed.

As is standard practice with finite-element methods, the local 4x4
matrices and 4xl1 column vectors are evaluated over each element and then
assembled into a global system. The element integrals involving the
functions ¢, d, and p are evaluated (a) using eight-point Gaussian
quadrature, and (b) only once, since such integrals are independent of

time. The global system at each time level, n, is
n+1 n n
Aly -yl=r, (2.22)

in which A is a time-independent, symmetric, 2x2-block-tridiagonal,

2Nx2N matrix; En is a known 2Nx1 vector; and
n n n n n n n,T
y = [Vl' Nyi Vgr Tigi --+i Vo nN] % (2.23)

We now consider the imposition of boundary conditions. Equations

(2.2) are discretised in the standard way; namely, as
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&
N
n

771 = f(tn)

=0
., n = O(1)M, (2.24)

where M is the number of time steps and

t" = n &t, n = O(1)M, (2.25)

in which

ot

T/M. (2.26)

Still lacking, however, are expressions for vz at X =X and ni at
X = Xy in the boundary terms of Equations (2.19) and (2.20). In the case
of the first condition, we proceed as follows. By evaluating (2.8) at
x = 0, we may write

vx(O.t) = - b(0) nt(O.t), 0<t(T, (2.27)

using the second of (2.6). Since 0(0.t) 1is £(t) for all t in

question (see (2.2)), it follows that
vx(O.t) =-b(0) f (t), 0t <T. (2.28)
A similar treatment conducted on m produces

n(L.t) =0. 0<t<T. (2.29)



- 13 -

We now incorporate (2.24), (2.28), and (2.29) into (2.22) to obtain the

modified global system of
. (2.30)

say, in which zn is defined in Equation (2.23). In practice, (2.30) is
inverted for ¥n+1 = Xn (using a 2x2-block-tridiagonal-matrix solver) at

+
each time level, n, then Xn ! is determined.

Finally, we satisfy (2.3) wusing the iteration algorithm which
follows. (i) Set t=0 and choose v and 7 to be O and £(0)
respectively. (ii) Integrate the problem forward in time (by assembling
and solving (2.30)) wuntil the tidal period, T, is reached.

(iii) Investigate the satisfaction of

Iv(+.T) - v(+,0)ll, < € max{liv(+,0)ll_ , 1} (2.31)
and

Im(+.T) - n(+.0)ll, < € max{ln(+,0)l, . 1} (2.32)
for some convergence tolerance, e. (iv) If both (2.31) and (2.32) are

obeyed, then v and 1 are acceptable as periodic solutions; otherwise,

update v and 7n according to

v(x,0) = A v(x,T) + [1-A] v(x.0)

n(x,0) :

I~
b
(AN
=

(2.33)

A m(x,T) + [1-A] n(x.0)
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(in which AN (0 <A< 1) 1is a relaxation parameter), then return to

Stage (ii) with t reset to zero.

2.3 Results for Problem 1

As it is our aim to model flows in the Severn estuary, throughout
this subsection we choose the length of the estuary, L, and the friction

parameter, P, (Birkett, 1985) as

L = 50 000
(2.34)
Py = 0.0025
The tide function, f, is given by
f(t) = sin(2rt/T), 0 < t £ T, (2.35)

where { 1is the tidal amplitude (which assumes the value of unity unless

otherwise stated). The value of the relaxation parameter is

A= 3. (2.36)

In the case of the ensuing graphical output, we take

e = 1072, (2.37)

corresponding to less than a 1 % relative error; whereas, for accuracy
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tests, we take

e =10 °, (2.38)

as it is imperative to have a "converged" solution for such analysis. The

cross—sectional-area function is

b(x) h(x), 0 <{x <L, (2.39)

a(x)

where b and h are defined to be

b(x) = 15 000
, 0¢<¢x <L, (2.40)

h(x) = 15

for the constant—-coefficient problem, and

b(x) = 40 000 - 0.74 x
, 0<¢{x<L, (2.41)

h(x) = 25 - 0.0004 x

for the linear-coefficient one.
The tidal period (in seconds) of the Severn estuary is given by
T = 44 T14. (2.42)

