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.0 Abstract

In this paper we will attempt to solve the shallow water equations on the sphere
using a method that has already proved its worth in other areas of Computa-
tional Fluid Dynamics (CFD), but has yet to make an impact in enviromental
or meteorological type flows. This is the Taylor-Galerkin finite element method.
This method offers the possibility of great flexibility in mesh refinement associ-
ated with the finite element method in general, together with the accuracy of
the Lax-Wendroff method (although with fewer of the well-known problems of
that method). Here the method will be formulated in a form suitable for solv-
ing advection problems on the sphere and its potential will be explored on two
test problems. The problems will be solved in Cartesian geometry to avoid the

usual singularities associated with the poles in the spherical polar transformation.



.1 Introduction

Although variational principles do exist for fluid flow problems, Sewell [32], the
Bubnov-Galerkin, more usually just called the Galerkin, method has circum-
vented their use and freed finite element practitioners to tackle very wide classes
of problems. The Galerkin method, though, is not terribly well-suited to the
hyperbolic problems associated with fluid flow , see Strang & Fix [36], particu-
larly when large gradients are present in the solution. This is partly because the
Galerkin method is associated with best L, fits, which do not give good approx-
imations to jumps, and partly because the Galerkin method conserves energy,
for some hyperbolic systems, which is not true for all shocked flows and hence
the method can never converge in these cases. There have been many attempts
to remedy this situation. The Petrov-Galerkin method, see Morton & Parrott
[25] for example, is a generalisation of the Galerkin method and has allowed up-
wind finite element schemes to be created with hyperbolic problems specifically
in mind. It is not the intention of this paper to give an overview of this field but

certain large classes of these schemes can be easily identified.

There are also the moving mesh methods which use a variety of
criteria to move the nodes of the mesh to give a better solution, see Hawken,
Gottlieb & Hansen [17] for a review of methods using both finite elements and fi-
nite differences. Included in this framework are the Lagrangian methods, perhaps
the best known of the moving node methods, see Donea et al [12] for example.
Other schemes, with a fixed mesh but still using the Lagrangian principles can

be found in Morton, Priestley & Siili [26]. Mirroring the development of the



popular TVD finite difference schemes based upon characteristic decompostions
of hyperbolic systems there is also the Euler Characteristic Galerkin method, see
Childs & Morton [4]. Other successful algorithms are the streamwise-diffusion
methods,see Johnson [20], least-squares methods, see Bruneau et al (3], and dis-
continuous Galerkin methods, see Cockburn et al {7, 6, 5]. Most of these methods
owe their success, at least in part, to the introduction of some upwinding. As
with finite differences the other option is to use a central scheme. The scheme we

will be using here is of that ilk.

Finite differences and spectral methods are by far the more com-
mon numerical methods used in meteorology. Finite elements have been used on
occasions though. From Wang et al [38] where a Galerkin method was used on a
simplified problem to Cullen et al [9, 10] where the Galerkin method was used on
problems of increasing realism. Staniforth & Mitchell [34] demonstrated that the
finite element method could be written in a semi-implicit form to give a much
more efficient time integration. The paper by Staniforth [33] gives a review of
finite elements in meteorology. More recently there have been papers by Navon
[27] and Steppeler et al [35] on the Numerov-Galerkin method. These last three

papers all give many references in this field.

In the next section the Taylor-Galerkin method will be described
and adapted for the terms that might be expected to be encountered in the
context of this paper. In Section 3 two test problems from the meteorological lit-

erature will be described, the Taylor-Galerkin method will be described in some
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detail for a typical momentum equation occuring in the shallow water equations
on the sphere. Results for this method will be given. Finally, in Section 4, we

will summarise the results and discuss the potential of the method.

.2 The Taylor-Galerkin Method

The Taylor-Galerkin method introduced by Donea [11] and further expounded by
Donea et al [13, 14, 15], for example, has already proved to be a very powerful
method. For example, see Lohner et al [21, 22, 23] and Peraire et al [28] for its

application to high speed gas flows.

Basically the Taylor-Galerkin method is the finite element version
of the Lax-Wendroff scheme. The Lax-Wendroff method is still popular despite
its well-known misbehaviour at discontinuities. For smooth flows Lax-Wendroff is
second order accurate in both space and time whilst at shocks artificial viscosity
can help to give a reasonable solution. However, the finite element approach im-
proves the phase accuracy, Donea et al [14], and although this does not eliminate
the problems it does substantially reduce them. Together with mesh adaptivity
to improve the resolution in regions of large gradients oscillations can be elimi-
nated from all but the hardest cases where some artificial viscosity will still be

needed, Morgan et al [24].

