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Abstract

This report incorporates a systematic attempt to develop the theory
of the structure of shock waves for real gases.

The simplest place to start is of course with one-dimensional
steady flow. This is analysed in detail with reference to both exact
solutions and general behaviour for shocks. The limits of vanishing
diffusion and shock strength are also discussed.

This analysis is then built upon in two ways. Firstly, certain
conclusions can be drawn from the previous analysis relating to shock
structure in general fluid flow. These include a Reynolds' number
analysis and a conjecture concerning the shock structure in the weak
limit.

Secondly, the incorporation of nonequilibrium effects is discussed
and a new system is presented as a possible alternative to the Navier-
Stokes’ equations. The relative merits and demerits are discussed

along with several different types of analysis.



1. OneDimensional Steady Advection Diffusion Systems

1.0 Introduction

This section begins with a formulation of the general system of
equations in this context. Once this is achieved, algorithms are
provided for attempting to determine the presence of diffusive shock
waves. These algorithms are then tested and discussed.

Attention is then switched to existing exact solutions. A
standard non-dimensionalisation procedure is employed to analyse the
three main forms of diffusion (namely: viscosity, bulk relaxation and
conduction) separately. A survey of other exact solutions is provided
for completeness.

Finally, theory is developed for the general structure of these

waves with limiting diffusion and/or limiting strength.

1.1 General Formulation with Examples

The general formulation will be taken to be the one-dimensional
steady form of the general conservation system investigated by the
author in [1] §82.2.2 - namely the set of equations

. i
aul dF

i
ac * E = = 8 (w xt) (1.1)
p 1%

where S1 are the source terms and F; are the diffusive fluxes

defined by

Flo= f;(g) =YY v () ggg-dm . (1.2)

pqm* =
jam



where u = u(x; t) 1is the vector of dependent variables; f;(g) are
the non-diffusive fluxes; V;gm(g) is the 'viscosity tensor’; and d_
are the scale values of the diffusion coefficients.

In the case of one-dimensional steady flow, the suffices p and q
only take the value 1 so they may be omitted without confusion. Also
the first term on the left-hand side of equation (1.1) vanishes, as does
the t-dependence of the right-hand side. Instead of x, we write x.

This gives us the system

& = st v (1.3)
. . .. J
Foo= fl) - ) Y Vi) S (1.4)
jm

Finally, it is notationally convenient to collapse the viscosity tensor
with the diffusion scale values as the latter are merely constants.

This may be achieved by introducing WIJ(Q) and e such that

d = [ E di]% (1.5)
m
i = ) vilwa, (1.6)

These, together with equations (1.3) and (1.4), and noticing the

derivative is now total rather than partial, give us

%;-{fi(g) - 2 aw! (w) %ﬁi} = s'ui %) . (1.7)

J

where u = u(x).



Two examples are presented below:
Example 1.1

The viscous Burgers’ equation:

u +un = eu . (1.8)
with
u = u(x-Ut) . (1.9)

This gives the steady equation

(u-U) %? = e . (1.10)
where

E = x-Ut . (1.11)

Fitting this to the structure of equation (1.7), we note:

i) i and j only take the value 1;

s du d [ du]
ii) e — = =% |e 5% (1.12)
dfz df d§
Hence we can obtain a fit by setting
d = e
. (1.13)
x = §
f(u) = u-0U, (1.14)
W(u) = 1 (1.15)
and
S(u; £) = 0 . (1.16)



Example 1.2
The one-dimensional steady Navier-Stokes’ equations with constant

viscosity and thermal conductivity:

‘fa{p(u—v)} =0

%;-{p + pu(u-U) - % pn gﬁ} = 0 - (1.17)
d du dT
a;—{pE(u—U) +pu-%pu =« a;} = 0 )
with
p = RpT (1.18)
E = ;gf + % u? . (1.19)

In order to avoid confusion, the dependent variable vector shall be

changed from u to v. We set

v = (vl, Vo v3)T = (p, u, p)T ¢ (1.20)

Equation (1.5) leads us to

d = V(@ + k%), (1.21)
assuming equations (1.17) are not premultiplied. This may be achieved
by also setting

vl(v2—U)
f(v) = Rv,vy + v1v2(v2—U) ; (1.22)

R 2 _
[7_1 vivy + % vz](v2 U) + Rv vav,



[0 0 0 )
W(v) = 0 — 0 (1.23)
3V(®+k?)
0 4uv2 K
L 3V(p2+ic?) V(p*+k?)
S(vi x) = 0. (1.24)

1.2 Shock Control Domains and Intervals

1.2.1 Motivation

For simplicity, we shall here consider general solutions to the

single equation version of (1.7), i.e.

u = u(x; e, u_g, u)
where u_ = u(- %), ; (1.25)
b, = u(®)

Our aim here is to determine the position of diffusive shock waves.
Obviously, as these are not discontinuities, this will require the
specification of a representative interval for the given diffusive
shock. This will be called the shock control interval. It turns out
that it is also helpful to define a domain over which it is feasible to
look for the shock control interval. Such an outer domain will be
called the shock control domain.

These definitions have both constructive and non-constructive
applications. Constructively, they are intended to provide an improved
theoretical foundation to the process of shock detection, once a

solution has been obtained. It may be that the artificial viscosity,
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be it implicit or explicit, that is incorporated into the numerical
scheme, will in some sense correspond to the coefficient e in this
formulation.

Non-constructively, the procedures provided will be used later in

this section as a basis to weak limit theory.

1.2.2 Formulation

From geometrical arguments, it is clear that most diffusive shock
waves contain an inflection point. This condition is therefore imposed
and used in the following definition.