Using this value, together with 21 nodes and 240 time steps (yielding

a C.F.L. number of approximately 0.904 ), and with the constant
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coefficients of (2.40), we obtain Figures 2a-e (after 8 iterations).
The upper graph of each figure is of the fluid velocity (i.e., flow
divided by cross-sectional area) against distance along the estuary; the
lower one, elevation against distance. In all figures, the graphs are
quite linear. The initial non-negative velocity profile in Figure 2a is
greatly decreased at the quarter period (in Figure 2b). At 22 357
seconds, the velocity profile is a reflection in the horizontal axis of
the initial profile; also, the three-quarter-period velocity is related to
the quarter-period one in the same way. Finally, the initial velocity
distribution is reproduced after 44 714 seconds in Figure Z2e. The
elevation in Figures 2a-e behaves in a manner similar to the velocity:
the initial non-positive values of small magnitude become very positive
(in Figure 2b), noticeably decrease (in Figure 2c), further decrease (in
Figure 2d) to negative values, then increase to the initial profile (in

Figure 2e).

On replacing the constant-coefficient data of (2.40) by the linear
data of (2.41), we obtain Figures 3a-e. The behaviour of the velocity and
elevation is identical to that of the the previous case. The differences
between Figures 2a-e and 3a-e are that, in the case of the latter,
(2) both the velocity and elevation are smaller in magnitude, and (b) the

velocity profiles contain considerably more curvature.

We now perform some tests on the constant-coefficient model. With
65 nodes and 16 time steps, we choose a tidal period of 1030.633
seconds to enforce a C.F.L. number of one. The resulting velocity and

elevation graphs (after 62 iterations) are depicted in Figures 4a-e.
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All curves, which are well resolved, are damped sines and cosines which
exhibit the reflection property of the previous runs. On using the same
tidal period, but with 33 nodes and 8 time steps, we obtain Figures
5a—e; Figures 6a—e result when 16 nodes and 4 time steps are used.
The resolution (when simulating with a unit C.F.L. number), which is
excellent in all cases, is tested to its limit in Figures 6a-e. On
reducing the C.F.L. number to 2. Dby using 65 nodes and 16 time steps
with a tidal period of 515.316 seconds, we obtain the extremely wavy
graphs of Figures 7a-e. Once again, the resolution of the velocity and

elevation is excellent.

We now investigate the accuracy of the Taylor-Galerkin Method on the
shallow-water problem with the constant-coefficient data of (2.40) and the
tidal period of (2.42). Tables 1 to 4 contain the exact value of the
velocity or elevation (obtained via an analytic solution derived using the
method employed in Subsection 3.2) at selected points along the estuary at
€. €9 and ey contain values of

105 times the deviations from the exact values when using node/time-step

certain times. The columns headed

numbers of (11,120), (21,240), and (41,480) respectively. We analyse
the velocities in Tables 1 and 2, and the elevations in Tables 3 and 4;
the output time is O seconds for Tables 1 and 3, and 11 178.5 seconds

(i.e., the quarter period) for Tables 2 and 4.

Throughout Tables 1 to 4, the columns headed e contain very

1

accurate values, those in columns e are extremely accurate, and those

2

in ey are almost exact to five decimal places. The general trends are

that (a) the velocity deviations decrease as the distance increases, and
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(b) the elevation ones remain approximately constant (except those at a
distance of zero kilometres, at which a Dirichlet condition is imposed).
The deviations of Tables 1 to 4 indicate that the Taylor-Galerkin Method
is approximately second-order accurate (a result that conflicts with the

third order established by Donea (1984)).

The c.p.u. times consumed on a Norsk-Data Nord 500 mini computer for
simulations including node/time-step numbers of (11,120), (21,240), and
(41,480) are approximately 21, 76, and 295 seconds respectively, when

e 1is 10_5. The corresponding times when e 1is 10_1 are 10, 35,

and 133 seconds. When e 1is decreased from 10—1 to 10_5. the
number of iterations increases from 8 to 18. These values illustrate
that (i) the computer times are increased by a factor of almost four when
the element and time-step numbers are simultaneously doubled, and
(ii) more than twice as much c.p.u. time and more than double the number

of iterations are required when the desired accuracy is reduced from 1 %

to 0.001 %.