The shallow water equations on the sphere cannot, strictly speak-

ing, be written in conservation form because of the presence of source terms.
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However, depending on the variables used, some or many terms in the shallow
water equations can be written in conservation form. As a starting point to deriv-
ing the method it is therefore useful to consider the single non-linear conservation

law in one dimension,

u; + F(u), = 0. (.1)

Momentarily leaving aside the spatial discretization, a Taylor series in time for u
is performed with of time-step of A¢. Assuming that we know the solution and
its derivatives at the time-level n we can then write down the solution at the new

time-level as

1

1
u™ = u” + Atu] + E(At)zu?t + 5

(AtPul, + .. . (.2)

Into this semi-discretised equation we can now substitute for the temporal deriva-

tives from the original differential equation (.1), i.e.,

uy = —F(u");

up, = —F(u")e = —(a(u)u])e = [a(u")F(u")a]e

to second order, where a(u) = %ﬂ. More terms could be used if desired. Upon

substitution into (.2) this then leads to the semi-discretised scheme

(u""'l . ’U,n) n At n n
—— —F(u™), + 7(“(“ VE(u™)o)o (:3)
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From this point we can apply whatever spatial approximation we
like to the right-hand side of (.3). If we apply central differencing then we obtain
the Lax-Wendroff method. Here, though, we will expand u in terms of some finite
element basis functions and then take the weak form of equation (.3). That is we

write

nodes

u™(z) = Z_; Uli() (-4)
where t;(z) is the finite element basis function and UP is the nodal value.
Throughout the rest of this paper we will assume 4);(z) to be the usual piecewise
linear ‘hat’ function, that is ;(z) is the piecewise linear function that satisfies

the equation

pi(z;) = bij, (-5)
and is depicted in figure (1) for the two-dimensional case. Although these are
the only elements that will be considered here there is no reason why higher or-
der elements could not be used. The notation 1 (z) will be used to represent the
piecewise constant functions that take a value of 1 on element e and 0 everywhere

else.

Substituting for u(z), from (.4), into (.3) and then multiplying
through by t;(z) and integrating over the entire domain we have the second or-

der accurate Taylor-Galerkin scheme in one-dimension

[ = Uy (@)d = — At || F(U™)ah5(z)d

13



_S‘zﬁ (/Q(z/)j(x))xa(U")F(U")de —/szj(x)a(U”)F(U”)dF) vj.

Here we have denoted the solution domain by Q and its boundary by I'. The

extension to multiple dimensions presents no difficulties.

The extension to a system is now quite straightforward. Letting

A(U") denote the approximation to the Jacobian of F, i.e.,

oF

A=@,

we can then write down the Taylor-Galerkin method for the system of conserva-

tion laws in multiple dimensions

, OF:

=0
axk ’

where the usual notation has been used, as

L@ -y = ~at [ SEy@an

A oL At?

5 oAU 5 Ti(2)df + = [ A(Qn)apn

pi(z)dl' V5,  (6)

n being the unit outward normal of the boundary I'.

Just as the one-step Lax-Wendroff method is rarely used for systems
because of the expense involved in calculating the matrix A and of then multi-

plying it by the vector g—i’f, a two-stage version of the Taylor-Galerkin method
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has been developed. This entirely mirrors the derivation of the two-stage Lax-
Wendroff method, see Richtmyer & Morton [30]. In the finite difference scheme

1
there are temporary values u"T? centred halfway in space and time. In the finite

Z+§-
element version these quantities are still centred in space and time which means

we need to introduce the piecewise constant representation

elements

1
Un+ E Uen+2 ,‘[)e( )
where the t.(z) are the piecewise constant basis functions mentioned previously.

This then leads to the two-stage Taylor-Galerkin scheme

1 OF7;
AMHMQM=Awm@Q—7}w bo(z)dQ Ve (7)

nl _ [y, _ n1 0%i(Z) o
[t = ryiayin = At [ FrHEE R0

Tk

At / Frapy(z)dl — At / M _F(z)dl V5, (.8)

where F', denotes the outward normal flux and the overbar represents an element

averaged quantity.

