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ABSTRACT

A brief survey of Flux Limiters used with well known schemes to make
them Total Variation Diminishing (TVD) leads to a definition of a limiter
based on Fromm's scheme. Numerical results are given for this scheme

on a number of test problems.



§1 INTRODUCTION

In the numerical modelling of sharp shocks or steep fronts on fixed
grids the appearance of oscillations when other than first order methods are
applied can be an embarrassment to the modeller, particularly if these trigger
instabilities or correspond to non-physical behaviour of the system. First-
order methods are invariably insufficiently accurate for the purpose here and
lead to unacceptable smearing, but higher order methods although giving better
resolution induce oscillations or wiggles. Often saome kind of post-processing
will remove the wiggles but such technigues are often somewhat ad hoc.

Over the last twenty five years a number of second-order schemes have
been devised which, together with the addition of artificial viscosity to
moderate the wiggles and to prevent instabilities, have become standard in
treating such problems. More recently, in order to improve the methods and
in particular the treatment of discontinuities, schemes have been advocated
which give higher order accuracy in smooth regions but which use criteria
other than polynomial accuracy to model sharp variations in the solution.
These criteria rely on conservation, as ig standard, but also introduce
monotonicity preservation and total variation diminishing (TVD), which
essentially substitute second order accuracy in regions of high curvature
where the matching of a few terms of a Taylor series is of no particular
significance. Such schemes have become known as TVD schemes, after Harten [2].

In this report we review a rather direct method of producing TVD schemes
using the idea of Flux Limiters. The form of these limiters for some
standard schemes is surveyed and particular attention paid to Fromm's scheme
[4], which is well known t.o produce less praonounced wiggies and to give good
phase accuracy. This leads to a definition of a limiter based on Fromm's
scheme, giving an algorithm which is second-order over a greater range of

data and possesses greater continuity than schemes using standard limiters.



In §2 and §3 limiters based on standard schemes are discussed and
the Fromm-type limiter is introduced in §4. Numerical results are compared

in §5.

§2 LIMITERS BASED ON THE LAX-WENDROFF SCHEME

In recent years several flux limiters have been proposed for the
prevention of oscillations in the application of second order accurate numerical
schemes for the approximate solution of non-linear hyperbolic equations. In
ref. [1] Sweby surveyed and tested a number of these limiters on some
.
standard test problems and presented a useful diagram on which limiters can be

displayed, here shown as Fig. 1.

For a function u satisfying the non-linear equation

ug (F(u)]x =0 (2.1)

and a finite difference approximation UE to u on a regular grid at a grid

point (kAx, nAt), define r to be the ratio of successive differences

Au,
TR (2.2)
k-2
where Auk+% = Upeq 7 U
The function ¢(r) in Fig. 1 is the limiter whose general definition
is given in ref. [1]1. It is most simply described in relation to the Lax-
Wendroff scheme [7] for eguation (2.1) with f(u) = au and a > 0, namely
n+1 n n n
=y - vA - :
h U - Vhu avAlAu T, (2.3)
aAt 1 . . .
where Vv = aywikEL 3(1-v). The final term on the right hand side of (2.3)

gives second order accuracy by an anti-diffusion term (compare ref. [11).

When the limiter ¢(r) is introduced this term becomes

- avAlé(r)du, ] . (2.4)



Thus the Lax-Wendroff scheme corresponds to ¢(r) = 1. In reference
[1] Sweby shows that schemes which employ limiters ¢(r)  which lie in
the region shaded in Fig. 1 are Total Variation Diminishing FTVDJ, a property
which ensures that no spurious oscillations are generated by the scheme
(see reference [2]).

Examples of limiters in use can readily be illustrated in Fig. 1. The
TVD region is shown by the shaded area, while second order accuracy (corresponding
te straight line segments of ¢{r) threough the point (1,1) - see ref. [1])
is shown by the overshaded area.