Definition 1.1

The shock control domain about the inflection point X of u is

called D(x and is defined to be the largest simply connected open

o)

interval satisfying

i) {x€D(xy) : u'(x) = 0} = {x;} . (1.26)
and
1) {x €D(xy) : u(x) = 0O} = @ . (1.27)
If we write

D(xy) = (X, Xp) (1.28)

(this is clearly well-defined as D(x is simply comnected and open),

o)

then an easy corollary of definition 1.1 is

(XL = - ® or uI(XL) = 0 or u (XL) = 0)
and . (1.29)
(Xg = © or u'(Xg) = 0 or u'(xg) = 0)
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We now turn our attention to the definition of the shock control
interval. To this end, let us consider an arbitrary interval

(xL, xR) c D(xo). We define

[x] = Xg = X (1.30)
[u] = u(xy) - ulx)

Uy = u(xo) g (1.31)
u = %(U(XL) + u(xR)) J

-

[u'] = u'(xg) - u' (%)

uy = ul(xo) r (1.32)

s ke o)

etc.

From figure 1, it can clearly be seen that the following two qualities

are desirable for this interval:

i) H%L | < Jugl (1.33)
ii) Ju'| « | %‘ . (1.34)

The following example shows that these two qualities are mnot in
themselves sufficient to derive a ’'good’ shock interval in all
circumstances.
Example 1.3

We again consider the steady viscous Burgers’ equation. It can be

shown that this has solution
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u o= oy o+ U{l + tanh Higzsll} . (1.35)

Without loss of generality, we may normalise equation (1.35) to:
u = u, + a tanh EE ; (1.36)

In equation (1.36), we have placed the inflection point at the origin.
As a tanh curve has no turning points and only a single inflection

point, we have
D(0) = (- », ») . (1.37)
It seems reasonable that we should only consider symmetrical

intervals as tanh is a symmetrical function. Let the interval

therefore be (- X, X). We then have

[x] = 2X (1.38)
aX
[u] = 2a tanh 5¢ (1.39)
i a2
— az 5 aX
u = 52 sech 5 ° (1.41)
These equations imply
ul/[x 2€e aX
: = X tanh 5 (1.42)
Yo

and

=i
S R e 29
[u]/[x]‘ = 5 sech 5 coth 5¢ - (1.43)
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Now, if we consider the limit X - ®, we obtain

s R (1.44)
Y0
I
u 2aX -aX/e

e Il (14

Clearly both these functions tend to zero as X = ® (for a, € > 0).
This implies that the °'best’ shock control interval is the whole of

D(xo), i.e. (- o, ). This is clearly undesirable.

The problem with the example of the tanh curve is the exponential
decay of the asymptotes. In practice this could be the case (or
something similar). To make our definition sufficient we shall need
the following extra quality:

iii) [x] » 0 as the shock stiffens up into a discontinuity (i.e., as

e =» 0).

We may combine these conditions in the following definition:

Definition 1.2

For an arbitrary interval (xL, xR) € D(XO), we define

B(XL,XR; a,B.v) = max{a N { & \
%o
|
bl - BN (1.40)

where o,B,v > 0O and L 1is a global length scale in x for u.
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This function measures the quality of a given interval. It is now

simple to define the best interval in a formal sense.

Definition 1.3

The shock control interval I(a,B,7) = (x:,,x;) is the interval in
that minimises G(XL,XR; a,B.v) for the given values of «,f

and . We may therefore write

1]

6*(a,B,1) G(XE,X;; a,B,7)

- (1.47)

= min {6(x; .xp; a,B,7)}
() € D) J

We now see how this definition works for the function in our previous

example.

Example 1.4

We again have the function given by equation (1.36). As before, we
only consider symmetric intervals. As there is no known global length

scale for u, we set L =1.

We also need to assume that condition iii) holds, so we are at

liberty to assume X is small. However, this does not necessarily
imply that %é is small, as we are concerned with the limit e - O,
Let
aX
7 = 3¢ - (1.48)

We shall assume Z 1is large. Equations (1.44) and (1.45) imply

(1.49)
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=1
[u—]ﬁml ~ 420 2% . (1.50)

We assume Z increases in scale as € - 0 so, for suitably small e,

=i
[ul/[x] u a
max{a‘ | . B o/t<] 5 (1.51)
u
0]
Clearly % increases as [x] decreases. Hence 6 does have a
minimum, at which point
a
A v+2X , (1.52)
which implies
X~ (:—ae] . (1.53)
v
where
(. x5) = (- X<, X . (1.54)

This is consistent with the assumptions made previously.

1.2.3 Normalisation

The normalisation provided here will be used in the limit theory of

§1.4. We recall the function wu(x; e, u_ , u ) introduced in equation
(1.25). Suppose it does have a turning point at Xq- Let us define
v(f; e v_g.v,) = u(x0+§; e,u_,,u.) - uy
where Ve, = v(-®)= u, - u, (1.55)
Vo = Vv(®) = u, -y,



- 16 -

This normalises the position and the value about the inflection point.

We have a corresponding definition for the shock control interval

Ja B M) = (§. &) .

£ 3

where EL = X~ X, <0 S (1.56)
* 3
§R = Xp T Xg >0

1.3 Exact Solutions

1.3.1 Nondimensionalisation Procedure

In this subsection, we shall be concerned with exact solutions to
approximations to the Navier-Stokes’ equations for one-dimensional
steady flow. The non-dimensionalisation procedure is based upon
constants derived from integrating the equations of motion.

The one-dimensional steady Navier-Stokes’ equations can be written

d
S -nf, -kf) = O, (1.57)
where
pu
f = p + pu’ (1.58)
pu(U + %-+ % u?)
u
£o= | % (1.59)
% uu'
0
f e 0 , (1.60)
3 |
T
where
p = p(p. T) (1.61)
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is the equation of state and U is the internal energy, which may have
a non-equilibrium form. p and k need not be constants.
Despite all this possible freedom, equation (1.57) may still be

integrated to give

£-pf - kf, = (1.62)

Q
P
~c
QH
Q 1is called the flow rate, P the flow stress and H the entralpy.