This could be considered the classical derivation of the two-stage
Taylor-Galerkin method. For use on the sphere we can specialize the scheme.
Firstly, there are no boundary terms for advection problems on the sphere and
s0 eq. (.8) immediately simplifies. We note that in three-dimensional models of

the atmosphere this would not be the case. In this application area, unlike gas
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dynamics for example, all the terms in the differential equation will not be in con-
servation form. Nor may we wish to write the terms in conservation form. Terms
not involving derivatives, the Coriolis terms for example, are easily integrated.

To see how to treat the other derivative terms consider the advection equation

u; + a.Vu.

The velocity field, a, will be a function of position, z, alone in the first example
to be treated later, but will generally be a function of the solution u. Hence we
consider @ = a(z,u). The first step, eq. (.7), goes through as before. In the
second step of the Taylor-Galerkin method, eq. (.8), the term that needs to be
treated slightly differently is the one where the derivative of the flux function,
at this stage represented by piecewise constants and therefore undifferentiable, is
put onto the piecewise linear basis function by integration by parts. Now these

terms are treated in the following way:-

n+z nt+i n+l L
/ElementzE Q(Q, UE )—V—UE : ¢J (&)dE . —/EUE z(¢J (&)Q(i, UE+ ))dE
= U [ Y (@ale, UpH)dE

= —UE+%L¢j(&)g(z,Ug+%).d§ VE,

where S is the surface of the element and dS = ndS, where n is again the outward
1
normal. Given that t;(z) is a linear function on each element and that a(z, Ug+2)

. . . . . . 1 .
is a piecewise constant function on each element (if a function of U™*2) or a piece-
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wise linear function (if a function of z), the surface integral is then very simple
to evaluate exactly and cheaply as the normal vectors only need to be calculated

the once.

.2.1 Taylor-Galerkin on the Sphere

A triangular grid used previously for calculations on the sphere is the spherical
goedisic grid. This has been used for finite element calculations, see Cullen [9],
and finite difference calculations, see Williamson [40]. Although there is no rea-
son why this grid could not be used in the context of this method, another, very
similar, approach has been used here. A first grid is defined consisting of a node
at each pole and six equi-spaced points around the equator. This then gives a
grid of 12 equilateral triangles (as viewed in 3-D cartesian space). Successive re-
finements are then made by dividing each existing equilateral triangle into 4 equal
sized triangles. The nodes of the triangles are then projected onto the surface
of the sphere. This leads to a grid where each node has six elements attached
to it except for the original six nodes on the equator where only four elements
meet. The n'* grid then refers to the grid produced by the n'* refinement of the
original grid. In this paper we will not examine the possibilities of grid refinement
but in order to demonstrate that we are by no means restricted to uniform grids
the grids are then “smoothed”. The word smoothing is used in inverted commas
because although it is a simple grid smoothing algorithm, that aims to place each
node at the centre of all its neighbours, and gives aesthetically pleasing grids, see

figures (4) and (5), we see that it also introduces some asymmetry on the coarser
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mesh, figure (3), where the grids on the northern and southern hemispheres no
longer overlap. More importantly, we see from table (i) that there is now a large
range of element sizes. Before the smoothing all element sizes were very close to
being the average value. This procedure does have an adverse effect on the time-
step that can be taken but we hope goes some way to showing the prospective

flexibility of the method.

One great advantage of using a cartesian co-cordinate system is
that the equations are well defined everywhere, there is no singularity present
due to the transformation of co-ordinates and there is no ambiguity in the defi-
nition of velocities and derivatives at the poles. ( The reader may be interested
in Swarztrauber [37] at this point where these points are addressed whilst still
using spectral methods. ) However, using a finite element method, unlike spher-
ical harmonic based methods or most finite difference schemes, we can discretize
directly onto a surface in 3-dimensional cartesian space. This means that we have
the three velocities (u,v,w), instead of the usual two ()\, 0), and three 'indepen-
dent’ directions (z,y, z) instead of just (A, 8). Clearly only two of the velocities
are truly independent, the third being defined by the need for the velocity to be

tangential to the sphere, i.e.,

rau =0, (9)

where u = (u,v,w) and r is the normal vector to the sphere. Similarly only two
directions are truly independent and hence only two derivatives can be calculated

on the sphere. The third is obtained through the relation

18



r.Vf =0 V differentiable functions f. (.10)

Both indentities (.9) and (.10) will be used extensively in the following. Explic-
itly then, for example, eq. (.9) can be used to recover the velocity in the vertical

direction given the z and y velocities,

—(zu + yv)
z

w =

and the derivative in this direction is then given as

of  — (=¥ +v¥)

0z z '

Clearly for z close to 0 it would be unwise to use these formulae. In practice the
largest, in absolute value, of z, y or z is used to determine which velocity and
derivative is to be recovered from (.9) and (.10). In the following we will assume
that |z| is the largest. Entirely analogous results follow if the other co-ordinate

directions are chosen.