The piecewise linear function given by the lower boundary of the
shaded TVD region in the figure (Minmod) is formally second order everywhere
and is TVD. It is the most diffusive TVD limiter in practice but appears
to be adequate in the presence of shocks. On the other hand, the piecewise
linear function given by the upper boundary of the TVD region in Fig. 1
(Superbee) is a highly compressive limiter, second order accurate on
the straight lines passing through the point (1,1), which reduces to first
order accuracy elsewhere (for extreme values of r outside the interval
(1,2)) but stays TVD throughout. In reference [1] Sweby suggests that its
most useful role is in the resolution of contact discontinuities.

Analytic forms of the limiter ¢ are, for Minmod

¢(r) max[0, min(r,1)] (2.5)

and, for Supefbee

¢(r) max[0, max {min(2r,1), min(r,2)1}1 . (2.8)

The limiter suggested by Van Leer [3] comes somewhere between the previous
two. It is given by

_ 2r
¢(I‘) —m [2.7)

and is shown in Fig. 1 by a curved dotted 1line.



§3 LIMITERS BASED ON OTHER SCHEMES

Limiters can be defined for other schemes. For the second order
upwind scheme of Warming and Beam [8], (2.3) is replaced by

n+1 n
= U

n n
Uy K - VY ovA {AUK- } (3.1)

1

and the limited form of the last term becomes

n
- avA{G[r]AuK_q}

where 0(r) is the limiter for the Warming-Beam scheme. From (2.2) we

see that

o(r) = ¢(r)/r. (3.2)

The diagram corresponding to Fig. 1 based on this limiter is given
as Fig. 2 with the TVD region shaded. The Minmod and Superbee limiters
are given respectively by the lower and upper boundaries of TVD, while the

Van Leer limiter, shown as the intermediate dotted line, is

8(r) = 2/(1 + r) , (3.3)

The second order region is again the overshaded region in Fig. 2.

In the case of Fromm's scheme [41, which is the arithmetic mean of the

schemes (2.3) and (3.1), namely,

SN T vAun_, - avA[%{AuE + Ad"

U K k-1 k=111 (3.4)

the appropriate flux limiter ¢(r) enters the last term of (3.4) in the

form

- avA[wtr]%{AuE + Ad" 3. (3.5)

k=1

From (2.2) we then have

P(r) = 2¢(r)/(1 + r) (3.8)



and the diagram corresponding to Fig. 1, with the shaded regions,
is shown in Fig. 3. The Minmod and Superbee limiters in this case are
again the lower and upper boundaries of the TVD region, respectively,

while the Van Leer Limiter is

P S
y(r) = 7+ 7° (3.7)
and is shown again as a dotted line.
Note that (3.8) can be written
%
V(r) = __%Qiflé§;- (3.8)
GE* = & =9
from which we can readily deduce the symmetry condition
v = i) (3.9)
r

(c.f. [1] egn. 3.18).

The three basic schemes considered above are applied in their non-
limited form when ¢,6,¢ are all identically equal to 1. Both Minmod
and Superbee use non-limited forms of both the Lax-Wendroff and Warming-Beam
upwind schemes. However, neither of these limiters uses Fromm's scheme
in its mon-limited form. A limiter which does this is shown in Figs. 5, B

and 7. We study this limiter in the next section.

§4 A LIMITER BASED ON FROMM'S SCHEME

In order to demonstrate the features of a limiter based on Fromm's

scheme we introduce a change of variable. Let

r = (4.1)

and express Y(r) din terms of the new variable s as in Fig. 4.



Minmod is the lower boundary of the TVD region and Superbee is
the upper boundary, both being symmetric about s = 0 and therefore

expressible as functions of |3 , which in terms of the data u is

K
given by
|Aup g ~ Byl ATy
|au v au, ] O Tu - u ] (4.2)
k+3 k-3 k+1 k=1
Van Leer's limiter is the dotted line in Fig. 4 given by
pls) =1 - s2 P (4.3)

also symmetric about s = O,

We now propose a limiter based on Fromm's scheme. The piecewise linear
function shown in Fig. 8 (c.f. Fig. 4) corresponds to Fromm’s scheme
in its central sections and elsewhere is modified to keep it TVD. This limiter
will be more compressive than Minmod but less compressive than Superbee
with which, however, it shares the feature that second order accuracy is
attained only for a limited range of values of s (and therefore r). This

range is

IA
w
A

(4.4a)

(M
NI=

or

A
o]

A
w

1
3 (4.4b)

The corresponding bounds on r for Superbee are 3 and 2 so that the
new Schemé is second-order accurate for a wider range of r. Also, unlike
Minmod and Superbee, it has a smooth derivative at r = 4 (corresponding
to s = 0), which strengthens the continuity of the scheme at inflection
points. Within the second order region given by (3.4b) the scheme has the
well-known features of Fromm's scheme, in particular a small relative phase

error.



