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Abstract

Data assimilation aims to incorporate measured observations into a dynamical system
model in order to produce accurate estimates of all the current (and future) state vari-
ables of the system. The optimal estimates minimize a variational principle and can be
found using adjoint methods. The model equations are treated as strong constraints on
the problem. In reality, the model does not represent the system behaviour exactly and
errors arise due to lack of resolution and inaccuracies in physical parameters, boundary
conditions and forcing terms. A technique for estimating systematic and time-correlated
errors as part of the variational assimilation procedure is described here. The modified
method determines a correction term that compensates for model error and leads to im-
proved predictions of the system states. The technique is illustrated in two test cases.
Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness
of the new procedure.

Keywords Data. assimilation, adjoint methods, model error, bias estimation, nonlinear
shallow-water equations.

1 Introduction

Mathematical models for simulating physical, biological and economic systems are now often
more accurate than the data that is available to drive them. In particular, complete infor-
mation describing the initial state of an evolutionary system is seldom known. In this case
it is desirable to use the measured output data that is available from the system over an
interval of time, in combination with the model equations, to derive accurate estimates of the
expected system behaviour. The problem of constructing a state-estimator, or observer, is
the dual of the feedback control design problem. For very large nonlinear systems arising in
numerical weather prediction and in ocean circulation modelling, traditional control system
design techniques are not practicable, and ‘data assimilation’ schemes are used instead to
generate accurate state-estimates. The aim of these schemes is to incorporate observed data
into computational simulations in order to improve the accuracy of the numerical forecasts.

Currently, variational data assimilation schemes are under development [12]. These
schemes are attractive because they deliver the best statistically linear unbiased estimate
of the model solution given the available observations and their error covariances. The prob-
lem is formulated as an optimal control problem where the objective functional measures the
mismatch between the model predictions and the observed system states, weighted by the
inverse of the covariance matrices. The model equations are treated as strong constraints
and the controls to be determined are the initial states of the system. The constrained mini-
mization problem is typically solved by a gradient iterative procedure for finding the optimal
controls. The gradient directions needed in the iteration are obtained by solving the linear
adjoint equations associated with the problem.
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In practice the model equations do not represent the system behaviour exactly and model
errors arise due to lack of resolution, to inaccurate physical parameters, or to errors in
boundary conditions, in topography or in other forcing terms. To account for model er-
ror, the system equations can be treated as weak constraints in the optimization problem.
The residual errors in the model equations at every time point are then treated as control
parameters. Statistically the model error is assumed to be unbiased white noise which is
uncorrelated in time. This approach is not practicable, however, due to the excessive size of
the optimization problem and the need to propagate the covariance matrices of the model
errors at each time step. Furthermore, the statistical assumptions made in this approach are
not generally satisfied in practice, since the model errors are expected to be time-correlated.

Recently, the problem of accounting for model error in variational assimilation in a cost-
effective way has begun to receive more attention [2], [10], [14], [1]. Studies on predictability
in meteorological models have shown that the impact of model error on forecast error is
indeed significant. The results given in [1] lead to the conclusion that the predictability limit
of a forecast might be extended by two or three days if model error were eliminated. There
is, however, a lack of quantitative information on model error in such forecast models.

A new technique for treating model errors is presented here. The aim of the technique
is to estimate the systematic, time-correlated components of the model error along with
the dynamical model states as part of the variational assimilation procedure. Although the
general form of the model error is not known, some simple assumptions about the evolution
of the error can be made. An augmented system for both the model states and model
errors is thus derived. The control variables are reduced to the unknown initial values of the
model states and model errors and the corresponding optimization problem can be solved
efficiently. A major advantage of this approach is that the gradient directions with respect to
the model errors can be obtained from the adjoint equations of the original problem at very
little extra cost. Preliminary results using this technique have been presented at conferences
and workshops [5], [6], [7]. A comprehensive development of the procedure is given here,
together with new applications and results.