The calculation of the z and y derivatives can be approached from

many angles; here we just present one way.

In the plane (z',y’) the two derivatives, % and g—y,, are easily cal-

culated, for piecewise linear functions, as

gg = S [0 - V)5 — 43) — (U2 = Ua) 0t — 93)]

19



L

oy — Ui Us)(zy — a3) — (Uz — Us) (2 — z5)],

where

/ =

J = (7 — 3)(ys — ¥5) — (25 — 75)(37 — ¥3)
is the element Jacobian and can either be stored or calculated when needed. The
subscripts refer to the three nodes of the element with the usual anti-clockwise
numbering convention. We may define 2’ and y’ how we please but perhaps the

simplest is

The chain rule tells us that

b _ owou, yiu  0:0u
oz’ 0z'0z  Ozx'dy Oz’ 0z

b _ oedu you, 0:du
oy’ Oy' 0z Oy Oy Oy 0z

We can substitute in for the z derivative from eq. (.10). The derivatives of z with
respect to the new variables z’ and y' can be obtained by noting that, where a is

20



the radius of the earth,

2 = o —a?—y?

2 2

and hence

9z _ &

oz z
and

9z _ ¥

oy oz

Inverting the resultant matrix then gives us the derivatives we require,

Ou - ou
Ox 2ty Y oz’
1
T
il 24 42 Iu
By -y 2+ By’

This has dealt with all the terms created by the right-hand sides

of equations (.7,.8). This now leaves us with a system of equations to solve

MU —U") = b, (-11)

where M is the mass matrix whose elements are given by

21



Miy = [ i(z)bs(z)d2.

This, of course, is not just a product of the Taylor-Galerkin method but of any
Galerkin method using non-orthogonal basis functions. Fortunately the mass ma-
trix, M, can be inverted accurately and cheaply. Wathen [39] showed that with
diagonal pre-conditioning the eigenvalues of M were all contained in the region
[1,2] for the linear elements on triangles to be used here. Similar results hold
for other types of element. This then implies that the conjugate gradient (CG)
method, see Golub & Van Loan [16] for example, would be particularly efficient
in the sense that very few iterations are needed. Typically we found one CG
iteration sufficient to reduce the norm of the initial residual vector by a factor of
1071, In some of the examples with very large time-steps three iterations were
required. If a vector machine is available then each iteration can also be made

extremely fast, see Axelsson & Barker [1] and Howard et al {19].

.3 Test Problems and Results

3.1 A Linear Problem

The first test problem is that due to Ritchie [31]. This involves the advection of
a Gaussian hill around the sphere, completing one revolution in 20 days. The

velocity field is defined as giving constant angular velocity around the point

(Mo, 0) = (0°,45°). The Gaussian hill is centred on the point (0°,0°) and is

22



given by

G(r) = 1006_<L’2:53) ,

where r is the distance from the centre of the hill as measured in the plane gen-
erated by the stereographic projection true at (0°,0°) and L is the wave length
of the field and takes values of 10,000km., 5,000km. and 2,500km.. Full specifi-
cations of the problem can be found in Ritchie [31]. Due to the definition of the
velocity field and the positioning of the initial data the cone passes directly over
the north pole after 10 days. This can prove to be a problem for some schemes
but in the cartesian co-ordinate system with the grids described previously this

is not the case.

The results are all taken after a full 20 day rotation. The max-
ima and minima are given to indicate the sucess of the solution and an I, error
provides a more objective, comparative measure. The maximum and minimum
should remain 100 and 0. No pictures are given of the results as they only confirm
the impression gained from looking at the extrema, i.e. the solution was obviously
degraded or clearly doing very well. There was no noticeable phase error and no
increase in the rate of error growth occured in transversing the pole. Results are
given for various time-steps and meshes and with various values of L to assess
the temporal and spatial accuracy. Tables (ii-iv) give the results for the 3rd 4th
and 5% grids for L = 10,000km.. Tables (v-vii) give the same results for L =

5,000km. and tables (viii-x) for L = 2,500km..

