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Abstract

In this thesis we study the use of a velocity-based moving-mesh numerical method, driven

by conservation, for obtaining approximate solutions to nonlinear diffusion equations of

second, fourth and sixth-order in one dimension. These problems often have moving

boundaries and possess many properties that we are able to conserve using the method,

such as scale-invariance and conservation of mass.

A key feature of the method is that it possesses the ability to propagate similar-

ity solutions forward in time to within rounding error (termed the S Property). This

property, occurring when a scale-invariant time stepping scheme is used and when the

method is suitably tuned, produces highly accurate solutions.

Concentrating mainly on the fourth-order case, the method is implemented using

finite differences and finite elements, with numerical results verifying the S Property for

cases where explicit similarity solutions exist. For the finite difference implementation we

describe the schemes used and show that the method has zero local truncation error over

a single time step. In the finite element implementation we discuss the required weak

forms, before highlighting the choice of approximation spaces needed for the method to

possess the S Property.

Where no explicit similarity solutions exist we investigate the capability of the meth-

ods to reproduce known initial behaviour of the boundaries. We show that for the

fourth-order PDE written as two second-order equations, singularities in the interme-

diate variable prevent the methods from behaving correctly. We discuss alternative

approaches, one of which is broadly successful in reproducing initial behaviours.
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Chapter 1

Introduction

1.1 Motivation

There are a number of physical processes which correspond to nonlinear diffusion prob-

lems when modelled mathematically (see, e.g., Barrett et al. (2004)). These problems

can be of various orders, but those of particular interest in this thesis are those of

high order (fourth and sixth-order), although we also consider the second-order Porous

Medium Equation (PME). Mathematically, problems of this type consist of a partial

differential equation (PDE), together with an initial condition and suitable boundary

conditions.

The high-order nonlinear diffusion problems considered in this thesis have a number

of interesting features, the most important of which is that the boundaries of the solution

can evolve over time. These moving boundaries add an extra complexity to the problems,

since (from a numerical viewpoint) some mechanism is required which can track the

position of the boundary.

There exists a large body of literature describing the behaviour of solutions to high-

order nonlinear diffusion problems. In particular, the degree of nonlinearity of the

problem can have an important effect on the behaviour of the solution close to the moving

boundary (see, e.g., Beretta et al. (1995), Bowen and King (2001)). The preservation of

nonnegative solutions has also been proven for a range of problems relevant to the work
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in this thesis (see Bernis and Friedman (1990) among others).

Another important feature is that there exist some similarity solutions to the prob-

lems, which may act as long-time limits of the problem regardless of the initial condition

(Smyth and Hill (1988)). The existence of explicit similarity solutions to high-order

nonlinear diffusion problems is limited to a small number of cases, which motivates the

development of numerical methods for obtaining approximations to the solutions of the

problems, but explicit similarity solutions can provide a comparison in cases where they

exist.

The use of numerical methods for solving nonlinear diffusion problems can be split

broadly into fixed-mesh and moving-mesh methods, with the discretisation of the do-

main being considered differently in each case. In a fixed-mesh method the discretisation

of the domain into a number of fixed points is carried out and the problem solved on this

fixed domain, with mesh points possibly being added or removed as required to assist

resolution of features of the solution (see, e.g., Budd et al. (2009)). A moving-mesh

method differs in that the points of the mesh are allowed to vary in time, which neces-

sitates the mesh and the solution being solved for together (Budd et al. (2009)). There

exist mapping-based and velocity-based moving-mesh methods in which the approxima-

tion of the mapping or the mesh velocity is of as much importance as the method of

approximating the solution of the problem.

A number of moving-mesh methods exist for obtaining approximate solutions to

nonlinear diffusion problems, with the finite element method of Baines, Hubbard and

Jimack (BHJ) of particular influence in this thesis (see Baines et al. (2005, 2006, 2011)).

This method is driven by local conservation and in its simplest form uses the mass of

the solution to obtain the mesh velocity, before recovering the solution algebraically on

the updated mesh. The BHJ method is a moving-mesh finite element method which

has been shown numerically to be approximately second order in space for second-order

and fourth-order problems for which similarity solutions exists (Baines et al. (2005)).

A further relevant piece of work is the MSc thesis of (Parker (2010)), who showed

for a second-order problem with a specific power law that mesh movement and solution
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recovery can be achieved essentially to within rounding error using a finite difference

scheme, in the case where the initial condition coincides with a similarity solution and

when a scale invariant time stepping scheme is used.

Both the BHJ method and that of Parker are velocity-based moving-mesh schemes

built upon the same conservation strategy. We shall refer to these as conservation-based

schemes (or simply the conservation method). This thesis generalises the conservation

method and provides an implementation in both finite differences and finite elements

which is able to propagate similarity solutions forward in time to essentially within

rounding error. A significant feature of the implementations in this thesis is the use of

invariant time stepping schemes which preserve scale invariance.

Also of interest is whether such a method is able to accurately model the small-

time behaviours of solutions which do not initially correspond to a similarity solution.

Particular attention is given to (and comparison made with) the work in Blowey et al.

(2007) in this regard, as it produces a comparison between known small-time behaviours

(King (2001)) using a fixed-mesh method.

1.2 Aims and Key Results

The basic aim of this thesis is to explore the use of moving-mesh numerical methods

based on conservation in solving high-order nonlinear diffusion problems. The main

focus is on fourth-order problems, although attention is also given to second and sixth-

order problems. Specifically, we aim to:

• Extend the finite difference work of Parker (2010) for a particular second-order

problem to higher orders (fourth and sixth) as well as to more general second-order

problems using a finite difference implementation of the conservation method. The

implementations, which use a scale-invariant time stepping scheme, are theoreti-

cally able to propagate similarity solutions forward in time to essentially within

rounding error of the exact solution over a single time step. We term this property

of the numerical method the S Property.
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• Produce an implementation of the BHJ method using higher order basis functions

and scale-invariant time stepping in order to propagate similarity solutions forward

in time to within rounding error. This finite element implementation should be

able to approximate solutions to second, fourth and sixth-order problems.

• Use these implementations to provide a comparison with the work in Blowey et al.

(2007) in order to verify whether the moving-mesh method is able to replicate the

small-time behaviours of solutions (computed in that paper using a fixed-mesh

method). It is hoped that the method can not only model such behaviour, but do

so at a reduced computational expense.

The key results of this thesis are as follows:

• The results of Parker (2010) are successfully extended to a more general class of

second-order nonlinear diffusion problems using a conservation-based finite differ-

ence method. The method (termed the Moving Point Conservation Method, or

MPCM) can be shown to be possess the S Property, with approximate solutions

matching the exact solutions essentially to within rounding error.

• The MPCM is extended to approximate fourth-order (written as two second-order

equations) and sixth-order (written as three second-order equations) nonlinear

diffusion problems. By careful construction of the numerical schemes used in the

method, the MPCM is shown to possess the S Property for the fourth and sixth-

order problems.

• Numerical results verifying the possession of the S Property reveal a slow build up

of global error in the method (shown to be bounded) when run over multiple time

steps.

• The BHJ method is implemented using piecewise linear finite elements, with some

minor differences with regards to the solution recovery step.

• By selection of appropriate basis functions, a finite element implementation of the

MPCM (termed the FEMPCM) for second, fourth and sixth-order problems is
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also shown to possess the S Property, with numerical results verifying this for the

fourth-order problem.

• Study of the fourth-order problem in cases where an explicit similarity solution

does not exist highlights the issues which the MPCM can face related to the

boundary velocity of the domain (when the fourth-order PDE is written as a pair

of second-order equations). The presence of singularities at the moving boundary

causes the method to be unable to model a large range of cases where the boundary

experiences a finite or zero velocity due to certain functions becoming unbounded

at the boundary. The method is also unable to model cases where the boundary

initially moves with an instantaneously unbounded velocity.

• An investigation into whether the FEMPCM is able to alleviate some of the is-

sues experienced by the finite difference implementation (for the fourth-order PDE

when written as two second-order equations). It is shown that the boundary ve-

locity issues are mollified in the finite element case, but not eliminated completely.

• An alternative expression for the velocity of the domain is proposed (in which the

fourth-order PDE is not written as a pair of coupled equations) which alleviates

the issues experienced in the instances where the boundary experiences a finite

or zero velocity. This is achieved by rewriting the velocity in terms which are

smooth and finite at the boundary. Numerical results show that this alternative

expression produces approximations to the velocity which are accurate, albeit with

some oscillations in the velocity still appearing.

1.3 Thesis Outline

In Chapter 2 we introduce the nonlinear diffusion PDEs which will be studied in this

thesis. Coupled with appropriate boundary conditions and an initial condition, these

PDEs make up the fourth, second and sixth-order problems, of which the fourth-order

problem (written as a pair of coupled equations) will form the main focus of the thesis.
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A discussion of the existing literature surrounding these problems is presented, de-

tailing known properties and behaviours of the nonlinear PDEs. The properties which

are of the most relevance for this thesis are then expanded upon, including mass con-

servation and similarity solutions.

The chapter ends with a description of existing numerical methods for solving the

problems outlined at the beginning of the chapter, drawing upon the large body of

literature which exists around this topic. As all work in this thesis in concerned with

one spatial dimension we focus on this, but a short description of methods in higher

dimensions is provided.

Chapter 3 explores a particular type of moving-mesh numerical method, which forms

the basis of the numerical method developed for this thesis. A velocity-based moving-

mesh method based on conservation seeks to obtain the velocity of the discretised domain

along with the approximate solution to the PDE. This mesh velocity is then used to

update the domain over time. Of the different velocity-based methods which exist the

conservation method is emphasised in the thesis.

The numerical method used for the work in the thesis, the MPCM, is then described,

with finite difference implementations for the various nonlinear diffusion problems out-

lined. An important property which the MPCM may possess is then defined, the S

Property, with scale-invariant time stepping an essential ingredient in the MPCM for

this property to be present. If an implementation of the MPCM possesses the S Property,

then we are able to obtain extremely accurate solution approximations under certain

conditions.

An implementation of the MPCM is described in Chapter 4 for the fourth-order

problem. This implementation is shown to possess the S Property upon some modifica-

tion to the basic MPCM. Details on how the MPCM implementation can be modified

to enable the method to possess the S Property for second and sixth-order problems are

also given.

Chapter 5 sees the introduction of the FEMPCM (building upon the BHJ method),

starting with the necessary weak forms. It is shown that by carefully selecting the finite-
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dimensional subspaces and the basis functions which lie in those spaces, the FEMPCM

can possess the S Property.

The cases where there is no explicit similarity solution available (so that the MPCM

implementations do not possess the S Property) are explored in Chapter 6. In particular,

we show that there are multiple possible initial behaviours of the boundary of the do-

main. We demonstrate these different behaviours using both the MPCM and FEMPCM

and highlight issues stemming from singularities at the boundary which can cause the

MPCM and FEMPCM to fail. We also investigate convergence of the method through

tracking of the boundary position of the domain and solution comparisons.

Two attempts to alleviate the issues with boundary singularities for the MPCM are

proposed. The first of these is a hybrid numerical method making use of both fixed-

mesh and moving-mesh methods which allows for modelling of an initially unbounded

velocity. The hybrid numerical method is explored in a descriptive sense only without

validation.

The second proposal is to introduce an alternative expression for the velocity, by-

passing writing the fourth-order problem as a pair of coupled equations. Promising

numerical results are given to validate the alternative velocity method.

Finally, in Chapter 7 we summarise the main conclusions of the thesis and outline

possible areas of future work.
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Chapter 2

Nonlinear Diffusion

2.1 Aims of this Chapter

In this chapter we introduce the various nonlinear diffusion equations which shall be

studied over the course of this thesis, with specific examples of second, fourth and sixth-

order equations considered. We also describe the boundary conditions used in the work,

as well as a discussion on alternative boundary conditions that have been used in the

literature.

We shall also outline various properties which these equations possess such as scale

invariance and conservation of mass. The preservation of these properties is a key aim

in the numerical methods to be discussed in this and later chapters.

We then provide a discussion on numerical methods for finding approximate solutions

to nonlinear diffusion problems and give examples of their use in the literature.
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2.2 Nonlinear Diffusion Equations

2.2.1 General Form

The equations considered in this thesis are one-dimensional (1D) nonlinear diffusion

PDEs which can be written in the general form: Find u = u(x, t) such that

∂u

∂t
= (−1)m

∂

∂x

(
un
∂2m+1u

∂x2m+1

)
, in ΩT := Ω(t)× (t0, T ), (2.1)

where Ω(t) ≡ (a(t), b(t)) ⊂ R is a moving bounded domain, n is a positive constant

and the integer m = 0, 1, 2, . . . determines the order of the equation. We supplement

(2.1) with an initial condition u(x, t0) = u0(x) and suitable boundary conditions (see

§2.2.2–§2.2.4 for a description of the boundary conditions to be used in the work in this

thesis).

We can rewrite the general form (2.1) as

∂u

∂t
=

∂

∂x

(
un
∂q

∂x

)
, in ΩT ,

q = (−1)m
∂2mu

∂x2m
, in ΩT ,

(2.2)

where q(u) is dependent on the order of the problem under consideration. Equation

(2.2) is the generalised Reynolds equation (Flitton and King (2004)) and the problems

considered in this thesis will be derived from (2.1) or (2.2) for second, fourth and sixth-

order problems with different q(u) for each case.

The majority of the work covered in this thesis pertains to the fourth-order problem,

so this will form the main focus of this chapter.

2.2.2 A Fourth-Order PDE

A fourth-order PDE is obtained by taking m = 1 in (2.1) or by setting q = −∂2u
∂x2

in (2.2)

∂u

∂t
=

∂

∂x

(
un
∂q

∂x

)
, in ΩT , (2.3a)

q = −∂
2u

∂x2
, in ΩT . (2.3b)
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In order for this problem to be well-posed, it is necessary to have the correct number

of boundary conditions at each of the moving boundaries. For a fixed boundary problem

only two boundary conditions would be required at each boundary, but the presence of

moving boundaries necessitates application of an additional condition at each boundary.

We shall seek solutions to (2.3), subject to an initial condition at time t = t0 given

by

u(x, t0) = u0(x), for x ∈ Ω(t0), (2.4)

and the boundary conditions

u = 0, at x = a(t), x = b(t), t > t0, (2.5a)

∂u

∂x
= 0, at x = a(t), x = b(t), t > t0, (2.5b)

uv + un
∂q

∂x
= 0, at x = a(t), x = b(t), t > t0, (2.5c)

where v(x, t) is the velocity dx
dt of the boundary.

We have chosen a zero contact angle condition (2.5b) for this work since strong

solutions (i.e., those satisfying the definition of a weak solution given in Bernis and

Friedman (1990) as well as the entropy estimates detailed in Beretta et al. (1995),

Bertozzi (1996)) of the fourth-order problem for n ∈ (0, 3) satisfy this condition (see,

e.g., Bernis et al. (2000), Bowen et al. (2001)). The u = 0 boundary condition (2.5a)

defines the position of the moving boundary, while the third boundary condition (2.5c)

corresponds to zero net flux across the boundary. An important point to note is that

the problem is degenerate at points where u = 0 (as explained in, e.g., Barrett et al.

(1998)). This degeneracy signifies that the boundary points in particular need to be

treated with care.

From this point in the thesis we shall refer to (2.3)–(2.5) as the fourth-order prob-

lem, where (2.3) is the fourth-order PDE.

Applications and Existing Results in Literature

The fourth-order PDE (2.3) arises in several models of physical processes. For example,

in fluid dynamics it can be derived from a lubrication approximation in order to model
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the motion of thin films and droplets spreading over a surface (see Greenspan (1978),

Bertozzi and Pugh (1996), Bernis and Friedman (1990) and many others). For this

reason the fourth-order PDE is often referred to as the thin film equation.

When n = 1 the PDE models the flow of fluid between two plates in a Hele-Shaw

cell (Beretta et al. (1995)), while for n = 3 a droplet with no-slip conditions is modelled

(see, e.g., Greenspan (1978)). In this context, the function q may represent pressure in

the droplet (Bertozzi and Pugh (1996)).

The value of n = 3 corresponds to a no-slip condition at the moving boundary,

which implies an infinite force at the contact line (Dussan and Davis (1974)). This

value of n appears to be of particular importance, since similarity solutions with finite

mass exist only in the case when n ∈ (0, 3) (Bernis et al. (1992)). This has led to a

focus in research on this range of n, particularly in relation to numerical solutions to

the fourth-order PDE (see, e.g., Blowey et al. (2007)).

There has been a large amount of discussion of solutions to the fourth-order PDE. For

values of n ≥ 1 it is known that weak solutions to the fourth-order problem (2.3)–(2.5)

exist and that such solutions remain nonnegative for all time provided that the initial

condition is nonnegative (Bernis and Friedman (1990)). Bernis et al. (1992) prove the

existence of source-type similarity solutions for different values of n, as well as discussion

of the local behaviour of solutions near the moving boundary.

The properties discussed above are valid for the problems considered in this thesis,

i.e. problems with zero net flux conditions at the moving boundary as in (2.5c). There is

also a large amount of literature focussing on problems which do not have this boundary

condition. The case of the fourth-order problem on a fixed domain, in which the fluid

being modelled is allowed to flow from the edge of the domain is discussed in Bowen

and King (2001) and Bouwe Van Den Berg et al. (2004).

In Bertozzi and Pugh (1996), a weak nonnegative solution, which becomes strictly

positive after some finite time, is proved to exist for all time for two fourth-order prob-

lems with a variety of different boundary conditions. Bowen et al. (2001) look at the

fourth-order problem on the half-line, with zero pressure (i.e. ∂2u
∂x2

= 0) at the moving
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boundary. This work is concentrated on dipole solutions to the problem, where the point

at x = 0 is not a moving boundary point. This half-line problem is also considered in

Bernis et al. (2000).

It is also possible to consider problems which do not possess a zero contact angle

boundary condition. Otto (1998) examines the existence of weak solutions for large-time

in the n = 1 case. In this case a fixed contact angle of π
4 is used.

The issue of ‘dry spots’ (alt. ‘dead cores’), in which the solution develops a region

of zero-values inside the moving boundaries has also been studied. King and Taranets

(2013) provide existence and uniqueness proofs for travelling wave solutions of this

nature, as well as upper and lower bounds on such solutions.

In Giacomelli et al. (2008) the fourth-order problem is transformed from a mov-

ing to a fixed domain for the n = 1 case. This paper notes the limiting expression

for the boundary velocity which is important for the work in this thesis (see equation

(6.3)). Existence, uniqueness, smoothness, decay of high derivatives and convergence to

a steady-state are all proved for the transformed problem.

There has also been a lot of work on generalisations of the thin-film equation with

extra terms in the governing equation. In King (2001) a study of two generalisations of

the thin-film equation is given, with a focus on nonnegative mass-conserving solutions.

An asymptotic analysis of the solution close to the boundary is provided. Jiang and

Wei-Ming (2007) also study a generalisation of the thin-film equation in the case of a

van der Waals force driven thin film.

The unstable fourth-order equation

∂u

∂t
= −∇ · (|u|n∇∆u)−∆(|u|p−1u),

where n > 0, p > 1 and ∆(|u|p−1u) is an unstable second-order term, is considered in

Evans et al. (2007a), with regard to the existence of similarity solutions.

Moving Boundaries for the Fourth-Order Problem

When considering the fourth-order problem (2.3)–(2.5), the value of n is very important

for determining the local behaviour of the boundary. In Beretta et al. (1995), it is
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shown that the value of n will determine the nature of the support of the solution. In

particular, if n ≥ 3/2 then the support of u will not shrink over time, while for values

of n ≥ 4 the support is constant.

Similar results are shown in King and Bowen (2001), where the initial condition is

of the form

u0(x) = I(x) + ε,

where I(x) = 0 for |x| ≥ a, I(x) > 0 for |x| < a for initial interface position x = ±a

and ε > 0. The behaviour in the limit ε → 0+ is considered and it is shown that for

n < 3/2 the interface velocity may be of either sign, while for n > 3/2 the velocity is

strictly nonnegative. This therefore identifies n = 3/2 as a critical case. The support of

the solution is shown in this paper to be constant for values of n ≥ 3, which identifies

the region n ∈ (0, 3) as being of importance for the moving boundary problem.

Bernis (1996b) demonstrates a finite speed of propagation property for nonnegative

strong solutions which exist for two fourth-order problems when 0 < n < 2. The

first problem considered uses homogeneous boundary conditions ∂u
∂x = ∂3u

∂x3
= 0 at each

boundary, while the second problem uses periodic boundary conditions. The results are

then extended to the case 2 ≤ n < 3 in Bernis (1996a). This finite speed of propagation

property ensures that we may expect a bounded velocity for the moving boundaries for

all t > t0. The finite speed of propagation property is also shown in Hulshof and Shishkov

(1998) for a fourth-order problem with slightly different boundary conditions. The main

result of this paper focusses on the case when 2 ≤ n < 3, but some consideration is

given to the 0 < n < 2 case.

The local behaviour of solutions close to the right-hand boundary x = b(t) is con-

sidered in King and Bowen (2001), and for n ∈ (0, 3) is shown to be of the form

u ∼

(
n3ḃ

3(3− n)(2n− 3)
(b(t)− x)3

) 1
n

, for
3

2
< n < 3,

u ∼
(

3

4
ḃ(b(t)− x)3 ln

[
1

(b(t)− x)

]) 2
3

, for n =
3

2
,

u ∼ B(t)(b(t)− x)2, for n <
3

2
,

(2.6)
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as x → b(t)−, where ḃ = db
dt and where B(t) needs to be determined as a part of the

solution. For the case when 3/2 < n < 3, the velocity of the boundary is strictly positive,

while for n < 3/2 the velocity may take either sign.

Blowey et al. (2007) consider the results of King and Bowen (2001) and apply them

to initial conditions of the form

u0(x) ∼ A0(b0 − x)α + C0(b0 − x)β,

where α, β are constants such that β > α, and explore the small-time behaviour of

the right-hand boundary. They demonstrate that, for various choices of n and α, the

boundary behaves as detailed in King and Bowen (2001) and provide numerical results

to support the asymptotic analysis. In particular, they highlight a region in (n, α) space

in which a variety of waiting-time scenarios are exhibited.

2.2.3 A Second-Order PDE

We now describe the second-order problem considered in this thesis. The second-order

problem will not be covered in as much detail, but as the first in the hierarchy of the

generalised Reynolds equations (Flitton and King (2004)) it is worth detailing here.

A second-order PDE, obtained by setting m = 0 in (2.1) or by taking q = u in (2.2)

is
∂u

∂t
=

∂

∂x

(
un
∂u

∂x

)
, in ΩT . (2.7)

We shall seek solutions to (2.7) subject to the initial condition

u(x, t0) = u0(x), for x ∈ Ω(t0), (2.8)

and subject to suitable boundary conditions imposed at x = a(t) and x = b(t). For

the second-order moving boundary problem we require two boundary conditions at each

boundary in order for the problem to be well-posed. For the work in this thesis we shall

consider boundary conditions

u = 0, at x = a(t), x = b(t), t > t0, (2.9a)

uv + un
∂u

∂x
= 0, at x = a(t), x = b(t), t > t0, (2.9b)
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The first condition is specifies the position of the moving boundary, while the second

condition denotes a zero net flux across the boundary and ensures conservation of the

total mass (total integral) of the solution (see §2.4.1). These conditions match (2.5a)

and (2.5c) used in the fourth-order problem (2.3)–(2.5), but do not include the zero

contact angle boundary condition (2.5b).

From this point, we shall refer to (2.7)–(2.9) as the second-order problem (with

(2.7) referred to as the second-order PDE).

Applications and Known Results from Literature

The second-order equation is well-known as the porous medium equation (see, e.g.,

Vasquez (2007)). It can be used to model various physical processes. For n ≥ 1 the

equation models the flow of a gas through a porous medium (Muskat (1937)), while for

n = 3 the equation can be used to model the flow of a thin liquid film which spreads

under the effects of gravity (Buckmaster (1977)). The case n = 1 can correspond to

unconfined groundwater flow (Peletier (1981)), with the physical meaning of u(x, t)

dependent upon the process being modelled.

The porous medium equation is widely discussed in the literature (see Aronson

(1986), Peletier (1981), Vasquez (2007) among many others) and many results about

the behaviour of solutions to this equation are known. Smyth and Hill (1988) provide a

detailed summary of the various behaviours of the solutions to (2.7).

In particular, it is known that waiting-time solutions exist, where the initial support

of the solution remains fixed for a time, for this equation supplemented by the boundary

condition (2.9a). The solution may change in the interior of the support before the

boundary begins to move. Knerr (1977) provides similarity solutions possessing such

behaviour, which cease to be valid once the boundary begins to move. Solutions valid

after boundary movement has begun are given in Lacey et al. (1982), which are not

however expressible in closed-form. Kath and Cohen (1982) construct approximate

solutions for small n (0 < n� 1) which exhibit waiting time behaviour.

Bounds on the waiting time are given in Perazzo and Gratton (2004). In Lacey
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(1983), a discussion on waiting time behaviour for a second-order equation is given,

with a focus on the initial movement of the boundary once the waiting time is over.

We note that the second-order problem (2.7)–(2.9) has one important property miss-

ing from the fourth-order problem (2.3)–(2.5), in that a maximum principle exists for

the second-order problem but not for higher-order problems (as explained in Barrett

et al. (1998)). This maximum principle can be used to obtain many of the important

results for the second-order problem (2.7)–(2.9), particularly uniqueness of solutions.

2.2.4 A Sixth-Order PDE

We now describe the sixth-order problem which will also be considered in this thesis,

which is the third in the hierarchy of the generalised Reynolds equations. It shares many

properties with the fourth-order problem (2.3)–(2.5), and as such we shall consider this

problem an extension of the fourth-order work. In particular, we note the lack of a

maximum principle for this problem.

The sixth-order PDE can be obtained by setting m = 2 in (2.1) or by setting q =

− ∂2p
∂x2

, p = −∂2u
∂x2

, in (2.2) and writing it as

∂u

∂t
=

∂

∂x

(
un
∂q

∂x

)
, in ΩT , (2.10a)

q = −∂
2p

∂x2
, in ΩT , (2.10b)

p = −∂
2u

∂x2
, in ΩT . (2.10c)

We seek solutions to (2.10) subject to the initial condition

u(x, t0) = u0(x), for x ∈ Ω(t0), (2.11)

and subject to boundary conditions

u = 0, at x = a(t), x = b(t), t > t0, (2.12a)

∂u

∂x
= 0, at x = a(t), x = b(t), t > t0, (2.12b)

∂3u

∂x3
= 0, at x = a(t), x = b(t), t > t0, (2.12c)

uv + un
∂q

∂x
= 0, at x = a(t), x = b(t), t > t0. (2.12d)
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The boundary conditions (2.12a), (2.12b) and (2.12d) match those used in the fourth-

order problem (2.3)–(2.5), with boundary condition (2.12c) new, in comparison to the

fourth-order problem.

From this point on, we shall refer to (2.10)–(2.12) as the sixth-order problem

(with (2.10) the sixth-order PDE).

Applications and Results from Literature

The sixth-order PDE with n = 3 arises in the modelling of silicon oxidisation in super-

conductor devices (see King (1986), King (1989a), King (1989b)). The n = 3 case can

also be used to model the motion of a droplet under an elastic plate driving force (see,

e.g., Barrett et al. (2004)).

While the fourth-order problem (2.3)–(2.5) has been widely discussed in the literature

(as has the second-order problem (2.7)–(2.9)), there appears to have been much less work

done on sixth-order problems. There are however still some important results than can

be gleaned for such problems.

Bernis and Friedman (1990) proved the existence of Hölder continuous nonnegative

solutions to (2.10) in the 1D case. In this case however, the boundary condition (2.12d)

is replaced by ∂q
∂x = 0. Barrett et al. (2004) note that the sixth-order problem (2.10)–

(2.12) may not have a unique solution, indeed that there are some choices of n for which

at least two solutions to the problem exist. The authors demonstrate this by computing

spreading and non-spreading solutions for various choices of n.

Huang et al. (2013) perform a Lie point symmetry group classification of the sixth-

order PDE (2.10a) and show that for n < −6 the equation admits sink solutions while

for n > −6 source solutions are admitted. The n = −6 case admits both source and

sink solutions. The paper also shows travelling-wave solutions for n = 1 as well as

waiting-time solutions for general n.

There has also been work on sixth-order problems different to that being considered

in this thesis. In Evans et al. (2007b) and Evans et al. (2007c) an unstable sixth-order

problem is considered in which an unstable second-order term has been added to the
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equation given in (2.10a). The existence of blow-up similarity solutions occurring in

finite time is covered in the first of these papers, while global similarity solutions are

explored in the second.

In Smith et al. (1996) the flow under a nitride cap is modelled using the sixth-order

equation

ut =
C

12

∂

∂x

(
u3∂

5u

∂x5

)
,

where C is a constant denoting the dimensionless flexural rigidity. This problem is

solved subject to the conditions that u > 1 inside the moving boundary and u = 1

elsewhere, with the moving boundary not known a-priori and therefore found as part

of the solution.

Moving Boundaries in the Sixth-Order Problem

It has also been noted that for the sixth-order problem (2.10)–(2.12) a variety of be-

haviours of the moving boundary can be observed, dependent upon the value of n.

In Flitton and King (2004), a number of initial boundary value problems relating

to the sixth-order problem (2.10)–(2.12) are discussed. They note that the support of

the initial condition changes only for n < 5/2, with the boundary velocity able to take

either sign for n < 5/3. For values of n ≥ 5/2 the boundary moves with a zero speed

for all problems considered in the paper.

2.3 PDEs in a Moving Framework

The PDEs described in §2.2 are written in a fixed frame of reference with v appearing

only in the boundary conditions. It is possible to rewrite the problems in a framework

moving with a general velocity v(x, t) by considering some arbitrary sub-region Ω̂(t)

of our domain Ω(t), which has a boundary ∂Ω̂(t) moving with this velocity. We shall

illustrate this framework for the alternate form (2.2) of the nonlinear PDE (2.1), but

the process applies to any of the problems considered in §2.2.
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Differentiating the integral ∫
Ω̂(t)

u(x, t) dx,

with respect to t using Leibniz’s Integral Rule with variable limits, we obtain

d

dt

∫
Ω̂(t)

u(x, t) dx =

∫
Ω̂(t)

∂u

∂t
dx+

[
uv

]
∂Ω̂(t)

. (2.13)

Then, using the divergence theorem, along with an integral form of the PDE (2.2), we

may rewrite (2.13) as

d

dt

∫
Ω̂(t)

u(x, t) dx =

∫
Ω̂(t)

∂

∂x

(
un
∂q

∂x

)
dx+

[
uv

]
∂Ω̂(t)

,

=

[
uv + un

∂q

∂x

]
∂Ω̂(t)

,

(2.14)

which is now written in a framework moving with velocity v(x, t). Appropriate boundary

conditions, (when Ω̂(t) ≡ Ω(t)) are the same as those discussed in §2.2 for the relevant

problems (where v is the boundary velocity). Equation (2.14) will be of use in obtaining

an expression for the velocity in mass conserving problems (see §2.4.1).

2.4 Some Properties of Nonlinear PDEs

The problems outlined in §2.2 possess a number of properties which we seek to main-

tain in the numerical methods developed here for obtaining approximate solutions. In

this section we shall outline the properties which we wish to preserve in our numerical

methods.

2.4.1 Mass Conservation

At any given time we can calculate the area (alternatively referred to as the mass)

underneath the curve representing the solution u(x, t) of the equation (2.1). We denote

the total mass of the solution by ρ(t). The mass is defined by the integral of the solution

over the domain,

ρ(t) :=

∫ b(t)

a(t)
u(x, t) dx. (2.15)
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Differentiation of (2.15) with respect to time shows how the area under the support

of u(x, t) changes through time. We use Leibniz’s Integral Rule with variable limits

again, resulting in

d

dt

∫ b(t)

a(t)
u(x, t) dx =

∫ b(t)

a(t)

∂u

∂t
dx+

db

dt
u(b(t), t)− da

dt
u(a(t), t). (2.16)

Substituting the expression for ∂u
∂t from equation (2.2) into (2.16) and writing

da

dt
= v(a(t), t),

db

dt
= v(b(t), t),

gives

d

dt

∫ b(t)

a(t)
u(x, t) dx =

∫ b(t)

a(t)

∂

∂x

(
un
∂q

∂x

)
dx+

[
uv

]b(t)
a(t)

,

=

[
un
∂q

∂x
+ uv

]b(t)
a(t)

, (2.17a)

= 0, (2.17b)

where the step from (2.17a) to (2.17b) holds due to the boundary condition uv+un ∂q∂x = 0

at the boundaries a(t), b(t).

Integrating (2.17b) with respect to t we see that ρ(t) as given by (2.15) is constant

with respect to t (and hence we may write ρ(t) = ρ for mass-conserving problems).