In the next section, the variational data assimilation procedure is introduced. A general
representation of model error for use in data assimilation is defined in Section 3 and the
technique of state augmentation for estimating serially correlated components of model error
is described. The variational problem for the augmented state system is derived in Section 4
and the corresponding adjoint method is developed. In Section 5, a simple diffusion model
is used to show that a constant error, or bias error, can be taken as the control in order to
correct for model error in a source term. The extension of this approach to the treatment of
time-correlated advection error by an evolving model error is demonstrated with another test
example. In Section 6, the augmented assimilation procedure is applied to estimate model
errors in a discretized form of the 1-D nonlinear shallow water equations. Concluding remarks
are presented in Section 7.

2 Variational data assimilation

The system is modelled by a discrete nonlinear set of equations, given by
xk+1=fk(xk)7 k=0,...,N—1, (2.1)

where x;, is the model state at time #; and f; : R™ — IR” is a nonlinear function describing
the evolution of the state from time t; to time tx,;. The observations are related to the
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system states by the equations
Yk :hk(xk)+5k, k=0,...,N —1, (2.2)

where yi € IRP* is a vector of pi observations at time ¢ and hy : IR™ — IRP* is a nonlinear
function that includes transformations and grid interpolations. The observational errors
81 € IRP¢ are assumed to be unbiased, serially uncorrelated, Gaussian random vectors with
covariance matrices Ry € IRPEPk. A prior estimate, or ‘background estimate,” x4 of the
initial state xo is assumed to be known and the initial random error (xo — x3) is assumed to
be Gaussian with covariance matrix By € IR™*". The observational errors and the errors in
the prior estimates are assumed to be uncorrelated.

The aim of the data assimilation is to find the maximum likelihood Bayesian estimate
of the system states given the observations and the prior estimate of the initial state. This
problem reduces to minimizing the square error between the model predictions and the ob-
served system states, weighted by the inverse of the covariance matrices, over the assimilation
interval. The model is assumed to be 'perfect’ and the system equations are treated as strong
constraints on the objective function. The model states that satisfy the system equations
are uniquely determined on the assimilation interval by the initial states of the system. The
initial states can thus be treated as the required control variables in the optimization. The
data assimilation problem is defined explicitly as follows.

Problem 1 Minimize, with respect to Xo, the objective function

=z

N —

T = 20— )7 By (o = xb) + 5 0 (i) — v TR M(hyoe) - yy) (23)

<.
Ii
o

subject to the system equations (2.1).

In practice the constrained minimization problem is solved iteratively by a gradient
method. The problem is first reduced to an unconstrained problem using the method of
Lagrange. Necessary conditions for the solution to the unconstrained problem then require
that a set of adjoint equations together with the system equations must be satisfied. The
adjoint equations are given by

Ay =0, (2.4a)

Ak = FE (xg) Mo — HE R (he(xx) —yk), k=N-—1,...,0, (2.4b)

where A\, € R, § =0,..., N, are the adjoint variables and F}, € IR"*" and Hj, € IR™*P* are
the Jacobians of fiy and hy with respect to xi.
The gradient of the objective function (2.3) with respect to the initial data xg is then
given by
Nacsd = Bo_l(xo —x3) — Ao, (2.5)

At the optimal, the gradient (2.5) is required to be equal to zero. Otherwise this gradient
provides the local descent direction needed in the iteration procedure to find an improved
estimate for the optimal initial states. Each step of the gradient iteration process requires one
forward solution of the model equations, starting from the current best estimate of the initial
states, and one backward solution of the adjoint equations. The estimated initial conditions
are then updated using the computed gradient direction. This process is expensive, but it is
operationally feasible, even for very large systems, such as weather and ocean systems, which
may involve as many as 107 state variables.
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In reality, the system models are not ’perfect’ and the model equations do not represent
the system behaviour exactly. Both systematic and random errors affect the states of the
system. Recent studies on predictability in meteorological models have shown that the impact
of model error on forecast error is significant [1]. In the next sections, a general form for
the error that includes both serially correlated and random components is proposed and an
augmented system model is introduced that enables estimates of the model errors to be found.
The aim of the assimilation is then to estimate both the model states and the systematic
model errors using the observed data.