The form of the scheme outside the range (4.4a) is dictated by the

shaded TVD region in Fig. 4. The limiter can be written conveniently in

the form

V(s = ! o]

201 - |s]) |s]

A

v

where |s| is given by (4.2). 1In terms of r and ¢(r)

Fig. 1 (g.v.) it 1s shown by the full line in Fig. 5.

In the scheme itself, (3.4)-(3.5), the limited term (3.5) can be

written

NI=

NI=

n n
—avAli{au + A 1] |s| = 4
n n n

- ovAl{Au + Au - |au, - uk_1|}] |s|
which shows also that an extra diffusion term of the form

_ 1 n n ~ n _ n

ovAL{3[Au + Au .1 = [dug - Au_,|}]

is brought in effectively to suppress the oscillations when

The form of the limiter in terms of the ¢ Ffunction of (2.4) and

Fig. 1 is

¢(r) = max[0, min(2r,41(1+r),2)]

(c.f. [1]), while in terms of the B-functions introduced by Roe and Baines

[5] the new limiter has the form

i(b,+b.)
- ‘S 2
B(bq,bzl =

2 m1n[b1,b21

if b1b2 > 0 and zero otherwise.

1.,
3 bz
otherwise

of the original

Nl=
»

|s] >

(4.5)

(4.8)

(4.7)

(4.8)

(4.9)



8§85 NUMERICAL RESULTS

We have carried out a number of numerical experiments using the
Fromm-type limiter. The examples chosen were linear advection of a square
wave and a Gaussian, and the well-known Sod shock tube problem [&].

For the advection of a sguare wave the new limiter is inferior to
Superbee, giving rather surprisingly a less symmetric profile, particularly
for low CFL numbers. For the Gaussian, however, although there is slightly
more clipping of the peak than Superbee there is also less squaring off of
the profile. The new limiter is clearly better than Minmod and slightly
better than that of Van Leer. Results using Van Leer's limiter have better
symmetry but for low CFL numbers Van Leer clips the peak much more.

For Sod's problem the results using the new limiter are better than

those of Van Leer and are comparable with those using Superbee.

§6 CONCLUSION

The results from the Fromm-type limiter (4.8) indicate that in smaooth
regions the property of good relative phase error is preserved while the
action of the limiter close to discontinuities prevents any oscillations
arising. The placing of the scheme midway between Lax-Wendroff and Warming-
Beam upwind ensures that the extremes of both schemes are avoided and that the
limiter is invoked under less wide conditions (see (3.4b)). Second-order
accuracy 1is therefore to be anticipated closer to sharp features of the
solution than for other limited schemes with consequent better overall

accuracy .
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PERIODIC BOUNDARY CONDBITIONS

A o o [mig] o
L g2 D » D | E ? I.: i wibogogopol : :
o 0 03 0 0.8 e (¥ L 0® a o (Y] 05 By n 06 (% 0@
[ S

T= 6.3000 ( 630 STEPS ) T= 6.3000 ¢ 1260 STEPS )

Ax = 0.1000 Ax = 0.0500

GLOBAL ERROR = 1. 44923 GLOBAL ERROR = 1.19732

o ooo (s /)
a
DEJU : } : r:ll:lf.a--'"‘u'EIEm‘El

T=6.3000 ( 2520 STEPS ) T= 6.3000 ( 5040 STEPS |

Ax = 0.0250 Ax = 0.0125

GLOBAL ERROR = 1. 04443 GLOBAL ERROR = 0.70007



i i8] n] ] 0 0 e . o f [ - " ® o 1
; 4 4 i ¢ —t mol-—El—mbg—m—g_ﬁ] + +
o, 0.2 0.3 Q0. 0.5 0.6 0./ 0.9 0.9 Ha 0 [ &} [ ] o, oS (%) [ L) oe e
.0 |
T= 6.3000 (126 STEPS ) T= 6.3000 ( 252 STEPS |
Ax = 0.1000 Ax = 0.0500
GLOBAL ERROR = 1.35277 GLOBAL ERROR = 1.11166