There is a link between the steps shown here to demonstrate mass conservation and

the steps required to rewrite the problems of §2.2 in a moving framework. Comparing

(2.14) to (2.17a) in the case where Ω̂(t) = Ω(t) demonstrates this link for the full domain.

2.4.2 Scale Invariance

An important property of PDEs of the form (2.1) is that they are scale invariant. A

PDE is said to be scale invariant if there exists a group transformation of the underlying

variables which satisfy the same equations (see, e.g., Budd and Piggott (2001)). In the

case of (2.1) we can define a scaling transformation

t̄ = λt, x̄ = λβx, ū = λγu, (2.18)
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where λ is an arbitrary positive quantity, which leaves the underlying PDE (2.1) un-

changed provided that

γ − 1 = (n+ 1)γ − 2(m+ 1)β. (2.19)

An additional condition (such as that arising from the mass conservation property,

(2.15)) allows the indices γ and β to be uniquely defined. Applying (2.18) to (2.15),

where ρ is constant in time, we see that for scale invariance

γ + β = 0. (2.20)

The unique indices in (2.18) to ensure scale invariance of the PDE (2.1) are therefore

β =
1

n+ 2m+ 2
, γ = − 1

n+ 2m+ 2
. (2.21)

The alternate form (2.2) of the PDE can also be shown to be scale invariant by

introducing the scaling transformation

q̄ = λσq,

in addition to the scalings (2.18). Under these scalings, (2.2) remains unchanged pro-

vided that

γ − 1 = nγ + σ − 2β,

where the condition defining σ uniquely will depend on the order of problem being

considered:

• For the second-order PDE (2.7) where q = u, we have that σ = γ.

• For the fourth-order PDE (2.3a) we have that q = −∂2u
∂x2

and σ = γ − 2β.

• For the sixth-order PDE (2.10a) we have q = − ∂2p
∂x2

, p = −∂2u
∂x2

, giving σ = γ − 4β.

Scale invariance of the PDE does not ensure scale invariance of the solutions, al-

though there may exist a class of scale invariant similarity solutions which we shall now

discuss.
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2.4.3 Similarity Solutions

For general initial conditions we are unable to find an analytical solution to the problems

discussed in §2.2, but there may exist closed-form similarity solutions for certain choices

of n and m in (2.1) which we are able to write down explicitly.

Smyth and Hill (1988) note that an explicit closed-form source-type similarity solu-

tion exists for equations of the form (2.1) in the case when n = 1 for any m, and for any

choice of n when m = 0. We shall use these similarity solutions as a means of estimating

the accuracy of approximate solutions arising from the numerical methods described in

this thesis.

Similarity solutions can be constructed through the use of similarity variables

ξ =
x

tβ
, η =

u

tγ
, (2.22)

where β and γ are as given in the scaling transformation (2.18).

Similarity solutions uS(x, t) then take the form η = f(ξ), or

uS(x, t) = tγf(x/tβ), (2.23)

with f sought from a reduced order equation (with β + γ = 0 for mass conserving

problems).

Substituting (2.23) into the PDE (2.1) and using (2.20), we can rewrite (2.1) in

terms of the similarity variables (2.22) as the ordinary differential equation (ODE)

−βtγ−1 d

dξ
(ξη) = (−1)mt−(n+1)β−(2m+1)β d

dξ

(
ηn

d2m+1η

dξ2m+1

)
. (2.24)

With β, γ given by (2.21) the terms involving t disappear under the scaling condition

(2.19), and (2.24) reduces to the ODE

−β d

dξ
(ξη) = (−1)m

d

dξ

(
ηn

d2m+1η

dξ2m+1

)
. (2.25)

Solving the ODE given by (2.25) then provides η as a function of ξ and hence (from

(2.23)) the similarity solution uS(x, t) for a given value of m. We shall deal with the

second, fourth and sixth-order cases separately.
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A Fourth-Order Similarity Solution

In the case of the fourth-order problem (2.3)–(2.5) equation (2.25) (with m = 1) leads

to

β
d

dξ
(ξη) =

d

dξ

(
ηn

d3η

dξ3

)
, (2.26)

where we have removed the negative sign from each side of (2.25) arising from the choice

m = 1.

Closed-form solutions to (2.26) exist for the choice of n = 1. In this case, the ODE

integrates simply to give (subject to boundary conditions η = dη
dξ = 0 at the ξ = ξb and

the symmetry condition dη
dξ = 0 at ξ = 0)

η =
1

120

[
ξ2
b − ξ2

]2

+

. (2.27)

In equation (2.27) the subscript + indicates the positive part of (ξ2
b − ξ2). It follows

that η (and consequently uS(x, t)) is symmetric about ξ = 0 and has a moving compact

support (in terms of x).

The similarity solution is therefore a quartic which can be written in the form

uS(x, t) =
1

120tβ

[
ω2 − x2

t2β

]2

+

,

where ω is positive constant related to ξb depending upon the initial condition (see

Smyth and Hill (1988), Diez et al. (2000)). We note from (2.21) that β = 1/5 for the

m = 1, n = 1 case and that uS(x, t) is symmetric about x = 0.

An example of such a fourth-order similarity solution (presented in Barrett et al.

(1998) among others) is given by

uS(x, t) =
1

120(t+ κ)1/5

[
ω2 − ξ2

]2

+

, ξ =
x

(t+ κ)1/5
, (2.28)

where κ is a nonnegative constant. The position of the free boundaries at time t = t0 is

given by x = ±ω(t0 + κ)1/5.
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A Second-Order Similarity Solution

Setting m = 0 in (2.25) produces the ODE

−β d

dξ
(ξη) =

d

dξ

(
ηn

dη

dξ

)
, (2.29)

which can be solved for any n, as noted in Smyth and Hill (1988), subject to the boundary

condition η = 0 at ξ = ξb and the symmetry condition dη
dξ = 0 at ξ = 0. The solution to

this ODE can be written as

η =

(
n

2(n+ 2)

)1/n [
ξ2
b − ξ2

]1/n

+

,

and hence (from (2.23)) the similarity solution is given as

uS(x, t) =
1

tβ

(
n

2(n+ 2)

)1/n [
ω2 − x2

t2β

]1/n

+

,

where ω is related to ξb by the initial condition and β = 1/(n + 2) from (2.21) (since

m = 0). The similarity solution is again symmetric about ξ = 0 with moving compact

support (in terms of x). An example of a similarity solution for the second-order problem

(2.7)–(2.9) is given by (Pattle (1959), also Barenblatt (1952))

uS(x, t) =
1

tβ

(
nβ

2

)1/n [
ω2 − x2

t2β

]1/n

+

, (2.30)

where β = 1/(n+ 2).

A Sixth-Order Similarity Solution

Setting m = 2 in (2.25) produces the ODE

−β d

dξ
(ξη) =

d

dξ

(
ηn

d5η

dξ5

)
. (2.31)

As in the fourth-order case, closed-form solutions exist only in the case where n = 1,

in which case the ODE (2.31) integrates, subject to the boundary conditions η = dη
dξ =

d3η
dξ3

= 0 at ξ = ±ξb and the symmetry condition dη
dξ = 0 at ξ = 0, to give

η =
1

5040

[
ξ2
b − ξ2

]3

+

,
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The corresponding similarity solution to the sixth-order problem (2.10)–(2.12) is of

the form

uS(x, t) =
1

5040tβ

[
ω2 − x2

t2β

]3

+

.

where ω is related to ξb by the initial condition and where β = 1/7 from (2.21) in the

case where n = 1. This solution is symmetric about x = 0 and has moving compact

support.

An example of a sixth-order similarity solution (presented in Barrett et al. (2004))

is given by

uS(x, t) =
1

5040(t+ κ)1/7

[
ω2 − x2

(t+ κ)2/7

]3

+

, (2.32)

for constants κ, ω.

2.5 Numerical Methods for Nonlinear Diffusion

As mentioned in §2.4.3, for most choices of m or n in the PDEs (see (2.1), (2.2))

describing nonlinear diffusion in this thesis there are no closed form solutions available.

Indeed, for those cases such that closed form solutions exist they are useful only if the

initial condition is of the correct form. This lack of explicit solutions motivates the need

for numerical methods for use in obtaining approximate solutions to such nonlinear

diffusion equations.

We now present a review of some of the different types of numerical method which

feature in the literature, with the main focus on numerical methods for fourth-order

problems. There is a large body of literature to draw on, and a wide variety of methods

which can be used to produce approximate solutions to the nonlinear PDEs, from which

a selection is made here.

We shall mention both moving-mesh methods and fixed-mesh methods in 1D, as well

as a brief mention on methods in higher dimensions. A particular class of moving-mesh

methods, velocity-based methods based on conservation, is of particular relevance to the

work presented in this thesis, and as such is covered separately in Chapter 3.
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2.5.1 Moving-Mesh Methods for Nonlinear Diffusion

A moving-mesh method allows the mesh of points to evolve over time, which adds an

additional complexity to the solution process but has the benefit of allowing moving

features of the solution to be modelled more accurately (Budd et al. (2009)). Such

methods are also known as r-refinement methods, as opposed to h-refinement methods in

which mesh points are added or removed from the mesh where required. This latter form

of adaptivity is typically applied to fixed-mesh methods, hence we make the distinction

between the two types of refinement here.

Of the moving-mesh methods which do not belong in the velocity-based class of

method, we shall only discuss the Moving Mesh PDE (MMPDE) method.

In the MMPDE method, a mapping is constructed from a fixed reference space

in order to satisfy an equidistribution principle, which depends upon a given monitor

function M(x, t) (see Huang et al. (1994), Budd et al. (1999), Huang and Russell (2011)).

The core of the method involves obtaining and solving a moving-mesh PDE (MM-

PDE) which is solved alongside the original (modified) PDE, which together update the

solution values and mesh positions. This MMPDE originates from a mapping x = x(ξ, t)

from a fixed reference domain ΩC with coordinates ξ ∈ [0, 1] to the physical domain ΩP

with coordinates x ∈ [a(t), b(t)].

This mapping, which is based on equidistribution of the monitor function M(x, t)

satisfies

M(x, t)
∂x

∂ξ
= θ(t), x(0, t) = a, x(1, t) = b, θ(t) =

∫ b

a
M(x, t) dx. (2.33)

Differentiating (2.33) with respect to ξ,

∂

∂ξ

(
M
∂x

∂ξ

)
= 0, x(0, t) = a, x(1, t) = b. (2.34)

A number of variations of (2.34) are used which lead to a range of different MMPDEs.

Equation (2.34) ensures that the mesh is equidistributed according to the monitor func-

tion chosen.

Once the mapping has been found the rate of change of x is constructed numerically

for insertion into a pseudo-Lagrangian form of the original PDE (obtained from a chain
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rule and written here in terms of (2.2))

∂u

∂t
− du

dx

dx

dt
=

∂

∂x

(
un
∂q

∂x

)
, (2.35)

where du
dx denotes the rate of change of u in the moving frame.

We refer the reader to Huang et al. (1994), Budd et al. (2009), Huang and Russell

(2011) and the references within for a detailed review of the MMPDE method. In

particular, Budd et al. (1999) present an application of the MMPDE method to the

porous medium equation for generating self-similar numerical solutions.

2.5.2 Fixed-Mesh Methods for Nonlinear Diffusion

A fixed-mesh method differs from a moving-mesh method (such as that discussed in

§2.5.1) in that the discretisation of the domain is such that the mesh points are no

longer moving over time. This necessitates a distinction between the boundary of the

computational domain and the interfaces which define the support of the solution u(x, t),

as the interfaces may not lie exactly on the computational boundaries.

For the general PDE given by (2.1), solutions u(x, t) are sought to

∂u

∂t
= (−1)m

∂

∂x

(
un
∂2m+1u

∂x2m+1

)
, in Ω× (t0, T ),

where Ω := (−B,B) is a truncation of the real line such that x = ±B are fixed points

chosen far enough away from the moving interfaces at x = a(t), x = b(t) (see Figure 2.1).

The approximate solution is then sought at each point on a mesh whose points

remain fixed over time. Standard numerical methods for boundary value problems

(BVPs) can then be used in obtaining the approximation (although there may be issues

with representing sharp features of the solution if the density of the mesh points is low

in the vicinity of the feature).

Fixed-mesh methods have difficulties modelling the position of a moving boundary,

since in general the moving boundary is not located at a mesh point. This generally

necessitates the inclusion of some mechanism for determining the position of the inter-

face between two mesh points, such as interpolation or extrapolation. In particular a
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Figure 2.1: Image highlighting the difference between fixed and moving domains ΩT .

The left-hand image shows a fixed-mesh domain, with interfaces given by the black

asterisk. The solution outside the interfaces exists but is equal to the value at the

interface. The right-hand plot shows a moving domain, where the black asterisk denotes

the boundary of the ΩT . The solution is not defined outside of the boundary.
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fixed-mesh method may have difficulty when approximating singularities in a solution,

with the qualitative behaviour of the solution differing from the true behaviour (see for

example Budd et al. (1996)).

An advantage of fixed-mesh methods is that there exists much analysis associated

with such methods, with known results on error estimates and convergence of numerical

solutions. In particular, a large body of literature has arisen looking at constructing

numerical methods which preserve nonnegativity (or alternatively positivity) of numer-

ical solutions for fixed-mesh methods (see Grün and Rumpf (2000, 2001), Grün (2003)

and Jüngel and Pinnau (2001) for examples of such schemes for a range of fourth-order

problems).

Finite difference approaches to the problems considered in this thesis often include a

regularisation of the diffusion coefficient un in order to avoid degeneracy at the moving

boundaries. This regularisation allows for the practical construction of zero contact

angles solutions (Diez et al. (2000)). An example of such a regularisation, presented in

Bernis and Friedman (1990), takes the form

unε =
unus

εun + us
,

where uε → u as ε→ 0.

Diez et al. (2000) use such a regularisation in their finite difference method, noting

that for n ≥ 2 positivity is preserved. For n < 2, an entropy dissipative scheme needs to

be combined with such regularisation to preserve positivity. Such methods are described

in Zhornitskaya and Bertozzi (2000), which preserve positivity, nonlinear entropy dissi-

pation and surface energy dissipation. In this paper a finite element scheme is employed,

using higher order elements.

Regularisation methods, while positivity-preserving, provoke many questions of the

solution. For example, as the solution is essentially ‘lifted’ from u = 0 by the small quan-

tity ε, it remains unclear how to correctly specify the position of the moving boundaries.

It is also unclear how to ensure that the mass of the solution is conserved, since the

lifting also increases the mass of the initial condition.
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Barrett et al. (1998) present a finite element scheme for solving the fourth-order

problem (2.3)–(2.5) without the above regularisation. Convergence of numerical solu-

tions to a weak solution of the PDE in 1D is shown. Nonnegativity of the solution is

imposed as a constraint, since numerical solutions cannot be guaranteed to satisfy this

property otherwise.

Blowey et al. (2007) use the finite element scheme of Barrett et al. (1998) with some

modifications to demonstrate the various small-time behaviours of the free boundary

outlined in King and Bowen (2001).

A mixed finite element method is proposed in Burger et al. (2010) for a class of

second-order nonlinear PDEs, while Duque et al. (2013) use a finite element method to

obtain solutions to a second-order problem with variable exponent n, which differs from

the problems considered in this thesis (which have constant n).

The literature for sixth-order problems is much less abundant than for the second and

fourth-order problems, which is likely to be due to the fact that less is known about the

behaviour of solutions to such problems. In Smith et al. (1996) a numerical method for

solving a sixth-order problem related to flow under a nitride cap is given. The method

uses finite differences and Newton’s method is employed at each time step to solve the

resulting system. Evans et al. (2000) provide a finite difference scheme for a sixth-order

problem, which is restricted to one space dimension. In both cases, no analysis of the

finite difference schemes is given.

One of the first attempts of producing a finite element implementation to the sixth-

order problem (2.10)–(2.12) is given in Barrett et al. (2004). The method is an extension

of the method of Barrett et al. (1998) for the fourth-order problem (2.3)–(2.5), and the

paper notes the lack of research for this order of problem. The method presented is

shown to converge for dimensions less than three (although some of the analysis is valid

for d ≥ 1). Flitton and King (2004) provide a brief description of a finite difference

scheme for solving a sixth-order problem, but as an appendix to the analytical results

given in the paper.
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2.5.3 Moving-to-Fixed Domain Mappings

It is common to create numerical methods for solving nonlinear diffusion problems with

moving boundaries, such as those considered here, by introducing a mapping from the

moving domain to a fixed domain. Once this mapping has been constructed, the trans-

formed problem is then solved on the fixed domain using standard BVP techniques.

An example of this type of method in the literature arises in the field of modelling

tumour growth. Breward et al. (2002) transform the moving domain x ∈ [0, b(t)] to a

fixed domain ξ ∈ [0, 1] by using a coordinate transform based on a simple scaling and

then solve the problem on the fixed domain. This method is also described in Lee (2011)

(also Lee et al. (2013)), who uses a moving finite difference method to find approximate

solutions to the tumour growth problem. It is mentioned in Lee (2011) that, although

standard techniques can be used in the transformed problem, care must be taken to

avoid disrupting the balance between diffusion and reaction laws present in the original

problem.

Another example of this type of method for a fourth-order problem is given in Gi-

acomelli et al. (2008), where after the moving-to-fixed domain mapping has been per-

formed the problem is further formulated by introducing a new variable which splits the

operator into linear and nonlinear parts. The authors then prove existence, uniqueness

and smoothness of the transformed problem. The problem considered in this paper is

the fourth-order PDE (2.3a), subject to zero solution, zero contact angle and

V = lim
u>03x→∂{u>0}

∂3u

∂x3
, on ∂{u > 0},

at the boundaries, where V denotes the speed at the free boundary. This is a slightly

different problem to those considered in this thesis in that conservation of mass is not

enforced, at the expense of enforcing the limiting process for the boundary velocity. The

problem also differs in that the authors initially assume that u0 > 0 in the initial interval

(s0,∞), where s0 is the initial position of the free boundary, which is defined by

s(t) = inf{y ∈ R : u(t, ·) > 0 in (y,∞)}.
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Figure 2.2 provides an illustrative example of the type of initial condition considered in

Giacomelli et al. (2008) for s0 = 2.

Figure 2.2: Example of the type of initial condition considered in Giacomelli et al. (2008)

with s0 = 2.

A further example of this type of method is given in Socolovsky (1988). The issue of

how to track moving boundaries using numerical methods is covered, with regard to the

porous medium equation and a generalised heat equation. Once transformed onto the

fixed domain, the problems in Socolovsky (1988) are solved using finite difference and

finite element discretisations, with numerical results presented for the finite difference

schemes for the various problems considered.

2.6 Numerical Methods in Higher Dimensions

All the methods mentioned so far have been in 1D, as these are relevant to the work

presented in later chapters of this thesis. There also exist numerical methods in higher

dimensions which provide approximate solutions. We now provide a brief insight into

some of these methods.
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2.6.1 Meshless Methods

The numerical methods described in §2.5.1–§2.5.2 all involve obtaining the solution on

a given mesh of points in 1D. If considered in 2D, this mesh of points would include a

strong form of connectivity, which links the different points together.

An alternative type of numerical method is known as a meshless, or mesh-free,

method. In this type of method a number of points are distributed throughout the

continuous domain, without concern for the connectivity of the points. The solution is

then sought on this cloud of points.

By ignoring connectivity between the points, the issue of mesh tangling is avoided,

which can cause problems for moving-mesh methods (see, e.g., Budd et al. (2009)) in

that instabilities can arise in the solution which cause an undesired blow-up. Avoiding

connectivity concerns also reduces the need for mesh generation procedures, which can

be complex and/or computationally expensive (Ma et al. (2008)).

The meshless method has issues with poorly approximating the solution if the points

are coarsely distributed through the domain (Belytschko et al. (1996)), or when points

are not positioned to accurately capture the dynamics of the solution. This can also

occur in fixed/moving-mesh methods, particularly if the mesh points are not positioned

to capture singularities (Nguyen et al. (2008)), so this issue is not limited to meshless

methods.

For a review of meshless methods, we refer to Belytschko et al. (1996), or the more

recent review paper of Nguyen et al. (2008). Ma et al. (2008) also present a study of an

adaptive algorithm for solving the Euler equation of gas dynamics.

2.6.2 MMPDE Methods in 2D

The MMPDE method described in §2.5.1 can be extended into higher dimensions. A ma-

jor difference between 1D and higher dimensional formulations of the MMPDE method

is that the mapping obtained through equidistribution is no longer unique (Budd et al.

(2009)). In order to obtain a unique mapping additional concerns such as the skew-

ness of the mesh and overlapping must be taken into consideration (Huang and Russell
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(1997)).

There are a number of different ways of ensuring equidistribution in higher dimen-

sions, but the method presented in Huang and Russell (1997) and Huang and Russell

(1999) makes use of variational procedures and gradient flow equations to obtain the

MMPDE required. These variational-based methods are based on minimising a func-

tional I(ξ), which in d dimensions has the general form (Budd et al. (2009))

I(ξ) =

∫
ΩP

G(M, ξ,∇ξi)dx, i = 1, . . . , d,

for some continuous function G, monitor function M (which could be scalar or matrix-

valued) and where ∇ is the gradient operator in terms of physical coordinates x.

The advantage of such formulations is that in a non-convex domain node tangling

is less likely than with other formulations. The resulting systems are highly nonlinear

however, which is a disadvantage of the method due to the additional computational

costs.

We refer the reader to Huang and Russell (2011) and Budd et al. (2009) for more

details on this method.

2.6.3 The Parabolic Monge-Ampère Method

If the mapping is represented by a gradient, then equidistribution in 2D leads to a

Monge-Ampère equation. This process is related to minimisation of a functional

I =

∫
ΩC

|F(ξ, t)− ξ|2dξ,

where F is the mapping between computational and physical space. If the mapping

is written as the gradient ∇ξ of a mesh potential P (ξ, t), the Hessian H(P ) of such a

potential gives rise to the Monge-Ampère equation

M(∇ξP, t)H(P ) = θ(t), (2.36)

where θ(t) is defined as the 2D equivalent of (2.33).
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Budd and Williams (2009) provide a description of the Parabolic Monge-Ampère

method as a means of generating an equidistributed mesh in higher dimensions, not-

ing that for some applications an equidistributed mesh which is as close as possible to

a uniform mesh is desirable. The Parabolic Monge-Ampère solver then arises from a

parabolic relaxation of (2.36), involving a time-evolving function Q(ξ, t) with a corre-

sponding mesh, giving

ε(I − γ∆ξ)
∂Q

∂t
= (H(Q)M(∇ξQ))1/d, (2.37)

where ε denotes the relaxation rate and γ controls the amount of spatial smoothing.

Equation (2.37) is solved alongside the underlying PDE in order to find a mesh which

evolves towards the gradient of solutions to (2.36) over a short time scale (Budd et al.

(2013)).

For further details, see Budd and Williams (2009) and Budd et al. (2013)

2.7 Summary of this Chapter

In this chapter we have introduced the different orders of nonlinear diffusion PDE con-

sidered in this thesis. By discussing existing results in the literature we have identified

some of the issues that can arise in obtaining solutions to these PDEs as well as present-

ing existing results for these problems. We then discussed various types of numerical

methods which exist for obtaining approximate solutions to the problems.

In the next chapter we shall focus on velocity-based moving-mesh methods, before

presenting a particular version of such a method, based on conservation, which we shall

use throughout the remainder of this thesis in finding approximate solutions to second,

fourth and sixth-order problems.
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Chapter 3

Velocity-Based Moving Mesh

Methods

3.1 Aims of this Chapter

In this chapter we discuss some velocity-based moving-mesh methods, one of which

forms the focal point of the numerical methods discussed in this thesis. We also provide

some insight into the literature that exists for this type of method.

We shall then present in detail a particular implementation of the approach for use in

solving the fourth-order problem (2.3)–(2.5). We also describe how this implementation

can be modified for finding approximate solutions to the second-order ((2.7)–(2.9)) and

sixth-order (2.10)–(2.12) problems. In this chapter the method is implemented using

finite difference approximations.

3.2 Velocity Based Methods

A velocity-based method is a type of moving-mesh method in which the nodes Xk
i of

a mesh Xk = {Xk
i }, i = 1, . . . , N , are moved by a velocity V k

i at each node. The

superscript k = 0, . . . ,K indicates the kth of K time steps. The velocity V k
i is used to

update node Xk
i by time stepping forward to find the node Xk+1

i at the new time step.
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This is achieved through time stepping the ODE

dXi

dt
= Vi,

at each node of the mesh.

There are various methods of determining the point velocities in a velocity-based

method and we shall highlight some of these in this section. One of these methods (the

conservation based method) forms the basis of the Moving Point Conservation Method

(MPCM) which is used in this thesis to approximate high order nonlinear diffusion.

We now survey some of the key velocity-based methods in the literature.

3.2.1 Moving Finite Element Method

The Moving Finite Element (MFE) method is an early example of a velocity-based

method developed by Miller and Miller (1981) and Miller (1981). While a potentially

powerful tool for solving nonlinear PDEs it requires considerable care in the implemen-

tation in order to avoid inherent singularities.

In the discrete MFE method, the approximate solution U(x, t) is written as a linear

combination of time dependent basis functions wj(x, t) with moving nodes, as

U(x, t) =
∑
j

Uj(t)wj(x, t), (3.1)

with coefficients Uj(t).

The MFE method is a general method for PDEs of the form ∂u
∂t = Lu, where L

is a purely spatial operator. The method involves the minimisation over dUi
dt (the rate

of change of Ui in the moving frame) and dXi
dt of the L2 norm of the residual of the

Pseudo-Lagrangian form of the PDE (see (2.35)) in the form∫ b(t)

a(t)

∑
j

dUj
dt

wj −
∑
j

dU

dx

dX

dt
wj − LU

2

dx, (3.2)

at each node of the mesh. Carrying out the minimisation over dUi
dt and dXi

dt of (3.2) leads

to the following pair of equations for each node i:∫ b(t)

a(t)
wi

(
dU

dt
− V ∂U

∂x

)
W dx =

∫ b(t)

a(t)
wiLU dx, (3.3)
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∫ b(t)

a(t)

(
∂U

∂x
wi

){
dU

dt
− V ∂U

∂x

}
dx =

∫ b(t)

a(t)

(
∂U

∂x
wi

)
LU dx. (3.4)

In later developments a more general weight function was used as standard, with wi

replaced by Wi = 1√
1+∇Ui

(see Carlson and Miller (1998a,b)).

The solution of (3.3)–(3.4) determines the mesh velocities dXi
dt and solution rates of

change dUi
dt at each node in the mesh. Care must be taken however, in that the set of

equations may become singular and as such cannot be solved uniquely (Miller (1981)).

The two situations in which singularities occur are when a basis function is redundant

in (3.1) or when nodes overtake. The possibility of a singular set of equations appearing

leads to the need to introduce penalty functions into the minimisation of (3.2) (Miller

and Miller (1981)).

The MFE method has been used successfully in Carlson and Miller (1998a) and

Carlson and Miller (1998b), but the need for fine-tuning to avoid singularities is a big

disadvantage for the method (Budd et al. (2009)).

3.2.2 The GCL Method

The Geometric Conservation Law (GCL) method (Cao et al. (2002)) arose as a means of

deriving an equation for the mesh velocity through differentiation of the equidistribution

equation with respect to time (see §2.5.1 for information on this equation, and also Budd

et al. (2009)). A simple explanation of the method in 1D is presented here (taken from

Cao et al. (2002)), but the reader is referred to this paper plus that of Budd et al. (2009)

and Baines et al. (2011) for more details, in particular the higher dimensional case.

Consider a coordinate transformation x = x(ξ, t) between a computational domain

ΩC and a physical domain ΩP (t). Let AC be an arbitrary subset of ΩC with boundary

∂AC . Under the coordinate transformation there exists a corresponding subset of the

physical domain AP (t) ⊆ ΩP (t).

The integral form of the GCL arises from noting that the change in volume of AP (t)

is equal to the total inward flux over the boundary ∂AP (t), i.e.

d

dt

∫
AP (t)

dx =

[
v

]
∂AP (t)

, (3.5)
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with v the velocity dx
dt as previously defined.

Under the coordinate transformation we may write

d

dt

∫
AP (t)

dx =
d

dt

∫
AC

J(ξ, t) dξ =

∫
AC

DJ

Dt
dξ, (3.6)

where J is the Jacobian of the coordinate transformation and DJ
Dt denotes the total

derivative of J .

We may rewrite the right-hand side of (3.5) using the divergence theorem as[
v

]
∂AP (t)

=

∫
AP (t)

∂v

∂x
dx =

∫
AC

(
∂v

∂x

)
J(ξ, t) dξ =

∫
AC

DJ

Dt
dξ,

from (3.6). Since AC is arbitrary, this leads to the differential form of the GCL

∂v

∂x
=

1

J

DJ

Dt
. (3.7)

This differential form can be used as the basis for moving-mesh methods. The choice

J(ξ, t) =
c(ξ)

M(x, t)
, (3.8)

as highlighted in Cao et al. (2002), for some positive monitor function M corresponds

to equidistribution, where c(ξ) is a constant independent of time determined from the

initial coordinate transform.

Substituting (3.8) into (3.7) we see that

∂v

∂x
= − 1

M

DM

Dt
,

⇒ ∂M

∂t
+ v

∂M

∂x
= −M ∂v

∂x
,

⇒ ∂(Mv)

∂x
+
∂M

∂t
= 0. (3.9a)

For a givenM , equation (3.9a) can be used to define v, with suitable boundary conditions

on v. In 1D, this problem can be solved uniquely, but in higher dimensions additional

conditions are required in order to solve uniquely for v (Budd et al. (2009)).

As an example, the monitor function M = u can be used to conserve the mass of

the solution. Then (3.9a) becomes

∂u

∂t
+

∂

∂x
(uv) = 0, (3.10)
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which is the Eulerian form of mass conservation. We shall use this property in the

MPCM described in §3.3. Combined with ∂u
∂t = Lu, (3.10) can be used to obtain an

expression for v.

The solution of the GCL mesh equations takes place in the physical domain Ω(t) as

opposed to the fixed computational domain, which negates any speed advantage present

in solving for the mapping in the computational domain (such as that obtained through

use of spectral methods for example, see Budd et al. (2009)). On the other hand there

is no need to derive the velocity from the mapping.

3.2.3 The Deformation Map Method

The Deformation Map method originated from the work of Moser (1965) and Dacorogna

and Moser (1990) in proving the existence of a C1 diffeomorphism between two domains.

The mapping was then used to generate moving meshes in Liao and Anderson (1992)

and Bochev et al. (1996) (among others). The velocities are generated in a similar way

to the GCL method with modified dependent variables We refer the reader to the given

references for more information.

3.2.4 A Conservation-Based Method

In a conservation-based method, the velocity is found directly through a combination of

the conservation equation (3.10) (in Eulerian form) and the PDE. This correspondence

between the two is used to define the velocity, which can then be used to update the mesh

points. The emphasis is therefore on the velocity, with the solution derived afterwards

from the Lagrangian form of the conservation law.

The conservation method developed in Baines et al. (2005, 2006, 2011) is such an

example, where the mass (alternatively area under the solution) is conserved over time.

The implementation is built in a similar way as the GCL method described in §3.2.2, but

in this case the velocities are found directly from the conservation equation as opposed

to solving a minimisation problem as in Cao et al. (2002).

In Baines et al. (2005, 2006, 2011) the method is described for both mass-conserving

40



and non mass-conserving problems in terms of finite elements in the moving frame.

Finite difference implementations have also been used in Lee (2011), Blake (2001) and

Partridge (2013) for a variety of different problems.

In Chapter 2 we demonstrated that the fourth-order ((2.3)–(2.5)) , second-order

((2.7)–(2.9)) and sixth-order ((2.10)–(2.12)) problems were mass-conserving. We now

use this property to define a consistent local conservation of mass principle for obtaining

the velocity at all interior points of the domain Ω(t).

3.2.5 Local Conservation of Mass

We first define a local conservation of mass principle, consistent with conservation of

total mass, in which the mass under the curve u(x, t) from a(t) up to an arbitrary point

x̂(t) ∈ Ω(t) is conserved in time, i.e.∫ x̂(t)

a(t)
u(x, t) dx = c(x̂), (3.11)

where c(x̂) is independent of time. equivalently

d

dt

∫ x̂(t)

a(t)
u(x, t) dx = 0. (3.12)

We shall describe the derivation of the velocity in the case of the PDE (2.2), al-

though the process applies for any of the problems found in §2.2 since they are all

mass-conserving, being subject to zero-flux boundary conditions. The steps involved in

defining the local conservation of mass principle are similar to those taken in §2.4.1 for

demonstrating that the total mass of the PDE is mass conserving.

We begin by differentiating the left-hand side of (3.12) using Leibniz’s Integral Rule,

giving
d

dt

∫ x̂(t)

a(t)
u(x, t) dx =

∫ x̂(t)

a(t)

∂u

∂t
dx+

dx̂

dt
u(x̂(t), t)− da

dt
u(a(t), t).