3 Model error and state augmentation

In order to take errors into account, the system is now modelled by the discrete nonlinear

equations
xk+1:fk(xk)+ek, k=0,...,N—1, (31)

where €, € IR” denotes the model error at time t;. The observations yy are related to the
system by the equations (2.2) and a prior ’background’ estimate xg for the initial states,
defined as in Section 2, is known.

Commonly the model errors €, are assumed to be stochastic variables that are unbiased
and serially uncorrelated, with a known Gaussian distribution. The data assimilation problem
then reduces to minimizing the square error in the model equations, together with the square
error between the model predictions and the observed system states, all weighted by the
inverses of the covariance matrices, over the assimilation interval. The model equations (3.1)
are thus treated as weak constraints in the objective function. As well as the initial states
of the system, the model errors at every time point are the control parameters that must be
determined.

An extended Kalman filter technique can now be used to solve the assimilation prob-
lem [8]. Alternatively, the problem can be solved by a gradient iterative procedure where the
descent directions are determined from the associated adjoint equations. In this case, the
converged estimate of the system state at the end of the assimilation period is equivalent to
that obtained using the Kalman filter [13]. For large systems, such as weather and ocean sys-
tems, these methods are generally too expensive for operational use due to the enormous cost
of propagating the error covariance matrices in the Kalman filter or, alternatively, estimating
all of the model errors.

In any case, for evolutionary systems, the model error is expected to depend on the
model state and hence to be correlated in time. Thus the statistical assumptions needed in
this formulation of the assimilation problem are not generally satisfied. A more general form
of the model error that includes both serially correlated and random elements is, therefore,
now introduced here.

It is assumed that the evolution of the model error can be described by the equation

€x+1 = Trher + qg, (3.2)

where qr € IR™ are unbiased, serially uncorrelated, normally distributed random vectors
and e, € IR™ represent serially correlated components of the model error. The matrices
T, € IR™™ are prescribed matrices, with rank(7y)= m, that define the distribution of the
serial error terms ey, in the model equations. The evolution of the serial error terms is assumed
to satisfy the general equation

ekt1 = Bk(Xk, €k)s (3.3)

where g : IR" x IR™ — IR™ is some function to be specified.
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In practice very little is known about the form of the model error and a simple form for
the error evolution that reflects any available knowledge needs to be specified. Examples of
simple forms of error evolution include:

e Constant bias error : ex; ) =e, T =1.
This choice allows for a constant vector € = e¢ of unknown ‘dynamical parameters’ to
be found. In the deterministic case (i.e. q = 0), the constant error e corresponds
to the correction term of [2]. In the stochastic case, the constant correction e can be
interpreted as a statistical bias in the model error, which needs to be estimated. This
form is expected to be appropriate for representing average errors in source terms or in
boundary conditions.

¢ Evolving error with model evolution : exy; = Fre, Tp =1
Here F, € R™*™ represents a simplified linear model of the state evolution. This
choice is appropriate, for example, for representing discretization error in models that
approximate continuous dynamical processes by discrete-time systems.

e Spectral form of model error : ey, =e;, Tk = (I, sin(ﬁk;)l, cos(NLT)I) .

In this case the constant vector e = eg is partitioned into three component vectors,
e=(el,el, eg)T , and 7 is a constant determined by the timescale on which the model
error is expected to vary, for example, a diurnal timescale. This choice approximates

the first order terms in a spectral expansion of the model error.

Other choices can be described using the general form (3.2)—(3.3), including piecewise con-
stant error, linearly growing error, and combinations of any of these types of model error (see
[4]).