Now we turn to the non-dimensionalisation process. We introduce

scale values:

P
Uy = g (1.63)
and X tO may take any values obeying
X
t—o SER (1.64)
0
Also, define
X = H_ (1.65)
U
The scale values for the other variables are given as
_ @ 1
Po = P
PO = P
o i ( (1.66)
0O ~ R
. 2
UO = Uy |
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Substituting into equations (1.57) to (1.60) eventually yields

pu = 1
= o (G0
P+pu” -%u— =1 T (1.67)
dx
T+RBay-smW_gL _ o
p dx dx #
where, u = %— . etc.
0]
In particular,
~ u
u o=, where Ho = Pto (1.68)
0
and
x K
K = R where Ko = PRtO : (1.69)
0

Equations (1.67) are the non-dimensionalised equations.

1.3.2 Taylor Shock

The idea now is to analyse the system of equations (1.57) into the three
dominant physical diffusion processes. The processes are viscosity,
bulk relaxation and conduction.

Taking the first process, we restrict equations (1.57) with the

assumptions
K = 0 ]
L = const
P = oRT [ (1.70)
U = e
(v=1)p J
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Substituting these values into equations (1.67) and removing the '~'
signs yields:
p = 1/u
(1.71)

dx

Substituting for U and E— in the third equation of (1.70) gives,
eventually
4 du _ v+1 2
S M & T 3D Y TR Ut (1.72)
But we know gﬁ-: O when u=u_, and u=u,. Hence equation (1.72)
must be
2} du v+1
W Hua '& = - m (1.1_0o o u)(u uw) (1.73)
as u__ >u>u, for -® < x € o, This in turn implies
u(x)
__ __8u vdv
= & 3(~+1) (u_m—v)(v—um) (1-74)
u(0)
This may be integrated analytically. The resulting solution is known

as a Taylor shock after G.I. Taylor.

1.3.3 Relaxing Flow Shock

The second dominating physical diffusion process is that of relaxation,
where some of the energy of the gas is modelled as lagging behind its

equilibrium value. The case we shall investigate here is that of the
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internal energy corresponding to the rotational degrees of freedom
lagging behind those degrees of freedom corresponding to translational
motion.

In general, let the gas have a translational and [ rotational

degrees of freedom. For a diatomic gas, a =3 and [ = 2. We shall
merely assume a and [ are constant. Let V Dbe the translational
part of the internal energy and B the rotational part. Thus

V = B+V. (1.71)

We shall also assume the translational part takes the form as described

previously:

(1.72)

MR
o |9

However, the non-equilibrium form of the rotational energy will be given

by
DB 1
Dt = ?'(B_BO) c
(1.73)
_ Bp
where BO = 5,

This is the Landau-Teller form (see [2] p.204). T 1is the lag time for
the rotational energy. It has been found, theoretically and
experimentally, to be a certain function of pressure and temperature.
We shall assume it is a constant (an acceptable approximation for weak
shocks).

As we are analysing this process, we shall also assume
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K = 0
L= 0 (1.74)
The ideal gas law of equation (1.70) will also be assumed. Eventually,

again assuming the same conditions on the stationary points of u, we

obtain
_(2+p) L v _ |ltatB _ B
u{u 2(1+p)" T [2(1+F) (u_= w)(u - uy) - (1.75)
This system is also analytically solvable for x = x(u). However,

there is a problem with the potential sign of the left-hand side. This

gives a critical speed of

2+

Yerit = 3(1+p) (1.76)
Writing in dimensionalised variables, this gives
2 ’er
crit p (1.77)
where ¥ = 246
r 5
This gives a critical mach number of
2y
M = = (1.78)
crit ¥ ’
It turns out that when u_ < Uorit! the system is well-posed, but when
L > Uit the solution curve is double-valued and never reaches the

left-hand side. These cases are shown in figure 2.
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This situation also occurs in traffic flow equations (see [3],
p76]. In this case, Whitham argues that when the solution becomes
double-valued, a fundamental process (namely, some sort of diffusion) is
being ignored. A discontinuity could be fitted to the solution, but it

is not known where.

1.3.4 Conductive Shock

This analysis is provided in order to complete the section rather
than model a physically isolated diffusion process. In fact, strange
things (such as loss of regularity in shock fronts) can happen in some
circumstances when heat conduction is allowed to dominate viscosity (see
[4]).

We consider a very simple case here, with the ideal gas law and

internal energy relations as in §1.3.2, along with the assumptions:

uw = 0
(1.79)
K = const
Putting these values into equations (1.67) eventually gives us
4(~-1) =~ I
_’Y%l K(U = 1A)l.l = - (u_w— u)(u . l.lm) 5 (180)

This equation may also be integrated analytically to give x = x(u).
However, as in 81.3.3, we again have problems with the sign of the
left-hand side. This gives us a critical speed of

2 = P
Uorie = 5 (1.81)
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in re-dimensionalised variables, and a critical mach number of

1
M., = v (1.82)

It turns out that, in this case, we have the opposite problem to before;

i.e. that the system is only well-posed for u > u , otherwise some

crit

other diffusion process needs to be incorporated.

1.3.5 Survey of Other Solutions

The set of solutions provided so far, with their severe simplifications,
do not display the limits of analytical methods for the one-dimensional
steady Navier-Stokes’ equations.

Lighthill ([5]) has provided a model for advection-diffusion which
incorporates all three of the processes described above into a single
diffusion coefficient.

Becker ([6]) has solved the equations when viscosity and thermal
conductivity are constant and related by having a constant Prandtl
number of % (which is close to the value for air).