From (3.12) and (2.2),∫ x̂(t)

a(t)

∂

∂x

(
un
∂q

∂x

)
dx+

dx̂

dt
u(x̂(t), t)− da

dt
u(a(t), t) = 0,
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Integrating and writing

da

dt
= v(a(t), t),

dx̂

dt
= v(x̂(t), t),

we arrive at [
un
∂q

∂x
+ uv

]x̂(t)

a(t)

= 0, (3.13)

which implies (due to the zero flux boundary condition) that

v = −un−1 ∂q

∂x

∣∣∣∣∣
x=x̂(t)

(3.14)

for all x̂(t) ∈ Ω(t) where u 6= 0 (i.e. excluding the boundary points).

At the boundary points where u = 0 we are unable to solve (3.13) for v(x, t), but

provided u(x, t) is continuous up to the boundary it is possible to take the limit of (3.14)

as u→ 0.

The method is summarised as follows: For a given function q(x, t), we can obtain

v(x, t) using (3.14). Once v(x, t) has been found points of the domain can be moved

using
dx̂

dt
= v, (3.15)

where x̂(t) coincides instantaneously with the Eulerian coordinate x. Having obtained

the new x̂ positions, the solution u(x, t) can be deduced from (3.11).

We next describe the main implementation of this approach as used in this thesis,

called the Moving Point Conservation Method (MPCM), which is implemented using

finite differences and is used to approximate solutions to the nonlinear diffusion equations

described in §2.2. The MPCM operates by assigning a velocity (approximated using

(3.14)) to each node of a mesh of points Xk which discretise the domain Ω(t) at a specific

time level tk. The mesh points Xk are then updated by a time stepping scheme using

this velocity, before the solution is recovered on the updated mesh using the Lagrangian

conservation form (3.11).

In the next section we describe the process involved in solving the fourth-order

problem (2.3)–(2.5) using the MPCM. We focus on the fourth-order problem (2.3)–(2.5)
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in the next section, but shall provide details on how the implementation can be modified

for second and sixth-order problems in §3.4 and §3.5.

3.3 A Finite Difference Implementation of the MPCM for

the Fourth-Order Problem

We now calculate approximate solutions to the fourth-order problem (2.3)–(2.5) using a

finite difference implementation of the MPCM. In the case where a self-similar solution

exists (i.e. for n = 1) u(x, t) is a quartic function (Smyth and Hill (1988)), with q(x, t)

therefore a quadratic function from (2.3b). From (3.14), the velocity v(x, t) is therefore

a linear function. We shall use this information in the implementation of the finite

difference method, although the method itself applies to non self-similar cases.

3.3.1 Discretisations

At each time tk, the interval (a(tk), b(tk)) is discretised by an ordered mesh of N nodes

a(tk) = x1(tk) < x2(tk) < . . . < xN (tk) = b(tk).

We shall denote by F ki the approximation of the function f(x, t) at time t = tk, node

Xk
i , i.e. F ki ≈ f(Xk

i , t
k). We shall seek approximations

Uk := {Uki }, for i = 2, . . . , N − 1, (3.16a)

Qk := {Qki }, for i = 1, . . . , N, (3.16b)

Vk := {V k
i }, for i = 1, . . . , N, (3.16c)

to u(x, t), q(x, t) and v(x, t) on the moving mesh, with Uk1 = UkN = 0 for all k from

(2.5a).

3.3.2 Initial Conditions

On the initial mesh X0 we sample the initial condition u0(x) at each node to get an

initial approximation U0 by setting

U0
i = u0(X0

i ),
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for i = 2, . . . , N − 1. We enforce the boundary condition u = 0 strongly and therefore

set

U0
1 = U0

N = 0.

3.3.3 Approximating q(x, t)

To approximate the velocity we require an approximation to the function q(x, t) at each

node in the mesh. As there are no boundary conditions prescribed for q(x, t), we shall

require the approximation to be valid for all i = 1, . . . , N .

Given the values Uki , i = 1, . . . , N , (which we denote in this section by Ui for ease of

notation) we compute Qki , i = 1, . . . , N , (denoted Qi for ease of notation) as follows (the

calculation of interior and boundary points is considered separately since the method

used for deriving these values differs in each case).

Interior Points

As a first approximation, at each time step consider the three-point central differencing

scheme on a variable mesh,

Qi ≈ −
Ui+1−Ui

Xi+1−Xi
− Ui−Ui−1

Xi−Xi−1

1
2(Xi+1 −Xi−1)

, (3.17)

for i = 2, . . . , N − 1.The local truncation error (LTE), τi, of this approximation can be

shown (by Taylor Series expansions and a Mean Value Theorem) to be equal to

τi = −(Xi+1 − 2Xi +Xi−1)

3
q′i −

1

12

(Xi+1 −Xi)
3 + (Xi −Xi−1)3

Xi+1 −Xi−1
q′′i

∣∣∣∣
θ

,

for some θ ∈ (Xi−1, Xi+1), where the prime ′ denotes a derivative with respect to x.

Boundary Points

The scheme (3.17) holds only for the interior points of the mesh since they involve central

differences. At the boundary we require a different approach with which to calculate

the equations for the first and last points of the mesh.
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The approach used here is that of extrapolation using a second-order Lagrange poly-

nomial. Since q(x, t) is a quadratic in the self-similar case this is the appropriate degree

of polynomial required here.

Performing an extrapolation using second-order Lagrange polynomials we arrive at

an equation for determining the value Q1 at a given time step:

L1(X4)Q1 + L2(X4)Q2 + L3(X4)Q3 −Q4 = 0, (3.18)

where the L1, . . . , L4 are the second-order Lagrange polynomials.

Similarly, an equation for determining the value of QN at a given time step is

−QN−3 + LN−2(XN−3)QN−2 + LN−1(XN−3)QN−1 + LN (XN−3)QN = 0. (3.19)

The Matrix System

To obtain the values of Q at a given time step at each of the nodal positions we solve

the matrix system

SQ = TU, (3.20)

where Q = {Qi} (i = 1, . . . , N), U = {Ui} (i = 1, . . . , N) and S, T are matrices of

size N ×N . Rows 2, . . . , N − 1 of these matrices come from equation (3.17), while the

first and final rows are given by equations (3.18) and (3.19) respectively. The vector U

includes the boundary values U1 = 0 and UN = 0 as well as the interior values.

By combining these equations, we see that the matrix S is of the form

S =



L1(X4) L2(X4) L3(X4) −1 0 . . . 0

0 1 0
...

0 1 0
...

. . .
. . .

. . .
. . .

. . .
...

0 1 0
... 0 1 0

0 . . . 0 −1 LN−2(XN−3) LN−1(XN−3) LN (XN−3)


.

(3.21)
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The matrix T is of the form

T =



0 . . . . . . 0

T−2 T2 T+
2 0

...

0 T−3 T3 T+
3 0

...
. . .

. . .
. . .

. . .
. . .

...

0 T−N−2 TN−2 T+
N−2 0

... 0 T−N−1 TN−1 T+
N−1

0 . . . . . . 0


, (3.22)

where for i = 2, . . . , N − 1

T−i = − 1
1
2(Xi −Xi−1)(Xi+1 −Xi−1)

,

Ti =
1

1
2(Xi+1 −Xi−1)

(
1

(Xi+1 −Xi)
+

1

(Xi −Xi−1)

)
,

T+
i = − 1

1
2(Xi+1 −Xi)(Xi+1 −Xi−1)

.

The matrix S is pentadiagonal, although only due to the first and last rows. The

remaining rows of S are diagonal.

The necessity for the interpolating polynomials at the boundary points rather than

one-sided differences comes from the lack of a boundary condition on q(x, t). Use of

one-sided differences at the boundary points again results in a pentadiagonal matrix

S, but the system is not solvable since S in this case is singular. Without a suitable

condition on q(x, t) it is not possible to avoid S being singular and hence a different

method is required.

Having solved (3.20) for Q, we can now use it to determine the nodal velocity.

3.3.4 The Nodal Velocity

Using the local conservation of mass principle (3.14) we have that the deformation

velocity is given by v(x, t) = −un−1 ∂q
∂x at all points in the domain Ω(t). We now

discretise this equation to obtain an approximation to v(x, t) at each node in the mesh.
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Given Uki and Qki , both for i = 1, . . . , N , (denoted by Ui and Qi respectively for ease

of notation) we compute V k
i , i = 1, . . . , N , (denoted Vi for ease of notation) as follows.

The gradient q′ of q(x, t) in (Xi−1, Xi) is approximated by

Q′i−1/2 =
Qi −Qi−1

Xi −Xi−1
,

say, and is of first order accuracy. A second order approximation can be obtained

by a linear interpolation of these gradients through the points (Xi−1/2, Q
′
i−1/2) and

(Xi+1/2, Q
′
i+1/2) such that

Vi = −(Un−1
i )


(Qi+1 −Qi)
(Xi+1 −Xi)2

+
(Qi −Qi−1)

(Xi −Xi−1)2

1

(Xi+1 −Xi)
+

1

(Xi −Xi−1)

 , (3.24)

for i = 2, . . . , N − 1.

The local truncation error of the velocity calculated by (3.24) at node i, denoted by

τ̃i, can be shown (using Taylor Series and a Mean Value Theorem) to be equal to

τ̃i =
(Xi+1 −Xi)(Xi −Xi−1)

6
q′′′i

∣∣∣∣
θ

,

for some θ ∈ (Xi−1, Xi+1).

At the boundaries, we use a quadratic extrapolation through adjacent values of Vi in

order to obtain the values of V1 and VN . An extrapolation is used since at the boundary

(where u = 0) the approximation (3.24) cannot be applied.

The nodal velocities V can then be used to update the nodal positions at the next

time step.

3.3.5 Updating the Nodal Positions

With the velocity of each node calculated, the updated positions of the nodes Xk+1 are

found by approximately solving the ODEs (3.15) in the form

dXi

dt
= Vi, (3.25)

for i = 1, . . . , N , by a time stepping scheme.
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We approximate the ODEs (3.25) by the explicit Forward Euler time stepping

method

Xk+1
i = Xk

i + ∆tV k
i , (3.26)

where ∆t is the size of the time step used, for i = 1, . . . , N . The scheme (3.26) is not

scale invariant with a fixed ∆t, which we shall discuss further in Chapter 4.

The size of ∆t in (3.26) is of great importance to the successful updating of mesh

positions from one time step to the next. In a moving-mesh method the value of ∆t must

be chosen in order to avoid node tangling occurring (see §3.3.7 for a description of node

tangling and the consequences of such an occurrence). The size of ∆t also influences the

accuracy of the resulting mesh positions. The local truncation error of (3.26), which we

denote by τi, is

τi =
∆t

2

d2x

dx2

∣∣∣∣
t∗
,

for some t∗ ∈ (t, t+ ∆t). This truncation error indicates that a smaller value of ∆t will

lead to a more accurate resulting mesh position at the updated time step.

3.3.6 Updating the Solution Values

We now recover the solution on the updated mesh Xk+1 using the mass constants of

(3.11). The discretised mass can be defined using a discrete form of the total mass ρ of

the solution (2.15). We discretise (2.15) using the composite trapezoidal rule

ρ ≈ 1

2

N∑
j=2

(Xk+1
j −Xk+1

j−1 )(Uk+1
j − Uk+1

j−1 ), (3.27)

which is constant for all k due to mass conservation.

Expanding and rearranging the terms in (3.27) we see that, using the boundary

conditions Uk+1
1 = Uk+1

N = 0,

1

2

N∑
j=2

(Xk+1
j −Xk+1

j−1 )(Uk+1
j − Uk+1

j−1 ) ≡ 1

2

N∑
j=2

(Xk+1
j+1 −X

k+1
j−1 )Uk+1

j .

Denoting by ρi the mass constants

ρi :=
1

2
(Xk+1

i+1 −X
k+1
i−1 )Uk+1

i , (3.28)
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centred at node i of the mesh, we see that
∑

i ρi = ρ.

As the total mass is conserved, it is consistent to make the ρi constant for all time

and this is the approximation to (3.11) that we use. Due to conservation of mass, we

can use the initial values X0
i and U0

i at time t = t0 to calculate the values of the mass

constants

ρi = (X0
i+1 −X0

i−1)U0
i , for i = 2, . . . , N − 1. (3.29)

We can use the ρi to recover the solution at any given time. From (3.28) and (3.29),

we use the new nodal positions to update the solution values for our approximation Uk+1

to u(x, t). The updated solution values are therefore calculated from the constants ρi

and the new mesh positions using

Uk+1
i =

ρi

Xk+1
i+1 −X

k+1
i−1

=
(X0

i+1 −X0
i−1)U0

i

Xk+1
i+1 −X

k+1
i−1

,

(3.30)

for i = 2, . . . , N − 1.

3.3.7 Node Tangling

As mentioned in §3.3.5, if the size of the time step ∆t is taken to be too large when

updating the mesh positions from time tk to tk+1, node tangling can occur.

At time tk, an untangled mesh is a mesh in which the values of Xk
i (for i = 1, . . . , N)

are monotonic, i.e.

Xk
i < Xk

i+1, for i = 1, . . . , N − 1.

If this monotonicity is violated as a result of ∆t being too large, then node tangling is

said to have occurred.

In the MPCM, if node tangling occurs, then (3.30) will result in the recovered solution

becoming negative in the vicinity of the tangled nodes. This negativity happens when

the Xk+1
i+1 − Xk+1

i−1 factor switches from positive to negative as a result of the node

tangling.
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One of the consequences of performing solution recovery in the manner described in

§3.3.6 is that a nonnegative initial condition will remain nonnegative for all later times

(provided monotonicity of the mesh is upheld). This consequence is desirable since it

mimics the properties of the underlying problem (see §2.2.2 and Bernis and Friedman

(1990)). Node tangling is therefore extremely important to avoid when choosing the size

of ∆t in (3.26).

We next detail how the implementation of the MPCM described above can be mod-

ified for use in the second and sixth-order problems detailed in §2.2.

3.4 Implementation of the MPCM for Second-Order Prob-

lems

We now outline the steps required for implementing the MPCM for the second-order

problem given by (2.7)–(2.9).

The implementation of the MPCM described in §3.3 requires some modifications in

order to be valid for the second-order problem (2.7)–(2.9), with the most important

change being that q(x, t) = u(x, t), so there is no need to solve for q(x, t) in the second-

order problem (2.7)–(2.9). We shall seek approximations Uk and Vk from (3.16a) and

(3.16c) respectively.

The work described in this Section is an extension of that found in Parker (2010),

which considers the second-order problem (2.7)–(2.9) for the specific value of n = 3.

3.4.1 Approximating v(x, t)

Obtaining the velocity v(x, t) at each node in the mesh is also slightly different in the

second-order problem (2.7)–(2.9), since there exists an expression for the velocity for

any value of n (Smyth and Hill (1988)).

From (3.14) and noting that q = u, the velocity (at all points where u > 0) is given

by

v = −un−1∂u

∂x
,
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which we may rewrite as

v = − 1

n

∂(un)

∂x
. (3.31)

Given Uki , i = 1, . . . , N , (denoted Ui for ease of notation) we compute V k
i , i =

1, . . . , N , (denoted Vi for ease of notation) as follows. The velocity is approximated

from (3.31) at interior points by (3.24) with Qi replaced by Uni

Vi = − 1

n


Uni+1 − Uni

(Xi+1 −Xi)2
+

Uni − Uni−1

(Xi −Xi−1)2

1

Xi+1 −Xi
+

1

Xi −Xi−1

 , (3.32)

which is a linear interpolation through the points (Xi−1/2, (U
′
i−1/2)n) and (Xi+1/2, (U

′
i+1/2)n)

and is of second order on the irregular grid.

The approximation (3.32) is used for interior points of the mesh, with v at the

boundary approximated using a quadratic extrapolation as described in §3.3.4.

3.4.2 Mesh Movement and Solution Recovery

Updating the mesh and solution recovery is performed exactly as described in §3.3.5

and §3.3.6.

3.5 Implementation of the MPCM for the Sixth-Order

Problem

The implementation of the MPCM for the sixth-order problem (2.10)–(2.12) is similar

to that for the fourth-order implementation given in §3.3, with the added requirement

of an approximation Pk to the p(x, t) function.

We shall seek approximations Uk, Qk and Vk from (3.16a), (3.16b) and (3.16c)

respectively, in addition to

Pk := {P ki }, for i = 1, . . . , N. (3.33)
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3.5.1 Approximating p(x, t)

We seek an approximation to p(x, t) at each node in the mesh. Given Uki , i = 1, . . . , N ,

(denoted by Ui for ease of notation) we compute P ki , i = 1, . . . , N , (denoted Pi for ease

of notation) as follows.

On a variable mesh, a three-point central difference approximation Pi is

Pi = −

 Ui+1−Ui

Xi+1−Xi
− Ui−Ui−1

Xi−Xi−1

1
2(Xi+1 −Xi−1)

 , (3.34)

which has a local truncation error, τi, that can be shown to be equal to

τi = −(Xi+1 − 2Xi +Xi−1)

3
p′i −

1

12

(Xi+1 −Xi)
3 + (Xi −Xi−1)3

Xi+1 −Xi−1
p′′i

∣∣∣∣
θ

,

for some θ ∈ (Xi−1, Xi+1).

At the boundary points, we use second-degree Lagrange polynomials (as described

in §3.3.3), giving the following equations for obtaining P1 and PN :

L1(X4)P1 + L2(X4)P2 + L3(X4)P3 − P4 = 0, (3.35)

and

−PN−3 + LN−2(XN−3)PN−2 + LN−1(XN−3)PN−1 + LN (XN−3)PN = 0. (3.36)

To obtain the values of P (from (3.33)) at a given time step we solve the matrix

system

SP = TU,

arising from (3.34), (3.35) and (3.36), where P = {Pi} (i = 1, . . . , N), U = {Ui}

(i = 1, . . . , N , including boundary values U1 = UN = 0) and where the matrices S and

T are as given in (3.21) and (3.22) respectively.

3.5.2 Approximating q(x, t)

Given the Pi, i = 1, . . . , N , obtained from §3.5.1, we now seek Qki , i = 1, . . . , N , (denoted

by Qi for ease of notation) approximating q(x, t) from (2.10b) on each node of the mesh.
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On a variable mesh, a three-point central difference approximation Qi at node i is

Qi = −

 Pi+1−Pi

Xi+1−Xi
− Pi−Pi−1

Xi−Xi−1

1
2(Xi+1 −Xi−1)

 . (3.37)

The local truncation error, τi, of (3.37) can be shown to be equal to

τi = −(Xi+1 − 2Xi +Xi−1)

3
q′i −

1

12

(Xi+1 −Xi)
3 + (Xi −Xi−1)3

Xi+1 −Xi−1
q′′i

∣∣∣∣
θ

,

for some θ ∈ (Xi−1, Xi+1).

At the boundary points, we use second-degree Lagrange polynomials (as described

in §3.3.3), giving the following equations for obtaining P1 and PN :

L1(X4)Q1 + L2(X4)Q2 + L3(X4)Q3 −Q4 = 0, (3.38)

and

−QN−3 + LN−2(XN−3)QN−2 + LN−1(XN−3)QN−1 + LN (XN−3)QN = 0. (3.39)

To obtain the values of Q at a given time step we solve the matrix system

SQ = TP,

where Q = {Qi} (i = 1, . . . , N), U = {Ui} (i = 1, . . . , N , including boundary values

U1 = UN = 0) arising from (3.37), (3.38) and (3.39), where the matrices S and T are as

given in (3.21) and (3.22) respectively.

3.5.3 Approximating v(x, t)

Given the Pi and Qi, i = 1, . . . , N , obtained from §3.5.1 and §3.5.2, we now seek V k
i ,

i = 1, . . . , N . This is achieved in the same manner as described for the fourth-order

problem in §3.3.4.

3.5.4 Mesh Movement and Solution Recovery

Updating the mesh and solution recovery is performed exactly as described in §3.3.5

and §3.3.6.

53



3.6 The S Property

In the next chapter, we shall show that by modifying some of the steps in the MPCM

(i.e. by modifying the appropriate schemes such that they are of the required order to

match the exact solution for the relevant problem) and by use of a scale-invariant time

stepping scheme, it is possible to propagate initial conditions coinciding with a similarity

solution forward in time (over a single time step) to within rounding error. We shall

define this property as the S Property :

Definition: The S Property

A numerical method is said to possess the S Property in some norm if, given a self-similar

scaling solution to a time dependent problem, the norm of the error in the numerical

solution after a single time step is zero. In other words the exact solution is preserved

in that norm.

3.7 Summary of this Chapter

In this chapter we have provided a brief review of velocity-based moving-mesh methods,

including some of the more common approaches seen in the literature. We then intro-

duced the MPCM, which is a finite difference implementation of a conservation-based

method. The method has been discussed in terms of the fourth-order problem detailed

in §2.2, with further details on how the method is adapted for second and sixth-order

problems provided.

In the next chapter we shall provide a discussion on how the MPCM as described in

this chapter can be modified such that it then possesses the S Property. We shall detail

the required modifications to the basic MPCM presented in this chapter as well as the

other requirements for the MPCM (such as initial condition and time stepping method).
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Chapter 4

An Implementation of the

MPCM Possessing the S Property

4.1 Aims of this Chapter

In this chapter we shall demonstrate the ability of the MPCM described in Chapter 3

(with some modifications) to possess the S Property (described in §3.6) in the l∞ norm.

This ability shall be proven for the fourth-order problem (2.3)–(2.5) (with n = 1), with

numerical results shown to validate the claim of the method possessing the S Property.

We shall also outline and provide numerical results which demonstrate the S Property

for implementations of the MPCM in the second-order problem (2.7)–(2.9) (for any n)

and the sixth-order problem (2.10)–(2.12) with n = 1.

4.2 The Fourth-Order Problem with n = 1

In this chapter we shall mainly focus on the fourth-order problem (2.3)–(2.5) with the

specific choice of n = 1. We recall that for this choice of n, closed-form similarity

solutions of the fourth-order PDE (2.3) exist. We shall demonstrate that if such a

similarity solution is used to provide the initial approximation U0 at the nodes of the

initial mesh, the MPCM given in §3.3 can be modified such that it possesses the S
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Property (see §3.6) in the l∞ norm.

Throughout this chapter we shall make use of the scaled time variable s rather than

t, since a scale-invariant time stepping scheme will be used (see §4.3.3 for details on the

scale-invariant time stepping scheme used).

We restate the problem being considered for clarity. We seek a solution u(x, s) to

the 1D fourth-order nonlinear diffusion equation with n = 1,

∂u

∂s
=

∂

∂x

(
u
∂q

∂x

)
, (4.1a)

q(x, s) = −∂
2u

∂x2
, (4.1b)

for x ∈ ΩS , subject to the initial condition at time s = s0 given by

u(x, s0) = u0(x), for x ∈ Ω(s0),

and boundary conditions

u = 0

∂u

∂x
= 0

uv + u
∂q

∂x
= 0

at the moving boundaries x = a(s) and x = b(s), for s > s0.

Similarity solutions u(x, s) to the fourth-order problem (2.3)–(2.5) with n = 1 exist

which are quartic functions (Smyth and Hill (1988)), with the function q(x, s) therefore

a quadratic function.

4.3 The S Property in the MPCM for the Fourth-Order

Problem

We shall now demonstrate that the implementation of the MPCM given in §3.3 can be

modified in order to possess the S Property over a single time step for any initial mesh.
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We are given an initial mesh X0 discretisating the domain Ω(s0) and an approxima-

tion U0 to the initial condition u0(x) such that u0(x) = uS(x, s0) at each node in the

mesh. We therefore have that

U0
i = uS(X0

i , s
0), for i = 1, . . . , N.

4.3.1 Approximating q(x, s)

As noted in §3.3.3, we first seek an approximation Qk at the nodes. The scheme given in

§3.3.3 has a local truncation error proportional to ∂q
∂x and as such is not zero for quadratic

q(x, s), quartic u(x, s). We therefore seek to modify the finite difference scheme used so

that it is exact for quadratic q(x, s), quartic u(x, s). Given Uki , i = 1, . . . , N , (denoted

by Ui for ease of notation) we compute Qki , i = 1, . . . , N , (denoted by Qi for ease of

notation) as follows.

We obtain Q at interior points of the mesh using a modified three-point central-

difference approximation of (4.1b) of the form

Qi ≈ −
Ui+1−Ui

Xi+1−Xi
− Ui−Ui−1

Xi−Xi−1

1
2(Xi+1 −Xi−1)

+ C1
Qi+1 −Qi−1

Xi+1 −Xi−1
+ C2

Qi+1−Qi

Xi+1−Xi
− Qi−Qi−1

Xi−Xi−1

1
2(Xi+1 −Xi−1)

, (4.3)

where we choose C1 and C2 such that terms relating to the first and second derivatives

of q in the local truncation error will vanish. The method will then be exact for quartic

u(x, s), quadratic q(x, s).

The local truncation error, τi, of the modified approximation (4.3) can be shown to

be equal to

τi = qi + u′′i −
(

1

3
(Xi+1 − 2Xi −Xi−1) + C1

)
q′i

−
[

1

12

(
(Xi+1 −Xi)

3 + (Xi −Xi−1)3

Xi+1 −Xi−1

)
+

1

2
(Xi+1 − 2Xi −Xi−1)C1 + C2

]
q′′i

∣∣∣∣
θ

,

(4.4)

for some θ ∈ (Xi−1, Xi+1), where qi = q(Xi), q
′
i = ∂q

∂x

∣∣∣∣
Xi

, q′′i = ∂2q
∂x2

∣∣∣∣
Xi

.

From equation (4.4) we can see that using q = −u′′ at Xi and choosing

C1 = −(Xi+1 − 2Xi −Xi−1)

3
, (4.5)
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removes all derivatives up to q′i from the local truncation error, which then becomes

equal to

τi = −
(
C1

2
(Xi+1 − 2Xi −Xi−1) + C2 +

1

12

(Xi+1 −Xi)
3 + (Xi −Xi−1)3

Xi+1 −Xi−1

)
q′′i

∣∣∣∣
θ

,

for some θ ∈ (Xi−1, Xi+1).

Therefore, choosing

C2 = −C1

2
(Xi+1 − 2Xi −Xi−1)− 1

12

(Xi+1 −Xi)
3 + (Xi −Xi−1)3

Xi+1 −Xi−1
,

=
(Xi+1 − 2Xi −Xi−1)2

6
− 1

12

(Xi+1 −Xi)
3 + (Xi −Xi−1)3

Xi+1 −Xi−1
,

=
(Xi+1 −Xi)

2 − 3(Xi+1 −Xi)(Xi −Xi−1) + (Xi −Xi−1)2

12
,

(4.6)

removes all q′′i terms from the local truncation error, which then vanishes for quadratic

q(x, s).

We can therefore use equation (4.3) to construct a system of equations, with the

values of C1 and C2 from equations (4.5) and (4.6) respectively. Once solved, the system

will produce an approximation Q at each interior point of the mesh having zero local

truncation error for quartic u(x, s), quadratic q(x, s).

At the boundary points we use the Lagrange interpolating polynomials outlined in

§3.3.3. The details are omitted here, but we note that since second-degree Lagrange

polynomials are used the approximation will be exact for quadratic q(x, s).

To obtain the values of Q at each of the nodal positions we therefore solve the matrix

system

SQ = TU,

where Q = {Qi} (i = 1, . . . , N), U = {Ui} (i = 1, . . . , N , including U1 = UN = 0) and

S, T are sparse matrices of size N ×N . Rows 2, . . . , N − 1 of these matrices come from

equation (4.3), while the first and final rows are given by equations (3.18) and (3.19)

respectively.
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By combining these equations, we see that the matrix S is of the form

S =



L1(X4) L2(X4) L3(X4) −1 0 . . . 0

S−2 S2 S+
2 0

...

0 S−3 S3 S+
3 0

...
. . .

. . .
. . .

. . .
. . .

...

0 S−N−2 SN−2 S+
N−2 0

... 0 S−N−1 SN−1 S+
N−1

0 . . . 0 −1 LN−2(XN−3) LN−1(XN−3) LN (XN−3)


,

(4.7)

where for i = 2, . . . , N − 1

S−i =

(
C1

Xi+1 −Xi−1
− C2

1
2(Xi −Xi−1)(Xi+1 −Xi−1)

)
,

Si =

(
1 +

C2
1
2(Xi+1 −Xi−1)

(
1

Xi+1 −Xi
+

1

Xi −Xi−1

))
,

S+
i =

(
− C1

Xi+1 −Xi−1
− C2

1
2(Xi+1 −Xi)(Xi+1 −Xi−1)

)
.

The matrix T is of the form

T =



0 . . . . . . 0

T−2 T2 T+
2 0

...

0 T−3 T3 T+
3 0

...
. . .

. . .
. . .

. . .
. . .

...

0 T−N−2 TN−2 T+
N−2 0

... 0 T−N−1 TN−1 T+
N−1

0 . . . . . . 0


, (4.9)

where for i = 2, . . . , N − 1

T−i = − 1
1
2(Xi −Xi−1)(Xi+1 −Xi−1)

,

Ti =
1

1
2(Xi+1 −Xi−1)

(
1

Xi+1 −Xi
+

1

Xi −Xi−1

)
,

T+
i = − 1

1
2(Xi+1 −Xi)(Xi+1 −Xi−1)

.

59



The matrix S is pentadiagonal due to the first and last rows, with the remaining

rows tridiagonal. Through the application of two Gaussian elimination steps the whole

system becomes tridiagonal.

4.3.2 The Nodal Velocity

The nodal velocities V are found using the steps detailed in §3.3.4 with no modifications.

We repeat the schemes here for completeness.

In the case where the initial condition corresponds to a similarity solution we note

that since the similarity solution for (4.1a) is a quartic, q(x, s) will be quadratic and

hence from (3.14) the velocity v(x, s) will be linear.

Given Uki and Qki , both i = 1, . . . , N , (denoted by Ui and Qi respectively for ease of

notation), we compute V k
i , i = 1, . . . , N , (denoted by Vi for ease of notation) as follows.

The nodal velocities Vi at interior points of the mesh (i.e. for i = 2, . . . , N − 1) are

calculated using (3.24), i.e.

Vi = −


(Qi+1 −Qi)
(Xi+1 −Xi)2

+
(Qi −Qi−1)

(Xi −Xi−1)2

1

Xi+1 −Xi
+

1

Xi −Xi−1

 . (4.11)

The local truncation error of the formula (4.11) at node i, denoted by τ̃i, can be

shown to be equal to

τ̃i =
(Xi+1 −Xi)(Xi −Xi−1)

6
q′′′i

∣∣∣∣
θ

,

for some θ ∈ (Xi−1, Xi+1), where q′′′i = ∂3q
∂x3

∣∣∣∣
Xi

.

In the case where q(x, s) is a quadratic function, the third derivative of q(x, s) and

hence the local truncation error will be equal to zero and so the velocity will be approx-

imated by (4.11) to within rounding error of the exact value.

At the boundary points, the velocity is approximated using a quadratic extrapolation

from the three closest interior points to the boundary. Such an extrapolation is exact

for a linear v(x, s).
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4.3.3 Updating the Nodal Positions

We noted in §3.3.5 that the explicit Forward Euler time stepping scheme was not scale-

invariant. It is possible to make the time stepping scheme scale invariant however,

through the introduction of a scaled time step with a new time variable s, where s = tβ

(Budd and Piggott (2001), Budd et al. (2001), Baines et al. (2006)). Writing (3.15) in

terms of the known function v(x, t),

dx

ds
=

dx

dt

dt

ds
=

dx

dt

1

βtβ−1
=

1

β
s1/β−1v(x, t), (4.12)

the explicit Euler time stepping scheme for (4.12),

Xk+1
i = Xk

i +
1

β
(sk)1/β−1∆sV k

i , (4.13)

is then scale invariant with constant ∆s. We shall refer to (4.13) throughout this thesis

as a scale invariant time stepping scheme.

For the fourth-order problem (2.3)–(2.5) with n = 1 we have β = 1/5 from (2.21)

(since we have made the specific choices of m = n = 1). The scale invariant time

stepping scheme (4.13) is then,

Xk+1 = Xk + 5(sk)4∆sVk, (4.14)

The LTE incurred by the time stepping scheme (4.14) at node i, denoted by τ̂i, can be

shown to be equal to

τ̂i =
xi(s+ ∆s)− xi(s)

∆s
− dxi

ds
,

=
xi + ∆sdxi

ds + 1
2∆s2 d2xi

ds2
+ . . .− xi

∆s
− 5s4vi,

=
∆s

2

d2x

ds2

∣∣∣∣
s∗

for some s∗ ∈ (s, s+ ∆s).

In terms of s, the similarity variable ξ in equation (2.22) is related to x by

ξ =
x

s
,
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from which we have, at any fixed time,

d2x

ds2
= 0. (4.16)

From (4.14) and (4.16), we see that in the case where a scale invariant time stepping

scheme is used, the LTE relating to the time discretisation of the mesh movement is

equal to zero. This implies that the mesh points are updated to within rounding error

of their exact values in one time step.