Together the system equations and the model error equations (3.1)-(3.3) constitute an
augmented state system model. The aim of the data assimilation problem for the aug-
mented system is to estimate the expected values of the augmented states x; and ey for
k=0,...,N — 1, that fit the observations. The solution delivers the maximum likelihood
estimate of the augmented system states, given the error covariances of both the observa-
tions and the model errors. Although this formulation takes into account the time evolution
of the model errors, the data assimilation problem remains intractable for operational use.
If the stochastic elements of the error are ignored, however, and the augmented system is
treated as a 'perfect’ model, then the size of the problem is greatly reduced. The aim of the
data assimilation, in this case, is to estimate the serially correlated components of the model
error along with the dynamical states of the original system model. In the next section the
data assimilation problem for the 'perfect’ augmented problem is described and the adjoint
method for solving the problem is discussed.

4 Augmented data assimilation problem

The augmented system equations for the model states and model errors are now written

X1 = fi(xk) + Ther, (4.1a)
ert1 = Bk(Xk,€k), (4.1b)
for k=0,...,N — 1. As in previous sections, the observations are related to the model states

by the equations

vi = he(xg) + 6k, k=0,...,N—1. (4.2)
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The covariance matrices Ry of the observational errors are assumed to be known. It is also
assumed that prior estimates, or ‘background estimates,’ xg and eg of x¢ and ey, respectively,
are known and that the covariance matrices of the errors (xq — x3) and (eg — €f) are given
by By € IR™ and Qg € IR™. The observational errors and the errors in the prior estimates
are not correlated.

The aim of the data assimilation is to minimize the square errors between the model
predictions and the observed system states, weighted by the inverse of the covariance matrices,
over the assimilation interval. The augmented system equations (4.1) are treated as strong
constraints on the problem. The initial values xg and eg of the model state and model error
completely determine the response of the augmented system and are taken, therefore, to be
the control variables in the optimization. The problem is well-posed, in general, if the square
errors between the prior estimates and the control variables are included in the objective

function. The data assimilation problem is now given by

Problem 2 Minimize, with respect to xg and e, the objective function

=

(h(x;) — y;)" B (hy(x5) — y;)

DO ==

1 . |
J = §(Xo —x5)T By (xo — xf) +

<.
I
[==]

1 -
2 o0 = eb)TQ5 o — ), “3)
subject to the augmented system equations (4.1).

The constrained minimization problem can again be converted into an unconstrained
problem using the method of Lagrange. Necessary conditions for a solution to Problem 2
require that the system equations together with a set of adjoint equations be satisfied. The
adjoint equations are given by

Av=0, puy=0, (4.4a)
and
_ gl T T -1
Ak = Fip (xk)Apr1 + G (Xk, €k ppqr — Hi By (hi(xk) — yk), (4.4b)
pe = T Aet1 + T (%, €6) et (4.4¢)

for k = N —1,...,0, where \; € R", p;, € R™ are the adjoint variables and Fy, € R™*",
H, € R™Px and Gy € IR™*" are the Jacobians of fi, hy and g with respect to x,
respectively, and 'y, € IR™*™ is the Jacobian of gy with respect to ey.

The gradients of the objective function (2.3) with respect to the initial data xo and eg
are then given by

Vxod = By t(xg —x8) — Ao, (4.5a)
Veod = Qy'(eq — €h) — pg. (4.5b)

For the optimal it is required that the gradients (4.5) be equal to zero. Otherwise these
gradients provide the local descent direction needed by the iteration procedure to find an
improved estimate for the optimal initial values of the augmented system. In each step of the
gradient iteration the augmented equations are solved in the forward direction, starting from
the current best estimate of the initial conditions, and the corresponding adjoint equations
are solved in the reverse direction. The estimated initial values are then updated using the
computed gradients.
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In the special case where the model error is assumed to be constant, the adjoint equations
can be simplified. In this case Gy = 0 and only the values for the adjoint variables A need to
be calculated. The gradient of the objective function with respect to eg is then given simply
by

N-1
Veo = Qpt(eo — b)) — > T 1 A;. (4.6)
j=1

In general, little extra computational effort is needed to compute the gradients of the
objective function for the augmented system, since the controls consist only of the initial
data for both the model states and the model errors.