Finally, Pike ([7]) has extended Becker's solution to the case of
varying viscosity (still keeping the Prandtl number at %).

Obviously, other exact solutions do exist, but it is hoped that the

survey provided is fairly complete.

1.4 The Non-diffusive and Weak Limits

1.4.1 The Order of the Limits

In [8], it was shown that the a-fraction width of the first order

solution to Lighthill’s model is
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1 45 1-
7\((1 ) = m‘ ln[—ag] (183)
where
[ul] = u , - u, . (1.84)

and & 1is the ’'diffusivity of sound’ (the single diffusion coefficient
mentioned above). The structure of equation (1.83) is typical of all
the models described so far in as much as the width is directly
proportional to the diffusion coefficient and inversely proportional to
the shock strength.

This leads us to the conjecture in the limit d -0 and (u] - O,

?\"Cm ; (185)

where d 1is the scale value of the diffusion coefficient and A is a

measure of the shock width. From this conjecture, we obtain the simple
results
lim lim A = ®
a0" [ul-0*
(1.86)
lim lim A = 0
[ul0"  d-0"

These results have direct relevance to the structure of the shock tip in
two—dimensional steady flow in the non-diffusive limit. The first
equation implies that the shock width at the tip will become infinite
whenever there is any diffusion present. The second equation implies
the shock tip is a discontinuity in the non-diffusive system.

Figures 2 and 3 are three-dimensional surface plots for the leading

order approximation of u against x and [u]2 in the cases d > O,
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d = O respectively. The axis [u]® has been chosen instead of [u]
in order to relate it to the two-dimensional steady case (see [9],
§2.3). The infinite gradient of u along the axis [u] = 0 1is not

expected to be a physical phenomenon however.

1.4.2 Asymptotic Expansions

The aim here is to show the leading order structure of the solution to a
single general conservation law is indeed a tanh curve.

We therefore begin with the single equation version of (1.7):

— {f(u) ~ dW(u) —3%} = s(u; x) (1.87)

For simplicity, we shall also assume there is no source term. This

leads us immediately, by simple integration to

du f!u! - A

x = ETTEy) : (1.88)
for some constant A. As in 81.3, we know that gﬁ-: 0 for wu=u_,
and u = u. This implies
f(u_,) = f(u,) = A, (1.89)
assuming W(u) 1is bounded. As in 81.3.3, the case f(u) = A for some
u € (u,. u_) is discounted as it leads to a badly-posed problem.

Therefore we may assume f 1is either convex or concave in u over the
interval (u_, u_ ). This in turn implies there exists a unique value,

u say, such that

0
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U, € (u,. u_,)

df (1.90)
a;(uo) = 0
We now introduce the following normalisations (c.f. §1.2.3)
v =u—uO 1
g(v) = f(uO +v) -A = f(u) -A
L(v) = W(uO +v) = W) . (1.91)
Ve = Uy " Uy (> 0)
Vo = Uy~ u, (< 0)
Thus,
g(0) = f(uO) - A (1.92)

Without loss of generality, we assume f(uo) - A >0, so we may write

g(0) = A% . (1.93)
for some A € R.
We also have

g£(0) = 0, (1.94)
and

g(v,) = O }

(1.95)

g(vpy) = 0
Now, equation (1.88) transforms to

3—; % (1.96)
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which implies

v
X J L) a (1.97)
d o &(%)

where we have normalised x so that v(0) = O. We now seek a Taylor

expansion of g(w) about w = 0. Equations (1.93) and (1.94) imply

g(w) = A%+ Lz!&). w? + ;—,JZ (w-2)%g" (z)dZ . (1.98)

Assuming gm(v) is bounded, we see that for suitably small values of

v and v

"
s »» & (0) must be negative in order to satisfy equations

(1.95). Let us therefore assume

g (0) _ 2 (1.99)

v
- J L{x}dx . (1.100)
I T G A Jw(w—z)zgm(z)dz

0]

Unfortunately, we are not able to expand the denominator any further as

2 2

A" - ptw becomes small for w at the extreme values. We may only

conclude that the leading order truncated equation

_ JV _L(O)dw__ (1.101)

0 A% - u2w2

ax
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does indeed have a tanh-like solution. It is in fact
= = [ AL
u(x) = Yy 7 tanh [ (o) x] (1.102)
with
% o L%l as [u] » 0. (1.103)

From equation (1.99), it is clear that p remains constant in the limit
[u] = O. So we do indeed recover the relationship (1.85).
Our conclusion here is that even limitingly weak shocks for a

single equation in one dimension may contain a non-trivial structure.

1.4.3 Theory and Conjectures

We now switch our attention to the recovery of shock discontinuities and
their related jump conditions in the nondiffusive limit.
For one-dimensional steady flow, the appropriate form of the

Rankine-Hugoniot jump conditions is the simple relations
[f'(w] = 0. (1.104)

Our purposes may be achieved here if we are able to construct a

functional of diffusive jump functions {°}d, where

8}y = #0(d)) - (% (d)) (1.105)

xL(d) < xo(d) < xR(d) (1.106)
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11m+ xL(d) = xO(O)
d=0 (1.107)
. +
11m+ xR(d) = xO(O)
d-=0
lim {-}d 2 [-] .« (1.108)
d-0
where [ ] measures a jump discontinuity at xO(O). X s X and Xp

are defined as in §1.2.1 and are considered continuous functions of d
for all d < dO.