4.3.4 Updating the Solution Values

The solution approximation Uk+1 is found from the updated nodal positions as described

in §3.3.6, using (3.30):

Uk+1
i =

X0
i+1 −X0

i−1

Xk+1
i+1 −X

k+1
i−1

U0
i ,

with Uk+1
1 = Uk+1

N = 0 from the boundary conditions.

We now confirm that if the error in X is zero in a single time step according to

(4.14), then (3.30) is able to recover the similarity solution to within rounding error at

each node in the mesh in the same time step. We shall therefore confirm that

Uk+1
i − uS(Xk+1

i , sk+1) = 0, (4.17)

for i = 2, . . . , N − 1.

From (4.20), the similarity solution uS(x, s) can be written in the general form

uS(x, s) =
C

s

[
D2 −

(x
s

)2
]2

+

, (4.18)

where C and D are constants. In terms of the similarity variables ξ = x
s and η = us

from (2.22), (4.18) is written as

η = C

[
D2 − ξ2

]2

+

,
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We write (4.17) in terms of ξ and η as

Uk+1
i − uS(Xk+1

i , sk+1) =
(ξ0
i+1 − ξ0

i−1)

(ξk+1
i+1 − ξ

k+1
i−1 )

η0
i

sk+1
−
ηk+1
i

sk+1
,

=
(ξ0
i+1 − ξ0

i−1)

(ξk+1
i+1 − ξ

k+1
i−1 )

(
C

sk+1

[
D2 − (ξ0

i )2

]2

+

)
− C

sk+1

[
D2 − (ξk+1

i )2

]2

+

,

=
C

sk+1

(
(ξ0
i+1 − ξ0

i−1)

(ξk+1
i+1 − ξ

k+1
i−1 )

[
D2 − (ξ0

i )2

]2

+

−
[
D2 − (ξk+1

i )2

]2

+

)
.

(4.19)

Since ξ and η are invariant, they are independent of time and therefore independent

of k. From this invariance, ξ0
i = ξk+1

i , for i = 2, . . . , N − 1, provided that the mesh

points (and hence ξi values) have been moved exactly. The right hand side of (4.19) is

equal to zero and hence the error at node i is equal to zero. The solution is therefore

recovered exactly on each node of the mesh in the case where the error in the mesh

positions is equal to zero.

4.3.5 Implications

We have shown that in the case where the initial condition coincides with a similarity

solution at the nodes of an initial mesh, the modified MPCM implemented in this

section will approximate q(x, s) and v(x, s) with zero local truncation error. These

approximations are then equal to the exact values to within rounding error at the nodes

over a single time step. The local truncation error incurred by the method in moving

mesh points is also equal to zero, and hence mesh points are moved to within rounding

error, if a scale-invariant time stepping scheme is used. The approximation to u(x, s) is

then also recovered exactly since the mesh points are moved exactly.

We therefore argue that the modified MPCM described here possesses the S Property

in the l∞ norm (although in practice rounding errors will be present in all approxima-

tions).
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4.3.6 Numerical Results

We now present numerical results for the implementation of the MPCM given in §4.3.

We shall demonstrate that over a single time step the method is able to propagate a

similarity solution to within rounding error in the l∞ norm. We then present results

over a larger time window consisting of multiple time steps in order to illustrate how

the MPCM performs over multiple steps.

Our choice of the l∞ norm for the numerical results in this section stems from the

point-wise nature of the finite difference method. If our claim that the MPCM possesses

the S Property is true, then we would expect the absolute error in the approximation at

each mesh point to be within rounding error. This would then equate to an error in the

l∞ norm in the region of rounding error. We shall also make use of a small number of

mesh points in our numerical experiments to demonstrate that the method is accurate

on a coarse mesh.

In order to demonstrate the behaviour of the MPCM from §4.3, we make use of the

similarity solution (2.28) given in Barrett et al. (1998)

uS(x, s) =
1

120s

[
4− x2

s2

]2

+

, (4.20)

with the scaled time variable s replacing the time variable tβ used in that paper. This

similarity solution will be used to set the initial approximation U0 and also as a means

of testing the accuracy of the MPCM.

Using (4.20), we can calculate the similarity functions qS(x, s) and vS(x, s), using

(4.1b) and (3.14) respectively:

qS(x, s) =
2

15s3
− x2

10s5
, vS(x, t) =

x

5s5
. (4.21)

Single Time Step

We first run the implementation of the MPCM for a single time step in order to demon-

strate that a similarity solution can be propagated within rounding error.

We run the method on an initially equally spaced mesh of N = 21 nodes. We use

the similarity solution (4.20) to determine the initial approximation U0 at the initial
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time s0 = 1, such that

U0
i =

1

120

[
4− (X0

i )2

]2

+

,

for i = 1, . . . , N . This initial approximation is centred on x = 0 with initial boundary

positions at x = ±2.

A single time step of size ∆s = 2.5 × 10−5 is performed using the scale-invariant

Forward Euler scheme (4.13).

After the single time step has been performed, we calculate the absolute error of

the approximations U1, Q0 and V0, as well as the absolute error in the position of

the updated mesh nodes X1. The error in the mesh positions is calculated using the

similarity variable ξ from (2.22), using the initial values

ξ =
x(sk)

sk
∀k,

⇒ |Xk − x(sk)| =
∣∣∣∣Xk − sk x

0

s0

∣∣∣∣ , ∀k.

Figure 4.1 details the absolute errors of these approximations. We see that the ap-

proximations are in the region of rounding error, with the error in U1 being of O(10−17),

the error in Q0 is of O(10−15) and the error in V0 is O(10−14). Finally, we observe the

absolute error in the mesh positions is of O(10−16).

Multiple Time Steps

We then run the implementation of the MPCM over multiple time steps in order to

determine the accuracy of the method for more than one time step.

The MPCM is run on an initially equally-spaced mesh of N = 21 nodes over 60, 000

time steps using the scale-invariant Forward Euler time stepping scheme (4.13). The

time step ∆s is chosen such that ∆s = O(1/N4), specifically ∆s = 2.5×10−5. The value

of ∆s is chosen such that ∆s = O(1/N4) in order to reduce the risk of node tangling

occurring (see §3.3.7). Using an initial time of s0 = 1 this relates to a time window of

s ∈ (1, 2.5).

The similarity solution (4.20) is used to determine the initial approximation U0 and

will be used in determining the accuracy of the method. We shall seek to determine the
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Figure 4.1: Absolute error in the MPCM over a single time step. The top left window

contains the absolute error in U1 (O(10−17)), the top right window the error in Q0

(O(10−15)), bottom left the error in V0 (O(10−14)) and bottom right the error in the

mesh positions (O(10−16)).
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error in the approximations and the boundary nodes.

At the end of each time step, we determine the accuracy of the method by calculating

the l∞ norm of the error, given by (in the case of the error in the solution Uk)

EUN = max
i=1,...,N

|Uki − uS(Xk
i , s

k)| for k = 1, . . . ,K,

where K is the total number of time steps performed. Similar quantities for the error in

Qk (denoted by EQN ) and Vk (denoted by EVN ) are calculated, using (4.21) for the exact

values of qS and vS .

The error in the boundary node positions is denoted by EBN (for the right-hand

boundary node) and is given by

EBN =
|Xk

N − b(sk)|
|b(sk)|

,

where b(sk) denotes the exact position of the right-hand boundary at time sk and from

(4.20) is given by b(s) = 2s.

Figure 4.2: l∞ error in the approximation Uk from the MPCM over the time window

s ∈ [1, 2.5]. Scale of y-axis is O(10−14).

Figure 4.2 shows the error EU21 in the approximation Uk for this run of the MPCM.
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We see that the error increases at the start of the time window, reaching a peak at time

s ≈ 1.25 which is approximately 3.25×10−14. The error then remains of this magnitude

throughout the remainder of the time window, with slight fluctuations observed.

Figure 4.3: l∞ error in Qk (top) and Vk (bottom) over the time window s ∈ [1, 2.5].

Vertical scale of the top plot is O(10−13), while the vertical scale for the bottom plot is

O(10−12)

The errors EQ21 and EV21 for this run are shown in Figure 4.3. In these cases the

error appears to be much more random, with an increase in the error at the beginning

of the time window which has fallen by the end of the window. This suggests that the

approximations Qk and Vk are being calculated to within rounding error in each time

step.

Figure 4.4 shows the error in the right-hand boundary position EB21 for this run of the

MPCM. We observe that the error increases throughout the time window, but initially

remains very small, with the increase only visible at s ≈ 1.1. The difference between the

computed and exact value of the boundary is therefore increasing as time progresses,

but still remains within 10−11 at the end of the time window. The maximum difference

68



between two successive time steps is approximately 2 × 10−15, which suggests that the

S Property is being upheld in each individual time step.

Figure 4.4: Boundary node error EB21 over the time window s ∈ [1, 2.5]. Vertical scale of

plot is O(10−11).

The errors observed in Figures 4.2–4.4 are a result of the large number of steps

being taken (60,000 in the results from this subsection). The difference in errors be-

tween successive time steps can be attributed to rounding error, which indicates that a

propagation of rounding error is taking place over multiple time steps.

In the case where we are propagating an initial condition coinciding with a similarity

solution, the results displayed in this section demonstrate that a single time step of the

required size is more beneficial than running several smaller time steps and is in fact a

major advantage of the MPCM. Not only is the risk of node tangling eliminated, but

the build up of rounding error highlighted in Figures 4.2–4.4 is also avoided.

We shall now attempt to explain the source of this accumulation of rounding error

in the MPCM.
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4.4 Propagation of Rounding Error

We observed in §4.3.6 that the l∞ error in the solution does not always remain in

the region of rounding error, despite each individual time step of the MPCM arguably

possessing the S Property. The reason for this appears to be a propagation of rounding

error in the time step of the method and is discussed in this section.

4.4.1 Explaining the Additional Multiple Time Step Error

We shall repeat the experiment conducted in §4.3.6, with some alterations. At each time

step:

• The approximation of Qk described in §4.3.1 is replaced by setting

Qki =
2

15(sk)3
− (Xk

i )2

10(sk)5
, for i = 1, . . . , N.

i.e. setting Qki to be the exact value for all time.

• The nodal velocity is also set equal to the exact value,

V k
i =

Xk
i

5(sk)5
, for i = 1, . . . , N.

• Instead of using the scale-invariant time stepping scheme (4.14) to update the

nodal positions, we set

Xk+1
i = sk+1X

k
i

sk
, for i = 1, . . . , N,

which is the exact position of the nodes at time sk+1 using the similarity variable

ξ from (2.22).

• The recovered solution on the updated mesh is then set equal to the similarity

solution at time sk+1:

Uk+1
i =

1

120sk+1

4−

(
Xk+1
i

sk+1

)2
2

+

, for i = 2, . . . , N − 1,

with Uk+1
1 = Uk+1

N = 0 to strongly enforce the u = 0 boundary condition.
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Figure 4.5: l∞ error in the solution when Q, V and X in the method are set equal to

the exact value, but the solution is recovered approximately. Scale of y-axis is 10−17.

Performing these alterations produces zero error over the whole time window (not

shown), since no quantity is being approximated in the method.

We then repeat the experiment, but recover the solution using the approximation

(3.30) while setting Qki , V
k
i , Xk

i equal to the exact values. This solution recovery is

expected to be within rounding error of the similarity solution (4.20). Figure 4.5 shows

that this is the case, with EU21 remaining proportional to 10−17 throughout the time

window. Note that in Figure 4.5 the large number of time steps taken has forced the

noise-like structure of the errors to be compressed and hence less distinguishable.

Finally, we repeat the experiment one further time. In this instance we update the

nodal positions using the time stepping scheme (4.14) and recover the solution using

the approximation (3.30), while keeping all other functions equal to their exact values.

Figure 4.6 shows the value of EU21 for this experiment. We see that in this case the error

increases throughout the time window and has reached a larger value than observed

in Figure 4.2 by one order of magnitude. Since the only change made in the method
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Figure 4.6: l∞ error in the solution when Q and V in the method are set equal to the

exact value, but the nodes are updated using a scale-invariant time stepping scheme and

the solution is recovered approximately. Scale of y-axis is 10−13.
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between this and the previous experiment was to perform time stepping of the nodal

positions, we conclude that this is the step responsible for the increase of error in the

solution.

Interestingly, the original experiment (in which every function was approximated)

performs more accurately than this last experiment. This implies that the process of

approximating q(x, s) and v(x, s) may help to ‘correct’ some of the error caused by the

time stepping scheme.

4.4.2 Examining the Time Stepping Scheme

The scale invariant time stepping scheme (4.13) is

Xk+1 = Xk + ∆sV̂k,

where ∆s is the size of the time step using the scaled time variable s and V̂k is the mesh

velocity in terms of the s time variable. The subscript k denotes the time level (written

as a subscript as opposed to the previous superscript time level notation).

In the case where the similarity solution is known, the exact value of the nodes is

xSk+1 = xSk + ∆sv̂Sk , (4.23)

where the similarity velocity v̂Sk is

v̂Sk =
βxSk

s
1/β
k

. (4.24)

Substituting (4.24) into (4.23) gives

xSk+1 =

(
1 +

β∆s

s
1/β
k

)
xSk .

Hence the global error, which we denote by εSk , is defined by

εSk = xSk −XS
k ,

εSk+1 =

(
1 +

β∆s

s
1/β
k

)
εSk ,

⇒ εSp =

p−1∏
k=0

(
1 +

β∆s

s
1/β
k

)
εS0 ,

(4.25)
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at a particular time step p.

We see that there is an amplification factor multiplying εS0 of(
1 +

β∆s

s
1/β
k

)
,

which we know is always greater than 1 since all quantities are positive.

We know that εS0 should equal zero, so εSp = 0 for all p. In a computational sense

however, we will have εS0 in the region of rounding error (O(10−16), say) and we see that

this global error εSp is magnified over time.

We now seek to obtain an upper bound for εSp in order to demonstrate that this error

will not grow unboundedly over time.

4.4.3 Bounding the Error

We begin by noting that (
1 +

β∆s

s
1/β
k

)
≤ exp

(
β∆s

s
1/β
k

)
,

for all k, from which we may rewrite (4.25) as

εSp =

p−1∏
k=0

(
1 +

β∆s

s
1/β
k

)
εS0 ,

≤
p−1∏
k=0

exp

(
β∆s

s
1/β
k

)
εS0 ,

= exp

[
p−1∑
k=0

(
β∆s

s
1/β
k

)]
εS0 ,

We now take β = 1/5 and write sk = s0 + k∆s,

εSp ≤ exp

[
∆s

5

p−1∑
k=0

(
1

(s0 + k∆s)5

)]
εS0 . (4.27)

Noting that the function s0 + x∆s is an increasing function of x, we can bound the

summand 1
(s0+k∆s)5

using

1

(s0 + k∆s)5
≤
∫ k

k−1

1

(s0 + x∆s)5
dx,
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which implies that

p−1∑
k=1

1

(s0 + k∆s)5
≤
∫ p−1

0

1

(s0 + x∆s)5
dx,

=
1

4∆s

[
1

s4
0

− 1

(s0 + (p− 1)∆s)4

]
.

Therefore,

∆s

5

p−1∑
k=0

1

(s0 + k∆s)5
≤ ∆s

5s5
0

+
1

20

[
1

s4
0

− 1

s4
p−1

]
(4.29)

Using (4.27) and (4.29) we see that

εSp ≤ exp

(
∆s

5s5
0

+
1

20

[
1

s4
0

− 1

s4
p−1

])
εS0 ,

≤ exp

(
∆s

5s5
0

+
1

20s4
0

)
εS0 ,

(4.30)

since s−4
p−1 > 0.

The bound is dependent upon the values of s0 and ∆s (both fixed). Let us consider

the values used to generate the numerical results presented in §4.3.6. In the numerical

results run over multiple time steps, values of s0 = 1 and ∆s ≈ 2.5 × 10−5 were used.

The bound (4.30) is then

εSp ≤ exp

(
1.6× 10−6

5
+

1

20

)
εS0 ,

≤ 1.0513εS0 .

If εS0 is in the region of rounding error, then the bound indicates that the error at the

pth time step will be of the same magnitude. If ∆s is increased to ∆s = 10−3, (4.30)

is still approximately equal to 1.05εS0 . These results indicate that there is an additional

source of error contributing to the build up of error in the MPCM, beyond that which

can be explained by the arguments in this section. This additional error likely appears

from the previous steps of the method (those arising from the approximation of q and

v), which have not been taken into account in this error bound.
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4.5 The S Property in the MPCM for the Second-Order

Problem

We shall now demonstrate that the implementation of the MPCM for the second-order

problem (2.7)–(2.9) possesses the S Property (see §3.6) in the l∞ norm for any value of

n.

We refer to §3.4 for details of how the MPCM is implemented for the second-order

problem (2.7)–(2.9), with no modifications to the implementation necessary to be able

to propagate similarity solutions to within rounding error at the nodes over a single time

step, other than the use of the scale-invariant time stepping scheme (4.13) in place of

the explicit Forward Euler scheme (3.26).

Similarity solutions to the second-order problem (2.7)–(2.9) are of degree 2/n (Smyth

and Hill (1988)). The velocity v(x, s) given by (3.31) is therefore a linear function.

The local truncation error of the velocity approximation at node i of the mesh, τi, is

τi =
(Xi+1 −Xi)(Xi −Xi−1)

6n

∂3un

∂x3

∣∣∣∣
θ

,

for some θ ∈ (Xi+1, Xi−1), which is proportional to ∂3un

∂x3
and hence equal to zero in

the similarity solution case. We would therefore expect the approximation Vk of the

velocity calculated from (3.32) to be within rounding error of the similarity velocity at

the nodes over a single time step.

Updating the mesh is performed exactly as described in §3.3.5, using the scale invari-

ant time stepping scheme (4.13). This scheme has the same truncation error properties

shown for the fourth-order problem in §4.3.3 and so we would expect the mesh points

to be moved to within rounding error of the exact values in a single time step.

The solution is recovered on the updated mesh using (3.30), just as for the fourth-

order problem in §4.3.4.

As in the fourth-order problem (2.3)–(2.5) we are able to show that the solution is

recovered exactly on the updated mesh, provided that the mesh has been moved exactly.

The method therefore possesses the S Property in the l∞ norm over a single time step.
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4.5.1 Numerical Results

We now present numerical results for the implementation of the MPCM for the second-

order problem (2.7)–(2.9) given in §4.5 for values of n = 1, 1.5, 2.

We shall perform experiments over a single time step in order to demonstrate that

the implementation of the MPCM possesses the S Property in the l∞ norm. We shall

then present results for the MPCM run over multiple time steps in order to illustrate

how the method performs over multiple steps.

We shall make use of the similarity solution (2.30) from Pattle (1959) and rewritten

for general n:

uS(x, s) =
1

s

(
nβ

2

)1/n [
ω2 − x2

s2

]1/n

+

, (4.32)

where β = (n + 2)−1 is a constant and where the scaled time variable s is used in

place of tβ from the given paper. We shall use this similarity solution to set the initial

approximation and to test the accuracy of the numerical solutions calculated by the

MPCM.

We can use (4.32) to calculate the similarity velocity vS(x, s) using (3.14):

vS(x, s) =
βx

s1/β
.

Single Time Step

We now run the implementation of the MPCM for the second-order problem (2.7)–(2.9)

over a single time step. A mesh of N = 21 nodes is used, with the time step ∆s in the

scale invariant time stepping scheme taken to be ∆s = 10−4.

The initial approximation is taken at time s0 = 1, such that

U0
i =

(
nβ

2

)1/n [
1− (X0

i )2

]1/n

+

,

for i = 1, . . . , N . This initial approximation is centred about x = 0 with initial boundary

positions at x = ±1.

Once the single time step has been performed we calculate the absolute error in the

approximation V0 and the updated solution U1. These errors are shown in Figures 4.7

and 4.8 respectively, for n = 1, 1.5, 2.
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Figure 4.7: Absolute error in the velocity in the MPCM over a single time step. The

blue line with asterisk markers denotes n = 1, the green line with + markers denotes

n = 2 and the red line with o markers denotes n = 3. Vertical scale on the plot is

O(10−16).
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Figure 4.8: Absolute error in the approximate solution in the MPCM over a single time

step. The blue line with asterisk markers denotes n = 1, the green line with + markers

denotes n = 1.5 and the red line with o markers denotes n = 2. Vertical scale on the

plot is O(10−16).
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We can see that the errors shown in Figures 4.7 and 4.8 are in the region of rounding

error, as expected, for each value of n. This indicates that the MPCM is operating as

expected over a single time step.

Multiple Time Steps

If we repeat the experiment performed above for a single time step, but instead allow

the method to run for multiple time steps, we would anticipate that an accumulation of

rounding error would cause the error in the approximate solution to increase over the

time window (as observed for the fourth-order implementation in §4.3.6).

We therefore run the MPCM implementation using the same value of ∆s as in the

single time step case (∆s = 10−4), over a time window of s ∈ (1, 2.5), which equates to

15000 steps. This choice of ∆s is made such that ∆s = O(1/N2) in order to reduce the

possibility of node tangling occurring (see §3.3.7).

At the end of each time step, we calculate the l∞ norm of the error, given by (in the

case of the approximate solution Uk)

EUN = max
i=1,...<N

|Uki − uS(Xk
i , s

k)|, for k = 1, . . . ,K,

where K is the total number of time steps performed. The resulting error is plotted in

Figure 4.9, for n = 1, 1.5, 2.

From Figure 4.9 we observe that the error EU21 does increase over the time window,

reaching O(10−13) by the final time point for all three choices of n. This increase is

slow however, with a difference in the error between successive time steps no larger than

10−16 in any instance.

A similar expression is also calculated for EV21. These results are given in Figure 4.10

for the three choices of n. In these cases we see that the errors are erratic, increasing

sharply at the beginning of the time window and then increasing and decreasing multiple

times. The error between successive time steps is no larger than rounding error in all

cases.
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Figure 4.9: l∞ error in the approximate solution Uk from the MPCM over multiple

time steps. The solid blue line is for n = 1, the dashed green line for n = 1.5 and the

dash-dotted red line for n = 2. Vertical scale of the plot is O(10−13).

Figure 4.10: l∞ error in the velocity Vk from the MPCM over multiple time steps. The

solid blue line is for n = 1, the dashed green line for n = 1.5 and the dash-dotted red

line for n = 2. Vertical scale of the plot is O(10−13).
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We also calculate EBN , the error in the right-hand boundary position, given by

EBN =
|Xk

N − b(sk)|
|b(sk)|

, for k = 1, . . . ,K,

where b(sk) = sk denotes the exact position of the right-hand boundary as time sk (from

(4.32)). This boundary error is plotted in Figure 4.11.

Figure 4.11: l∞ error in the right-hand boundary position from the MPCM over multiple

time steps. The solid blue line is for n = 1, the dashed green line for n = 1.5 and the

dash-dotted red line for n = 2. Vertical scale of plot is O(10−13).

From Figure 4.11 we see that the error remains near zero for a short time, before

beginning to rise and then fall towards the end of the time window. The small value of

this error indicates that the method is performing as expected, with results remaining

in the vicinity of rounding error throughout the time window.
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4.6 The S Property in the MPCM for the Sixth-Order

Problem

We shall now demonstrate that the implementation of the MPCM given in §3.5 for the

sixth-order problem (2.10)–(2.12) can be modified in order to possess the S Property

(see §3.6) in the l∞ norm. As closed-form similarity solutions exist only in the case

when n = 1, we shall focus on this choice of n in this section. We shall also describe the

implementation in terms of the scaled time variable s as we use a scale-invariant time

stepping scheme in this implementation.

For clarity, we summarise the problem being considered, for the choice of n = 1. We

seek solutions u(x, s) to the sixth-order PDE

∂u

∂s
=

∂

∂x

(
u
∂q

∂x

)
,

q(x, s) = −∂
2p

∂x2
,

p(x, s) = −∂
2u

∂x2
,

for x ∈ ΩS , subject to the boundary conditions

u = 0, at x = a(s), x = b(s), s > s0,

∂u

∂x
= 0, at x = a(s), x = b(s), s > s0,

∂3u

∂x3
= 0, at x = a(s), x = b(s), s > s0,

uv + u
∂q

∂x
= 0, at x = a(s), x = b(s), s > s0.

We seek approximations

Uk : = {Uki }, for i = 2, . . . , N − 1,

Pk : = {P ki }, for i = 1, . . . , N,

Qk : = {Qki }, for i = 1, . . . , N,

Vk : = {V k
i }, for i = 1, . . . , N,

on a set of mesh points Xk with Uk1 = UkN = 0 for all k.
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Similarity solutions to the sixth-order problem (2.10)–(2.12) exist in the case when

n = 1 which are sextic functions (Smyth and Hill (1988)). The function p(x, s) is there-

fore a quartic function, while q(x, s) will be a quadratic. We modify our implementation

of the MPCM given in §3.5 such that it is exact for sextic u(x, s), quartic p(x, s) and

quadratic q(x, s) in the case when n = 1.

We are given an initial mesh X0 discretising the domain Ω(s0) and an approximation

U0 to the initial condition such that u0(x) = uS(x, s0) at each node of the mesh.

4.6.1 Approximating p(x, s)

We seek to find an approximation Pk to p(x, s). The scheme (3.34) given in §3.5.1 has a

local truncation error proportional to ∂p
∂x at node i of the mesh and as such is not exact

for sextic u(x, s), quartic p(x, s). We therefore wish to modify the first approximation

(3.34) such that it becomes exact for quartic p(x, s).

Given Uki , i = 1, . . . , N , (denoted by Ui for ease of notation), we compute P ki ,

i = 1, . . . , N (denoted by Pi for ease of notation) as follows.

The modified scheme for obtaining P at interior points in the mesh is given by a

seven-point central differencing scheme of the form

Pi = −

 Ui+1−Ui

hi
− Ui−Ui−1

hi−1

1
2(hi + hi−1)

+ C1

(
Pi+1 − Pi−1

hi + hi−1

)
+ C2

 Pi+1−Pi

hi
− Pi−Pi−1

hi−1

1
2(hi + hi−1)


+

C3

(hi + hi−1)

 Pi+2−Pi+1

hi+1
− Pi+1−Pi

hi
1
2(hi+1 + hi)

−
 Pi−Pi−1

hi−1
− Pi−1−Pi−2

hi−2

1
2(hi−1 + hi−2)


+

C4
1
2(hi+1 + hi + hi−1 + hi−2)

 Pi+3−Pi+2

hi+2
− Pi+2−Pi+1

hi+1

1
2hi+1(hi+2 + hi+1)

−
 Pi+2−Pi+1

hi+1
− Pi+1−Pi

hi
1
2hi+1(hi+1 + hi)


−

 Pi−Pi−1

hi−1
− Pi−1−Pi−2

hi−2

1
2hi−2(hi−1 + hi−2)

−
 Pi−1−Pi−2

hi−2
− Pi−2−Pi−3

hi−3

1
2hi−2(hi−2 + hi−3)


(4.36)

where we aim to choose the constants C1, C2, C3 and C4 such that all terms up to

and including p′′′′i in the local truncation error are equal to zero. We have introduced
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hi+2 = Xi+3 −Xi+2, hi+1 = Xi+2 −Xi+1, hi = Xi+1 −Xi, hi−1 = Xi −Xi−1, hi−2 =

Xi−1 −Xi−2 and hi−3 = Xi−2 −Xi−3 for ease of notation.

The local truncation error τi in the modified method (4.36) can be shown to be equal

to

τi = pi + u′′i −
[
hi − hi−1

3
+ C1

]
p′i −

[
h3
i + h3

i−1

12(hi + hi−1)
+
C1

2
(hi − hi−1) + C2

]
p′′i

−
[

h4
i − h4

i−1

60(hi + hi−1)
+
C1

6
(h2
i − hihi−1 + h2

i−1) +
C2

3
(hi − hi−1) + C3

]
p′′′i

−
[

h5
i + h5

i−1

360(hi + hi−1)
+
C1

24
(h3
i − h2

ihi−1 + hih
2
i−1 − h3

i−1)

+
C2

12
(h2
i − hihi−1 + h2

i−1) +
C3

2
(hi − hi−1) + C4

]
p′′′′i

∣∣∣∣
θ

,

(4.37)

for some θ ∈ (Xi−3, Xi+3), where pi = p(Xi), p
′
i = ∂p

∂x

∣∣∣∣
Xi

, p′′i = ∂2p
∂x2

∣∣∣∣
Xi

, p′′′i = ∂3p
∂x3

∣∣∣∣
Xi

,

p′′′′i = ∂4p
∂x4

∣∣∣∣
Xi

.

In order to remove the p′i terms from equation (4.37), we choose our constant C1

such that

C1 = −(hi − hi−1)

3
. (4.38)

Similarly, the p′′i terms can be removed from equation (4.37) through utilising the

constant C1 in equation (4.38), and setting

C2 = −C1

2
(hi − hi−1)−

h3
i + h3

i−1

12(hi + hi−1)
,

=
(hi − hi−1)2

6
−

h3
i + h3

i−1

12(hi + hi−1)
.

Removing the p′′′i terms in (4.37) involves setting the constant C3 such that

C3 = −
h4
i − h4

i−1

60(hi + hi−1)
− C1

6
(h2
i − hihi−1 + h2

i−1)− C2

3
(hi − hi−1),

=
(2h4

i + 8h4
i−1 + 5h3

ihi−1 − 15hih
3
i−1)

180(hi + hi−1)
.
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Finally, setting

C4 = −
h5
i + h5

i−1

360(hi + hi−1)
− C1

24
(h3
i − h2

ihi−1 + hih
2
i−1 − h3

i−1)

− C2

12
(h2
i − hihi−1 + h2

i−1)− C3

2
(hi − hi−1),

= −
(h5
i − 13h5

i−1 + h4
ihi−1 + 31hih

4
i−1 − 5h3

ih
2
i−1 − 15h2

ihi−13)

720(hi + hi−1)
,

removes all p′′′′i terms from (4.37).

Equation (4.36) is then used for i = 4 . . . N−3. For the values of i = 2, 3, N−2, N−1

(i.e. the remaining interior points of the mesh) we make use of a reflective boundary

condition to determine the values of Pi.

By making use of the boundary condition

∂3u

∂x3
= −∂p

∂x
= 0,

at the moving boundaries x = a(s) and x = b(s), we are able to use a reflective boundary

condition in order to extend the method described by equation (4.36) to the required

points near the boundary.

By writing

P0 = P2, P−1 = P3, PN+1 = PN−1, PN+2 = PN−2,

and

X1 −X0 = X2 −X1, X0 −X−1 = X3 −X2,

XN+1 −XN = XN −XN−1, XN+2 −XN+1 = XN−2 −XN−1,

we can use (4.36) at the points i = 2, 3, N − 2, N − 1 as required.

At the boundary points we use the fourth-degree Lagrange interpolating polynomials

to provide the values of P1 and PN :

L1(X6)P1 + L2(X6)P2 + L3(X6)P3 + L4(X6)P4 + L5(X6)P5 − P6 = 0,

−PN−5+LN−4(XN−5)PN−4 + LN−3(XN−5)PN−3 + LN−2(XN−5)PN−2

+ LN−1(XN−5)PN−1 + LN (XN−5)PN = 0,
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The values of P are then obtained by solving the matrix system

SP = TU,

where the matrices S, T are of size N × N . The vector U contains the boundary

conditions U1 = UN = 0 as well as the interior values.

4.6.2 Approximating q(x, s)

Given P ki , i = 1, . . . , N (denoted Pi for ease of notation) detailed in §4.6.1, we now seek

an approximation Qki , i = 1, . . . , N , (denoted by Qi for ease of notation) which is exact

for quadratic q(x, s), quartic p(x, s).

We have previously outlined the steps required in obtaining a quadratic q(x, s) from

a quartic u(x, s) in the fourth-order problem (2.3)–(2.5) (see §4.3.1), so we use the same

steps in obtaining a quadratic q(x, s) from quartic p(x, s) by substituting any references

to U by P. We shall restate the appropriate schemes in terms of P for completeness.

For interior points we obtain Q using

Qi ≈ −
Pi+1−Pi

hi
− Pi−Pi−1

hi−1

1
2(hi + hi−1)

+ C1
Qi+1 −Qi−1

hi + hi−1
+ C2

Qi+1−Qi

hi
− Qi−Qi−1

hi−1

1
2(hi + hi−1)

,

with choices of

C1 = −(hi + hi−1)

3
, C2 =

h2
i − 3hihi−1 + h2

i−1

12
,

from (4.5) and (4.6).

The local truncation error of this approximation is then proportional to q′′′i and will

therefore be exact for a quadratic q(x, s).

At the boundary points we use the second-degree Lagrange interpolating polynomials

described in §3.5.2.

Q is then found by solving the matrix system

SQ = TP,

where the matrices S and T are from (4.7) and (4.9) respectively.
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4.6.3 Mesh Movement

Updating the mesh is performed exactly as described in §3.3.5, using the scale invariant

time stepping scheme (4.13).