5 Test examples

The performance of data assimilation with the augmented system is examined for two cases
using the initial state, the model error and both together as control vectors. In the first case
a constant bias error correction is applied and in the second case an evolving model error
correction is developed. In both cases the minimization problem is solved using the conjugate
gradient method. The convergence criterion for the iteration is given by ||[VuJ|| < 1079,
where u denotes the control variables. (Here |-||, denotes the Ly - norm.)

The results are presented in Figs 1-4. In all figures a solid line indicates the solution
to the ‘true’ system, from which the observations are taken; the observations are error-free
and are denoted by +; a dotted line shows the unassimilated solution to the ‘imperfect’
model equations; and a dashed line represents the analysed solution to the data assimilation
problem. The assimilation is applied on the interval [0,0.5] and a forecast is produced on
the interval [0.5,1], starting from the assimilated solution at time ¢ = 0.5. The covariance
matrices of the prior estimates and the observations are taken, respectively, to be By = 0,
Qo = gl and Ry = %1, Vk.

5.1 Example 1

In the first case the system is derived from a standard explicit finite difference approximation
to the heat equation
vt = 0,y + 8(2), (5.1)

with zero boundary conditions at z = 0,1 and a point source s(z) = (1/3)d6(z — 0.25), where
§ denotes the Dirac delta function. The model equations are given by

$§+1 — xf = oAt (xf_l - 2-’”? + :cf“) [AZ% + sAt, (5.2a)

k=0, o%=0, (5.2b)

for =0,1,.,J, k=0,1,..,N, where the model variables mf approximate v(jAz, kAt) with
At = (1/N), Az = (1/J). The discretized source term is given by s;/4 = 1/(3Az) and
s; =0, Vj # J/4.

The ‘true’ states, from which the observations are taken, are the solutions to the discrete
equations (5.2) with initial values a;? =1, where At = (1/80), Az =(1/16) and 0 = 0.1. The
positions of the observations, shown in Figs 1-2, do not coincide with the finite difference
grid and the function hy(xy) = Cxy, where C € IRP*", defines a fixed linear interpolation
between the model grid and the observation positions. In the model equations, the source
term is omitted, making the model ‘imperfect.” It is assumed, however, that the prior estimate
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Figure 1: Example 1: Variational assimilation using the initial data as the control vector.
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of the initial values is exact. The aim is to estimate the state of the ‘true’ system using the
observations and the ‘imperfect’ model.

Fig. 1 shows the assimilated solution obtained by the standard procedure described in
Section 2, which uses the initial state alone as the control variable. At the initial point the
assimilation does not reproduce the ‘true’ initial state, but instead generates initial values
that compensate for the model errors and ensure that the assimilated solution is as close
as possible to the observations over the whole interval. The estimated state at the end of
the assimilation interval (¢ = 0.5) is therefore closer to the true state than the background
(unassimilated) solution. The forecast from this position is still poor, however, due to the
inaccuracy of the model.

Fig. 2 shows the results of the assimilation using the augmented system, as described in
Section 4, where the model error is assumed to be a constant bias error and ¢ = 0. In this
case the assimilated solution exactly matches the true solution on the assimilation interval.
(Theoretically this is expected since the system is completely observable and the model error
is constant in time.) Retaining the computed model error correction over the forecast interval
then gives a perfect forecast. Equally good results are obtained if the correction terms are
confined to a region around the source term. The dimension of the model error vector can
thus be reduced and the efficiency improved, if the location of the source is known.

Additional results are presented in [4], including examples where the prior estimate of the
initial data is incorrect and where the initial state and the constant bias error are both used
together as the controls.