Finally, consider the variation of the velocity and elevation with
the tidal amplitude, ( (of (2.35)). Numerical evidence suggests that
both the velocity and elevation are proportional to the tidal amplitude
(to within an amount e ); hence, the theoretical result is sufficiently

adhered to.
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Distance Exact

(km) Velocity €1 2 °3

0 0.51412 17 4 1

5 0.46660 -11 -2 0]
10 0.41783 -8 -2 =l
15 0.36796 =7 -2 -1
20 0.31714 -6 -1 0
25 0.26551 -5 -1 0]
30 0.21320 -4 -1 -1
35 0.16036 -3 -1 -1
40 0.10713 -2 0] 0]
45 0.05363 -1 0 0
50 0.00000 0 0 0]

Table 1
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Distance Exact

(km) Velocity 1 2 °3

0 | 0.08021 -35 -9 -2

5 ’ 0.07908 -14 -4 -1
10 0.07583 -16 -4 -1
15 0.070867 -13 -3 -1
20 0.06380 -12 -3 -1
25 0.05546 -10 -3 -1
30 0.04588 -8 -2 0
35 ﬂ 0.03529 -6 -2 -1
40 0.02395 -4 -1 0
45 0.01210 -2 -1 0
50 ” 0.00000 0 0 0

Table 2
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Distance Exact
(km) Elevation 1 2 3
0 0.00000 0 0 0
5 -0.04740 37 9 2
10 -0.09054 38 10 3
15 ” -0.12920 39 10 2
20 -0.16314 40 10 2
25 -0.19218 42 10 3
30 -0.21616 43 11 3
35 " -0.23495 43 11 3
40 -0.24844 44 11 3
45 -0.25657 44 11 3
50 " -0.25928 45 11 S

Table 3
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Distance [ Exact
(km) Elevation €1 2 3
0 1.00000 0 0 0
5 1.02836 28 -6 -1
10 1.05345 24 -6 -2
15 1.07537 -23 -6 -1
20 1.09419 23 -6 -2
25 1.10999 29 -6 -1
30 1.12283 99 6 -1
35 1.13276 ~21 5 -1
40 1.13982 -21 -6 -1
45 1.14405 -21 -5 -1
50 " 1.14545 21 -6 -2

Table 4
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3. THE SHALIOW-WATER PROBLEM WITH A BARRIER

In this section we introduce a barrier into Problem 1 to produce
Problem 2, which is formulated in Subsection 3.1. Subsection 3.2 contains
the derivation of an analytic solution of Problem 2 with simple data. We
describe the numerical techniques used to solve the new problem in

Subsection 3.3, then display and discuss some results in 3.4.

3.1 Mathematical Formulation of Problem 2

As is the case in Subsection 2.1, the fluid velocity, v, and
elevation, n, are governed by the partial differential equations in
(2.1) and satisfy the boundary and initial conditions of (2.2) and (2.3).
Suppose now that a barrier is inserted at £ metres along the estuary,
where 0 < & < L. We require that the fluid flow be continuous across
the barrier and proportional to the head difference at the barrier, and so

impose the simple linear conditions

v(e ,t)

k [n(e.t) - n(e. )] }
5 0<¢t<T, (3.1)

v(e",t) =k [n(€ . t) - n(e", )]

where k 1is the barrier constant, and £ and ¢*  denote points to the
immediate left and right of the barrier respectively. Therefore, the

mathematical formulation of Problem 2 consists of (2.1)-(2.3) and (3.1).
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The energy, E, (in Watt seconds) derived from the tidal-power

scheme is given by
4 - +
E-pgr | [n(e.0) - n(eh.0T a, (3.2)
0
where p 1is the density of the water. In practice, we evaluate (3.2) (on
each iteration) using the Trapezium Rule.
3.2 An Analytic Solution of Problem 2