This scheme has the same truncation error properties shown for the fourth-order

problem (2.3)–(2.5) in §4.3.3 and so we would expect the mesh points to be moved to

within rounding error of the exact values.

4.6.4 Solution Recovery

The solution is recovered on the updated mesh using (3.30), just as for the fourth-order

problem (2.3)–(2.5) shown in §4.3.4.

We are able to show as in the fourth-order problem (2.3)–(2.5) that the solution to

the sixth-order problem (2.10)–(2.12) is recovered exactly on the updated mesh, provided

that the mesh has been moved exactly.

4.7 Summary of this Chapter

In this chapter we introduced modifications to the basic MPCM which enable the method

to possess the S Property when solving the fourth-order problem (2.3)–(2.5) with n = 1.

The required modifications to the method were discussed and numerical results verified

the possession of the S Property in the MPCM. A build up of rounding error in the

method was identified to be emerging from the time stepping stage of the method and

shown to be bounded.

The MPCM was also shown to possess the S Property for the second-order problem

(2.7)–(2.9) for any n, which was verified by numerical results. The MPCM can also

be modified for the sixth-order problem (2.10)–(2.12) with n = 1 in such a way that

it is expected to possess the S Property. A description of the modifications required is

presented, without numerical verification (due to a lack of a working program code).

In the next chapter we outline a finite element implementation of the MPCM. We

initially implement the BHJ method of Baines, Hubbard and Jimack (Baines et al.
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(2005, 2006, 2011)), before showing that through careful selection of basis functions it

is possible to construct a finite element method which possesses the S Property in the

same cases as were demonstrated in this chapter (i.e. n = 1 for fourth/sixth order and

any n for second-order).
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Chapter 5

A Finite Element Implementation

of the MPCM

5.1 Aims of this Chapter

In this chapter we introduce a finite element implementation of the MPCM (which we

refer to as the FEMPCM) for use in solving the fourth-order problem (2.3)–(2.5). By

selecting the basis functions in the method appropriately, we show that for n = 1 the

FEMPCM can possess the S Property in the L2 norm.

An outline of the weak forms of the various equations is provided, before describing

the implementation of the FEMPCM for the fourth order problem (2.3)–(2.5) for any

choice of n in the case where the basis functions are piecewise-linear ‘hat’ functions.

This implementation is similar to the BHJ method (Baines et al. (2005, 2006, 2011)).

Numerical results for this implementation are provided.

An alternative implementation of the FEMPCM for the fourth-order problem is then

provided for n = 1, with the modifications resulting in the method possessing the S Prop-

erty in the L2 norm. Numerical results demonstrating this alternative implementation

are then given, validating the S Property claim.

We also describe how the FEMPCM can be implemented for the second-order prob-

lem (2.7)–(2.9) and sixth-order (2.10)–(2.12) problem, without numerical results.
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5.2 Comparison between the MPCM and FEMPCM

In this section we shall provide a brief description of the main differences between the

MPCM and the FEMPCM. In doing so, we hope to provide some justification as to

why a finite element implementation of the MPCM is necessary, since we have already

demonstrated that the MPCM possesses the S Property in certain cases (see Chapter

4).

The main difference between the finite difference implementation of the MPCM

and the finite element implementation of the FEMPCM is the validity of the resulting

solution in the domain Ω(t). In the MPCM the solution obtained by the method is

valid only at the mesh points forming the discretisation, with no information available

at other points of Ω(t) not lying on the mesh.

In comparison, the solution obtained by the FEMPCM is valid throughout the whole

domain Ω(t) and not only at mesh points. This allows for a greater knowledge of such

a solution, since unless additional information is available concerning a finite differ-

ence solution (e.g. that the solution is a polynomial of a certain degree), the available

knowledge is restricted to the mesh.

This difference can be alleviated by the use of an increased number of points in the

mesh, at an increased computational expense in performing the finite difference method.

For a given number of mesh points, the FEMPCM is more computationally expensive

due to the need to solve at more than just the mesh points. Increasing the number of

mesh points would then negate the reduced computational expense advantage of the

MPCM.

This comparison is rounded off here by mentioning that when considering the imple-

mentation of either the MPCM or FEMPCM in higher dimensions, the finite element

method is more naturally extended from 1D to 2D due to the simplicity of discretising

the 2D domain using triangulation. Implementation of the MPCM in higher dimensions

would be a much more difficult task than in 1D.
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5.3 Weak Forms

Motivated by a desire to implement a conservation-based method using finite elements,

the required weak forms of equations in the fourth-order problem (2.3)–(2.5) are con-

structed.

Weak forms are generally constructed by multiplying the equation by a time-dependent

test function w(x, t) ∈W , where W is a suitable test space of functions to be defined in

due course. The resulting equation is then integrated with respect to x. In the approach

used here weak forms are constructed in a moving framework.

Remark. Throughout this chapter we shall assume that functions in the test space W

are suitably smooth. In particular, if ∂u
∂t and un ∂q∂x are both L2 in space then H1 is a

suitable choice for W . This chapter is motivated by the implementation of the FEMPCM,

as opposed to a thorough analysis of the required spaces or the spaces in which functions

lie, so these details are left deliberately vague.

5.3.1 Weighted Conservation of Mass

In order to determine a weak form for the velocity v(x, t) using conservation, we require

the implementation of a weighted conservation of mass principle, as opposed to the local

conservation of mass principle described in §3.2.5.

Let w(x, t) be a weight function in W . We then differentiate the weighted mass∫ b(t)

a(t)
w(x, t)u(x, t) dx with respect to t using Leibniz’s Integral Rule, giving

d

dt

∫ b(t)

a(t)
w(x, t)u(x, t) dx =

∫ b(t)

a(t)

∂

∂t
(w(x, t)u(x, t)) dx

+

[
w(x, t)u(x, t)v(x, t)

]b(t)
a(t)

where

v(b(t), t) =
db(t)

dt
, v(a(t), t) =

da(t)

dt
. (5.1)
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This implies that

d

dt

∫ b(t)

a(t)
w(x, t)u(x, t) dx =

∫ b(t)

a(t)
w(x, t)

∂u

∂t
+
∂w

∂t
u(x, t) +

∂

∂x
(wuv) dx,

=

∫ b(t)

a(t)

[
w
∂u

∂t
+
∂w

∂t
u+

∂u

∂x
wv +

∂w

∂x
uv +

∂v

∂x
wu

]
dx,

=

∫ b(t)

a(t)

[
u

(
∂w

∂t
+ v

∂w

∂x

)
+ w

(
∂u

∂t
+

∂

∂x
(uv)

)]
dx,

(5.2)

where v(x, t) is any velocity consistent with the boundary velocities (5.1). We now

specify the evolution of functions w(x, t) in the space W which vary in time such that

w(x, t) is convected with the velocity v(x, t) in the weak sense that∫ b(t)

a(t)
u(x, t)

(
∂w

∂t
+ v(x, t)

∂w

∂x

)
dx = 0 ∀w ∈W, (5.3)

which reduces equation (5.2) to

d

dt

∫ b(t)

a(t)
w(x, t)u(x, t) dx =

∫ b(t)

a(t)
w(x, t)

(
∂

∂x
(uv) +

∂u

∂t

)
dx. (5.4)

for all w ∈W satisfying (5.3).

Using equation (2.3a) we may write equation (5.4) in the moving integral form

d

dt

∫ b(t)

a(t)
w(x, t)u dx−

∫ b(t)

a(t)
w(x, t)

∂

∂x
(uv) dx = −

∫ b(t)

a(t)

∂w

∂x

(
un
∂q

∂x

)
dx, (5.5)

where v(x, t) is yet to be chosen but must be consistent with (5.1) and (5.3).

We now define the velocity v(x, t) implicitly by the weighted conservation of mass

principle, ∫ b(t)

a(t)
w(x, t)u(x, t) dx = ρ(w), ∀w ∈W, (5.6)

where the weighted masses ρ(w) remain constant in time. In order to be consistent with

the global conservation of mass (2.15) the functions w(x, t) must constitute a partition

of unity (this is tacitly assumed in what follows). Equation (5.6) implies that

d

dt

∫ b(t)

a(t)
w(x, t)u(x, t) dx = 0, ∀w ∈W, (5.7)

and hence from (5.4) that∫ b(t)

a(t)
w(x, t)

(
∂

∂x
(uv) +

∂u

∂t

)
dx = 0, ∀w ∈W, (5.8)
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which are respectively weak forms of Lagrangian and Eulerian conservation principles

for the function u(x, t).

Using equations (5.5) and (5.7) we see that v(x, t) is defined by∫ b(t)

a(t)
w(x, t)

∂

∂x

(
uv + un

∂q

∂x

)
dx = 0,

for all w ∈ W (consistent with (5.8)), which can be integrated by parts in order to

produce[
w

(
uv + un

∂q

∂x

)]b(t)
a(t)

−
∫ b(t)

a(t)

∂w

∂x

(
un
∂q

∂x
+ uv

)
dx = 0, ∀w ∈W. (5.9)

Due to the zero net flux boundary conditions (2.5c) and (5.1) the first term in (5.9)

vanishes, which results in equation (5.9) being rewritten as∫ b(t)

a(t)
u(x, t)

∂w

∂x

(
v + un−1 ∂q

∂x

)
dx = 0, ∀w ∈W, (5.10)

which is the weak form of the equation (2.17a) for the velocity v(x, t).

5.3.2 Additional Weak Forms

Depending upon the order of the problem being considered, there may be a requirement

to construct weak forms of equations for q(x, t) ((2.3b) or (2.10b) for the fourth-order

problem (2.3)–(2.5) or sixth-order problem (2.10)–(2.12) respectively) and/or p(x, t)

((2.10c) for the sixth-order problem (2.10)–(2.12)).

In the fourth-order problem (2.3)–(2.5) we require a weak form of (2.3b), which is∫ b(t)

a(t)
w(x, t)q(x, t) dx = −

∫ b(t)

a(t)
w(x, t)

∂2u

∂x2
dx, ∀w ∈W.

Integrating by parts and applying the boundary condition (2.5b) gives the weak form∫ b(t)

a(t)
w(x, t)q(x, t) dx =

∫ b(t)

a(t)

∂w

∂x

∂u

∂x
dx, ∀w ∈W, (5.11)

for q(x, t).

In the sixth-order problem (2.10)–(2.12) we require weak forms of (2.10b) and

(2.10c). Following the same steps as were performed above, we can find weak forms∫ b(t)

a(t)
w(x, t)q(x, t) dx =

∫ b(t)

a(t)

∂w

∂x

∂p

∂x
dx, ∀w ∈W. (5.12)
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for q(x, t) and ∫ b(t)

a(t)
w(x, t)p(x, t) dx =

∫ b(t)

a(t)

∂w

∂x

∂u

∂x
dx, ∀w ∈W. (5.13)

for p(x, t).

5.4 An Implementation of the FEMPCM for the Fourth-

Order Problem

We now describe an implementation of the FEMPCM for the fourth-order problem

(2.3)–(2.5). The implementation is based on the weak forms (5.6), (5.10) and (5.11)

constructed in §5.3.

5.4.1 Finite Dimensional Subspaces

From the weak forms described in §5.3 we can construct a moving-mesh finite element

method. We select finite-dimensional subspaces S1
E(t),S1(t), Ŝ1(t), S̃1(t) ∈ W , where

the subscript E indicates that functions in that subspace satisfy zero Dirichlet bound-

ary conditions. We then approximate u(x, t) by a function U(x, t) ∈ S1
E(t). We also

approximate q(x, t) by Q(x, t) ∈ S1(t) and v(x, t) by V (x, t) ∈ Ŝ1(t).

5.4.2 The Finite Element Approximation

We now begin the task of constructing the FEMPCM.

We firstly seek the finite element approximation Q(x, t) of q(x, t) for a given U(x, t) ∈

S1
E(t) in the form: Given U(x, t) > 0, find Q ∈ S1(t) such that∫ b(t)

a(t)
w(x, t)Q(x, t) dx =

∫ b(t)

a(t)

∂w

∂x

∂U

∂x
dx ∀w ∈ S1(t). (5.14)

From (5.10) we then seek a Finite Element approximation V (x, t) of v(x, t) for a

given U(x, t) ∈ S1
E(t), Q(x, t) ∈ S1(t) in the form: Given U(x, t), Q(x, t), find V ∈ Ŝ1(t)

such that ∫ b(t)

a(t)
U(x, t)

∂w

∂x

[
V + Un−1∂Q

∂x

]
dx = 0 ∀w ∈ Ŝ1(t). (5.15)

95



5.4.3 Updating the Nodal Positions

Once Q(x, t) and V (x, t) have been obtained, the evolution of each moving point with

coordinate X(t) is determined by solving the ODE

dX(t)

dt
= V (X(t), t),

using a suitable time stepping method.

5.4.4 Recovering the Solution U(x, t)

Since we have stipulated that the distributed masses ρi remain constant over time, we

are able to use the evolved moving points X(t) in order to update our numerical solution

U(x, t). This is achieved by inverting the distributed weighted form of the Conservation

of Mass Principle (5.6) within the appropriate subspace.

From equation (5.6) (on the updated domain), we seek U(x, t) ∈ S1
E(t) such that∫ b(t)

a(t)
w(x, t)U(x, t) dx = ρ(w), ∀w ∈ S̃1(t), (5.16)

where the ρ(w) are constant in time and hence known from initial data.

By making specific choices of the test functions w(x, t) we are able to construct a

moving finite element method. We shall next outline two different implementations for

the fourth-order problem (2.3)–(2.5). The first implementation, using piecewise linear

basis functions, can be used for any choice of n in (2.3a) and is based on the method of

Baines, Hubbard and Jimack (the BHJ method, see Baines et al. (2005, 2006, 2011)).

The second implementation is limited to the n = 1 case and makes use of higher order

spaces in order to produce a method which possesses the S Property (§3.6) in the L2

norm.

5.5 The FEMPCM with Piecewise Linear Basis Functions

In Baines et al. (2005, 2006) a moving-mesh finite element method is described which

uses piecewise linear basis functions in its formulation. In this section we describe a
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one dimensional implementation of this method, following the steps in §5.4. We shall

provide an overview of the implementation, since many of the details are found in the

given papers (with the main difference being in the solution recovery step, see §5.5.3).

Additionally, numerical results on this implementation for n = 2 shall be provided.

The first step is to discretise the domain defined by the support of the solution U(x, t)

at a given time level tk into elements using a number of nodes. If there are N nodes in

the domain this implies that there are N − 1 elements to consider. The nodal positions

are given by the vector Xk = {Xk
i }, where Xk

i is the position of node i, (i = 1, . . . , N)

at time level tk.

We shall require that Xk
i < Xk

i+1, for i = 1, . . . , N−1, at any given time tk otherwise

the nodes will have tangled. If the nodes tangle in any time step, the solution recovery

step (see §5.5.3) will cause the solution to become negative, which is inadmissible as

the the local conservation of mass principle (3.30) will no longer be consistent with

conservation of the total mass of the solution. The solution becoming negative also

causes the method to fail to preserve nonnegativity of the solution.

Remark. The results given in Section 4.2 (in particular Figure 4) of Baines et al.

(2005) demonstrate that in a finite element method for obtaining approximate solutions

to the fourth-order problem (2.3)–(2.5), the choice of piecewise linear basis functions is

suitable in terms of accuracy of the resulting solution. The authors demonstrate results

with fourth order accuracy when n = 1 for both the solution and mesh error, when the

initial condition is sampled from a similarity solution.

5.5.1 Basis Functions

We next define the basis functions to be used in this implementation of the moving mesh

method. We choose the basis functions w(x, t) to be the linear Lagrange polynomials

φi(x, t), i = 1, . . . , N , lying in the space of piecewise linear functions. An example of

such a function is given in Figure 5.1.

The test functions have a time dependence due to the fact that the nodal positions

move with the velocity v(x, t).
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Figure 5.1: An example φi(x, t) function used in this implementation of the FEMPCM,

plotted over a two consecutive elements.

The approximations U(x, t), Q(x, t) and V (x, t) in the method are defined as piece-

wise linear functions, which we write as linear combinations of the φi(x, t):

U(x, t) =
N−1∑
j=2

φj(x, t)Uj(t), (5.17a)

Q(x, t) =
N∑
j=1

φj(x, t)Qj(t), (5.17b)

V (x, t) =

N∑
j=1

φj(x, t)Vj(t), (5.17c)

with the reduced number of φi(x, t) in (5.17a) due to the u = 0 boundary conditions.

5.5.2 Finite Dimensional Subspaces

Throughout §5.5 our function approximations are chosen to lie in finite dimensional

subspaces of the test space given by

S1
E(t) = span{φj(x, t)}, for j = 2, . . . , N − 1,

S1(t), Ŝ1(t) S̃(t) = span{φj(x, t)}, for j = 1, . . . , N,

The reduced span of S1
E(t) is due to the boundary conditions u = 0 and therefore there

are no test functions attributed to the boundary points in this case.
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5.5.3 An Algorithm for the FEMPCM

With the above information, we next describe the algorithm used to obtain the approx-

imations Q(x, t), V (x, t) and U(x, t):

Obtaining the Q(x, t) Approximation

Given U(x, t) (either from the initial approximation or the previous time step), we obtain

Q(x, t). The coefficients Qj(t) of Q(x, t) in (5.17b) can be obtained by solving the matrix

system

MQ = KU, (5.19)

where the mass and stiffness matrices M and K are of dimension N×N and N×(N−2),

respectively.

M is a tridiagonal ‘Mass’ matrix with time-dependent entries

Mij(t
k) =



∫ Xk
2

Xk
1

φ1(x, t)φj(x, t) dx, for i = 1,∫ Xk
i+1

Xk
i−1

φi(x, t)φj(x, t) dx, for i = 2, . . . , N − 1,∫ Xk
N

Xk
N−1

φN (x, t)φj(x, t) dx, for i = N,

for j = 1, . . . , N , while the matrix K is a rectangular ‘Stiffness’ matrix with time-

dependent entries

Kij(t
k) =



∫ Xk
2

Xk
1

φ′1(x, t)φ′j(x, t) dx, for i = 1,∫ Xk
i+1

Xk
i−1

φ′i(x, t)φ
′
j(x, t) dx, for i = 2, . . . , N − 1,∫ Xk

N

Xk
N−1

φ′N (x, t)φ′j(x, t) dx, for i = N,

for j = 2, . . . , N − 1, where the prime ′ denotes partial differentiation with respect to x.
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Obtaining the Velocity V (x, t)

Using the Q(x, t) obtained in the previous step, we can now obtain the approximation

V (x, t) to the velocity v(x, t). The coefficients Vj(t) of V (x, t) in (5.17c) can be obtained

by solving the matrix system

B(U)V = −K̃(Un)Q, (5.20)

where B(U) is a tridiagonal weighted stiffness matrix of dimension N × N with time-

dependent entries given by

B(U)ij(t
k) =



∫ Xk
2

Xk
1

U(x, t)φ′1(x, t)φj(x, t) dx, for i = 1,∫ Xk
i+1

Xk
i−1

U(x, t)φ′i(x, t)φj(x, t) dx, for i = 2, . . . , N − 1,∫ Xk
N

Xk
N−1

U(x, t)φ′N (x, t)φj(x, t) dx, for i = N.

(5.21)

Entries of B(U) can be evaluated using a suitable quadrature method (such as three-

point Gaussian quadrature which should evaluate entries of B(U) to within rounding

error).

The matrix K̃(Un) is a tridiagonal weighted stiffness matrix of dimension N × N

with time-dependent entries given by

K̃(Un)ij(t
k) =



∫ Xk
2

Xk
1

Un(x, t)φ′1(x, t)φ′j(x, t) dx, for i = 1,∫ Xk
i+1

Xk
i−1

Un(x, t)φ′i(x, t)φ
′
j(x, t) dx, for i = 2, . . . , N − 1,∫ Xk

N

Xk
N−1

Un(x, t)φ′N (x, t)φ′j(x, t) dx, for i = N.

(5.22)

Entries of K̃(Un) can be evaluated using a suitable quadrature method (such as three or

five-point Gaussian Quadrature). If n is an integer then these integrals can be calculated

exactly since the integrand is a polynomial (e.g. if n = 1 then three-point Gaussian

quadrature is suitable), but for non-integer n this will not be the case.
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Introducing a Velocity Potential z(x, t)

The skew-symmetric matrix B(U) may be ill-conditioned or singular in some cases (when

U is uniform and N is odd, B(U) is singular for example) and hence we may be unable to

accurately determine V using (5.20) (see Baines et al. (2005, 2011)). We can overcome

this issue through the introduction of a velocity potential z(x, t) such that

v(x, t) =
∂z

∂x
.

The weak form (5.10) now becomes∫ b(t)

a(t)
u
∂w

∂x

(
∂z

∂x
+ un−1 ∂q

∂x

)
dx = 0, ∀w ∈W.

We then seek the finite element approximation Z(x, t) of z(x, t) for a given U(x, t) ∈

S1
E(t), Q(x, t) ∈ S1(t) in the form: Find Z(x, t) ∈ S1(t) such that∫ b(t)

a(t)
U(x, t)

∂w

∂x

[
∂Z

∂x
+ Un−1∂Q

∂x

]
dx = 0, ∀w ∈ Ŝ1(t), (5.23)

in place of (5.15).

Choosing w in (5.23) to be one of the φi(x, t) functions, writing Q(x, t) and U(x, t)

using (5.17b) and (5.17a) respectively, and writing Z(x, t) as the linear combination

Z(x, t) =
N∑
j=1

φj(x, t)Zj(t),

we can obtain the coefficients Zj(t) by solving the matrix system

K̃(U)Z = −K̃(Un)Q,

where K̃(U) and K̃(Un) have entries given by (5.22) (using n = 1 in (5.22) in the case

of the former).

The K̃(U) matrix is singular (see Remark 5.1 below) and hence non-invertible, but

we may obtain a unique Z through the imposition of a suitable constraint, such as

N∑
j=1

Zj(t) = 0, (5.24)

thereby also putting a constraint on S1(t). There is no loss of generality since z(x, t) is

a potential and has a free parameter.
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Remark 5.1. The matrix K̃(U) is singular as a result of the choice of basis functions

made in this implementation of the FEMPCM. Over a single element, the basis functions

have been chosen in order that they sum to one (i.e. that they form a partition of unity).

The derivative of such functions will therefore sum to zero over a single element.

This results in the determinant of the K̃(U) matrix being equal to zero, and hence

that the matrix is singular.

Using Z(x, t) to obtain V (x, t)

An additional step is required to obtain the velocity V (x, t) from Z(x, t). We use the

weak form ∫ b(t)

a(t)
w(x, t)

(
v(x, t)− ∂z

∂x

)
dx = 0, ∀w ∈W,

from which we seek the finite element approximation V (x, t) of v(x, t) given Z(x, t) ∈

S1(t) in the form: Find V ∈ Ŝ1(t) such that∫ b(t)

a(t)
w(x, t)V (x, t) dx =

∫ b(t)

a(t)
w(x, t)

∂Z

∂x
dx, ∀w ∈ Ŝ1(t).

The coefficients of V (x, t) can be obtained by solving the matrix system

MV = BZ,

where the M matrix is as given in (5.19) and is well conditioned. The B matrix is of

dimension N × N and has entries given by (5.21) without the factor U(x, t). Due to

the nature of the φi(x, t) functions, entries of B are constant valued (and hence can be

calculated once and used for all time).

Time Stepping

Using the approximation to the velocity at the nodes we can update the positions of

the mesh points in Xk to those at the next time step Xk+1. For example, the Forward

Euler method (3.26) constructs the Xk+1 vector at the next time tk+1 = tk + ∆t such

that

Xk+1 = Xk + ∆tVk,
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where the vector Vk contains the coefficients Vj(t
k) of the velocity from (5.17c) calcu-

lated from (5.20) and where ∆t denotes the size of the time step.

Recovery of Solution U(x, t) on the Updated Mesh

With the new nodal positions calculated, we can recover the solution U(x, t) using the

updated mesh values Xk+1. This step is the main difference between the implementation

presented in Baines et al. (2005, 2006, 2011) and the method presented here. The

coefficients Uj(t) in (5.17a) can be found by solving the matrix system

AU = ρ, (5.25)

where A is of dimension N ×N − 2 and has time-dependent entries given by

Aij(t
k) =



∫ Xk
2

Xk
1

φ1(x, t)φj(x, t) dx, for i = 1,∫ Xk
i+1

Xk
i−1

φi(x, t)φj(x, t) dx, for i = 2, . . . , N − 1,∫ Xk
N

Xk
N−1

φN (x, t)φj(x, t) dx, for i = N,

for j = 2, . . . , N −1. The lack of values for j = 1 and N is due to the reduced number of

φj(x, t) in U(x, t) (see (5.17a)). The values of ρ = {ρi}, i = 1, . . . , N , can be obtained

using the initial condition u0(x), where

ρi =

∫ b(t0)

a(t0)
φi(x, t

0)u0(x) dx, for i = 1, . . . , N. (5.26)

The integrals in (5.26) can be obtained using a suitable numerical integration scheme

(such as Gaussian quadrature), or in some cases can be evaluated exactly depending

upon the choice of u0(x).

The system given in (5.25) is overdetermined at present, since the matrix A has

dimension N ×N − 2. In order to alleviate this issue we may introduce modified basis
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functions φ̃i(x, t), such that

φ̃1(x, t) = φ1(x, t) + φ2(x, t), for i = 1,

φ̃i(x, t) = φi+1(x, t), for i = 2, . . . , N − 3,

φ̃N−2(x, t) = φN−1(x, t) + φN (x, t), for i = N − 2,

which still form a partition of unity. Note that there are only N − 2 of these basis

functions.

Figure 5.2 gives an example of the φ̃1(x, t) basis function. We see that the function

has a value of one over the first element and is linear over the second element. The

φ̃N−2(x, t) basis function is similar, but over the final two elements of the mesh.

Figure 5.2: The φ̃1(x, t) basis function, plotted over the first two elements of the mesh.

The use of these modified basis functions also changes the constants ρi so that new

constants ρ̃i are produced, i.e.,

ρ̃1(x, t) = ρ1(x, t) + ρ2(x, t), for i = 1,

ρ̃i(x, t) = ρi+1(x, t), for i = 2, . . . , N − 3,

ρ̃N−2(x, t) = ρN−1(x, t) + ρN (x, t), for i = N − 2.
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Then,

ÃU = ρ̃, (5.29)

where Ã is a mass matrix of dimension N − 2×N − 2 with entries given by

Ãij(t
k) =

∫ b(t)

a(t)
φ̃i(x, t)φj(x, t) dx, for i, j = 1, . . . , N − 2.

The coefficients Uj(t) obtained through solving the matrix system (5.29) give U(x, t)

at the interior mesh points. If we had solved for U(x, t) at all N nodes of the mesh,

the zero boundary condition (2.5a) would only have been enforced weakly and hence U1

and UN would have been unknowns (Baines et al. (2005)). By introducing the modified

basis functions with their partition of unity property we are able to solve for unknown

U2, . . . , UN−1 and combine this information with the boundary condition U1 = UN = 0

to ensure that the zero boundary condition (2.5a) is strongly enforced. Further details

of the strong enforcement of boundary conditions can be found in Hubbard et al. (2009).

5.5.4 Numerical Results

We shall now present numerical results for this implementation of the FEMPCM de-

scribed in §5.5, for the choice of n = 2.

We shall perform experiments on meshes of different numbers of nodes. In each

successive experiment we increase the number of nodes such that the initial mesh spacing

is halved (on an initially uniformly-spaced mesh), resulting in meshes of N = 21, 41, 81

and 161 nodes. In each experiment the method is run over the time window t ∈ [1, 1.25],

with the time step size ∆t kept proportional to 1/N4 in order to reduce the risk of node

tangling occurring. Specifically, we choose ∆t such that

∆t =
10−4

16j
for j = 1, 2, . . . .

The initial condition used in the experiments is

u0(x) =
1

120

[
4− x2

]2

+

,

which is incidentally a similarity solution in the n = 1 case at time t0 = 1 but has no

such relevance to n = 2. This initial condition is symmetric about x = 0 with initial
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boundary positions at x = ±2. This initial condition is used to calculate the ρi values

and the initial approximation U0(x) following the steps in §5.5.3.

At the end of the time window, we record the nodal values of the approximations

U(x, 1.25), Q(x, 1.25) and V (x, 1.25). We also record the position of the right-hand

boundary point at each time step of the method.

Figures 5.3, 5.4 and 5.5 show the nodal values for the various meshes. In the case of

the approximations U(x, 1.25) and Q(x, 1.25) there appears to be little visible difference

between the various meshes. In the case of the approximate velocity V (x, 1.25) however,

there is a noticeable difference in the nodal values near to the boundary points.

Figure 5.3: Nodal values of U(x, 1.25) on meshes of N = 21 (blue xs), 41 (green os), 81

(red +s) and 161 (cyan ∗s) nodes.

This difference in the nodal values of the velocity V (x, 1.25) causes the nodes to move

differently in each of the different meshes. This is illustrated clearly in the case of the

right-hand boundary, which is shown in figure 5.6. As the number of nodes in the mesh

increases, the boundary moves a smaller distance over the time window. Examining the

approximate velocities in figure 5.5, the boundary velocity is approaching zero as the
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Figure 5.4: Nodal values of Q(x, 1.25) on meshes of N = 21 (blue xs), 41 (green os), 81

(red +s) and 161 (cyan ∗s) nodes.

Figure 5.5: Nodal values of V (x, 1.25) on meshes of N = 21 (blue xs), 41 (green os), 81

(red +s) and 161 (cyan ∗s) nodes.
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number of nodes increases. This will then cause the boundary to move outwards less

(and is consistent with the expected velocity as we shall discuss in Chapter 6).

Figure 5.6: Position of the right-hand boundary node on meshes of N = 21 (blue solid

line), 41 (green dashed line), 81 (red dotted line) and 161 (cyan dash-dotted line) nodes.

Figure 5.6 also provides some information as to the convergence of the linear finite

element method in that the boundary trajectories for the examples shown display a

lack of convergence. The velocities given in Figure 5.5 show that the boundary velocity

appears to be tending towards zero as N increases, so further investigation into the

boundary trajectories for larger N may provide evidence of convergence.

5.6 An Implementation of the FEMPCM with the S Prop-

erty

The implementation of the FEMPCM described in §5.5 is a general method for obtaining

approximate solutions to the fourth-order problem (2.3)–(2.5) for any value of n. In this

section we shall describe an alternative implementation of the FEMPCM which, for
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n = 1 only, possesses the S Property in the L2 norm.

The steps involved in the implementation are similar to those described in §5.5,

which leads to some repetition between the information in this section and §5.5. The

basis functions used in this section are of higher order however, and as such many of

the details are more involved. We shall therefore describe the implementation in more

detail than that given in §5.5. We shall also be using the scale-invariant time stepping

scheme (5.47), so we replace any reference to the time variable t with the new scaled

time variable s in this section.

The similarity solution for the fourth-order problem (2.3)–(2.5) with n = 1 is a

quartic function (Smyth and Hill (1988)). This results in the exact values of q(x, s)

and v(x, s) being quadratic and linear respectively. We shall therefore choose our finite-

dimensional subspaces S1
E(s), S1(s) Ŝ1(s) in this particular implementation such that

U(x, s) is piecewise quartic, Q(x, s) piecewise quadratic and V (x, s) piecewise linear.

Combined with a suitable choice of piecewise quartic, quadratic and linear basis function

in each weak form and scale-invariant time stepping, the method can be shown to possess

the S Property in the L2 norm.

5.6.1 Discretisation

The first step is to discretise the domain defined by the support of the solution U(x, s)

at a given time level sk into elements, using a number of nodes. If there are N nodes in

the domain this implies that there are N − 1 elements to consider. The nodal positions

are given by the vector Xk = {Xk
i }, where Xk

i is the position of node i, (i = 1, . . . , N)

at time level sk.

As stated in §5.5, we shall require that Xk
i < Xk

i+1, at any given time sk, for i =

1, . . . , N −1, otherwise the nodes are considered to have tangled (with the consequences

regarding resulting loss of consistency between local and global mass conservation and

loss of positivity of the solution applying).

109



5.6.2 Basis Functions

We next define the basis functions to be used throughout this implementation of the

moving mesh method for the fourth order problem (2.3)–(2.5) with n = 1. We choose

the basis functions w(x, s) to be Lagrange polynomials of either first, second or fourth

order, as follows:

• For functions lying in the space of piecewise quartics we set w(x, s) to be a fourth

order Lagrange polynomial denoted by χi(x, s), for i = 1, . . . , 4N − 3. In a given

element we require five different χi(x, s) to specify a unique quartic function,

resulting in a total of 4N − 3 basis functions χi(x, s) over the mesh.