From Table (ii) we see that there is no point reducing the time-step
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below 1,000 seconds as the results have time-converged at that point and to take
more time-steps is to invite more projection error to creep in, as indeed happens.
If we subtract off the purely spatial error, i.e. that error that remains in the time-
converged solution, then we can calculate the temporal orders of convergence to
be 2.2 and 2.19. Similarly on the 4** grid in table (iii), if we subtract off what is
assumed to be the time-converged solution, we can calculate the order of conver-
gence to be 1.955, 1.38, 1.37 and 1.7. It is worth noting here that the 4 grid has
resolved the Gaussian hill much more adequately than the previous grid. This
is shown by the vast improvements, apart from with the very large time-steps,
in the maximum and minimum values. If a strictly non-negative quantity needs
transporting, for example humidity, then it is clear from these results that, pro-
vided the mesh is capable of representing the solution and a moderate time-step
is chosen, then very little post-processing of the solution will need to be done to
maintain positivity. The final grid in the sequence is the 5t and its results are
in table(iv). These results show only a modest improvement over those obtained
on the 4" grid. This is due to the fact that most of the wavelengths present
could be adequately resolved on the 4** grid. It is not possible to give figures for

the spatial convergence rate due to restricted number of grids we were able to use.

Now looking at the steeper Gaussians we, not surprisingly, see that
the 37 mesh with just 768 elements fails to resolve these cones, see tables (v) and
(viii). The other two meshes both make a good job of the 5,000km. cone, tables
(vi) and (vii), although now the 5 grid is showing itself to be superior. For the

final case of L = 2,500km., tables (ix) and (x), again the 5" grid does well whilst
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the 4** grid is showing signs of deterioration.

Overall then we have shown that the Taylor-Galerkin finite element
method copes reasonably well with this test problem. On a fixed mesh it would
be difficult for a finite element method based on piecewise linear elements to com-
pete with the high accuracy semi-Lagrangian schemes. The real benefits of the
finite element method will show through when adaptive meshing is used enabling
the resolution of the 5t* grid to be obtained with a mesh of significantly fewer
elements. This is particularly true of the current example where the vast majority
of the mesh is doing nothing. It is beyond the scope of this paper to look at the

various ways mesh adaptation could be implemented.

.3.2 A Non-Linear Problem

The radius of the earth, a, the rotation rate of the earth, {2, and the acceleration

due to gravity, g, are defined to have the following values:-

a = 6.37122 x 10°m

0 = 7.292x 107 %s7!

g = 9.80616ms™2.
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Following C6té [8], for example, we write the shallow water equations on a sphere

as
v, 1
L e (e o
d¢
E + ¢Z-Z—O)
where
V = (uv,w)T
L = (m,sz)T
d _ o 0, 0 3
TR T e T
and
1
F = —EfEXK—_V_QS
with
202
F= =2
a

We will now look in some detail at the treatment of the first compo-
nent of eq. (.12), the velocity in the z direction. Expanded, the equation becomes,
Ou Ou Ou ou = 8¢

tu—+v—+w_ +§(u2+v2+w) %

5 Y5z Ve Vo +—(_z”+yw)_0
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The equations for v and w are entirely similar. As only the one
element will be considered subscripts refering to elements will be dropped. In-
stead the subscripts will refer to the local numbering on the element. Temporal
superscripts will also be dropped for simplicity where possible. This is illustrated
in figure (2). A subscript ¢ will be used to denote the value of a quantity at the

centroid of an element. For a linear function this is just

=f1+f2+f3

fe 3

and is hence equal to the integral of the function f over the element, when multi-
plied by the element area. Geometric quantities will be assumed to be constants
over the element and will take the value at the centroid. The integral of the
quadratic terms was performed in two ways. It was evaluated exactly and by the
centroid quadrature. No difference could be detected in the results and so we
just present the method with the centroid quadrature used. The derivatives are
calculated as discussed in the previous section and are treated as constants on the
element. The constant approximation to u on this element at the half time-level
is then given by

20
+ 22 (wP + 0+ ) + o¢ , Nz
a

atf u  Ouw O
2 \“Bdz "8y T 5,

72 T 2 (—2cve + ycwc)) :
Having now calculated u™t v" 3 w™tE and ¢"7 on this element it now remains
to calculate the contributions this element makes towards the nodal equations
locally termed 1,2 and 3. We drop the superscript n + % Denoting the con-

tributions to the equations as Au; and the normal vectors n;, see figure (2), as
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(Tp;, Yn:» Zn;) We have, assuming the vector to have been normalized to have length

\/(:cl — 23)2 + (y1 — Y2)? + (21 — 22)? in the case of n; for example,

Bur = LR ulons 4 5) 4 o+ 00) + 0l )] 5o+ 20

area(A) [:cc

20z,
. EE(U2 40?4 w?) — z

(o) |

By = 81 { o + )+ 300 + ) + 0, + 7))+ 5o+ 20

E%A_) [E(zﬂ + 0%+ w?) — 2250(—%” + ycw)]}

a?