Of course, a natural choice of { }d is to use the interval
I(a, B, v; d) of 81.2.2, for some a, B, 7. Equation (1.46) may be

rewritten to give

6 (a, B. v; d) =

0
. Eé T {x}d } (1.109)
W/, € )
from which we may infer
{u} 7/ {x} % .
’ dI d 1 ¢ 8 (a,B&W, d) (1.110)
Yo
==
Yo B*(a.B.W; d)
| [OFZEIN | < p (1.111)
and
*
{x}4 ¢ 8(aB.vi d) (1.112)

L y
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Equation (1.87) integrates to give

(), = J [dW(u) % + S(u; x)]dx . (1.113)
I(a,.B,v; d)
But

Wiw) & ax = {JW(u)du} . (1.114)
I(a,B,v; d) £

and, assuming S(u; x) is bounded,

I3k >0 st ¥d< dO ,

S(u: x)dx} < K{x}d . (1.115)
I(a,B,v; d)

Thus,

’{f(u)}dl < d/q W(u)du}d + K{x}d : (1.116)
So, provided 9*(a. B, v; d) >0 as d -0, equations (1.112) and

(1.116) imply that

{f(u)}d -0 as d->0 . (1.117)

Equations (1.110) and (1.11?) also suggest that the interval
I(a, B, 6; d) 1is of the right form for equation (1.108) to hold.
The argument provided is not exact, nor does it say anything about

whether a discontinuity will form in wu(x; u__, u_, d) in the limit

00 (o]

d -0, only that if it does, then we are likely to pick it up. (It

can be shown that if u is a constant function with a step at Xg»

then I = (xa, xg) and 6 =0 Va, B, ).
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We finish this section by stating a conjecture which is intended to
be intermediate between our initial equations and a strong notion of the
formation of discontinuities. We shall require the appropriate

simplification of the norm introduced in [9], viz

e, vEMI =y [Eﬂz + F%;QJZ] . (1.118)

We shall also require the normalisations introduced in 81.2.3; given by

equations (1.55) and (1.56). We shall drop the dependence of v on
vV_, as these values are taken to be constant here.
Putting this altogether gives us the hypothesis

VL, U>0 Ve>0 3 d(e) <d, such that V djd, € (0. d(e))

v El = Jmax( dl) n Jmax( d2)
3 §2 € Jmax( dl) n Jmax( d2) such that
H(fl, V(fl; dl)) - (fz, v(fz; d2))”L.v e |, (1.119)
where
Jmax( d) = (XL(d) - de)‘ XR(d) - xo(d)) . (1.120)

2. Stability Theory

2.0 Introduction

In this chapter, we shall discuss two different stability theories
used in describing the behaviour of non-linear first order differential
equations with source terms.

The first approach involves transforming the system into a single
perturbation equation and then comparing the wavespeeds of the leading

order operator and the preceding lower order operators.
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The second approach involves imposing the standard plane wave form
of perturbation to the system. It turns out that only one form of
perturbation is possible and that the method is equivalent to taking the
Fourier transform of the system.

The author has not been able to find references to the theory of
these methods, only to applications of them, apart from the wavespeed

comparisons for the first method.

2.1 Whitham’s Method

2.1.1 Initial System

We have named this method after the process used by Whitham in
[10]. Our description of the argument proceeds as follows. Let us

initially consider the system of equations:

Lu(x) = 0, (2.1)

where x 1is the vector of m independent variables, u is the vector

of n dependent variables and L is a matrix of linear first order

partial differential operators with respect of x. We may therefore
write
m
L= ) tPaex (2.2)
p=1
for some constant matrices L(l),...,L(m).

Initially, let us consider the case m= 2, Let us use the

simplified notation
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x = (xv)
L) - . (2.3)
L@ _ g
Here equation (3.1) becomes
du du

By premultiplying by A_1 and transforming variables u = Mv, for a

constant matrix M, it is possible to transform equation (2.4) into

av av
&+A$=O. (2.5)
where
A = dlag{Al,...,An} , (2.6)
for certain constants Al,...,kn - the eigenvalues of A_lB.

Now, let us consider the function

n
¢ = )Cv, . (2.7)
i=1
for arbitrary constants Cl""'Cn' Equation (2.5) gives us
a a .
[& + ?\i b?]vi = 0 Vi . (2.8)

From equations (2.7) and (2.8) we therefore infer
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n
d o)
{‘H [-é;+)\i @]}q& = 0. (2.9)
i=1
The coefficients Ai represent the wavespeeds for the arbitrary
perturbation ¢.
Now, let us return to the case of general m. We now introduce
the following notation
(adj L);; = -1y Hgee LU0 1) (2.10)
where
L3 = _ . 2.11
P.q p+I(p21).q+I(q2j) ( )

where I(W) 1is the indicator function for the equation W such that

I(W) = 1 when W 1is true
(2.12)

I(W) = 0 when W is false

The det operator is defined as in normal linear algebra, i.e.
n
det L = ) P Ly ~row B 2.13
pPES
n

where Sn is the symmetry group of size n and e 1is the permutation
function. The operator is well-defined because the operators Li j
are commutative, associative and distributive (although they are not

invertible). This implies that the following relation holds

analogously to normal linear algebra.



- 35 -

(adj L)L = (det L)I . (2.14)

So, premultiplying equation (2.1) by adj L gives

(det L)u = 0 . (2.15)
So if we now use
n
¢ = z C Uy o (2.16)
i=1
we obtain
(det L)¢ = O , (2.17)
which degenerates to equation (2.9) in the case m=2, as the
constants c, are arbitrary.
2.1.1 Additional Source Term
Let us now consider a slightly more complex initial equation:
Lu = A(u - uj) (2.18)
for some constant matrix A and vector Uy- Introducing
v o= u-uy . (2.19)

equation (2.18) transforms to

(L-A)y = 0. (2.20)
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Now, even though L 1is an operator and A is a matrix, they are still
both commutative, associative and distributive with respect to
multiplication and addition. This is true even though the operation of
partial differentiation on the constant terms of A will result in

Zero. We may also derive the following result analogously to become:

(adj(L - A))(L - A) = det(L - A)T , (2.21)

whose adj and det are defined in the same way as before.