• For the space of piecewise quadratics we choose w(x, s) to be a quadratic Lagrange

polynomial denoted by ϕi(x, s) for i = 1, . . . , 2N − 1. There are three different

ϕi(x, s) required to specify a unique quadratic function over a given element, re-

sulting in 2N − 1 basis functions ϕi(x, s) over the mesh.

• Finally, we define w(x, s) to be a linear Lagrange polynomial, denoted by φi(x, s),

i = 1, . . . , N , chosen for functions lying in the space of piecewise linears. There

are two different φi(x, s) required to define a unique linear function over a given

element, resulting in a total of N basis functions φi(x, s) over the mesh.

In Figure 5.7 we plot examples of these functions over a single element, with χi(x, s)

given in the left plot, ϕi(x, s) in the central plot and φi(x, s) in the right plot.

The test functions have a time dependence due to the fact that the nodal positions

move with the velocity v(x, s).
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Figure 5.7: Plot of the various choices of Lagrange polynomial used in this implemen-

tation of the Finite Element Method, plotted over a single element.

5.6.3 Finite Dimensional Subspaces

Throughout §5.6, our function approximations are chosen to lie in finite dimensional

subspaces of the test space given by

S1
E(s) = span{χj(x, s)}, for j = 2, . . . , N̂ − 1,

S1(s) = span{ϕj(x, s)}, for j = 1, . . . , Ñ ,

Ŝ1(s) = span{φj(x, s)}, for j = 1, . . . N,

S̃1(s) = span{χj(x, s)}, for j = 1, . . . , N̂ .

where we have introduced N̂ = 4N − 3 and Ñ = 2N − 1 for ease of notation. The

reduced span of S1
E(s) is due to the boundary conditions u = 0 and therefore there are

no test functions attributed to the boundary points in this case.

5.6.4 Obtaining the Q(x, s) Approximation

Given U(x, s), we can then find the approximation Q(x, s) to q(x, s) from (5.14).

We choose our test function w(x, s) in (5.14) to be one of the ϕi(x, s) (i = 1, . . . , Ñ).
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Due to the properties of the ϕi(x, s) functions this produces the system of equations∫ b(s)

a(s)
ϕ1(x, s)Q(x, s) dx =

∫ b(s)

a(s)
ϕ′1(x, s)U ′(x, s) dx, for i = 1,∫ b(s)

a(s)
ϕi(x, s)Q(x, s) dx =

∫ b(s)

a(s)
ϕ′i(x, s)U

′(x, s) dx, for i = 2, . . . , Ñ − 1,∫ b(s)

a(s)
ϕÑ (x, s)Q(x, s) dx =

∫ b(s)

a(s)
ϕ′
Ñ

(x, s)U ′(x, s) dx, for i = Ñ .

Writing Q(x, s) as a linear combination of the ϕj(x, s),

Q(x, s) =

Ñ∑
j=1

ϕj(x, s)Qj(s), (5.32)

and U(x, s) as a linear combination of the χj(x, s),

U(x, s) =
N̂−1∑
j=2

χj(x, s)Uj(s), (5.33)

we obtain the system of equations

Ñ∑
j=1

Qj(s)

∫ b(s)

a(s)
ϕ1(x, s)ϕj(x, s) dx =

N̂−1∑
j=2

Uj(s)

∫ b(s)

a(s)
ϕ′1(x, s)χ′j(x, s) dx,

for i = 1,

Ñ∑
j=1

Qj(s)

∫ b(s)

a(s)
ϕj(x, s)ϕj(x, s) dx =

N̂−1∑
j=2

Uj(s)

∫ b(s)

a(s)
ϕ′i(x, s)χ

′
j(x, s) dx,

for i = 2, . . . , Ñ − 1,

Ñ∑
j=1

Qj(s)

∫ b(s)

a(s)
ϕÑ (x, s)ϕj(x, s) dx =

N̂−1∑
j=2

Uj(s)

∫ b(s)

a(s)
ϕ′
Ñ

(x, s)χ′j(x, s) dx,

for i = Ñ .

which is equivalent to solving the matrix system

MQ = KU, (5.35)

where the mass and stiffness matrices M and K defined below are of dimension Ñ × Ñ

and Ñ × (N̂ − 2), respectively.

112



The time-dependent entries of M are given by

Mij(s
k) =



∫ Xk
2

Xk
1

ϕ1(x, s)ϕj(x, s) dx for i = 1,∫ Xk
i+1

Xk
i−1

ϕi(x, s)ϕj(x, s) dx for i = 2, . . . , Ñ − 1,∫ Xk
Ñ

Xk
Ñ−1

ϕÑ (x, s)ϕj(x, s) dx for i = Ñ ,

for j = 1, . . . , Ñ , while time-dependent entries of K are given by

Kij(s
k) =



∫ Xk
2

Xk
1

ϕ′1(x, s)ϕ′j(x, s) dx for i = 1,∫ Xk
i+1

Xk
i−1

ϕ′i(x, s)ϕ
′
j(x, s) dx for i = 2, . . . , Ñ − 1,∫ Xk

Ñ

Xk
Ñ−1

ϕ′
Ñ

(x, s)ϕ′j(x, s) dx for i = Ñ ,

for j = 1, . . . , Ñ . Entries of M and K are evaluated using a suitable numerical integra-

tion scheme (such as Gaussian quadrature).

5.6.5 Obtaining the Velocity Potential Z(x, s)

Using the approximation Q(x, s) calculated by solving (5.35) we can now obtain the

approximation Z(x, s) to the velocity potential z(x, s). As in the linear finite element

implementation §5.5, we introduce a velocity potential to avoid potential issues with the

skew-symmetric matrix B(U) being singular or ill-conditioned (such as if U is uniform

and N odd).

We introduce the velocity potential z(x, s) such that

v(x, s) =
∂z

∂x
,

with the weak form (5.10) now becoming∫ b(s)

a(s)
u
∂w

∂x

(
∂z

∂x
+
∂q

∂x

)
dx = 0, ∀w ∈W. (5.36)
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We then make use of the finite element approximation (5.23), which we repeat here

for clarity (in terms of s): Find Z(x, s) ∈ S1(s) such that∫ b(s)

a(s)
U(x, s)

∂w

∂x

[
∂Z

∂x
+
∂Q

∂x

]
dx = 0, ∀w ∈ Ŝ1(s), (5.37)

which is used instead of (5.15).

Choosing w in (5.37) to be one of the φi(x, s) functions, writing Q(x, s) using (5.32),

and writing Z(x, s) as the linear combination

Z(x, s) =
Ñ∑
j=1

ϕj(x, s)Zj(s), (5.38)

we can obtain the coefficients Zj(s) by solving the matrix system

K̃(U)Z = −K̃(U)Q, (5.39)

where K̃(U) is of dimension Ñ × Ñ and has time-dependent entries given by

K̃(U)ij(s
k) =



∫ Xk
2

Xk
1

U(x, s)φ′1(x, s)ϕ′j(x, s) dx for i = 1,∫ Xk
i+1

Xk
i−1

U(x, s)φ′i(x, s)ϕ
′
j(x, s) dx for i = 2, . . . , N − 1,∫ Xk

N

Xk
N−1

U(x, s)φ′N (x, s)ϕ′j(x, s) dx for i = N,

(5.40)

for j = 1, . . . , Ñ .

The K̃(U) matrix is singular and hence non-invertible (see Remark 5.1). We may

obtain a unique Z through the imposition of a suitable constraint, such as (5.24)

Ñ∑
j=1

Zj(s) = 0,

thereby putting a constraint on S1(s). There is no loss of generality since z(x, t) is a

potential with a free parameter.

5.6.6 Obtaining the Velocity V (x, s)

The velocity V (x, s) can be obtained from Z(x, s) through the weak form∫ b(s)

a(s)
w(x, s)

(
v(x, s)− ∂z

∂x

)
dx = 0, ∀w ∈W, (5.41)
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from which we seek the finite element approximation V (x, s) of v(x, s) given Z(x, s) ∈

S1(s) in the form: Find V ∈ Ŝ1(s) such that∫ b(s)

a(s)
w(x, s)V (x, s) dx =

∫ b(s)

a(s)
w(x, s)

∂Z

∂x
dx, ∀w ∈ Ŝ1(s). (5.42)

We select w(x, s) in (5.42) to be one of the φi(x, s) functions (i = 1, . . . , N), resulting

in the system of equations∫ b(s)

a(s)
φ1(x, s)V (x, s) dx =

∫ b(s)

a(s)
φ1(x, s)

∂Z

∂x
dx, for i = 1,∫ b(s)

a(s)
φi(x, s)V (x, s) dx =

∫ b(s)

a(s)
φi(x, s)

∂Z

∂x
dx, for i = 2, . . . , N − 1,∫ b(s)

a(s)
φN (x, s)V (x, s) dx =

∫ b(s)

a(s)
φN (x, s)

∂Z

∂x
dx, for i = N.

Expanding V (x, s) as the linear combination

V (x, s) =
N∑
j=1

φj(x, s)Vj(s), (5.44)

and using the expansion for Z(x, s) given by (5.38), we obtain the modified system of

equations

N∑
j=1

Vj(s)

∫ b(s)

a(s)
φ1(x, s)φj(x, s) dx =

Ñ∑
j=1

Zj(s)

∫ b(s)

a(s)
φ1(x, s)ϕ′j(x, s) dx,

for i = 1,

N∑
j=1

Vj(s)

∫ b(s)

a(s)
φi(x, s)φj(x, s) dx =

Ñ∑
j=1

Zj(s)

∫ b(s)

a(s)
φi(x, s)ϕ

′
j(x, s) dx,

for i = 2, . . . , N − 1,

N∑
j=1

Vj(s)

∫ b(s)

a(s)
φN (x, s)φj(x, s) dx =

Ñ∑
j=1

Zj(s)

∫ b(s)

a(s)
φi(x, s)ϕ

′
j(x, s) dx,

for i = N.

The coefficients of Z(x, t) can be obtained by solving the matrix system

MV = BZ, (5.46)
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where the M matrix is as given in (5.19), and the B matrix is of dimension N × Ñ and

has time-dependent entries given by

Bij(s
k) =



∫ Xk
2

Xk
1

φ1(x, s)ϕ′j(x, s) dx for i = 1,∫ Xk
i+1

Xk
i−1

φi(x, s)ϕ
′
j(x, s) dx for i = 1, . . . , N − 1,∫ Xk

N

Xk
N−1

φN (x, s)ϕ′j(x, s) dx for i = N,

,

for j = 1, . . . , Ñ .

5.6.7 Time Stepping

Using the approximation to the velocity at the nodes we can update the positions of the

nodal points in X.

We shall make use of the scale-invariant Forward Euler time stepping scheme used

in the finite difference implementation of the MPCM (given by (4.13)),

Xk+1
i = Xk

i + 5s4∆sV k
i , for i = 1, . . . , N, (5.47)

to obtain the mesh positions at time level sk+1. We have used the fact that β = 1/5 in

(4.13) for the choice of n = 1 in (5.47).

5.6.8 Recovery of Solution U(x, s) on the Updated Mesh

With the new nodal positions calculated, we can recover the solution U(x, s) using the

updated mesh values Xk+1 from (5.47).

This is achieved by considering a partitioned form of the distributed conservation

of mass principle (5.16). Choosing w(x, s) to be one of the χi(x, s) basis functions, we

obtain: Seek U(x, s) ∈ S1
E(s) such that∫ b(s)

a(s)
χi(x, s)U(x, s) dx = ρi, i = 1, . . . , N̂ ,

where the ρi are now fixed by our choice of w(x, s) = χi(x, s) at the initial time.
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Since the ρi values remain constant for all time, we can use the initial conditions

u0(x) to pre-calculate

ρi =

∫ b(s0)

a(s0)
χi(x, s

0)u0(x) dx, for i = 1, . . . , N̂ .

These integrals can be evaluated by any sufficiently accurate numerical integration

scheme (such as five-point Gaussian Quadrature).

As discussed in §5.5.3, the solution recovery step leads to an overdetermined system

of equations to solve in obtaining the values of Uj(s) at the interior points. In a similar

manner to that in §5.5.3, we can ensure that the system is not overdetermined by

introducing modified basis functions χ̃i(x, s) such that

χ̃1(x, s) = χ1(x, s) + χ2(x, s), for i = 1,

χ̃i(x, s) = χi+1(x, s), for i = 2, . . . , N̂ − 3,

χ̃N̂−2(x, s) = χN̂−1(x, s) + χN̂ (x, s), for i = N̂ − 2,

which still form a partition of unity and allow the boundary conditions u = 0 to be

enforced strongly. Note that there are only N̂ − 2 of these basis functions.

The use of these modified basis functions also changes the constants ρi in elements

adjacent to the boundaries. These modified ρi are denoted by ρ̃i and defined such that

ρ̃1(x, s) = ρ1(x, s) + ρ2(x, s), for i = 1,

ρ̃i(x, s) = ρi+1(x, s), for i = 2, . . . , N̂ − 3,

ρ̃N̂−2(x, s) = ρN̂−1(x, s) + ρN̂ (x, s), for i = N̂ − 2.

Initial Approximation U0(x)

Once the ρ̃i values have been determined they can be used to obtain an approximation

U0(x) to the initial condition u0(x) in the space S1
E(s0) as the linear combination

U0(x) =

N̂−1∑
j=2

χj(x, s
0)U0

j ,
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with U0
1 = U0

N̂
= 0 from the zero boundary conditions. Once substituted, the partitioned

form (5.16) becomes equivalent to solving the system of equations

N̂−2∑
j=1

U0
j

∫ b(s0)

a(s0)
χ̃1(x, s0)χj(x, s

0) dx = ρ̃1, for i = 1,

N̂−2∑
j=1

U0
j

∫ b(s0)

a(s0)
χ̃i(x, s

0)χj(x, s
0) dx = ρ̃i, for i = 2, . . . , N̂ − 3,

N̂−2∑
j=1

U0
j

∫ b(s0)

a(s0)
χ̃N̂−2(x, s0)χj(x, s

0) dx = ρ̃N̂−2, for i = N̂ − 2,

which gives the best L2 fit to the initial condition in the space S1
E(s0). These equations

can be written in the matrix form

Ã0U0 = ρ̃, (5.51)

where Ã is a mass matrix of dimension N̂ −2× N̂ −2 with time-dependent entries given

by

Ãij(s
k) =

∫ b(s)

a(s)
χ̃i(x, s

k)χj(x, s
k) dx, for i, j = 1, . . . , N̂ − 2.

and ρ = {ρi}. In (5.51) Ã0 is taken at the time s = s0.

Solving equation (5.51) provides the coefficients for the approximation U0(x) to the

initial conditions u0(x).

Solution Recovery for s > s0

The solution U(x, s) is then recovered by at each time from the partitioned form (5.16)

of the distributed conservation of mass principle using the expansion (5.33) of U(x, s).

The process in which this occurs is similar to that presented in §5.5.3, but with higher

order basis functions. We repeat the steps here for completeness.

By choosing one of the χ̃(x, s) as our w(x, s) in the partitioned conservation of mass
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principle (5.16), the system of equations becomes

N̂−2∑
j=1

Uj(s)

∫ b(s)

a(s)
χ̃1(x, s)χj(x, s) dx = ρ̃1, for i = 1,

N̂−2∑
j=1

Uj(s)

∫ b(s)

a(s)
χ̃i(x, s)χj(x, s) dx = ρ̃i, for i = 2, . . . , N̂ − 3

N̂−2∑
j=1

Uj(s)

∫ b(s)

a(s)
χ̃N̂−2(x, s)χj(x, s) dx = ρ̃N̂−2, for i = N̂ − 2,

which can be written as the matrix system

ÃU = ρ̃. (5.53)

We then solve (5.53) to obtain the coefficient Uj(s) of (5.33) at the updated time,

while strongly enforcing the zero boundary condition (2.5a). We again refer the reader

to Hubbard et al. (2009) for more details of this process.

5.6.9 The FEMPCM over a Single Time Step

We now demonstrate how the particular implementation of the FEMPCM given in

§5.6 possesses the S Property in the L2 norm. In cases where the initial condition is

taken to be a similarity solution at the initial time s0 and under a scale-invariant time

stepping scheme, the specific choices of basis function throughout §5.6 should cause the

approximations Q(x, s), V (x, s) and U(x, s) to be within rounding error of the exact

values over a single time step.

We now describe the steps of the FEMPCM over the first time step from s0 to s1,

detailing how each approximation is calculated to within rounding error of the exact

values.

Initial Approximation

Given a set of constant masses ρ from the initial condition, we can use equation (5.53)

to provide an initial approximation U0(x) such that

Ã0U0 = ρ̃, (5.54)
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where the superscript 0 indicates the initial values of the quantity considered.

Remark. Since (5.54) is derived from∫ b(s0)

a(s0)
χ̃i(U

0(x)− u0(x)) dx = 0, for i = 1, . . . , N̂ − 2,

using the ρ̃i values, it follows that the initial approximation U0(x) is identical to the

similarity solution at time s0 to within rounding error since the self similar solution

uS(x, s) ∈ S1
E(s), the space of quartic functions.

Obtaining Q(x, s0)

Given the initial approximation U0(x), we obtain the coefficients Q0
j in (5.32) using

equation (5.35):

M0Q0 = K0U0.

Remark. The exact q(x, s) function is a quadratic in the case when n = 1. The approx-

imation Q0(x) to q0(x) calculated in §5.6.4 is also quadratic. Since the initial function

U0(x) used in calculating Q0(x) is identical to the similarity solution to within rounding

error, Q0(x) is also exact within rounding error.

Obtaining Z(x, s0)

Given Q0(x) and U0(x), we obtain Z0(x) by solving the matrix system (5.39):

K̃(U0)Z0 = −K̃(U0)Q0,

giving the coefficients Z0
j in (5.38).

Remark. The exact velocity potential z(x, s) is quadratic and the approximation Z0(x)

calculated in §5.6.5 is piecewise quadratic. Hence the approximate velocity potential

Z0(x, s0) will be identical to the exact velocity potential to within rounding error at time

s0.
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Calculating the Nodal Velocities

The velocity V 0(x) is calculated using the previously calculated Z0(x) by solving the

matrix system (5.46),

MV0 = B0Z0,

giving the coefficients V 0
j in (5.44).

Remark. In the case when n = 1 the exact velocity function v0(x) is linear and the

approximation V 0(x) calculated in §5.6.6 is piecewise linear. Hence the approximate

velocity V 0(x, s0) will be identical to the linear similarity velocity to within rounding

error at time s0.

Time Stepping

Time stepping is carried out using (5.47),

X1 = X0 + 5s4∆sV0,

Remark. The scheme (5.47) has a truncation error proportional to d2x
ds2

. Hence in the

case when n = 1 (for which v(x, s) is linear in s) X1 is calculated exactly.

Recovery of the Solution

The solution U(x, s) is recovered at time s1 using (5.53),

ÃU = ρ̃.

Since uS(x, s) ∈ S1
E(s), we have that

ρ̃i =

∫ b(s)

a(s)
χ̃i(x, s)u

S(x, s) dx, for i = 1, . . . , N̂ − 2, (5.55)

holds for any time s by conservation of mass.

At time s1, from the recovery step∫ b(s1)

a(s1)
χ̃i(x, s

1)U(x, s1) dx = ρ̃i, for i = 1, . . . , N̂ − 2,
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which implies from (5.55) that∫ b(s1)

a(s1)
χ̃i(x, s

1)(U(x, s1)− uS(x, s1)) dx = 0, for i = 1, . . . , N̂ − 2,

and hence that U(x, s1) is the L2 best fit to the similarity solution over one time step.

Remark. In practice the best fit of the solution is preserved only to within rounding

error. The arguments in this section are not a proof that this implementation of the

FEMPCM possesses the S Property, but by choosing our approximations to lie in the

appropriate space matching the order of the function we wish to approximate, the method

should compute an approximation to within rounding error over a single time step.

Subsequent time steps

Once this result is established at s = s1 the argument can be repeated for any subsequent

time step.

5.7 Numerical Results

We now present numerical results obtained from the FEMPCM described in §5.3–§5.6,

which support the arguments made in §5.6.9. The FEMPCM was implemented based

on the steps in this chapter.

The initial condition u0(x) for the method is chosen to be the similarity solution

from (2.28),

uS(x, s) =
1

120s

[
4− ξ2

]2

+

, ξ =
x

s
, (5.56)

written in terms of the scaled time variable s = (t + κ)1/5. From (5.56), we know the

exact values of qS(x, s) and vS(x, s) (repeated from (4.21)):

qS(x, s) =
2

15s3
− x2

10s5
, vS(x, s) =

x

5s5
.
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5.7.1 Single Time Step

We run the implementation of the FEMPCM for a single time step in order to demon-

strate that the method possesses the S Property in the L2 norm.

We run the method on an initially equally spaced mesh of N = 21 nodes. We use

the similarity solution (4.20) to determine the initial approximation U0 at the initial

time s0 = 1, such that

u0(x) =
1

120

[
4− x2

]2

+

,

for i = 1, . . . , N . This initial approximation is centred about x = 0 with initial boundary

positions at x = ±2. The initial approximation U0 is found by solving (5.51).

A single time step of size ∆s = 2.5 × 10−5 is performed using the scale-invariant

Forward Euler scheme (4.13). The value of ∆s is chosen such that ∆s = O(1/N4) in

order to reduce the risk of node tangling occurring.

After the single time step has been performed, we calculate the absolute error of

the coefficients in the approximations U(x, s1), Q(x, s0) and V (x, s0). We evaluate the

error in the coefficients as this determines whether the method is able to approximate

the nodal values to within rounding error as expected.

We also calculate the absolute error in the position of the updated mesh nodes X1.

The error in the mesh positions is calculated using the similarity variable ξ from (2.22),

using the initial values

ξ =
x(sk)

sk
∀k,

⇒ |Xk − x(sk)| =
∣∣∣∣Xk − sk x

0

s0

∣∣∣∣ , ∀k.

Figure 5.8 details the absolute errors. We see that the approximations are in the

region of rounding error, with the error in U1 being of O(10−16), the error in Q0 is of

O(10−13) and the error in V0 is O(10−13). Finally, we observe the absolute error in

the mesh positions is of O(10−16). These errors are in the expected regions, so we are

confident that the method possesses the S Property over this single time step.
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Figure 5.8: Absolute error in the FEMPCM over a single time step. The top left

window contains the absolute error in U1 (O(10−15)), the top right window the error in

Q0 (O(10−13)), bottom left the error in V0 (O(10−13)) and bottom right the error in

the mesh positions (O(10−16)).
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5.7.2 Multiple Time Steps

At the end of each time step the approximate solution U(x, s) obtained by the method

is compared with the similarity solution uS(x, s). We calculate the L2 error using the

solution values at each of the points of the domain. From §5.6.9 we would expect the

error in the solution to be close to rounding error.

We run the method on a mesh of N = 21 nodes over the time window s ∈ [1, 1.25]

in order to demonstrate how the similarity solution evolves. The time step size is

∆s = 2.5× 10−5, as discussed for the single time step results above.

Figure 5.9 details this evolution of the solution calculated from the initial condition at

s0 through to the final solution profile at time s = 1.25. We see that the free boundaries

expand outwards throughout the time window. The velocity of the boundary is highest

near the beginning of the time window, and becomes slower as time increases. The

maximum value of the solution decreases in line with these velocity change, due to the

enforcement of conservation of mass.

Figure 5.9: Evolution of the solution for the FEMPCM described in §5.6 for s ∈ [1, 1.25]

using a mesh of N = 21 nodes.
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Note that if we were to continue running the FEMPCM over a longer time window we

would expect this behaviour to continue. The solution profile would become shallower

as the boundary expands outwards, in keeping with the conservation of mass principle.

Figure 5.10: L2 error in the solution for the quartic implementation of the FEMPCM,

plotting over the time window s ∈ [1, 1.25] on a mesh of 21 Nodes. Scale of y-axis on

plot is 10−13.

We next observe the error incurred by the method in calculating the solution U(x, s)

shown in Figure 5.9. Figure 5.10 shows how the L2 error in the solution evolves over the

time period we have used. It is observed that while the error is initially in the region of

rounding error, it increases over the time window, reaching approximately 1.9 × 10−13

by the end of the time window. This behaviour matches that observed in Chapter 4

(see §4.3.6) for the implementation of the MPCM using finite differences for the same

problem. This is likely an accumulation of numerical rounding error, as discussed in

§4.4.

The L2 error in the approximations Q(x, s) and V (x, s) for this experiment are shown

in Figure 5.11. From the single time step results (Figure 5.8), the initial error in these

126



Figure 5.11: L2 error in Q(x, s) (top plot) and V (x, s) (bottom plot) for the quartic

implementation of the FEMPCM, plotting over the time window s ∈ [1, 1.25] on a mesh

of 21 Nodes. Scale of y-axis on both plots is 10−12.
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approximations is higher than that of U(x, s). Over the course of the time window

however, this error does not increase in the same manner as observed in Figure 5.10.

We see that the error is approximately 10−12 throughout the time window, with the

variance decreasing as time progresses. The high oscillation observed in these errors,

along with their magnitude suggests that this error is likely numerical and not from the

method, which suggests that the S Property is approximately maintained over multiple

time steps.

5.8 The FEMPCM in Second/Sixth-Order Problems

In chapter 4 the MPCM was shown to be able to possess the S Property in the l∞ norm,

not only for the fourth-order problem (2.3)–(2.5) but also for the second (2.7)–(2.9) and

sixth-order (2.10)–(2.12) problems. It is also possible to produce an implementation of

the FEMPCM for second-order and sixth-order problems which possess the S Property

in the L2 norm for similarity solutions as for the fourth-order problem (2.3)–(2.5).

In order to try and avoid unnecessary repetition in this section, the steps used in the

implementation for each problem will be omitted as the majority of the steps are outlined

in detail in §5.6. We shall instead outline the differences between the implementation

given in §5.6 and those required for the second or sixth order problems. The main

differences occur in the choice of basis function used in each step of the method and

the matrix systems which must be solved to obtain the function approximations. As in

§5.6, all references to the time variable shall be made in terms of s rather than t due to

the use of a scale-invariant time stepping scheme.

5.8.1 An Implementation of the FEMPCM for the Second-Order Prob-

lem for any n

The implementation for the second-order problem (2.7)–(2.9) for any n makes use of the

piecewise quadratic ϕi(x, s) (i = 1, . . . , Ñ) and piecewise linear φi(x, s) (i = 1, . . . , N)

basis functions given in §5.6.2 (written here in terms of s).
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The biggest difference between the second and fourth-order implementations is that

there is no requirement for the weak form (5.11), since q = u everywhere in the second

order case. We therefore do not require the finite dimensional subspace S1(s) in this

implementation.

We choose our function approximations to lie in the test spaces given by

S1
E(s) = span{ϕj(x, s)}, for j = 2, . . . , Ñ − 1,

S̃1(s) = span{ϕj(x, s)}, for j = 1, . . . , Ñ ,

Ŝ1(s) = span{φj(x, s)}, for j = 1, . . . , N,

and expand Z(x, s), V (x, s) and U(x, s) as the following linear combinations:

Z(x, s) =

Ñ∑
j=1

ϕj(x, s)Zj(s),

V (x, s) =

N∑
j=1

φj(x, s)Vj(s),

U(x, s) =

Ñ−1∑
j=2

ϕ(x, s)Uj(s).

Obtaining the Velocity Potential Z(x, s)

The coefficients Zj(s) of the velocity potential Z(x, s) are obtained by solving the matrix

system

K̃(U)Z = −K̃(Un)Q,

where K̃(U) is of dimension Ñ × Ñ and has entries given by (5.40). The matrix K̃(Un)

has entries given by (5.40), with U replaced by Un. A constraint such as (5.24) is

required to uniquely solve the matrix system, as K̃(U) is a singular matrix (see Remark

5.1).

Obtaining the Velocity V (x, s)

The coefficients of Z(x, t) can be obtained by solving the matrix system

MV = BZ,
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which is the same system as described in §5.6 for obtaining V from Z.

Time Stepping

Time stepping is performed using the scale-invariant time stepping scheme (5.47),

Xk+1
i = Xk

i +
1

β
s1/β−1∆sV k

i , for i = 1, . . . , N,

where β = (n+ 2)−1 in the second-order problem (2.7)–(2.9).

Recovery of U(x, s) on the Updated Mesh

Solution recovery for the second-order problem (2.7)–(2.9) involves the construction of

modified basis functions ϕ̃i(x, s) and ρ̃i(x, s), both for i = 1, . . . , Ñ−2. These quantities

are constructed in the same manner as the χ̃i and ρ̃i described in §5.6.8.

The coefficients Uj(s) for j = 2, . . . , Ñ − 1 are then found by solving the matrix

system

ÃU = ρ̃,

where Ã is a mass matrix of dimension Ñ −2× Ñ −2 with time-dependent entries given

by

Ãij(s
k) =

∫ b(s)

a(s)
ϕ̃i(x, s)ϕ̃j(x, s) dx, for i, j = 1, . . . , Ñ − 2.

and ρ̃ = {ρ̃i}, for i = 1, . . . , Ñ − 2.

Implications

By implementing the method described above, the method can be shown to possess the

S Property in the L2 norm for any value of n.

5.8.2 An Implementation of the FEMPCM for the Sixth-Order Prob-

lem with n = 1

The process of producing an implementation of the FEMPCM for the sixth-order prob-

lem (2.10)–(2.12) is more complex than that of the fourth-order problem (2.3)–(2.5) due
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to the addition of the p(x, t) function and the need to use higher order spaces in the

method. Many of the steps are similar to those detailed in §5.6, but using different basis

functions in the various finite element approximations.

Weak Forms

We shall make use of the weak forms (5.13), (5.12), (5.36), (5.41) and the weighted

conservation principle (5.6), all of which we state here for clarity:∫ b(s)

a(s)
w(x, s)p(x, s) dx =

∫ b(s)

a(s)

∂w

∂x

∂u

∂x
dx, ∀w ∈W,∫ b(s)

a(s)
w(x, s)q(x, s) dx =

∫ b(s)

a(s)

∂w

∂x

∂p

∂x
dx, ∀w ∈W,∫ b(s)

a(s)
u
∂w

∂x

(
∂z

∂x
+
∂q

∂x

)
dx = 0, ∀w ∈W,∫ b(s)

a(s)
w(x, s)

(
v(x, s)− ∂z

∂x

)
dx = 0, ∀w ∈W,∫ b(s)

a(s)
w(x, s)u(x, s) dx = ρ(w), ∀w ∈W.

Finite Dimensional Subspaces

We next select the finite dimensional subspaces S1
E(s), Ś1(s), Ŝ1(s),S1(s), S̃1(s) ∈ W .

The basis functions for use in this implementation will be the piecewise linear φi(x, s)

(i = 1, . . . , N), piecewise quadratic ϕi(x, s) (i = 1, . . . , Ñ), piecewise quartic χi(x, s)

(i = 1, . . . , N̂) and we introduce piecewise sextic ψi(x, s) (i = 1, . . . , Ń) functions for the

sixth-order problem (2.10)–(2.12), where we have introduced Ń = 6N − 5, N̂ = 4N − 3

and Ñ = 2N − 1 for ease of notation.
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We then set

S1
E(s) = span{ψj(x, s)}, for j = 2, . . . , Ń − 1,

Ś1(s) = span{ψj(x, s)}, for j = 1, . . . , Ń ,

S̃1(s) = span{χj(x, s)}, for j = 1, . . . , N̂ ,

S1(s) = span{ϕj(x, s)}, for j = 2, . . . , Ñ − 1,

Ŝ1(s) = span{φj(x, s)}, for j = 1, . . . , N.

Finite Element Approximations

From the weak forms above, we obtain the following finite element approximations:

For a given U(x, s) ∈ Ś1(s) we seek the finite element approximation P (x, s) in the

form: Find P ∈ S̃1(s) such that∫ b(s)

a(s)
w(x, s)P (x, s) dx =

∫ b(s)

a(s)

∂w

∂x

∂U

∂x
dx, ∀w ∈ S̃1(s). (5.61)

We then seek the finite element approximation Q(x, s) for a given P (x, s) ∈ S̃1(s) in

the form: Find Q(x, s) ∈ S1(s) such that∫ b(s)

a(s)
w(x, s)Q(x, s) dx =

∫ b(s)

a(s)

∂w

∂x

∂P

∂x
dx ∀w ∈ S1(s). (5.62)

The finite element approximation Z(x, s) for a given Q(x, s) ∈ S1(s), U(x, s) ∈ Ś1(s)

is: Find Z(x, s) ∈ S1(s) such that∫ b(s)

a(s)
U(x, s)

∂w

∂x

[
Z(x, s) +

∂Q

∂x

]
dx = 0, ∀w ∈ S1(s).

The finite element approximation V (x, s) for a given Z(x, s) ∈ S1(s) is of the form: Find

V (x, s) ∈ Ŝ1(s) such that∫ b(s)

a(s)
w(x, s)

[
V (x, s)− ∂Z

∂x

]
dx = 0, ∀w ∈ Ŝ1(s).