Suppose that the functions a, b, and h assume the constant values

of a, b, and h, then we have

Il
|

a(x)
b(x) = b , 0<¢x ¢L. (3.3)
p(x) = py/h

Now the tide function f (of the second condition in Equation (2.2)) is

typically given by (2.35): in fact, in this subsection we shall consider

£(t) = e*¥F, (3.4)

in which ¢ 1is the square root of -1 and

w = 2m/T. (3.5)
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Let us suppose that

v(x.t) = "% w(x)

, 0{x<L, 0<t<T, (3.6)

n(x.t) = e“* z(x)

in which w and z are functions to be determined. Note that (a) both
v and m satisfy the periodic property, (2.3). and (b) we may recover
the sine form of f (from (3.4)) by taking the imaginary parts in (3.6),

once w and z are found.
On substituting (3.3) and (3.6) into (2.1) we arrive at

[t o + pO/E] w(x) + g a z'(x) =0

_ ' , 0<{x (L. (3.7)
twbz(x)+w((x)=0
Elimination of w from (3.7) produces
z (x) +7® z(x) =0, 0<¢x¢<L, (3.8)
in which
b o® b Py ©
e -0 . (3.9)
g a ga h

The boundary conditions, corresponding to (2.2), for z are

z(0) = 1 (3.10)
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and, using the first equation of (3.7),
z (L) = 0. (3.11)
The barrier conditions, (3.1), become

z (£7) = B [2(£7) - z(¢")] }

. _ (3.12)
z (£7) = B [2(£) - z(¢")]
where
po-- 0 _ "% (3.13)
gah g a

In order to solve the simplified problem we must therefore (i) solve (3.8)
subject to (3.10)-(3.12) for 1z, (ii) extract w wusing the first of

(3.7), and (iii) recover v and m via (3.6).

Firstly, we utilise (3.8) to deduce that the general solution for =z

is
A sin(vx) + B cos(vx), 0 {x < ¢
z(x) = 5 (3. 14)
C sin(~x) + D cos(vx), &€ <x <L
where A, B, C, and D are arbitrary constants. Substitution of

(3.10)-(3.12) into (3.14) results (after a little algebraic manipulation)

in



B=1
B K 4 (3.15)
k + v cos(v2) [tan(~L) cos(v€) - sin(~2)]
from which A and C may be assigned by
A = [1-D] tan(~2) + D tan(~L)
‘ (3.16)
C = D tan(~2)

So, having determined A, B, C, and D, we are now able to obtain W and

z (from (3.14) then the first of (3.7)), and hence v and 7 (from

(3.6)).

In order to obtain an analytic solution for the simplified problem
without a barrier, we proceed as follows. Equations (3.3)-(3.6) result in
(3.8) and the boundary conditions (3.10) and (3.11). The general solution
for z 1is now the first of (3.14), but is valid for O { x L. The

values of A and B are now given from (3.10) and (3.11) by

>
1

tan(~€) }
, (3.17)
B=1

from which v and 7 can ultimately be determined using (3.6).

3.3 Numerical Techniques Applied to Problem 2

The Taylor-Galerkin Method of Donea (1984), which 1is described in
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detail in Subsection 2.1, is also applied to Problem 2 ((2.1)-(2.3) and
(3.1)). The boundary conditions, (2.2), are again imposed via (2.24), and

(2.28) and (2.29) are also included.

Consider now the interface conditions, (3.1), which ensure the
continuity of v, but not that of . To resolve this source of
discontinuity, we locate two nodes ( Xp and Xp,1° say) at the barrier.
These coincident nodes facilitate the evaluation of v and m on both
the upstream and downstream sides of the barrier (even though these two

values for v are the same).