5.2 Example 2

In the second case the system is obtained from an upwind approximation to the linear ad-
vection equation

vy + v, =0, (5.3)

with periodic boundary conditions on the interval z € [0, 1]. Initially the solution is a square
wave defined by
0.5, 0.25 < 2z < 0.5,

v(z,0) = afz) = { —-0.5, 2<0.25 or z>0.5. (54)
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Figure 2: Example 1: Variational assimilation using the constant bias error as the control
vector, with ¢ = 0.
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Over the time interval [0, 1] this square wave is advected all the way around the model domain
and back to its starting position.
The model equations are defined by

P gk = Dbk (5.52)

2% =a(jAz), =« N (5.5b)

z
for y = 1,..,J, k = 0,1,..,, N, with model variables mf ~ v(jAz,kAt) and Az = (1/J),
At = (1/N).

The ‘true’ states in this case are the exact solutions to the continuous advection problem
with the given initial conditions. (These are generated as solutions to the model equations
with At = Az = 1/80.) The observations are taken from the ‘true’ states at 20 grid points on
the assimilation interval. The positions of the observations are shown in Figs 4-5. The model
states are generated from the exact initial states using At = 1/80 and Az = 1/40. With this
choice of stepsizes, the discretization introduces model error and the upwind scheme exhibits
numerical dissipation, which smears the shock fronts.

The aim of the data assimilation is to reconstruct the ‘true’ states of the system, and in
particular the steep shock fronts, using the observations and the ‘imperfect’ model. In this
case taking the model error to be a constant bias error does not give any improvement in the
solution, since the average error over the time interval introduced by the discretization is zero.
The model error now depends on the true system state and hence the evolving model error
correction is used here. The error is assumed to satisfy the same linear dynamical equations
as the model states.

In Fig. 3 the results of the assimilation are shown for the case where the initial state
alone is used as the control variable and the error is not modelled. As noted previously, at
the initial point the assimilation does not reproduce the correct initial data, but generates
an initial solution that compensates for the impact of the model error over the assimilation
interval. At the end of the interval, the assimilated solution is closer to the true solution,
estimating the amplitude slightly more accurately than the ‘background’ model solution, but
the forecast remains poor.
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Figure 3: Example 2: Variational assimilation using the initial data as the control vector.
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Figure 4: Example 2: Variational assimilation using the evolving error as the control vector.
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In Fig. 4 the assimilated solution found using the evolving model error correction with
g = 10 is shown. A much better approximation to the true state of the system is obtained
than in the case where the initial state is used as the control vector. Evolving the model
error along with the model state over the forecast interval then gives a considerably improved
prediction of the true state of the system.

The results of further tests on this example are given in [4].

6 Application to the nonlinear shallow water equations

The technique described here for treating model error in data assimilation is now applied to a
discretized form of the one dimensional nonlinear shallow water equations. The flow described
by these equations exhibits several features present in the dynamics of the atmosphere and
oceans and the system is, therefore, used frequently in test problems.
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6.1 The model
The system equations include rotation and bottom topography and are given by

ou Ju  0¢ OH

E""Ura;‘ka—m = f’l)—g-a—w, (61&)
v v
o +u% = —fu, (6.1b)
op 0p Bu

where z € [0,27L] and ¢ € [0,T]. The system variables v = u(z,t) and v = v(z,t) are the
eastward and northward components of velocity and ¢ = ¢(z,?) is the geopotential, defined
by ¢ = gn(z,t), where g is the acceleration due to gravity and n(z,t) is the depth of the fluid.
The height of the bottom topography is represented by H = H(z), and f is the Coriolis
parameter. Periodic boundary conditions are assumed. The equations are nonlinear and
describe flow that may develop hydraulic jumps.