We now require the following lemma:

Lemma 2.1

det(A-B) = det A - tr(adj A B) + ...+(-1)tr(A adj B)
+ (-1)"det B . (2.22)
Proof
n
= = . .« = B, . . )
det(A-B) ) e I (A3 o1y~ Bi.p(1)) (2.23)
pES
from equation (2.13). Now
n o n
T (A .\~ B, . 3 = . i . .
i=1( fo(1)” Pilp(n) iZ1A1-P(1) .zl B5.003) iZjAl'P(1)+
J:
n
B z A T B 0 B 2.24
* - + . Iy . . -
+ ( 1) j,p(j) i#j i,p(i) ( ) =1 l,p(l) ( )
J=1

Taking the second term of the right-hand side of equation (2.24) and
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applying the summation of equation (2.23) gives

z ep z BJ-P(j) m Ai,p(i) -

. . P i#j
p€Sn j=1 i#j J.k=1 pGSnst
p(J)=k
We assert that
n-1
IPEPER A z
) % e = O S T A2 T (1))
p€Snst T€Sn_1
p(J)=k
. n-1 ;
CenptR Y Tn A
- L i,7(i)
T€Sn__1

(-1)3"*gecald 1)

(adjA), ;- (2.26)

Substituting into equation (2.25) gives

n n
B, ... DA, .. = z B.  (adjA), . . 2.27
z p 2 3.p(3) i 1.p(0) 5. k(BA) (2.21)
peS =1 J j. k=1
n
We clearly have the dual result:
n n
A, ... OB, ,.. = z A. . (adjA), . 9.98
E p z J.p(1) i£3 i,p(1) J.k( J )k-J ( )
p€Sn j=1 J. k=1

Equations (2.23), (2.24), (2.27) and (2.28) therefore give the

result. 0



- 38 -

Lemma 2.1 implies that we may expand det{(L-A) 1in the same way to give

det(L-A) = detL - tr(A adj L) + ... , (2.29)

where the neglected terms are linear operators of degree less than

(n-1).
Equations (2.20), (2.21) and (2.29) imply

{det L - tr(Aadj L) + ...}v = 0. (2.30)
So, setting
n
¢ = z ciVy v (2.31)
i=1
we obtain
{det L - tr(Aadj L) + ...}¢ = O, (2.32)

for arbitrary constants CpreeCpe

Now, only taking terms with derivatives of order n or (n-1)

leads to the truncated system:

{det L - tr(A adj L)}¢ = O . (2.33)
The term (det L)¢ 1is the same as that encountered in 82.1.1. In the
case m =2 it gives the product of wavespeeds. The other term,
- tr(A adj L)¢, gives the wave equation for the reduced set of

equations. In the case m =2 it will also be expandable in the form:
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n-1 3 3
tr(Aadj L) E «a il_Il [& + oy —] . (2.34)

for some constants Whereas previously the constant «
Ky P y

n-1°

could be removed, here, because equation (2.33) has the two terms, it

will remain. So the system (2.33) converts to one of the form
n n-1
d d a d
{ilzl [_ax + 7\i _By] + B iI_I1 [_ax + By —ay]}qa = 0. (2.35)

Further terms on this expansion could be found by expanding det(L-A)
directly and then regrouping terms of the same order. This will lead

to a full system of the form

n

k
a (k) 8_ _
{2 o .H [&-+ 7\i 6y]}¢ = 0, (2.36)
k=0 i=1
for some constants O ERERL A Agk)I k<{<n, i < k. Without loss of
generality, we may impose a = 1. This theory is applied to some

extent in the next section.

2.1.3 First Order Nonlinear System

We now consider the system
Luju = £f(u) . (2.37)

where

m
) 1P 5 (2.38)
p=1 P

L(u)

and f 1is a general nonlinear function of u.
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The first order approximation to equation (2.37) is found by

imposing the perturbation equation (2.19). This gives us
ot
Llyply = 35 (olv - (2.39)

This is because we must have

£(uy) = 0 (2.40)

o) = O
in order to balance both sides of equation (2.37) to leading order.

But equation (2.39) is identical in structure to equation (2.20).
We therefore infer the highest order truncation equation corresponding

to equation (2.33) to be

f
faet Ltug) - er oz wpaaseieon e - o (2.41)

In the case m = 2, we obtain a wave equation corresponding to equation
(2.35), except the coefficients Al""'xn' B, Bys--+sK _y @re now
functions of Uy In particular, the size of the coefficient B
indicates whether the operator of order n or the operator of order
(n-1) is dominating the equation.

This argument may be extended to the case of the full sequence of
operators given by equation (2.36). This is a remarkable result
because, not only does it tell us what the appropriate wavespeeds of the
reduced systems should be, it also tells us when to make the appropriate

approximations - namely: according to the relative sizes of the

coefficients ao(go)....,an_l(go).



A simple example provided

Example 2.1 - Flood Waves

We impose

In fact because

present.

g(go) - 9

n=2 and f(u)

e

1'%
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1l

(h, w)'

(t, x)7

U

A(u) S;-+ B(u) 3;

1 0
0 1
u h
2 u
[ 0
gS - gu®/c®h

in [10] is now given.

(2.42)

- (2.43)

and the leading order expansion equation (2.41).

We obtain the system

{&

where

and

+ C

1

g
ox

e

uO - Vgho
ug ~ Vehy
¥u ,
2gS

Yo

has a zero,

there are no other terms

(2.45)

. (2.45)

The observation made in the last example is generalised in the following

lemma.
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Lemma 2.2
When f(u) has k constant terms, the lowest order operator present in

the first order expansion wave equation will be of order at least k.