Auz = At {;‘ [u(xm + Tny) + V(Yny + Yns) T w(2n, + Zns)] + g(wnz I xna)

20z,

(u2 + 1)2 + w2) _ 2 (—ZC’U + yc’w)]} ,

arec;(A) [E

a2
where area(A\) is just the area of the element in question. We note that many
of the terms are common between these three contributions and there are more
common components with terms in the equations for v and w. This means that

a lot of time can be saved in the calculation of these integrals.
The test problem is that due to Phillips [29]. It involves the evolu-

tion of a Rossby-Haurwitz wave. The initial velocity field is given by the stream

function,
P = a® (—w sin(8) + K cos™(8) sin(0) cos(R)\)) : (.13)
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where w, K and R are constants. The longitudinal and latitudinal velocities can

now be defined from the streamfunction (.13) as

i = akcos(f) = —a_l—?,)—lg = aw cos(0) + aK cos™1(0) (R sin?() — cosz(a)) cos(RA)

5 = af = (acos(9))™ —g% = —aK R cos®1(0) sin(9) sin(R)),

where the “’s have just been used to distinguish these velocities from their carte-

sian counterparts. The cartesian velocities can now be obtained from the relations

u = —tsin()\) — 0 cos(A)sin(f)
v = ticos(A\)— ¥sin(A)sin(f)

w = vcos(f).

Haurwitz [18] showed that in a non-divergent barotropic model the wind field
defined by eq. (.13) moves from west to east with angular velocity
R(3+ R)w — 29

"TTU¥R(2+R (-14)

without distortion. The shallow water equations do not have a known solution for
this problem but for stable waves this solution proves to be very accurate. The
initial height field is obtained analytically from the streamfunction by solving the

balance equation, see Phillips [29]. This means that not only is the divergence
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of the velocity field zero, from its definition, but also the initial tendency of the

divergence is zero. The height is then given in [29] as

gh = gho + a®(A(0) + B(0) cos(RX) + C(8) cos(2RN))

where
AD) = 2(20+w)co(0) + i[{? cost(8) [(R+1) cos*(0) + (2B? — R —2)
—2R? cos_2(0)]
Bo) = T ro) (R + 2R +2) - (R+ 1) cos?(0)

(R+1)(R+2)

c() = iK? cos?R(0) [(R + 1) cos?(6) — (R+2)] .

The problem is then fully defined by choosing

he = 8x10°m.,
w = 7.848 x 107%sec?,
K = 7.848 x 1075sec™?,

R = 4

A contour plot of the height field and a representation of the wind field is given
for the initial data, on the 37 grid, in figures (6,7). Figure (6) is an equatorial

projection and figure (7) is a polar projection.
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With the choice of parameters defined above this gives an an-
gular velocity of the solution, from eq. (.14), of 2.4635 X 10~%rad sec™ or

0.2128rad day™* or 12.2° per day.

Results are given for the three grids at daily intervals up to the
seventh day. Wind arrows are not included in the results for the 5% grid. An
equatorial and polar projection are provided for each grid for each day. It was
found easier to estimate the angular velocity of the solution from the polar pro-
jections whereas the equatorial projection would provide a better indication of
the overall acceptability of the solution. Figures (8-21) are the results for the 3™

grid, figures (22-35) relate to the 4t" grid and figures (36-49) are for the 5% grid.

The grids all give the same basic answer revolving the solution
without any great distortion. This distortion becomes less on the finer grids,
as we would expect, but even on the coarsest grid the breakup is very limited.
Considering that only 768 elements are used on this grid and that they are not
equi-distributed the method performs remarkably well. On the 4*h grid the solu-
tion improves with there now only being a slight distortion of the ‘highs’ revolving

around the equator. On the 5% grid this has all but disappeared.