Equations (3.1) are discretised to form two conditions for v; 1i.e.,

<
o= =}

K [ﬂg - T7IB§+1:I
, 0<{n<{M (3.18)

<
s
-+
—

& [ﬂg - T7I};+1:I

As it is so with boundary conditions, expressions for n, are required at
nodes at which conditions for v are present. On this occasion, however,
it is mnot possible to obtain explicit conditions for Ny by
differentiating the governing conditions ({(3.1), in this case). We
therefore choose to proceed by approximating nx(e_.t) abd nx(8+,t) for

0<t< T using

My g = [mg ~ mp_,1/8g. O <n <M, (3.19)

X,
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n Tl n +

respectively, in which

g =xg =~ ¥p

= XB+2 ~ *B+1

(3.21)
A

o+ &I

We incorporate (3.19) and (3.20) 1in the boundary terms of the
Taylor-Galerkin equations for m at the interface; i.e., 1in the last
three terms of (2.20) for i =B and for i = B+l. These three terms on

the underside of the barrier are then

n+1 n+1 n -
Mg " Mgy = Mg * Tg_11/hp +

6t d(£7) c(&") [mg - mp_y1/Ag -

(6¢) d(£7) p(€7) c(£) [ng - mg_;1/Ag

st d(€ ) e(£) [

[V (o 18

[T

The first of the above is amalgamated with the coefficient matrix (i.e..

A of (2.30)), and the other two remain on the right-hand side (i.e., in

~,

zn of (2.30)). An identical treatment is performed on the equation

representing the elevation on the upstream side of the barrier.

Although (3.19) and (3.20) are not highly accurate approximations,
they do preserve the block-tridigonal structure of the coefficient matrix;
more accurate approximations (for example, those arising from differences

over three nodes) would not.

Again, the periodic conditions, (2.3), are imposed by employing an
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iteration algorithm: the one described in Subsection 2.2.

3.4 Results for Problem 2

Problem 2, which consists of (2.1)-(2.3) and (3.1), is solved using
the Taylor-Galerkin Method of Subsection 2.2, together with the additional
treatment of Subsection 3.3. The length of the estuary, L, friction
parameter, Ppg. tide function, f. and relaxation parameter, A, are
given by (2.34)-(2.36). As before, e 1is defined by (2.37) in the case
of graphical output, and by (2.38) in that of accuracy tests. The barrier

is located at

¢ = 25 000 (3.22)

in all simulations.

Suppose that the tidal amplitude ( { of (2.35)) is unity, the tidal
period is given by (2.42), the number of nodes is 22 (of which two are
coincident at the barrier), the number of time steps is 240, and the

barrier constant is

k = 112 490 (3.23)

(Birkett, 1985,1989). Then we obtain the graphical results of Figures
8a—e on using the constant coefficients of (2.40), and the graphs of

Figures 9a-e with the linear coefficients of (2.41).
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On comparing the velocity graphs of Figures 8a-e with those of 2a-e
(in which the barrier is not present), we observe that the profiles are
essentially the same apart from a slight discontinuity in gradient at the
barrier. The corresponding elevation graphs are similar on the lef t-hand
side of the 25-kilometre mark, but not on the right-hand side: the
presence of the barrier causes a jump in elevation (in Figures 8a-e) at a
distance of 25 000 metres along the estuary. These differences are also
apparent when comparing the linear—coefficient results of Figures 3a-e

with those of 9a—e (which incorporate a barrier).

When the barrier constant is reduced by a factor of two from (3.23)

to

kK = 56 245, (3.24)

the results in Figures 10a—e and lla-e are obtained with (2.40) and (2.41)
respectively. On comparing Figures 8a-e with 10a-e, and Figures 9a-e with
lla—e, we see that the lower value of k has the effect of increasing the
discontinuities both in Y and n at the barrier. A further reduction

in k to
Kk = 28 212.5, (3.25)
leads to the velocity and elevation graphs in Figures 12a—e and 13a-e with

(2.40) and (2.41) respectively. In this case, the effect of the lower

value of k 1is not as dramatic.
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We now experiment with the following data: a tidal period of
1030.633 seconds, 66 nodes, 16 time steps, a barrier constant given
by (3.23), and the constant coefficients of (2.40). The resulting graphs
are depicted in Figures 14a-e, which are quite similar in form to the
corresponding 4a-e ones (in which no barrier is present). As expected,
though, at the barrier there is a slight discontinuity in Vs together
with a small jump in n. Figures 15a-e are produced when the above data
is adjusted to include 32 time steps (causing the C.F.L. number to be
halved to 3 ) and the linear-coefficient data, (2.41). The difference
between l4a-e and 15a-e is quite remarkable: in the case of the latter,
the velocity and elevation are significantly larger in magnitude (at
times, increasing at the right-hand end of the estuary), and the jumps in

T are more noticeable.