Proof

If f(u) has k constant terms (which must all be zeros, as

of
g(go) = 0), then 5&-(90) will have k rows of zeros. Consider the
o
expansion of det(L(gO) - EG-(EO)). If we take less than k products
from L(go) in any term, we will have to take more than  (n-k)
ot
products from aﬁ-(go). However, by the structure of the determinant
function, these must all be taken from different rows. Therefore one

of them must be taken from a row containing all zeros.

[
2.1.4 Second Order Nonlinear System
Again, we start with equation (2.37). We now expand it up to
order |Y|8- We obtain
oL ot g

L(uylv + [\1'69 (EO)]‘_’ = gu (%)Y * s (50)3}2 _ (2.46)

This may be rewritten in the form
of aL 0%t
Ly - 5 @) + v Z ) - — Gy -0 e
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So, by the same argument to before, we obtain the equation

of oL %t
det[L(uO) 6 (u ) + ve 8 ( O) (uo)v] = 0 (2.48)
for an arbitrary perturbation ¢. We need to neglect terms of order
|\_/|2 in equation (2.48). This gives us

{aeLzg) - 5 (o)) + er [ (up) - o — ()]
aa [Lisg) - 35 (]|} = 0 (2.49)

by use of Lemma 2.1.
Let us wuse the symbol @k to represent taking the differential
operators in y of order k only.

Clearly, as already shown,

n 1
af
det(L(uy) - 3= (,)) = det(L(yy))
- » . (2.50)
ar n-1 £
det(L(uy) - (uo)) = - trE;; (Eo)adJ(L(Eo))] )

Also, it may easily be shown that

n-1

af
adj(Llug) - 57 () = adi(Llgp))] - (2.51)
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Combining equations (2.49) to (2.51) shows us that the operators on ¢

of order n and (n-1) up to order |v|® are:

{[det(L(gO)) + tr[y'g% (go)adJ(L(Eo))]]

£ 2f
— [t[gj (5)ad3 (L)) + "[:F (5)¥ 243 (L(up)) ]

e[ () adsliyy) g ) [ - 0 @)

We thus obtain correction terms to the differential operators acting on
¢, which will in turn lead to correction terms to the wavespeeds and
hence the critical wavespeeds (the constants o in equation (2.36)
will also be corrected). The process may of course be extended to the
inclusion of higher order terms in v and lower order differential
operators. The whole method is analogous to the perturbation

approximation to the canonical form of a nonlinear system devised in

§1.4 of [9].

2.2 Theory of Stability Conditions on the Wavespeeds

In his concise paper, Wu ([11]) gives stability conditions on the

wavespeed for systems in the form

n m
a d d a
{lﬂ [ﬁ + C1 a] + aJﬂl [a + aj &]}4) = 0 (253)

where a € R and with solutions for ¢ of the form
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o(x. t) S L (2.54)
where k € R, K > O.
The system given by equation (2.53) will clearly be stable for all

time when

¥, (Y) <0 . (2.55)

The sufficient conditions for stability are stated by Wu as
follows:
Theorem 2.3
Equation (2.53) has a stable solution of the form of equation (2.54) if

and only if equation (2.55) holds and either

i) n-m = 1,
@20, : (2.56)
and
c1 > ay > 02 > a2 > ... a > Coyp )
or
ii) n-m = 2 ]
@20 S (2.57)
(ci+1, ai) occur in pairs, for 1 < i ¢{ n,
with their relative positions unimportant. |
Proof

See [11].

Although the conditions given are sufficient, Wu gives no argument to

show that they are necessary. So, for example, we could consider the
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case n-m = 3. The structure of the theorem seems to suggest the

following hypothesis:

For a system of the form of equation (2.36), ¢ remains stable
when
a, >0 Vk, ]
and, ¥V k<n, » . (2.58)
(k+1) (k) § \(k+1) § (k) (k) y 5 (k+1)
?\1 > 7\1 > ?\2 > Ay > .. )\k > N

=

This hypothesis reduces to equation (2.56) in the case

@ _o = O,...,a1 =0 and to equation (2.57) in the case a_{= 0,
@ 3= O,...,a1 =0 (as the pairing condition is equivalent to the

condition on the wavespeeds Agk) and A§k+1) in the cases k = n-2
and k = n-1).

In the case n =1, we obtain the relation

tm(Y) = (2.59)

_ o
K L
which is always satisfied.

In the case n = 2, the following condition may be obtained:

(m(Y) <0 & [?\ém - Agl)][xgl) - 7\§2)] > :K% . (2.60)

This is clearly unsatisfiable for suitably small k. Hence, unless
oy = 0, the system 1is unconditionally unstable (the case a. =0

0

corresponds to case i) of theorem 3 with n = 2).
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Hence the hypothesis given by equation (2.58) is false. It
therefore needs to be weakened in some way. The two obvious weakenings
are
i) Impose the condition Q, = 0.

ii) Impose the condition that equation (2.36) is in the reduced form of

equation (2.53).
Examples of both these weakened hypotheses require n 2 3 1in order not
to be cases of theorem 3. This leads to rather intractable
calculations for Y as it will be the solution of a polynomial equation
of degree » 3.

Of the two conjectures, the latter seems to be the weaker and more
likely one.

Wu gives two examples for the case n-m = 2:

i) The linearized Korteweg-DeVries equation

¢t +agp + v¢xxx = 0, (2.61)
which is unconditionally unstable,
and
ii) The linearized Boussinesq equation
; (2.62)

which is unconditionally stable for v > O.