4 Summary

We have taken one of the simplest specialist hyperbolic finite element methods

and applied it to the shallow water equations on the sphere. The results would
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appear to be very good, with a good resolution being obtained on a quite coarse
grid. The grids used had elements that varied greatly in size demonstrating very
clearly that regular grids are not needed. The results were obtained with no
artificial diffusion or any filters and the geopotential was conserved as a direct

property of the scheme.

The major disadvantage of the scheme is its explicit time-step. This
means that the time-step is limited by the fastest moving waves which are the
gravity waves, u & +/¢, and the smallest Az. Although in the cases reported here
we did make the Az smaller than we need have in order to demonstrate that
the method did not need a regular grid, the main problem is the gravity waves.
Other schemes have used a semi-implicit approach to overcome this problem and
this has also been done for the finite element method by Staniforth & Mitchell
[34]. This approach is widely regarded as being very efficient and it is hoped that
together with the conjugate gradient method as a very efficient matrix inverter

that it might prove to be even more so in the context we have developed here.

Another paper we could do well to learn from is that of Steppeler et
al [35]. Here we achieved conservation of geopotential but there are many other
conserved quantities, total energy, vorticity, divergence and potential enstrophy
for example. In [35] the question of integral invariants within a finite element
method was addressed with particular reference to the conservation of energy.
This was found to increase the non-linear stability for long-term integrations and

to improve the accuracy of their scheme. It is hoped that this might have the
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same effect on the algorithm described here. Again the constrained conjugate
gradient method could be put to good use to ensure an efficient solution of the
resulting implicit equations. It has already proved to be effective in other appli-

cation areas, Baines et al [2].

In conclusion then we have shown the Taylor-Galerkin method to
be capable of solving problems of meteorological interest. What remains to be
shown is that the method is also efficient. Although we showed here that the
calculations needed to update the solution at each time-step were modest, a
semi-implicit version is really needed so that reasonable time-steps may be taken.
Conserving the values of integral invariants may also aid the length of time-step
that could be taken and should also increase the accuracy of the method. Both

future improvements should fit nicely into the algorithm used in this paper.
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mean area km?

Grid | No. of elements | No. of nodes min. area | max. area
3rd 768 386 658569 77066 1712100
4th 3072 1538 165694 15382 218084
i 12288 6146 41490 3161 49830

Table i: Details of the grids used.
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Table ii: Results for 3" grid with L=10000km.

Table iii: Results for 4** grid with L=10000km.

At (secs) | Max. | Min. | [; error
8000 61.33 | -106.5 | 0.699
4000 72.24 | -28.69 | 0.289
2000 79.28 | -12.80 0.2
1000 | 83.62 | -7.87 | 0.175
500 86.29 | -7.52 | 0.176
250 87.87 | -10.2 | 0.185
125 88.74 | -11.95 | 0.195

At (secs) | Max. | Min. | [/, error
1000 91.59 | -39.28 | 0.144
500 95.37 | -9.74 | 0.0409
250 97.61 | -3.93 | 0.0189
125 98.79 | -1.85 | 0.01043
62.5 99.4 | -0.963 | 0.00672
31.25 | 99.69 | -0.507 | 0.00508

At (secs) | Max. | Min. | I3 error
125 98.77 | -6.77 | 0.01135
62.5 99.39 | -2.39 | 0.00482
31.25 99.71 | -1.04 | 0.00252

Table iv: Results for 5** grid with L=10000km.
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At (secs) | Max. | Min. | /; error

8000 26.891 | -38.036 | 0.4462

4000 34.153 | -15.573 | 0.3155

2000 38.662 | -11.669 | 0.2903

1000 41.830 | -9.851 | 0.2929

500 44.516 | -12.332 | 0.3159

250 46.533 | -19.617 | 0.3506

125 47.794 | -25.532 | 0.3827

Table v: Results for 3¢ grid with L=5000km.

At (secs) | Max. Min. | [; error

1000 106.767 | -77.097 | 0.2061

500 80.724 |-12.926 | 0.04711

250 85.717 | -2.840 | 0.030931

125 88.507 | -3.2507 | 0.027813

62.5 89.977 | -3.777 | 0.0276

31.25 90.7362 | -4.0714 | 0.027923

Table vi: Results for 4** grid with L=5000km.