We now see how the elevation on both sides of the barrier varies with
time. The graphs of Figure 16 result when the data which produces Figures
S8a-e is utilised. We see that a sine-like curve is present at both the
downstream and upstream sides of the barrier (i.e., at x = 25  and
x = 25" ). In fact, similar behaviour is observed at these points along
the estuary when the data corresponding to all previous elevation graphs

is used.

We now investigate the accuracy of the Taylor-Galerkin Method on
Problem 2 by using the data which produces Figures 8a-e (but with e
given by (2.38), not (2.37)). Exact values of the velocity and elevation
are given at points along the estuary at a time of zero seconds in Table

5, in which the columns headed ey and e contain deviations ( x105 )

E
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in velocity and elevation respectively. The corresponding values in Table
6 are sampled at the quarter-period; i.e., at 11 178.5 seconds. On
comparing the results in Tables 5 and 6 with the corresponding ones in
Tables 1 to 4 (that is, those in the column headed e, ). we see that the
latest ones are considerably less accurate. The general trend for the
elevation deviations is to steadily increase in magnitude until arriving
at the downstream side of the barrier (i.e., at 25 ), attain a greatest
deviation at o5" (possibly due to the inaccurate approximations of
(3.19) and (3.20)), then remain approximately constant. The deviations in
velocity do not exhibit such a trend, but, like those in elevation, are
generally greater in Table 5 than in Table 6. Even though the deviations
in Tables 5 and 6 enter the hundreds, the results are in error only in the

third decimal place by at most two units, and are accurate to within 34

Table 7 contains values of the energy (in Gigawatt hours) derived
from the the tidal-power scheme when the data corresponding to certain
graphical results is used. The energies in Table 7 are calculated using
e = 10—1: when e 1is reduced to 10_5. the resulting energies differ
from the corresponding tabulated ones by no more than 0.005. The
standard problem with the constant data of (2.40) is represented by 8a-e,
10a-e, and 12a-e; the respective values of «k are given by (3.23),
(3.24), and (3.25). We see that the energy increases by almost 20 % on
reducing k on the first occasion; the second halving, however, results
in the lowest value of 1.38 GWh. When (2.40) is replaced by the
linear-coefficient data of (2.41) (9a-e, lla-e, and 13a-e), we find that a

smaller amount of energy is produced in each of the three cases, since the

volume of the linear estuary is less than that of the constant one. The
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behaviour of energy with K is the same as before, indicating the
existence of an optimal value of k (Count, 1980; Birkett, 1985). Note
that there is a very significant difference between the energy obtained
from the constant and linear estuaries (14a-e and 15a-e) when the tidal

period is changed to 1030.633 seconds.

In practice, the computer time used in solving Problem 2 numerically
is almost unnoticeably greater than that used in solving Problem 1. The
additional expense in introducing a barrier into the fluid-flow problem is

therefore a negligible one.

Consider now the variation of the obtained energy (as evaluated from
(3.2) using the Trapezium Rule) with the tidal amplitude, ( of (2.35).
Computational results agree sufficiently well (i.e., to within e ) with

the theoretical result for the linearised shallow-water problem; namely,

E « (2. (3.26)

In both Problems 1 and 2, a value of unity for A (instead of 3,
as in (2.36)) results in the convergence of the iteration for the periodic
solutions of v and m in fewer iterations; for example, in the case of
the run corresponding to Figures 8a-e, this increase in the value of A
1

produces convergence in only 2 iterations, as opposed to 8 with A=23

(the computer time is also significantly reduced).
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Distance Exact Exact
(km) Velocity v Elevation °E
“