T=6.3000 ( 504 STEPS ) T= 6.3000 ( 1008 STEPS )
Ax = 0.0250 Ax = 0.0125
GLOBAL ERROR = 0. 90850 GLOBAL ERROR = 0.55478

MESH RATIO= 0.50
ENGQUIST-0SHER SCHEME

VAN LEER LIMITER

LINEAR ADVECTION EQUATION
GAUSSIAN DATA

PERIODIC BOUNDARY CONDITIONS



- DENSITY | 5 VELOCITY
1.0 mx 1.0
0.8 0.8
0. 6 d 0.6
0. 4 o 0. 4
0.2 7 0.2 |
0.5 1.0 0.5 1.0
1.2 PRESSURE 20 | ENERGY
1.0 | 2.5 s\
0. 8 i,l 2.0
0.6 : 1.5
0. 4 1.0
0.2 ' 0.5
0.5 1.0 0.5 1.0

S0DS SHOCKTUBE PROBLEM
IMPOSED INITIAL VELOCITY + 0.000

T= 0.144 ( 16 STEPS )

MESH RATIO = 0. 450

Ax = 0.020

U-A FIELD - FROMM BASED LIMITER
U FIELD - FROMM BASED LIMITER

U+A FIELD - FROMM BASED LIMITER



{5 | DENSITY
1.0 'mmﬂ;\
0.8 \
0.6 | ;
0.4 | e
0.2 L“
0.5 1.0
- PRESSURE
1.0 | ;
0.8 5
|
0.6 \
0.4 | \
0.2 | |

0.5 1.0

S00S SHOCKTUBE PROBLEM

VELOCITY

1.2
1.0
0. 8
0.6
0. 4
0.2
0.5 1.0
z 0| ENERGY
2.5
2.0 | Y
1.5
1.0
0.5
0.5 1.0
0. 000

IMPOSED INITIAL VELOCITY .

T= 0.144 ( 16 STEPS )
MESH RATIO = 0. 450

Ax = 0.020

U-A FIELD

U FIELD

U+A FIELD

+ -~ SUPERBEE LIMITER
¢~ SUPERBEE LIMITER
« - SUPERBEE LIMITER



[ DENSITY |2 VELOCITY
1.0 1.0
0.8 | 0.8 '
0.6 0.6
0. 4 b 0.4 |
0.2 7] 0.2 |
' ‘ 7
0.5 1.0 0.5 1.0
o PRESSURE z 0 ENERGY
1.0 2.5 I
0.8 | 2.0 N ]
0. 6 \ 1.5 |
e 4 % ) !
0 — 1.0
0.2 0.5 |
0.5 1.0 0.5 1.0

5005 SHOCKTUBE PROBLEM
IMPOSED INITIAL VELOCITY &« 0.000

T=0.144 ( 16 STEPS )

MESH RATIO = 0. 450

Ax = 0.020

U-A FIELD - MINMOD LIMITER
U FIELD - MINMOD LIMITER

U+A FIELD - MINMOD LIMITER



) DENSITY 1.9 VELOCITY
1.0 { 1.0
0.8 0.8
0.6 0.6
0. 4 b : 0. 4
0.2 “eran“ 0.2
| I

0.5 1.0 0.5 1.0
| 5|  PRESSURE 20 | ENERGY
1.0 | 2.5 4
0.8 2.0
0.6 4 1.5
0.4 xﬁm“w 1.0
0.2 0.5

0.5 1.0 0.5 1.0

S0DS SHOCKTUBE PROBLEM
IMPOSED INITIAL VELOCITY &« 0.000

T= 0.144 ( 16 STEPS )

MESH RATIO = 0. 450

Ax = 0.020

U-A FIELD «- VAN LEER LIMITER
U FIELD ¢~ VAN LEER LIMITER

U+A FIELD - VAN LEER LIMITER