Once the mesh points have been updated using the scale-invariant time stepping

scheme (4.13), we recover U(x, s) on the updated mesh by seeking U ∈ S1
E(s) such that∫ b(s)

a(s)
w(x, s)U(x, s) dx = ρ(w) ∀w ∈ Ś1(s).
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Obtaining P (x, s)

For a given U(x, s), we obtain the approximation P (x, s). We choose the w(x, s) in

(5.61) to be one of the χi(x, s) functions (i = 1, . . . , N̂). This leads to a system of N̂

equations∫ b(s)

a(s)
χ1(x, s)P (x, s) dx =

∫ b(s)

a(s)
χ′1(x, s)U ′(x, s) dx, for i = 1,∫ b(s)

a(s)
χi(x, s)P (x, s) dx =

∫ b(s)

a(s)
χ′i(x, s)U

′(x, s) dx, for i = 2, . . . , N̂ − 1,∫ b(s)

a(s)
χ
N̂

(x, s)P (x, s) dx =

∫ b(s)

a(s)
χ′
N̂

(x, s)U ′(x, s) dx, for i = N̂ .

Writing P (x, s) as the linear combination of the χj(x, s),

P (x, s) =

N̂∑
j=1

χj(x, s)Pj(s),

and U(x, s) as the linear combination of the ψj(x, s),

U(x, s) =
Ń−1∑
j=2

ψj(x, s)Uj(s),

we obtain a system of equations from which the coefficients Pj(s) can be obtained

through solving the matrix system

MP = KU,

where M is a tridiagonal matrix of dimension N̂ × N̂ and K is a matrix of dimension

N̂ × Ń − 2.

Obtaining Q(x, s)

Once we have obtained P (x, s), we next seek the approximation Q(x, s). We choose

the w(x, s) in (5.62) to be one of the ϕi(x, s) functions (i = 1, . . . , Ñ). This leads to a
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system of Ñ equations∫ b(s)

a(s)
ϕ1(x, s)Q(x, s) dx =

∫ b(s)

a(s)
ϕ′1(x, s)P ′(x, s) dx, for i = 1,∫ b(s)

a(s)
ϕi(x, s)Q(x, s) dx =

∫ b(s)

a(s)
ϕ′i(x, s)P

′(x, s) dx, for i = 2, . . . , Ñ − 1,∫ b(s)

a(s)
ϕÑ (x, s)Q(x, s) dx =

∫ b(s)

a(s)
ϕ′
Ñ

(x, s)P ′(x, s) dx, for i = Ñ .

Writing Q(x, s) as the linear combination of the ϕj(x, s),

Q(x, s) =

Ñ∑
j=1

ϕj(x, s)Qj(s),

we obtain a system of equations from which the coefficients Qj(s) can be obtained

through solving the matrix system

MQ = KP,

where M is a tridiagonal matrix of dimension Ñ × Ñ and K is a matrix of dimension

Ñ × N̂ .

Obtaining Z(x, s) and V (x, s)

The steps used to obtain the approximation Z(x, s) to z(x, s) and consequently V (x, s)

are exactly the same as described in §5.6. The details are not repeated here in full, but

we may obtain the coefficients of Z(x, s) by solving the matrix system

K̃(U)Z = K̃(U)Q,

with K̃(U) having entries given by (5.40), and then obtain the coefficients of V (x, s) by

solving

MV = BZ,

as described in §5.6.
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Updating Mesh Positions

The mesh positions are then updated the new positions Xk+1 using the scale-invariant

time stepping scheme,

Xk+1
i = Xk

i + 7s6∆sV k
i , for i = 1, . . . , N,

which differs from (5.47) since β = 1/7 in the sixth-order problem (2.10)–(2.12) for

n = 1.

Recovery of U(x, s)

We next recover U(x, s) on the updated mesh positions using the distributed conserva-

tion of mass principle.

We introduce modified basis functions ψ̃i(x, s) and modified constants ρ̃i (both for

i = 1, . . . , Ń − 2), obtained using the same method as in §5.6.8. The coefficients Uj(s)

may then be obtained by solving the matrix system

ÃU = ρ̃,

where Ã is a matrix of dimension Ń − 2× Ń − 2 and ρ̃ = {ρ̃i} (i = 1, . . . , Ń − 2).

5.9 Summary of this Chapter

In this chapter we have introduced the FEMPCM for the fourth-order problem (2.3)–

(2.5). A general implementation for the fourth-order problem (2.3)–(2.5) has been de-

scribed which uses piecewise linear basis functions throughout.

It has then been shown that by careful choice of basis functions in the implementation

it is possible to create an implementation of the FEMPCM for the fourth-order problem

(2.3)–(2.5) with n = 1 which possesses the S Property in the L2 norm.

Finally, we have outlined the choice of basis functions required in the implementation

of the FEMPCM for second-order (2.7)–(2.9) (any n) and sixth-order (2.10)–(2.12) (n =

1) problems such that the S Property is possessed by the method.
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Numerical results for the second-order and sixth-order cases have not been produced

as a working code for general n has not at present been produced. The outlines of the

FEMPCM for these problems is therefore included as a guide on how such methods

would be implemented.

In the next chapter we shall explore cases where the MPCM or FEMPCM is not

expected to possess the S Property. We focus on the fourth-order problem (2.3)–(2.5)

with n > 1 and discuss possible initial boundary behaviours and whether the MPCM is

able to accurately model the different types of behaviour.
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Chapter 6

The MPCM in the Fourth-Order

Problem with n > 1

6.1 Aims of this Chapter

In this chapter we shall examine the fourth-order problem in cases where n > 1. In

particular we shall examine the initial and small-time behaviour of the boundary of the

domain for various initial conditions and choices of n, since there is a wide range of

behaviours which can be exhibited.

We shall investigate whether the MPCM as described in Chapters 3 and 4 is able

to model these various behaviours and in cases where it fails explore alternatives. The

presence of singularities at the boundary of the domain will be shown to have a drastic

effect on the success of the MPCM as described in previous chapters. We also explore

whether the difficulties relating to the implementation of the MPCM are present in the

FEMPCM.

A hybrid numerical method is then proposed, consisting of a fixed-mesh method

combined with the MPCM, which is able to model in principle the movement of the

boundary of the problem in cases which the standard MPCM is not. The steps required

to implement the method are discussed in detail, along with a critique of the method

in the absence of satisfactory numerical results. We then propose an alternative way
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of expressing the velocity, in which the fourth-order PDE is not written as two second-

order equations, for use in a modified version of the MPCM. This alternative velocity

avoids the need to approximate the q(x, t) function, as this function is a major cause of

the numerical issues in the MPCM.

6.2 The 4th Order Problem with n > 1

In this chapter we shall mainly focus on the fourth-order problem with n > 1 in (2.3a),

written as two second-order equations, which we restate here for clarity. We seek a

solution u(x, t) to the 1D fourth-order nonlinear diffusion equation with n > 1,

∂u

∂t
=

∂

∂x

(
un
∂q

∂x

)
,

q = −∂
2u

∂x2
,

(6.1)

for x ∈ ΩT , subject to an initial condition at time t = t0 given by

u(x, t0) = u0(x), for x ∈ Ω(t0),

and boundary conditions

u = 0,

∂u

∂x
= 0,

uv + un
∂q

∂x
= 0,

at the moving boundaries x = a(t) and x = b(t), for t > t0.

As we are investigating the fourth-order problem with n > 1 and with no explicit

similarity solutions available, we shall focus on the qualitative behaviour of the approx-

imate solutions generated by the MPCM. In chapter 3 we observed that in the case

where n = 1 and the initial condition corresponds to a similarity solution, the velocity

v(x, t) is a linear function in x given by

v(x, t) =
βx

t
,

138



with β = 1/5. This linear velocity causes the domain to expand outwards uniformly

in space as time progresses, as observed in the numerical results from the MPCM (see

Figure 5.9, for example). In the case when n > 1 however (or for n = 1 when the initial

conditions do not correspond to a similarity solution), this outwards behaviour may not

occur and a range of behaviours may be observed depending upon the values of n and

the initial condition used (see §2.2.2).

Of special interest is the velocity of the boundary points at x = a(t) and x = b(t),

since this velocity directly determines the behaviour of the boundary.

6.3 Boundary Velocities when n > 1

Using the local conservation of mass principle defined in §3.2.5, we have an expression

(3.14) for use in obtaining the velocity at points x̂(t) ∈ Ω(t) for which u 6= 0, which we

restate here for completeness:

v = −
(
un−1 ∂q

∂x

) ∣∣∣∣∣
x=x̂(t)

. (6.2)

To determine the velocity at points where u = 0, we assume that v(x, t) is continuous

and treat (6.2) as a limiting expression. Taking the right-hand boundary b(t) of Ω(t) as

an example, we have that the velocity at the boundary, vb, is

vb = lim
x→b(t)−

(
−un−1 ∂q

∂x

)
, (6.3)

provided that the limit exists.

Remark. In the implementation of the MPCM described in §3.3, we approximated the

limiting expression (6.3) through an extrapolation using nearby points. This was neces-

sary due to the strong enforcement of u = 0 at the boundary. If (6.2) had been used in

the finite difference implementation for n > 1, the boundary velocity would have been

set to zero regardless of any finite value of ∂q
∂x at the boundary. By extrapolating from

interior points we were able to obtain a non-zero velocity at the boundary.
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6.4 Initial Boundary Velocities

In this section we shall focus on the initial time t = t0 and examine the initial boundary

velocity for n > 1. We consider a particular family of initial conditions and determine

under what circumstances the limit (6.3) exists.

We shall consider initial conditions of the form

u0(x) = c1(ω2 − x2)α, (6.4)

for some constant α > 0, where c1 and ω are arbitrary constants. In this case the initial

boundary positions are located at the points x = ±ω, so a(t0) = −ω and b(t0) = ω,

giving (together with the symmetry of the PDE (6.1)) symmetric solutions about the

point x = 0.

We wish to consider the different possible asymptotic behaviours of the moving

boundaries for different choices of α in (6.4) and n in (6.1), as outlined in King (2001) and

Blowey et al. (2007). From this point on we shall focus our discussion on the asymptotic

behaviour at the right-hand boundary at x = ω, although the same arguments apply for

the left-hand boundary with a little adjustment.

For x ≈ ω we have, from (6.4),

u0(x) ≈ c1(2ω)α(ω − x)α. (6.5)

Using (6.4) and (6.2) we can calculate the initial velocity v0(x) to be

v0(x) = 12cn1α(α− 1)x(ω2 − x2)nα−2 − 8cn1α(α− 1)(α− 2)x3(ω2 − x2)nα−3,

≈ c2α(α− 1)(ω − x)nα−2 − c3α(α− 1)(α− 2)(ω − x)nα−3,
(6.6)

for x ≈ ω, where c2 and c3 are

c2 ≈ 12cn1ω(2ω)nα−2, c3 ≈ cn1 (2ω)nα. (6.7)

The boundary velocity (6.3) at the initial time (v0
b , say) is therefore

v0
b = c2α(α− 1) lim

x→ω

(
(ω − x)nα−2

)
− c3α(α− 1)(α− 2) lim

x→ω

(
(ω − x)nα−3

)
, (6.8)

and the moving boundary may experience different behaviours depending on the value

of nα, as follows.
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6.4.1 nα = 3

If n and α are such that nα = 3, then the limit on the right-hand side of (6.8) is finite,

with the limiting velocity

v0
b = −c3α(α− 1)(α− 2).

Hence the limiting boundary velocity (using c3 from (6.7) at x = ω) is

v0
b = −cn1 (2ω)nαα(α− 1)(α− 2), (6.9)

which is non-zero if α 6= 1, 2. The direction of motion of the moving boundary is then

dependent on the sign of c1 and the value of α. For example, if c1 > 0 in (6.4) then from

(6.9) we have a positive velocity for 1 < α < 2 and a negative velocity for α < 1, α > 2.

It is worth noting that the values α = 1 and α = 2 correspond to points at which

the finite velocity (6.9) changes sign from positive to negative or vice versa.

6.4.2 nα > 3

In the case where n and α are such that nα > 3, the limit on the right-hand side of (6.8)

(and therefore vb) is zero as x→ ω. In this case the boundary is initially stationary.

6.4.3 nα < 3

In this case the limit on the right-hand side of (6.8) does not exist. In this instance

the boundary will move with an initially unbounded velocity. It is known however, that

the velocity is only unbounded instantaneously at the initial time, after which the finite

speed of propagation property possessed by the PDE results in a finite velocity (see

Bernis (1996b) and Bernis (1996a)).

This result is supported by asymptotic results presented in Blowey et al. (2007)

(following work in King (2001)), in which a region in (n, α) space was identified in

which the initial velocity of the boundary point was unbounded. In that paper, for

values of nα < 3 the boundary was expected to advance (for α < 2) or retreat (for

α > 2) with an initially unbounded velocity.
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Since the MPCM is a finite difference method requiring a finite velocity in order to

update the boundary points, an unbounded velocity (even one existing instantaneously)

cannot be calculated at t = t0. Indeed, any finite difference method that attempts to

compute the boundary velocity in this pointwise manner will ultimately fail.

6.5 Small-Time Behaviours of the Boundary

The small-time behaviour of the fourth-order problem with initial conditions of the form

(6.4) has been detailed in Blowey et al. (2007). Their results for the initial boundary

velocity agree with the statements made in §6.4, so we shall provide a summary of the

main results in Blowey et al. (2007) in this section to provide insight into the behaviour

of the solution after the initial time t0.

6.5.1 Initial Behaviour

For nα > 3 the initial velocity of the boundary is equal to zero, with nα > 4 providing

global waiting time (with the local behaviour of the solution at points close to the

boundary remaining unchanged) for some non-zero time tw.

When 3 < nα < 4 the type of waiting-time behaviour is dependent upon α, with

α = 2 forming a delicate point in the analysis presented in the paper. When α < 2 the

velocity at the boundary tends to zero as t → 0+, while for α > 2 a range of different

waiting-time scenarios can be observed (we refer the reader to the paper for further

details on these scenarios).

Values of nα < 3 cause the boundary to move with an initially unbounded velocity,

with the direction of motion determined by the value of α. The case when α < 2

corresponds to an outward moving boundary, while α > 2 corresponds to an inwardly

moving boundary (α = 2 is again a delicate case).

When nα = 3 the velocity of the boundary is finite, as discussed in §6.4, with the

direction of travel again determined by α as in the nα < 3 regime above.

142



6.5.2 Evolution of the Solution Close to the Boundary

Once the initial behaviour has occurred, the local behaviour of the solution for t > t0 is

dependent upon the value of n and is discussed in King (2001). When nα ≤ 3 the local

behaviour of the solution as x→ ω (see also (2.6)) takes the form

u ∼

(
n3ḃ

3(3− n)(2n− 3)
(b(t)− x)3

) 1
n

, for
3

2
< n < 3,

u ∼
(

3

4
ḃ(b(t)− x)3 ln

[
1

(b(t)− x)

]) 2
3

, for n =
3

2
,

u ∼ B(t)(b(t)− x)2, for n <
3

2
,

(6.10)

where ḃ denotes the velocity of the boundary b(t) and B(t) must be determined as part

of the solution. Here b(t) is the position of the moving boundary, so at time t = t0 we

have b(t0) = ω.

If nα > 3 the solution only takes the form (6.10) once any waiting-time has ceased.

In some cases the waiting-time ceases due to a shock forming as the gradient of the

solution becomes unbounded close to the boundary. The solution may also decrease

such that

u ∼
(

n3(ω − x)4

8(4− n)(2− n)(n+ 4)t

)1/n

, as x→ ω, t0 < t < tw,

experiencing various types of decay based upon n and α (see Blowey et al. (2007) for

more details).

In the regime 3 < nα < 4, with n > 3/2 the boundary velocity tends to zero as

t → t0, with the boundary waiting. We anticipate that between t0 and the end of the

waiting-time, α decreases from the initial value (greater than 3/n) until such time as

it becomes equal to 3/n. At this point the solution will take the form (6.10) and the

boundary begins to move.

6.6 Initial Boundary Velocities using the MPCM

From the results in §6.4 we expect the MPCM to be able to track the boundaries of the

domain only in cases where nα ≥ 3, since the velocity in these cases is finite or zero.

143



The case where the boundary velocity is initially unbounded needs special consideration

(and is therefore not considered further in this section).

6.6.1 Numerical Verification of Boundary Velocity Issues

We shall now perform experiments using the implementation of the MPCM from Chapter

4 to verify that the issues described in the previous section will occur.

We shall calculate the initial velocity V0 using (3.24) (see §3.3.4 for more details)

using the MPCM described in Chapter 4 on meshes of an increasing number of nodes.

We use the initial condition

u0(x) =
1

10

(
1− x2

)α
, (6.11)

for various α in order to estimate the correct boundary velocities for the finite advance,

finite retreat and waiting-time cases described in §6.4.

We perform experiments on meshes of N = 21, 41, 81, . . . , 1281 nodes, using the

following choices of n in (6.1) and α in (6.11):

Finite Advance

For the finite advance case we choose n = 8/5, α = 15/8, giving nα = 3 with 1 < α < 2.

In this case we should observe a positive boundary velocity, corresponding to a finite

advance of the boundary. The exact value of the initial boundary velocity in this case

is equal to

v0
b =

105

64

(
1

10

)8/5

≈ 0.04.

We shall also choose n = 2, α = 3/2, again corresponding to a positive boundary

velocity. The exact value of the initial boundary velocity in this case is equal to

v0
b = 0.03.

Finite Retreat

In the finite retreat case we choose n = 6/5, α = 5/2, giving nα = 3 with α > 2. In this

case we anticipate a negative boundary velocity and a finite retreat of the boundary,
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with the initial boundary velocity approximately equal to

v0
b = −15

(
1

10

)6/5

≈ −0.95.

Our second choice for the finite retreat case is n = 15/11, 11/5 also corresponding

to a negative boundary velocity. The exact value of the initial boundary velocity in this

case is equal to

v0
b = −528

125

(
1

10

)15/11

≈ −0.18.

Waiting-Time

For the waiting-time case we choose n = 5/2, α = 5/2, and n = 2, α = 2 giving nα > 3

and therefore an expected zero velocity of the boundary in for both choices.

Once V0 has been calculated we record the computed velocity at the right-hand

boundary for the different expected behaviours (advance, retreat or waiting-time). We

can then compare this value to the expected value to see whether this velocity is being

approximated accurately. We would expect that the computed boundary velocity for

the coarsest meshes would be less accurate than that of the finest meshes, but that it

would become more accurate as the number of mesh points increases.

Remark 6.1. We are unable to provide an exact value for the initial boundary velocity

without a detailed asymptotic analysis. The computation of a boundary velocity which

is approximately equal to the value of v0
b will be deemed to be an accurate approximation

for the discussion that follows.

The initial computed boundary velocities V 0
N for the finite advance experiments are

given in Table 6.1. The velocities for the finite retreat experiments are given in Table

6.2 while the waiting-time results are given in Table 6.3.

It is clear from Table 6.1 that in the finite advance experiments the initial velocity is

quite inaccurate, with the n = 8/5, α = 15/8 case having a larger velocity than expected

for all values of N and the n = 2, α = 3/2 case possessing a negative velocity for all

values of N . Despite the difference between successive meshes decreasing in all three
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N n = 8/5, α = 15/8 n = 2, α = 3/2

21 0.0994 -0.0025

41 0.0930 -0.0036

81 0.0971 -0.0039

161 0.0999 -0.0041

321 0.1015 -0.0042

641 0.1023 -0.0042

1281 0.1027 -0.0042

v0
b ≈ 0.04 0.03

Table 6.1: Initial boundary velocities for the finite advance experiments in §6.6.1. The

expected boundary velocity is given in the final row for each case.

N n = 6/5, α = 5/2 n = 15/11, α = 11/5

21 -0.5638 -0.0731

41 -0.6685 -0.0944

81 -0.7062 -0.1014

161 -0.7219 -0.1044

321 -0.7289 -0.1058

641 -0.7323 -0.1064

1281 -0.7339 -0.1068

v0
b ≈ −0.95 ≈ −0.18

Table 6.2: Initial boundary velocities for the finite retreat experiments in §6.6.1. The

expected boundary velocity is given in the final row for each case.
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N n = 5/2, α = 5/2 n = 2, α = 2

21 -0.0076 -0.0076

41 -0.0012 -0.0012

81 −1.63× 10−4 −1.63× 10−4

161 −2.15× 10−5 −2.15× 10−5

321 −2.75× 10−6 −2.75× 10−6

641 −3.48× 10−7 −3.47× 10−7

1281 −4.36× 10−8 −4.37× 10−8

v0
b 0 0

Table 6.3: Initial boundary velocities for the waiting-time experiments in §6.6.1. The

expected boundary velocity is given in the final row for each case.

cases we have no conclusive evidence of convergence and we cannot be confident that

the method is producing satisfactory results.

The finite retreat cases (Table 6.2) do have the correct sign, but there appears little

evidence that the velocity is converging towards the expected value at an acceptable

rate as N increases. In both cases the calculated boundary velocity is larger than the

expected value for all values of N .

Of the three cases investigated the waiting-time case (Table 6.3) is most encouraging,

as the computed velocity does appear to be decreasing towards zero as N increases. Since

the MPCM is a numerical method we would not expect the velocity to be exactly zero,

but a decrease of one order of magnitude as N is doubled suggests that it will eventually

reach rounding error. The values shown in Table 6.3 are much higher than rounding

error however, so the number of nodes required for the velocity to approach rounding

error is likely to be prohibitively high.

In an attempt to understand why the initial velocities are not as expected, we in-

vestigate the computed boundary velocity for one of the experiments. Choosing the

n = 6/5, α = 5/2 finite retreat case, we plot the computed initial velocity for the final

20 mesh points of the mesh. This computed velocity is given in Figure 6.1.
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Figure 6.1: The computed velocity V 0
i plotted over the final 20 mesh points for the

n = 6/5, α = 5/2 finite retreat case.

We see that oscillations have appeared at points close to the boundary, which then

cause the quadratic extrapolation (used in the evaluation of the boundary velocity) to be

performed inaccurately. Examining the velocity for the other cases (not shown), we also

observe the appearance of oscillations close to the boundary which cause the computed

boundary velocity to be different than the expected value.

In an attempt to explain these inaccurate boundary velocities, we must examine

more than the product of terms in (6.8). The restriction on the values of n and α is

not the only consideration that must be made when considering the limit in (6.8). The

function q(x, t) in (6.1) and its derivative ∂q
∂x may also be problematic, which we shall

examine next.

6.6.2 Initial Boundary Values of q(x, t)

The implementation of the MPCM described in Chapters 3 and 4 involves an approxi-

mation of the q(x, t) function as well as the velocity v(x, t) (which from (6.2) consists of
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a pointwise multiplication of un−1 and ∂q
∂x). We should therefore take into consideration

potential issues arising from the method for the approximation of the boundary values

of q(x, t) and ∂q
∂x , from both an asymptotic and computational standpoint.

If u0(x) is of the form (6.4), then at time t = t0 we can study the initial value of

q(x, t) (q0(x), say) for points close to the boundary. From (6.4), q0 = −∂2u0

∂x2
is given by

q0(x) = 2c1α(ω2 − x2)α−1 − 4c1α(α− 1)x2(ω2 − x2)α−2,

which, for x ≈ ω is given by

q0(x) ≈ 2αc1αω
α−1(ω − x)α−1 − 2αc1α(α− 1)ωα(ω − x)α−2. (6.12)

We see from (6.12) that the limit as x → ω is unbounded for values of α < 2. Since

(6.12) is not required in the limit of (6.8) however, we have no concerns with whether

such a quantity exists in the calculation of (6.8). Nevertheless, the issue is that for

values of α < 2 the MPCM is attempting to approximate an unbounded quantity using

a finite difference method, which is not feasible.

For α = 2, q0(x) is finite at the boundary while, for α > 2, q0(x) is equal to

zero. In such cases, we are able to approximate the boundary value of q0(x) using finite

differences. The MPCM in Chapters 3 and 4 may not produce an accurate approximation

however, since as mentioned previously in §3.3.3, the method employs an extrapolation

using second degree Lagrange polynomials to approximate a quadratic q(x, t). For non-

integer values of α such an approach may not produce an accurate approximation to the

boundary value of q(x, t) if it is not quadratic, although this may not necessarily be a

substantial source of error in the MPCM.

6.6.3 Initial Value of ∂q
∂x

in the Vicinity of the Boundary

The limit in (6.3) includes the term ∂q
∂x , which we have not yet discussed in our asymp-

totic analysis of the velocity. The limit of ∂q
∂x at the boundary is of crucial importance

to the resulting velocity, so we now discuss the initial asymptotic behaviour of ∂q
∂x for

initial conditions of the form (6.4).
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From (6.4), we can calculate the initial approximation to ∂q
∂x asymptotically at points

close to the boundary. Using (6.4),

∂q0

∂x
= 8c1α(α− 1)(α− 2)x3(ω2 − x2)α−3 − 12c1α(α− 1)x(ω2 − x2)α−2,

which, for x ≈ ω is given by

∂q0

∂x
≈ 2αc1α(α− 1)(α− 2)ωα(ω − x)α−3 − 3(2α)c1α(α− 1)ωα−1(ω − x)α−2. (6.13)

It is clear from (6.13) that for α < 3, ∂q0

∂x becomes unbounded as x → ω. We cannot

therefore expect the MPCM to be able to accurately approximate ∂q
∂x at the boundary

points using extrapolation (or indeed any numerical method) for values of α < 3.

This information provides further insight into the possible boundary behaviours from

(6.8). For α < 3 we have that ∂q0

∂x is unbounded at the boundary of the domain and

hence the limit (6.3) (if it exists) will involve a multiplication of the form “0 ×∞” for

values of n > 1 (and may therefore be indeterminate).

6.6.4 Consequences for the MPCM

From the asymptotic analysis for the velocity near the boundary presented in §6.4–

§6.6.2, we see that the implementations of the MPCM described in Chapters 3 and 4

for n > 1 are not capable of accurately approximating either the function q(x, t) or the

velocity v(x, t) at points close to the boundary. In particular, for initial conditions of

the form (6.4) there is a range of values of n and α for which the boundary velocity is

unbounded. These issues have been supported by numerical results which demonstrate

the inadequacies of the MPCM.

6.7 The FEMPCM when n > 1

All discussion relating to numerical methods in this Chapter so far has been focussed on

the MPCM for n > 1. The issues reported in the finite difference implementation occur

because the representation requires all calculations to be performed point-wise on each

node of the mesh (including boundary points). In the FEMPCM (see Chapter 5) the
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weak forms and resulting finite element approximations are integral forms and it can

be argued that the FEMPCM will be able to calculate the velocity at points close to

the boundary without the issues previously experienced due to the singularity present

at the boundary.

In this section we explore the initial behaviour and convergence of the piecewise linear

implementation of the FEMPCM, described in §5.5 (which includes the calculation of

the approximation Q(x, t)). We shall use this implementation, as opposed to the higher

order implementation which possesses the S Property described in §5.6, as the higher

order implementation is only appropriate for the n = 1 case.

We conduct numerical experiments in which we hope to observe the various be-

haviours of the boundaries (finite advance, finite retreat and waiting-time) outlined in

§6.4 for values of n and α such that nα ≥ 3. It is hoped that since the functions are ap-

proximated throughout the domain (using L2 projections) rather than just point-wise at

the mesh points, the velocity will be non-oscillatory close to the boundary and therefore

produce convergent boundary trajectories.

The implementation used involves the calculation of Q(x, t), which we have shown

to be problematic in the implementation of the MPCM for point-wise approximations.

It is hoped that the integral forms of the finite element implementation will alleviate

the issues associated with Q(x, t) and V (x, t) close to the boundary.

6.7.1 Finite Advance

We set n = 2 in (6.1), and use the initial condition

u0(x) =
1

10
(1− x2)3/2,

in the finite element implementation, giving a value of nα = 3 in which n = 2, α = 3/2

so that 1 < α < 2. We therefore expect the right-hand boundary of the domain to move

outwards with a finite velocity. In this experiment a time window of t ∈ [1, 1.25] is used

in order to provide information on the behaviour of the boundary for times beyond the

initial time.
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Figure 6.2: Boundary trajectories for the finite advance experiment. Shown here are

trajectories for meshes of N = 21 (blue solid line), 41 (green dashed line), 81 (red dotted

line) and 161 (cyan dash-dotted line) nodes.

Figure 6.2 details the boundary trajectories for the finite advance experiment. We

see that the boundary has moved further for the N = 21 case than all others, with the

maximum distance moved by the boundary decreasing each time N is increased. There

is no conclusive evidence of convergence of the boundary trajectories.

We next examine the nodal values of the solution at the end of the time window on

mesh points which we would expect to coincide over all of the meshes used. We test

values at the central point of the mesh x = 0, the right-hand boundary XN and an

‘Interior Point’ lying between the central point and the right hand boundary.

If we use the N = 161 solution as a reference solution (Uref , say), we can determine

the absolute difference between the solution values and mesh locations for the other

meshes. The absolute differences are given in Table 6.4, with the solution values at

the boundary omitted due to the zero boundary conditions making such calculations

redundant. We also omit the difference in mesh position at the central point as the

symmetric initial conditions cause the central point to remain fixed at x = 0 throughout
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the time window.

Central Point Interior Point Boundary Point

N |Uref − U | |Uref − U | |Xref −X| |Xref −X|

21 3.49× 10−5 3.59× 10−6 2.07× 10−4 0.0158

41 3.55× 10−6 1.05× 10−5 6.23× 10−5 0.0086

81 8.09× 10−8 4.22× 10−6 1.46× 10−5 0.0034

Table 6.4: Absolute difference of mesh points and solution values for the finite advance

experiment at coinciding points

Table 6.4 shows some evidence of slow convergence between the solution values of

various meshes. The rate at which this convergence is being achieved is not very quick

however, indicating a possible need to increase the number of mesh points further. Some

evidence of convergence has been observed for the interior and boundary mesh points,

but the results are unconvincing.

6.7.2 Finite Retreat

In the finite retreat experiment we set n = 1.2 in (6.1) and use the initial condition

u0(x) =
1

10

(
1− x2

)5/2
,

in the finite element implementation. For these choices of n and α we therefore expect

an initially retreating right-hand boundary with a finite velocity. We run the method

over the time window t ∈ [1, 1.025].

Figure 6.3 shows the boundary trajectories for meshes of N = 21, 41, 81 and 161

nodes. We see that in all cases the boundary moves inwards as expected, and there is

some evidence of convergence for the N = 41, 81 and 161 trajectories. The N = 21

trajectory has not moved as far outward by the end of the time window as the other

cases, which may indicate that the initial mesh was too coarse.

This result appears more encouraging, since there is some evidence of convergence

of the boundary trajectories in this example. By increasing the number of nodes in the
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Figure 6.3: Boundary trajectories for the finite retreat experiment. Shown here are

trajectories for meshes of N = 21 (blue solid line), 41 (green dashed line), 81 (red

dotted line) and 161 (cyan dash-dotted line) nodes.

mesh further, we might expect the trajectories to become closer together. As discussed

in the finite difference case however, the rate of convergence is not quick enough to

propose that a reference trajectory has been reached.

If we use the N = 161 solution as a reference solution (Uref , say), we can determine

the absolute difference between the solution values and mesh locations for the other

meshes. The absolute differences are given in Table 6.5.

Table 6.5 shows that there is some evidence of convergence between the various

meshes. The rate of convergence is slow however, indicating a possible need to increase

the number of mesh points further.

6.7.3 Waiting-Time

The waiting-time experiment uses value of n = 2 and α = 2, giving an initial condition

u0(x) =
1

10
(1− x2)2
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Central Point Interior Point Boundary Point

N |Uref − U | |Uref − U | |Xref −X| |Xref −X|

21 8.70× 10−6 8.59× 10−6 1.99× 10−4 0.0043

41 2.62× 10−6 1.85× 10−6 5.06× 10−5 0.0013

81 5.45× 10−7 3.85× 10−7 9.89× 10−6 2.76× 10−4

Table 6.5: Absolute difference of mesh points and solution values for the finite retreat

experiment at coinciding points

and an initial boundary velocity of zero. The time window used in this experiment is

t ∈ [1, 1.025], as in the finite retreat case.

Figure 6.4 shows the boundary trajectories for the various meshes, which we would

expect to remain within rounding error of x = 1 if the boundary is experiencing waiting-

time behaviour. We see that the N = 21 trajectory has moved outwards more than

expected, indicating that the velocity at the boundary node is unacceptably larger than

zero. As the number of nodes in the mesh increases however, the trajectories begin to

converge towards the expected values. We would therefore expect that a higher number

of nodes would produce a trajectory which is even closer to zero than the N = 161

trajectory.

Using the N = 161 solution as a reference solution, we can determine the absolute

difference between the solution values and mesh locations for the other meshes. The

absolute differences are given in Table 6.6. The results for the finite element waiting-

time experiment are slightly more encouraging than those for the finite difference case,

since better evidence of convergence is observed.