At (secs) | Max. | Min. | [; error

125 95.389 | -5.152 | 0.0075188

62.5 97.556 | -1.871 | 0.004036

31.25 98.72 | -1.255 | 0.0025215

Table vii: Results for 5t grid with L=5000km.
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At (secs) | Max. | Min. | [, error

8000 10.462 | -13.102 | 0.2705

4000 11.62 | -6.359 | 0.2453

2000 13.349 | -5.195 | 0.2414

1000 15.103 | -5.279 | 0.2434

500 17.657 | -9.307 | 0.2556

250 20.286 | -15.259 | 0.2808

125 22.298 | -19.631 | 0.3101

Table viii: Results for 3¢ grid with L=2500km.

At (secs) | Max. Min. Iy error

1000 158.225 | -143.286 | 0.2734

300 42.039 | -17.83 | 0.070526

250 46.948 | -10.174 | 0.0630852

125 49.865 | -11.777 | 0.066177

62.5 51.447 | -12.962 | 0.070369

31.25 92.258 | -13.906 | 0.073764

Table ix: Results for 4" grid with L=2500km.

At (secs) | Max. | Min. | I, error

125 77.268 | -8.742 | 0.01319

62.5 82.367 | -5.389 | 0.0097691

31.25 85.280 | -6.58 | 0.009673

Table x: Results for 5% grid with L=2500km.
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Figure 3: Grid generated by the 37 refinement.



Figure 4: Grid generated by the 4" refinement.
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Figure 14: Equatorial projection of the height field and winds on the 3¢ grid
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Figure 15
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Polar projection of the height field and winds on the 3¢ grid after 5
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Figure 18: Equatorial projection of the height field and winds on the 37 grid
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after 6 days.
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Polar projection of the height field and winds on the 3" grid after 6

Figure 19
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Polar projection of the height field and winds on the 3¢ grid after 7

Figure 21
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Equatorial projection of the height field and winds on the 4th grid
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Polar projection of the height field and winds on the 4" grid after 1

Figure 23
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Figure 24: Equatorial projection of the height field and winds on the 4 grid
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after 2 days.
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Polar projection of the height field and winds on the 4*" grid after 2

Figure 25
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Figure 26: Equatorial projection of the height field and winds on the 4** gri
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after 3 days.
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Polar projection of the height field and winds on the 4*h grid after 3
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Figure 28: Equatorial projection of the height field and winds on the 4 grid
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after 4 days.
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Polar projection of the height field and winds on the 4** grid after 4

Figure 29
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Figure 30: Equatorial projection of the height field and winds on the 4th grid
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after 5 days.
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Polar projection of the height field and winds on the 4" grid after 5

Figure 31
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Equatorial projection of the height field and winds on the 4% gri

Figure 32
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after 6 days.
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Polar projection of the height field and winds on the 4** grid after 6

Figure 33
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Equatorial projection of the height field and winds on the 4™ gri
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Figure 34
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after 7 days.
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Polar projection of the height field and winds on the 4*h grid after 7
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Figure 35
days.
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Equatorial projection of the height field on the 5 grid after 1 day.
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Figure 36
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Polar projection of the height field on the 5™ grid after 1 day.
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Figure 37
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Equatorial projection of the height field on the 5" grid after 2 days.
82

Figure 38
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Polar projection of the height field on the 5% grid after 2 days.
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Figure 39
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Equatorial projection of the height field on the 5 grid after 3 days.

Figure 40
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Polar projection of the height field on the 5™ grid after 3 days.
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Figure 41
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Equatorial projection of the height field on the 5" grid after 4 days.

Figure 42
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Polar projection of the height field on the 5t grid after 4 days.

Figure 43
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Polar projection of the height field on the 5 grid after 5 days.

Figure 45
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Equatorial projection of the height field on the 5% grid after 6 days.
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Figure 46



NOY il SOUD PRY YBIH

us MmoT3d
€428 — zUB
GoEB — €28
L8%8 — ©9¢8
6098 — /8v8
0£/8 — 6098
7588 — 0£/8
468 — zG88
G606 — ¥/68
1126 — G606
6556 — L1Z6
love — 6EE6
7866 — 19¥6
046 — Z8BS6
9Z86 — V0.6
(ve6 — 9z [
6900t — /¥66 (A
tslol  — 6900, [EEEE
gico. —1el00 EEE
yeyoL — cicor  [EEEE
¥e¥0L  3ncav R

NOILOIrOdd ¥V10d

f the height field on the 5 grid after 6 days.
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Polar projection of the height field on the 5t grid after 7 days.

Figure 49
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