2.3 Roe’s Analysis

The analysis used by Roe in [12] can be generalised to the following

argument.
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As in 82.1, we initially consider equation (2.1). However, let us

now consider a multi-dimensional Fourier transform

ix§

v® = ™2 e d . (2.63)
EeR"

By the Fourier inversion theorem, we have the inverse relation

—ix-e

ww = en™? [y@ee  dE (2.64)
EER™
Hence,
m
Gu
Lu = z L(P) -
p=1
/2 . (p) Tixef
- (2m) J- i) £ LPhy(pe  Td% (2.65)
P
geR"

A sufficient condition for equations (2.1) and (2.65) to be satisfied is

el = o (2.66)
p
Finally, pre-multiplying equation (2.66) by adjEE pr(p)] gives
p
det[} §pL(p)]g 0. (2.67)

P
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A sufficient condition for equation (2.67) to be satisfied is

detEE pr(p)] = 0. (2.68)
P

It seems certain that this condition is also necessary for equation
(2.67), as the latter is a vector equation for an arbitrary vector
v(§).

In the case m = 2, let us put §1 = W, §2 =§f and X, = t;

X, = X. Without loss of generality (assuming L(l) is invertible) we

2
may assume that L(l) =1 and L(2) = A for some constant matrix A.

Equation (2.68) then becomes
det(wl + EA) = O . (2.69)

This gives a relationship between the transformed independent variables.

It is also useful to think of the Fourier transform on terms of a

Fourier series, i.e., let us rewrite equation (2.64) as
- —ix-§
w = ™) Ve (2.70)
gew
for some space w and some coefficients Yf (i.e. they are

independent of x).

We therefore see that the analysis given 1is equivalent to

-ix-§

considering a single Fourier component, e . of u(x). Each

component must then obey equation (2.68).
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This analysis may easily be extended to the system with an
additional source term given in 82.1.2. It can be shown that this

gives the equation

det[i ) §pL(p) . A] % 100 x (2.71)
P

Therefore, the first order nonlinear system given in 82.1.3 will

obey the equation

af
det[i ) §pL(p)(l_10) " 5 (1_10)] - 0. (2.72)
P

In these two cases, the Fourier transform is applied to the correction
of u from the steady state, (90) (see equation (2.19}).

It is envisaged that it will be possible to obtain a correction to
equation (2.72) corresponding to the second order nonlinear system of
82.1.4. The analysis is not presented here.

Let us now consider the case m =2 again. Using the notation

introduced previously in this subsection, equation (2.72) becomes

det{i [wI + §A(1_10)] + % (1_10)} £ O . (2.73)

(Note: it is possible to write down a determinant equation of the form

(2.72) even when L(l) is not invertible).

e—i(wt+§x)_

Equation (2.73) corresponds to the Fourier term Now,

assume that equation (2.1) is a normal initial value problem solved over
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the domain {(x,t): x € R, t > 0}. The perturbation will remain stable

only when

E€R and ym(w) < O (2.74)

(c.f. the conditions on K and Y in §2.2).

So the stability condition is only met when equation (2.73) implies

equation (2.74).

Example 2.2 - Nonequilibrium Flow (see [12]).

T
u = (p, u, p. B)
x = (t x)T (2.75)
u AWy, = f(u) (2.76)
u p 0 0
0 T p u 0
0 0 0] u
r O B
0
f(u) = ; (2.78)
20 (B - B)
BT 0
| - /7 (B - BO) ]

where B 1is the internal energy corresponding to the rotational degrees

of freedom of the gas and



_ BP
By = 5 (2.79)

(c.f. 81.3.3).
Roe uses a slightly different framework with the Fourier perturbation

. i(wt- e . . .
written e (wt-£x) and the initial equations not written in the form of

equation (2.76). He plots

(0]
7 = 3T (2.80)
%e I TEaap
against a = —¢ and T st deriving the equation
22> - 1) + X (22 -a®) = 0 (2.81)
T

(ae and a, are the equilibrium and frozen sound speeds respectively).
Without loss of generality, he makes the assumption § > O (although
this is not explicitly stated). An original diagram plot of Z(TI: a)

shows that the wavespeed has undesired behaviour for a < 1/V5.

However, this condition is unphysical as it corresponds to

g o 2li¥@) (2.82)

implying a < % for [ > O.

It is hoped that the method used by Roe can be generalised to other

domains and higher values of m. It is anticipated that equation

(2.73) may be expressible in the form
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N 1§

W(Z; T ) =0, (2.83)

1
for some function V, where

(]

Z"C-I?I— : (2.8‘1)

such that Z 1is non-dimensionalised, where the independent variables
are now (t, x) and their Fourier transform is (w, f).

Also, IO.,...,IT

1 N are independent non-dimensional parameters which

are functions of u, and §. We conjecture that N = n-1 (in Roe’s

0

example, one of the components of a is set to zero, reducing the

0]
number of non-dimensional products from 3 to 2).

The general method will involve solving equation (2.83) for Z or

plotting Z with respect to Hl....,HN

as parametric variables. The
locus of 7Z will then need to obey certain criteria corresponding to
acceptable physical behaviour.

The process of determining the non-dimensional products nl""'HN
is described in [13].
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3. Towards a Theory of the Nondiffusive Limit for General Flow

3.0 Introduction

In this section, we shall be considering systems of the general
form given in §2.2.2 of [1] with governing equations as in (1.1) and
(1.2). We shall consider only a fixed space domain, A. The
diffusion scale coefficients dl""'da will be treated as variables
independent of the system.

Our purpose here is to attempt to describe the behaviour of
shockwaves in these systems as d - O. The first subsection gives a
Reynold’s number-type analysis of the general system. This gives us
insight into the relative strengths in advection and diffusion within
viscous shock regions of varying strength.

In the second and final subsections, a different course is taken.
First of all, the concept of a shock interval developed in 81.2 is
generalised to this multi-dimensional unsteady context. Af ter this, a
framework for asserting the convergence of viscous shockwaves is
devised.

It is intended that such a framework will lead to a generalisation

of the Rankine Hugoniot jump conditions for diffusive flow.
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