The model equations are obtained by applying the finite difference scheme derived in [11]
to the flux form of the equations (6.1). The scheme uses artificial diffusion to eliminate
spurious oscillations and is suitable for simulating hydraulic jumps. The model has also been
used in [9] to investigate nonlinear data assimilation techniques. The discretization scheme
uses centred time and space differencing, except for the diffusion terms, where forward time
differencing is used for stability. The discrete model is given by

P At
mfﬂ = m; ' Az (ufir + uf)(mfey +mf) — (uf + uj_y)(m§ +mj_y)
+((#541)* = (¢5-1)%)}
At
—QE{@?H + 5 (Hjpr — Hj) + (65 + ¢5_1)(H; — Hj—1)}
At
+2Atfnk + 2E§K(m§;11 —2mft +mbT)), (6.2a)
_ At
it =Tt (o + 0 (M + mg) — (0F +uiin) (mf +miy))
At
—2Atfmk + me(n§;} —2n; 7t +ni 7)), (6.2b)
At At
k+1  _ k-1 k k k—1 k—1 k—1
b =9 TR M) T2 K (i 2267 i), (6:20)
fork=1,..,.N—-1,7=0,..,J — 1, where
mh= s wb=diet vk (624

At the first time level the model equations are specified using one-step forward time differ-
ences. The periodic boundary conditions

ukb =k, k=0, et =0¢f k=0,.N-1, (6.3)

are imposed. The model states gbé“ ~ ¢(jAz, kAL), u;? ~ u(jAz, kAt), v;? ~ v(jAz, kAt),
with Az = 2w L/J, At = T'/N, give approximations to the continuous variables satisfying the
equations (6.1).
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The ’true’ states of the system are taken to be the solutions to the discrete equations (6.2)
with the Coriolis parameter f = 7.292 x 1075 57! and L = 3.189 x 10° m, which are suitable
for a model approximating the earth’s atmosphere at latitude 30° North. The numbers of
grid points and time steps are given by J = 100 and N = 100, respectively, and the time
step satisfies At/Az = 0.1, which ensures the stabilty of the scheme. The value of K is
specified to be K = 500 m2s~L. The bottom topography consists of a ridge in the middle of
the domain, defined by the function

H(z) =05(1 — (z — L/2)%/a®), 0<Z (z—L/2) <a, (6.4)
where a = 10Az. The initial values of the states are given by

mg =0 mds73, n? =0m3s73, ¢2 =10 m?s™2, (6.5)

for j =0,...,J — 1. From these initial states, motion is initiated as the fluid flows down from
the ridge in the centre of the domain and a wave travels in each direction across the domain.

6.2 Experimental results

Assimilation with noisy data is examined in the experiments. The observations are drawn
from the ’true’ solution of the discrete system corrupted by uniformly-distributed, unbiased,
sequentially-uncorrelated random noise. The covariance matrices of the observations are
taken to be Ry = I, Vk, and it is assumed that observations are available at every grid
point and at every time step. The prior estimates of the initial states are assumed to be
exact. Model error is introduced by omitting the topography from the dynamical equations,
making the model ’imperfect.” Because the topography is missing, if data assimilation is
not applied, the model states remain in equilibrium with constant height and zero velocity
fields and no motion is initiated. The aim of the data assimilation is then to estimate
accurately the states of the true’ system using the observations and the ’imperfect’ model.
The minimization problem is solved by the limited memory quasi-Newton procedure M1QN3
from the INRIA MODULOPT library [3]. The convergence criterion for the iteration is given
by ||VuJ(ui)|| / HVuJ(uO)H < 10~*, where u® denotes the control variables at the §** step
of the iteration.

The noise corrupted ’true’ data are shown in Figure 5a at times ¢t = 0, 7/2,and T. The
results of the assimilation are shown in Figure 5b, at the same times, for the case where the
initial state is the only control variable and the error is not modelled. As in the previous
examples, the assimilation does not reproduce the ’true’ initial state, but instead generates
initial values that compensate for the model errors and ensure that the assimilated solution
is as close as possible to the observations over the whole interval. At the initial time, the
height of the fluid is increased to compensate for the missing topography. At the middle and
end of the interval, however, the assimilated solution produces better estimates of the flow
variables than in the case where no assimilation is applied.