0 0.42121 ~76 0.00000 0

5 0.37401 -83 -0.04529 17
10 0.32619 -82 -0.08639 -26
15 | 0.27790 -81 -0.12311 -35
20 0.22928 -80 -0.15531 -43
25~ 0.18047 -35 -0.18284 -105
25" 0.18047 -35 -0.54381 -176
30 0.14443 5 ~0.56652 ~125
35 0.10836 5 ~0.58427 -126
40 0.07225 3 -0.59699 -126
45 0.03613 1 -0.60464 ~127
50 0.00000 0 -0.60719 ~127

Table 5
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Distance Exact Exact
(km) Velocity v Elevation °E
0 0.16082 =31 } 1.00000 0
5 0.15974 -26 1.01486 -10
10 0.15664 -25 1.02649 -14
15 0.15172 -23 1.03501 -18
20 0.14518 =22 1.04056 -22
25 0.13724 -22 1.04323 -29
25" 0.13724 =22 0.76872 -81
30 0.11122 -23 0.76980 -45
35 0.08425 -18 0.77054 -18
40 0.05656 -12 0.77103 31
45 0.02840 -6 0.77130 32
50 0.00000 0 0.77138 32

Table 6




- i7a =

Energy

Data (GWh)

8a-e 1.422

Sa-e 0.963
10a-e 1.688
lla-e 1.341
12a-e 1.358
13a-e 1.240

14a-e 0.002

15a—e 0.911

Table 7
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4. COONCLUSIONS

In this report we presented two mathematical formulations of
shallow-water problems: one without a barrier, Problem 1 (in Subsection
2.1), and one with a barrier, Problem 2 (in Subsection 3.1). We also
described the Taylor-Galerkin Method (in Subsection 2.2), which we
utilised to solve Problems 1 and 2. Additional numerical treatments (of
Subsection 3.3) were necessary for Problem 2, for which a simple analytic
solution was derived (in Subsection 3.2). Numerical results (arising from
various experiments) were conducted and the outcomes were discussed in
Subsections 2.3 and 3.4 for Problems 1 and 2 respectively. In the case of
Problem 1, we varied the coefficient functions, tidal period, numbers of
nodes and time steps, and also the C.F.L. number, obtaining a wide
selection of velocity and elevation graphs. On analysing the accuracy of
the method, we discovered an order of approximately two (a value below
that established by Donea (1984)). The linearity of the velocity and
elevation with the tidal amplitude was also observed. On introducing a
barrier (to produce Problem 2), we observed that (i) both Vo and 7
were discontinuous across the barrier, the extent of which depended on «,
(ii) the Taylor-Galerkin Method was not as accurate for this problem (as a
consequence of (3.1), and possibly its discretisation via (3.19) and
(3.20)), and (iii) the energy obtained from the generation scheme varied

according to the square of the tidal amplitude (see (3.26)).

The computer times for the Taylor-Galerkin Method on Problems 1 and 2

were reasonably high, indicating a fairly expensive solution technique;
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the times consumed in solving Problem 2 were negligibly different from

those for Problem 1). The numerical results, however, were extremely

accurate.

A future task is to introduce a nonlinear relationship at the barrier
(in place of (3.1)) into Problem 2. Such a relationship will involve the
functions describing the flow through the turbines and sluices (against
the head difference), P and R, say. It may also be necessary to
replace the linearised shallow-water equations, (2.1). by corresponding
nonlinear ones. This last operation would, however, require considerably
more algebra in order to arrive at modified forms of (2.15) and (2.16).
The amount of algebra necessary to facilitate an extension of the
Taylor-Galerkin Method to a fully nonlinear problem in two space
dimensions would be immense. The large number of necessary algebraic
manipulations is the drawback of the method, which is ideal for simple

problems.

The next ammendment to Problem 2 1is the introduction of an
optimal-control loop. Such a loop should have the property that
derivatives, such as P and R, are not required in the algorithm

(Moody, 1989). After the successful completion of this task, the next

would be one of the more complicated ones of the previous paragraph.
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