Figure 5c shows the results of the assimilation using the augmented system. The model
error is assumed to be a constant bias error with initial covariance matrix Qo = ¢l and
g = 1. The assimilated solutions obtained by taking into account the model error are greatly
improved over the whole time interval. The solutions at the end of the assimilation period,
in particular, provide very good estimates of the true solution. In this case the model error
is not, in fact, constant, but is serially correlated, and during the assimilation interval the
effects of the model error propagate across the spatial domain. The bias error represents an
average correction to the solution and adds significantly to the accuracy of the estimated flow
over the entire assimilation period.
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Figure 6 shows the forecast of the flow variables over the interval ¢ € [T,2T] in three
cases. The results shown in Figures 6a and 6b are initiated from the assimilated solution
obtained at time ¢ = T using the augmented system model, which takes into account the
model error. The exact 'true’ dynamics are shown in Figure 6¢c. In Figure 6a the 'imperfect’
model is used to propagate the flow. The predictions, in this case, rapidly diverge from
the true solution due to the unmodelled topography. In Figure 6b the bias error computed
during the assimilation period is retained over the forecast interval and the flow variables
are propagated using the augmented system. Retaining the bias correction is seen to give a
significantly better forecast.

6.3 Further discussion

In addition to error in the topography of the system, other forms of error have been inves-
tigated in the shallow water model. Detailed results are presented in [4]. In the case where
errors occur in the model rotation, for example, due to an incorrect Coriolis parameter, the
constant bias error corrrection technique produces good estimates of the true solution over
the assimilation interval and in the forecast.

Assimilation taking both the initial states and the model errors as control variables to
correct simultaneously for initial and model errors is also successful. In the case where the
prior estimate of the initial states is incorrect and model errors in both the topography and
the rotation occur, excellent results are obtained by using the constant bias error correction
together with the initial states as the controls. The accuracy of the estimated solutions is
then improved greatly by the assimilation, but the convergence of the optimization procedure
is found to be slow.

The case where observations are available at fewer spatial positions has also been ex-
amined. With noisy observational data and model error in the topography, the assimilated
solutions are much rougher over intervals where there are fewer observations, and the noise
in the data is reflected to a much greater extent in the estimated states. Increasing the
weighting factor g acts to smooth the assimilated solutions and gives good estimates of the
true states of the system, but accuracy is lost for large weightings.

Retaining the model error correction over the forecast interval can improve the preditions
significantly, as shown in the experiments presented here. The intervals over which the
constant bias error correction is effective are, however, limited. In both the assimilation and
the forecast, extending the periods over which the constant bias error is applied can lead to
a deterioration in the results. The impact of model error estimation thus depends on the
length of the assimilation and forcast periods and attention is needed to determine the most
effective time-scales over which to apply the error estimation procedures.

7 Conclusions

A new technique for treating model error in data assimilation is described here. The aim
of the technique is to estimate the serially correlated components of the model error along
with the dynamical model states. A simple form for the evolution of the model error is
assumed and an augmented system for both the model state and model error is obtained.
For different types of error, it is found that different forms for the model error evolution are
appropriate. The initial states of the augmented system are used as control variables in the
assimilation process. A modified objective function is minimized to determine the solution of
the augmented system that best fits the available observations over the assimilation interval.
It is shown that this technique is effective and leads to significantly improved forecasts.
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Figure 5: Shallow Water Model: (a) true solution - observations corrupted by random error;
(b) assimilated solution without error correction; (c) assimilated solution with error correc-
tion. Solutions are shown at times t = 0, T/2, T. Dotted line: ¢-field; dashed line: n-field;
solid line: m-field.
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Figure 6: Shallow Water Model: Forecast on interval ¢t € [T,2T] — (a) forecast from as-
similated solution without error correction; (b) forecast from assimilated solution with error
correction included; (c) forecast from true solution with exact dynamics. Soutions are shown
at times t = T, 3T/2, 2T. Dotted line: ¢-field; dashed line: n-field; solid line: m-field.
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