6.7.4 Initial Boundary Velocities

We can estimate the initial velocity of the right-hand boundary by calculating the initial

velocity using the finite element implementation. By only calculating the initial velocity

we are able to obtain computed boundary velocities for a much larger range of N . In

Table 6.7 we produce the computed velocities for the three experiments conducted in
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Figure 6.4: Boundary trajectories for the waiting-time experiment. Shown here are

trajectories for meshes of N = 21 (blue solid line), 41 (green dashed line), 81 (red

dotted line) and 161 (cyan dash-dotted line) nodes.

Central Point Interior Point Boundary Point

N |Uref − U | |Uref − U | |Xref −X| |Xref −X|

21 5.03× 10−7 7.22× 10−6 3.21× 10−5 1.25× 10−4

41 7.83× 10−8 1.64× 10−6 7.92× 10−5 2.95× 10−5

81 1.38× 10−8 3.29× 10−7 1.59× 10−6 5.87× 10−6

Table 6.6: Absolute difference of mesh points and solution values for the waiting-time

experiment at coinciding points

156



§6.7.1–§6.7.3 for values of N = 21 to N = 1281, with Remark 6.1 about v0
b from §6.6.1

valid here.

N Advance Retreat Wait

21 0.2597 -1.1248 0.0054

41 0.2629 -1.3433 0.0014

81 0.2643 -1.4534 3.39× 10−4

161 0.2650 -1.5085 8.46× 10−5

321 0.2653 -1.5362 2.12× 10−5

641 0.2655 -1.5500 5.29× 10−6

1281 0.2655 -1.5569 1.33× 10−6

v0
b 0.03 ∼ −0.95 0

Table 6.7: Initial Boundary Velocities for the experiments in §6.7.1–6.7.3. The expected

boundary velocity is given in the final row for each case.

Examining the results given in Table 6.7 we see that there are some surprising results

being obtained, indicating that the velocity calculation near the boundary is not being

obtained as expected. The finite advance case sees computed boundary velocities an

order of magnitude higher than expected throughout, which appear to be converging

to the incorrect value. The finite retreat case is producing a negative velocity, but this

velocity is not converging to the expected value as the number of mesh points increases.

The waiting time computed velocities are decreasing as the number of nodes in-

creases, but are not in the region of rounding error by several orders of magnitude. It

was hoped that a mesh of N = 1281 nodes would be producing a boundary velocity in

the region of rounding error.

If we examine the computed velocity for one of these examples, we can determine

whether the oscillations in the velocity close to the boundary (observed in the finite dif-

ference implementation) are also appearing in the finite element implementation. Figure

6.5 shows the computed velocity for the finite advance case with N = 81, for a selection

of mesh points close to the right-hand boundary. We see that there is clear oscillation
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Figure 6.5: Computed velocity in the first time step for the finite advance experiment

with N = 81, at points near the right-hand boundary.

close to the boundary, which has caused the boundary velocity to be larger than the

expected value.

6.7.5 Critique of the FEMPCM with n > 1

Since the oscillations are observable in both the MPCM (see §6.6.1) and the FEMPCM

(§6.7) , the issue with convergence that we are observing at the boundaries of the domain

is not restricted to the implementation being used.

The need to calculate an approximation to the q(x, t) function and its first deriva-

tive, even in weak form, appears to be the main cause of issues when considering the

implementation of the FEMPCM (as discussed in §6.6.2–§6.6.3 for the MPCM). When

considering initial conditions of the form (6.4), the range of α for which either q(x, t) or

∂q
∂x becomes unbounded at the boundary is restrictively large.

Despite the integral forms present in the FEMPCM, allowing for a weak form rep-

resentation present throughout the whole domain (as opposed to point-wise values in
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the finite difference implementation), the implementation appears to be unable to ade-

quately model the velocities expected for the various values of α tested in this section.

6.8 Mesh Point Distribution

In the discussion of the numerical results for the MPCM and FEMPCM presented in

this thesis, the distribution of the mesh points has thus far been overlooked. In this

section we shall explore the initial distribution of the mesh points and their evolution

at later times, with a view to how the MPCM and FEMPCM could benefit from careful

selection of the initial mesh.

6.8.1 Uniform Initial Mesh

All the numerical results presented in this thesis so far have been generated using a

mesh which was chosen to be initially equally spaced. In the cases where the MPCM

or FEMPCM possesses the S Property (i.e. the results given in Chapters 4 and 5), this

uniform initial mesh remains uniform over time due to the linear velocity present in

these cases (see equations (3.14) and (3.31) for n = 1).

As an example, Figure 6.6 illustrates the mesh evolution for the multiple time step

results given in §4.3.6. In this case the initial mesh spacing was taken to be ∆X = 0.2,

which has increased to ∆X = 0.5 at time s = 2.5.

For the examples presented in this chapter, an initially uniform mesh (driven by

a velocity which is not necessarily linear in terms of x) may not remain uniform. A

uniform mesh may also not provide adequate resolution at points of interest (such as

near the boundary for the types of problems studied in this chapter).

To demonstrate this we examine the cases explored in §6.6.1, for the various choices

of n and α used. In the results presented only the initial boundary velocity was discussed.

Here we run the MPCM for the various n, α values over 10,000 time steps and plot the

evolution of the final 11 mesh points from a mesh of N = 81 points. These plots are

given in Figure 6.7.
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Figure 6.6: Evolution of the mesh points for the multiple time step results given in 4.3.6.

Mesh used was initially equally spaced.

Figure 6.7: Mesh point evolution for the final 11 points of the N = 81 mesh for the var-

ious examples given in §6.6.1 over 10,000 time steps. Shown here are finite advance

(top/bottom left), finite retreat (top/bottom centre) and waiting-time (top/bottom

right) meshes.
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We see that the most interesting behaviour is taking place in the finite retreat cases

(n = 6/5, α = 5/2 and n = 15/11, α = 11/5), with the points closest to the boundary

being of particular interest. Here the mesh spacing decreases as the boundary retreats,

before remaining at this size once the boundary begins to move outwards again.

In the finite advance and waiting-time cases the behaviour of the mesh is expected,

with the uniform mesh appearing to remain uniform over the multiple time steps.

Instead of a uniform mesh, we could instead distribute the points such that they are

concentrated nearer to the boundary positions. This will allow for a better resolution

of features close to the boundary.

We shall now explore a couple of different methods of initially distributing the mesh

points for the MPCM/FEMPCM which are based on equally distributing some feature

of the solution.

6.8.2 Equidistribution of Mass

The mesh can be initially set up such that the mass between two mesh points is equal

for all mesh points, i.e.∫ X0
i+1

X0
i

u0(x) dx = ci, for i = 1, . . . , N − 1.

The advantage of this method of initially distributing points for the MPCM or FEM-

PCM is that since the velocity and recovery steps of the method are driven by mass

conservation, if the initial partial masses are equal then they will remain so for all time.

A disadvantage of equidistributing mass for the types of problem studied in this

thesis is that since the solution is generally smallest near the boundary, the initial

mesh distribution will be sparse close to the boundary, even more so than the uniform

meshes used in previous chapters. This sparseness will then lead to a poor resolution of

important features of the solution, particularly for the examples in this chapter.
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6.8.3 Equidistribution of Arc Length

Alternatively, the initial mesh can be set up such that the arc length between any two

mesh points is equally distributed throughout the mesh. In this case, the mesh is chosen

such that ∫ X0
i+1

X0
i

√
1 +

(
∂u0

∂x

)2

dx = ci, for i = 1, . . . , N − 1.

Equally distributing the arc length of the solution is a more suitable choice for the

problems studied in this chapter, since it can result in an initial mesh which has a

better distribution of points close to the boundary.

In the next section we shall explore the first of two possible strategies for alleviating

the issues observed by both the MPCM and FEMPCM in the chapter thus far. The

first of these strategies will attempt to allow the modelling of solutions for cases where

0 < nα < 3 and involves a hybrid numerical method.

6.9 A Hybrid Numerical Method

Depending upon the value of n chosen and the initial condition to the problem, it is

possible that (analytically) the interfaces may move with an unbounded velocity (Bowen

and King (2001)). This unbounded velocity is impossible to model using the MCPM

(see §6.3) and requires an alternative approach in order to produce solutions in such

cases.

In order to avoid the issue of having to track the movement of a point moving with

an unbounded velocity, a hybrid numerical method is proposed. In the hybrid method a

fixed mesh numerical method is used over a time window t ∈ [t0, T 0], where T 0 is chosen

large enough such that the velocity of the interface has become finite, so that it is able

to be approximated accurately by the MPCM.

Once the solution to the fixed-mesh part of the method has been found (and shown

to be convergent), the approximate solution calculated at time t = T 0 is then used as the

initial condition in the MPCM. Since the problem possesses a finite speed of propagation

property for all t > t0, the MPCM should then be able to track the movement of the

162



interfaces.

6.9.1 The Fixed-Mesh Method

The use of a fixed-mesh method requires us to recast the original fourth-order problem.

We shall seek a solution u(x, t) to the fourth-order PDE

∂u

∂t
=

∂

∂x

(
un
∂q

∂x

)
, in Ω× (t0, T )

q = −∂
2u

∂x2
, in Ω× (t0, T )

for x ∈ Ω, where Ω is a finite-space interval (Xa, Xb) and no longer time-dependent.

We seek solutions subject to an initial condition

u(x, t0) = u0(x), at t = t0,

and boundary conditions
∂u

∂x
= 0,

uv + un
∂q

∂x
= 0,

at the moving interfaces x = a(t) and x = b(t), for t > t0.

Compared with the MPCM, the fixed-mesh part of the hybrid numerical method

operates on a static mesh of points, with a fixed distance ∆x between points. Since the

mesh is now fixed, the domain Ω will include points outside of the support of u(x, t), to

allow the interfaces of the support to potentially expand over time. For all points in Ω

outside of the interfaces at x = a(t), x = b(t) we have that u = 0. We shall choose the

two points Xa, Xb far enough away from the support of u(x, t) that the interfaces will

not reach these points by the end of the time window.

By including mesh points outside of the support of the solution we are able to use a

numerical scheme in the approximation of u(x, t) which has an effect on the movement

of the free boundary over a given time-step. This feature of the numerical scheme

will allow the hybrid method to be able to model the case where the boundary moves

instantaneously with an unbounded velocity, which was not previously possible in the

MPCM.
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Given a discretisation of the domain Ω ≡ x ∈ [Xa, Xb] ⊂ R in the form of a mesh

of N nodes, we can approximate the function u(x, t) by nodal values Ui (i = 1, . . . , N)

using a finite difference scheme.

Due to the presence of the un factor in (6.1) we choose the semi-implicit finite

difference scheme

Uk+1
i = Uki +

∆t

∆x2

(
(Uki+1/2)n

{
(−Uk+1

i+2 + 2Uk+1
i+1 − U

k+1
i )

∆x2
−

(−Uk+1
i+1 + 2Uk+1

i − Uk+1
i−1 )

∆x2

}

+(Uki−1/2)n

{
(−Uk+1

i+1 + 2Uk+1
i − Uk+1

i−1 )

∆x2
−

(−Uk+1
i + 2Uk+1

i−1 − U
k+1
i−2 )

∆x2

})
,

(6.14)

for i = 2, . . . , N − 2.

The values Uki+1/2 and Uki−1/2 in (6.14) are obtained by the midpoint approximations

Uki+1/2 =
Uki+1 + Uki

2
, Uki−1/2 =

Uki + Uki−1

2
, (6.15)

for i = 1, . . . , N − 1.

We enforce boundary conditions by setting Uk0 = Uk1 = UkN−1 = UkN = 0 for all

values of k, as we have chosen the boundaries of the domain Ω such that the numerical

free boundary does not reach the boundary of Ω over the course of the time window.

Hence we do not expect the solution at the nodes outside the support to take any value

other than zero.

We can rearrange (6.14) and the boundary conditions in order to obtain a linear

system of N equations of the form

AUk+1 = Fk,

for the solution vector Uk+1 = {Uk+1
i }, where A is a N ×N pentadiagonal matrix and

Fk is a vector of length N .

The first two rows and last two rows of A have non-zero entries only on the main

diagonal, with entries A0,0 = A1,1 = AN−1,N−1 = AN,N = 1. The remaining rows have
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the following form:

Ai,i−2 = µ[(Uki−1/2)n],

Ai,i−1 = −µ[(Uki+1/2)n + 3(Uki−1/2)n],

Ai,i = 1 + 3µ[(Uki−1/2)n + (Uki+1/2)n],

Ai,i+1 = −µ[3(Uki+1/2)n + (Uki−1/2)n],

Ai,i+2 = µ[(Uki+1/2)n],

where µ = ∆t/(∆x)4, for i = 2, . . . , N − 2. The vector Fk has entries

Fk = (0, 0, Uk2 , U
k
3 , . . . , U

k
N−3, U

k
N−2, 0, 0)T .

6.9.2 Defining the Numerical Interface

Since the approximate solution Uki is only defined at discrete points and the position of

the moving interface (at which u(x, t) = 0) may lie between two mesh points we need

a method of defining an approximation to the position of the moving interface at the

end of the time window t ∈ [t0, T 0], since the position of the interfaces will need to be

passed to the MPCM.

From (6.14) and (6.15), we can see that for points outside of the support of u(x, t)

we have

Uki−1 = Uki = Uki+1 = 0 ⇒ Uk+1
i = 0, (6.17)

and as a result the free boundary can advance by at most one mesh point over a single

time step. A consequence of (6.17) is that the time step size ∆t must be chosen such

that ∆t = O(∆x2) (Barrett et al. (1998)).

Given this feature of the numerical scheme, it is possible to introduce a means of

determining the position of the numerical boundary. Since the solution is expected to

remain nonnegative if the initial condition is nonnegative (Bernis and Friedman (1990)),

we may define the position of the numerical interface to coincide with the first mesh

point at which the solution is zero outside of the support of the approximate solution.

This approach is flawed if oscillations appear in the solutions as a result of the numerical
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scheme however, which makes determining such a point extremely problematic. A non-

negativity preserving scheme (such as that found in Blowey et al. (2007)) should ensure

that the interface can be obtained in this manner, but this has not been included in the

implementation presented here.

6.9.3 Convergence of the Fixed-Mesh Solution

It is important that the solution obtained from the fixed-mesh part of the hybrid method

is shown to converge, since the solution at time T 0 is needed for use as the initial

condition to the MPCM part of the method.

We test convergence of the fixed mesh method by reducing the mesh spacing ∆x

and comparing the approximate solution calculated in each case (for each experiment

the value of ∆t used in the time stepping method is chosen such that the ratio ∆t/∆x2

remains constant throughout). The first comparison test made is the difference between

the mass of the initial condition and the mass of the approximate solution at time T 0,

calculated using a trapezoidal rule. It is hoped that as ∆t and ∆x → 0, the difference

in these masses will also tend to zero.

We may also test convergence by observing the position of the numerical interface

over the time window. For a convergent method, as the number of points in the mesh

increases the trajectories formed by the interface positions will converge towards some

form of reference trajectory. If the interface trajectories do not show convergence, the

fixed-mesh solution may not be usable with the MPCM.

At present, the implementation of the fixed-mesh portion of the hybrid method

produces oscillations at points in the vicinity of the interfaces, which causes a lack of

convergence of the interface trajectories. This problem needs to be addressed in order

to enable a satisfactory implementation of the hybrid method, but is left as future work

due to time constraints.
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6.9.4 Use of the MPCM

Once the solution obtained by the fixed-mesh method described in §6.9.1 has been shown

to converge, the mesh is reduced to only mesh points containing the support of U , with

at most one zero-valued mesh point at each interface.

From the fixed mesh solution, we select a representation of mesh points throughout

the support of U , using the selected points as the initial approximation U0 in the MPCM.

The MPCM is much more computationally expensive to run when the number of nodes

in the mesh is high, which is likely to be the case when the fixed-mesh method has

converged, hence the need to reduce the number of points used in this part of the hybrid

method.

This solution is then used as the initial condition in the MPCM, at time t = T 0.

The MPCM method is then run over the time window t ∈ [T 0, T ], where T is the final

time the method is run to, as described in Chapters 3 or 4.

6.9.5 Critique of the Hybrid Method

The hybrid method described in this section has the potential to be able to model

the case where the initial velocity of the boundary of the domain is instantaneously

unbounded, as well as modelling the other expected behaviours discussed in §6.4. How-

ever, there are a number of factors to consider in order to enable the method to work

correctly, which have so far prevented the method being implemented satisfactorily:

• The value of T 0 is important, since we are interested in using the MPCM part of

the method as soon as possible. If the value of T 0 is taken to be too small however,

the boundary velocities may be too large to be modelled accurately. Conversely,

if the value of T 0 is taken to be too large, the fixed-mesh part of the method may

be being used for an unnecessarily large number of time steps. The semi-implicit

scheme used in the fixed-mesh part of the method is of a lower order of accuracy

compared with the MPCM part, so minimising the number of time steps used in

the fixed-mesh part is beneficial to the overall accuracy of the hybrid method.
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• In the fixed-mesh portion of the hybrid method there is a further potential issue

which may arise if the moving interface lies on or close to a mesh point, in cases

where q(x, t) or ∂q
∂x are unbounded at the interface. In this instance we may not

produce accurate results as the finite difference scheme used would not be able to

approximate these unbounded quantities.

• Early simulations of the hybrid numerical method have shown that the fixed-mesh

portion may develop unwanted oscillations at points close to the boundary, which

makes estimation of the position of the numerical interface problematic. Although

much effort was made in attempting to reduce these oscillations or improve the

means of estimating the interface position, the outcome was unsatisfactory.

6.10 An Alternative Expression for the Velocity

In this section we shall consider the fourth-order problem written as a single fourth-

order PDE rather than two second-order equations (and therefore without reference to

the q(x, t) function). Setting m = 1 in (2.1), we therefore seek solutions u(x, t) to

∂u

∂t
= − ∂

∂x

(
un
∂3u

∂x3

)
, in ΩT ,

subject to the initial condition at time t = t0 given by

u(x, t0) = u0(x), for x ∈ Ω(t0),

and the boundary conditions

u = 0, at x = a(t), x = b(t), t > t0,

∂u

∂x
= 0, at x = a(t), x = b(t), t > t0,

uv − un∂
3u

∂x3
= 0, at x = a(t), x = b(t), t > t0.

Through conservation of mass the velocity at points in the interior of the domain is

v = un−1∂
3u

∂x3
, (6.19)
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avoiding any reference to q(x, t).

We now introduce an identity which allows us to rewrite (6.19) as

v = un−1∂
3u

∂x3
≡ 1

n

∂3(un)

∂x3
− 6(n− 1)

n2

∂

∂x

[∂(un/2)

∂x

]2


+
27(n− 1)(n− 2)

2n3

(
∂(un/3)

∂x

)3

,

(6.20)

the proof of which is as follows.

Proof. We shall being by making use of the identity

∂3

∂x3
(un) ≡ n ∂2

∂x2

(
un−1∂u

∂x

)
, (6.21)

from which we may write

n
∂2

∂x2

(
un−1∂u

∂x

)
≡ nun−1∂

3u

∂x3
+ 2n

∂(un−1)

∂x

∂2u

∂x2
+ n

∂u

∂x

∂2

∂x2
(un−1),

≡ nun−1∂
3u

∂x3
+ 3n(n− 1)un−2∂u

∂x

∂2u

∂x2
+ n(n− 1)(n− 2)un−3

(
∂u

∂x

)3

.

(6.22)

Dividing (6.22) through by n, using (6.21) and rearranging we see that

un−1∂
3u

∂x3
≡ 1

n

∂3u

∂x3
− 3(n− 1)un−2∂u

∂x

∂2u

∂x2
− (n− 1)(n− 2)un−3

(
∂u

∂x

)3

, (6.23)

where the LHS of (6.23) matches the RHS of (6.19). The second and third terms on

the RHS of (6.23) are not as yet in their required form.

We note that

∂

∂x

[
∂(un−1)

∂x

]
≡ ∂(un−1)

∂x

∂2u

∂x2
+
∂2(un−1)

∂x2

∂u

∂x
,

≡ ∂(un−1)

∂x

∂2u

∂x2
+ (n− 1)

∂u

∂x

∂

∂x

(
un−2∂u

∂x

)
,

≡ 2(n− 1)un−2∂u

∂x

∂2u

∂x2
+ (n− 1)(n− 2)un−3

(
∂u

∂x

)3

,
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which we may rearrange to obtain

(n− 1)un−2∂u

∂x

∂2u

∂x2
≡ 1

2

∂

∂x

[
∂(un−1)

∂x

]
− 1

2
(n− 1)(n− 2)un−3

(
∂u

∂x

)3

,

≡ 1

2
(n− 1)

∂

∂x

[
un−2

(
∂u

∂x

)2
]
− 1

2
(n− 1)(n− 2)un−3

(
∂u

∂x

)3

.

(6.25)

Substituting (6.25) into (6.23),

un−1∂
3u

∂x3
≡ 1

n

∂3u

∂x3
− 3

2
(n−1)

∂

∂x

[
un−2

(
∂u

∂x

)2
]
− 1

2
(n−1)(n−2)un−3

(
∂u

∂x

)3

, (6.26)

which is almost in the required form.

We may write (6.26) in the required form using the identities

un−2

(
∂u

∂x

)2

≡
(
un/2−1∂u

∂x

)2

≡ 4

n2

(
∂(un/2)

∂x

)2

,

and

un−3

(
∂u

∂x

)3

≡
(
un/3−1∂u

∂x

)3

≡ 27

n3

(
∂(un/3)

∂x

)3

,

which results in

un−1∂
3u

∂x3
≡ 1

n

∂3u

∂x3
− 6(n− 1)

n2

(
∂(un/2)

∂x

)2

+
27

2n3
(n− 1)(n− 2)

(
∂(un/3)

∂x

)3

,

as required.

Remark. A corresponding identity holds for the second-order problem and in principle

exists for the sixth-order problem when the sixth-order PDE is considered as a single

equation as opposed to three second-order equations. The details of these corresponding

identities are omitted here as the focus is on the fourth-order problem.

In a similar manner to that discussed in §6.4, we can examine the behaviour of the

initial alternative velocity at the boundary at points x ≈ ω, when the initial condition

is of the form (6.4). For points close to x = ω, we have that u0(x) is of the form (6.5)

and using this we can examine the various terms in (6.20).
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The first term on the RHS of (6.20) is given by

1

n

∂3(un)

∂x3
= 12cn1α(nα− 1)x(ω2 − x2)nα−2 − 8cn1α(nα− 1)(nα− 2)x3(ω2 − x2)nα−3,

which, for x ≈ ω,

1

n

∂3(un)

∂x3
≈ cn1α(nα− 1)

[
3(2nαωnα−1(ω − x)nα−2 − (nα− 2)(2ω)nα(ω − x)nα−3

]
.

Similarly, the second term is given by

6(n− 1)

n2

∂

∂x

[∂(un/2)

∂x

]2
 = 12cn1 (n−1)α2

(
x(ω2−x2)nα−2−(nα−2)x3(ω2−x2)nα−3

)
,

which for x ≈ ω has the form

6(n− 1)

n2

∂

∂x

[∂(un/2)

∂x

]2


≈ cn1 (n− 1)α2

(
3(2nα)ωnα−1(ω − x)nα−2 − 3

2
(nα− 2)(2ω)nα(ω − x)nα−3

)
.

Finally, the third term is given by

27(n− 1)(n− 2)

2n3

(
∂(un/3)

∂x

)3

= −8

2
cn1α

3(n− 1)(n− 2)x3(ω2 − x2)nα−3,

which for x ≈ ω,

27(n− 1)(n− 2)

2n3

(
∂(un/3)

∂x

)3

≈ −1

2
cn1α

3(n− 1)(n− 2)(2ω)nα(ω − x)nα−3.

The velocity (6.20) at points x ≈ ω is therefore

v ≈ 3cn1 (2nα)ωnα−1

(
α(nα− 1)− (n− 1)α2

)
(ω − x)nα−2

− (c1)n(2ω)nα
[
α(nα− 1)(nα− 2)− 3

2
α2(n− 1)(nα− 2)

+
1

2
α3(n− 1)(n− 2)

]
(ω − x)nα−3.

(6.27)

Examining (6.27), we see that the velocity consists entirely of terms which are smooth

for choices of nα ≥ 3, indicating that they should possess a limit at the boundary in

these cases. For cases where nα < 3 the velocity becomes unbounded as x → ω as

expected.
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6.10.1 Approximating the Alternative Velocity

We can readily approximate the terms in (6.20) using finite differences to obtain an

approximation for the velocity for use in the MPCM. This approximation can then be

used to determine whether the boundary is behaving as expected from the analysis in

§6.4. Crucially, the terms in (6.20) avoid any multiplications of the form “0×∞” or the

need to approximate the q(x, t) function. This alleviates the issues observed previously

with the MPCM.

We shall describe the process of approximating the terms of (6.20) on a mesh of N

nodes. At a given time level tk we seek an approximation Vi at each node of the mesh

(with the time level k suppressed for clarity).

The first term on the right hand side of (6.20) is approximated in two steps. In

the first step, we approximate ∂2

∂x2
(un) at interior points using central differences. We

denote the approximation ∂2

∂x2
(un)at node i (for i = 1, . . . , N − 1) by Pi, then set

Pi =

Uni+1 − Uni
Xi+1 −Xi

−
Uni − Uni−1

Xi −Xi−1
1
2(Xi+1 −Xi−1)

, for i = 2, . . . , N − 1. (6.28)

This step is similar to the approximation of q(x, t) given in (3.17) with Ui replaced by Uni

and without the minus sign. At the boundary points of the mesh we set P1 = PN = 0,

since for nα ≥ 3 we have that

∂2

∂x2
(un) ∼ nα(nα− 1)(ω − x)nα−2 = 0, as x→ ω,

at the boundary points.

We then complete the approximation of the first term of the right-hand side of (6.20)

at node i (which we shall denote by T 1
i ) in the alternative velocity (6.20) by setting

T 1
i =

1

n

Pi+1 − Pi
(Xi+1 −Xi)2

+
Pi − Pi−1

(Xi −Xi−1)2

1
Xi+1−Xi

+ 1
Xi−Xi−1

, (6.29)

for i = 2, . . . , N − 1.

The approximation of second term in (6.20), which we denote by T 2
i , is taken as

T 2
i =

6(n− 1)
n2

2 (Xi+1 −Xi−1)

((Ui+1)n/2 − (Ui)
n/2

Xi+1 −Xi

)2

−

(
(Ui)

n/2 − (Ui−1)n/2

Xi −Xi−1

)2
 , (6.30)
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for i = 2, . . . , N − 1, while the approximation of the third term, denoted T 3
i , is given by

T 3
i =

27(n− 1)(n− 2)

2n3

(
(Ui+1)n/3 − Un/3i−1

Xi+1 −Xi−1

)3

, (6.31)

for i = 2, . . . , N − 1.

The velocity at node i, is then the sum of the three terms (6.29), (6.30) and (6.31),

Vi = T 1
i − T 2

i + T 3
i ,

for i = 2, . . . , N − 1.

We then approximate the boundary velocity V1 and VN using an extrapolation from

nearby velocity approximations, which we would expect to be feasible as all terms in the

alternative velocity are smooth and do not involve any indeterminate multiplications as

in the previous expression of the velocity (3.14).

6.10.2 Provisional Results

We now provide provisional results which have been generated using an implementation

of the MPCM featuring the alternative velocity described in §6.10.1. We shall repeat

the experiments performed in §6.6.1, using the same choices of n and α and with the

same number of nodes in the meshes.

The initial computed velocities V 0
N using the alternative velocity are given in Tables

6.8–6.10 for the finite advance, finite retreat and waiting-time cases respectively,

It is clear from Tables 6.8–6.10 that there is a marked difference between the results

generated using the alternative velocity method and the original results presented in

Tables 6.1–6.3. In the finite advance and retreat cases in particular the computed

boundary velocities are much closer to the expected values, while the waiting time case

has produced results of a similar magnitude to the previous velocity implementation.

The finite retreat case (Table 6.9) highlights an interesting feature of the results. In

both cases the N = 21 results are the least accurate of the meshes, as may be expected

since the mesh is coarsest for this value of N . As the number of mesh points increases

the boundary values approach the expected values, before slowly moving away as we

reach N = 1281.
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N n = 8/5, α = 15/8 n = 2, α = 3/2

21 0.0502 0.0289

41 0.0445 0.0311

81 0.0460 0.0321

161 0.0468 0.0324

321 0.0470 0.0325

641 0.0471 0.0325

1281 0.0471 0.0325

v0
b ≈ 0.04 0.03

Table 6.8: Initial boundary velocities for the finite advance experiments using the al-

ternative velocity. The expected boundary velocity is given in the final row for each

case.

N n = 6/5, α = 5/2 n = 15/11, α = 11/5

21 -0.7990 -0.1323

41 -0.9314 -0.1755

81 -0.9397 -0.1762

161 -0.9386 -0.1750

321 -0.9380 -0.1746

641 -0.9378 -0.1745

1281 -0.9377 -0.1744

v0
b ≈ −0.95 ≈ −0.18

Table 6.9: Initial boundary velocities for the finite retreat experiments using the al-

ternative velocity. The expected boundary velocity is given in the final row for each

case.
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N n = 5/2, α = 5/2 n = 2, α = 2

21 -0.0207 -0.0079

41 5.53× 10−4 6.75× 10−5

81 1.84× 10−4 9.22× 10−4

161 7.77× 10−6 3.96× 10−4

321 −7.12× 10−7 1.23× 10−4

641 −1.87× 10−7 3.41× 10−5

1281 −2.65× 10−8 8.94× 10−6

v0
b 0 0

Table 6.10: Initial boundary velocities for the waiting-time experiments using the al-

ternative velocity. The expected boundary velocity is given in the final row for each

case.

In an attempt to understand this difference, we investigate the computed boundary

velocity for one of the experiments to determine whether oscillations are still appearing

close to the boundary. As in §6.6.1, we select the finite retreat case (with n = 6/5,

α = 15/8 and nα = 3) and plot the computed initial velocity for the final five mesh

points in the N = 81 case and the final 20 mesh points of the mesh in the N = 1281

case. These computed velocities are given in Figure 6.8, along with the exact v0(x)

calculated using (6.20).

From Figure 6.8 it is clear that there are still oscillations forming close to the bound-

ary, which affects the final computed boundary velocity. These oscillations are much

smaller in magnitude than those seen in Figure 6.1 however, which explains why the

computed velocities are much closer to the expected values. We also observe that the

oscillations are larger for the N = 1281 mesh, which can explain why the computed

boundary velocity is slowly moving away from the expected values.

It is likely that the oscillations observed here may arise from the numerical approxi-

mation of the terms in (6.20) as opposed to the presence of the singularity in the original

experiments in (§6.6.1). The finite difference approximation of the derivatives for mesh
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Figure 6.8: The computed alternative velocity V 0
i for the n = 6/5, α = 15/8 finite

retreat case. The left plot shows the final five mesh points for the N = 81 mesh, while

the right plot shows the N = 1281 mesh plotted over the final 20 mesh points. The

green line in each plot is the exact v0(x) calculated from (6.20)
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points close to the boundary could be a source of numerical error arising in the method.

As the number of mesh points increases, these solution values will become smaller and

could cause the oscillations observed in Figure 6.8.

Overall, the alternative velocity expression appears to be a great improvement over

the previous velocity expression for choices of n > 1. By avoiding approximating the

q(x, t) function the issues with point-wise multiplications that caused difficulties in the

previous implementation of the velocity are avoided. The method is still limited to the

case where nα ≥ 3 however.

6.10.3 The Alternate Velocity near the Boundary as N increases

The provisional results given in Tables 6.8 and 6.9 illustrate a potential issue which can

occur as the value of N increases. In both Tables 6.8 and 6.9 the computed boundary

velocity approached the expected value as N remained small (N = 21, 41 for example),

before slowly beginning to move away from the expected value as N became larger.

In order to explain this behaviour, we note that the finite difference schemes (6.28)–

(6.31) involve terms containing factors Xi+1 − Xi or Xi − Xi−1. As the value of N

increases, the size of these factors will decrease, which (when coupled with the value of

Ui approaching zero as we approach the boundary) can cause rounding errors to have a

greater impact on the accuracy of the resulting velocity. This effect can be seen in Figure

6.8, with the N = 1281 approximate velocity being more unstable than the N = 81 for

points close to the boundary.

This information suggests that the MPCM utilising the alternate velocity is best

suited to smaller values of N in order to provide a more accurate representation of the

velocity close to the boundary.

6.10.4 The Alternative Velocity when n = 1

If the implementation of the alternative velocity can be performed such that the results

for n > 1 are converging, then it opens up possibilities for an alternative MPCM (the

MPCMb, say). In this alternative MPCM, the velocity (6.20) when n = 1 has only one
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term. It may be possible to modify the scheme used to approximate this term such that

the MPCMb possesses the S Property over a single time step (if scale-invariant time

stepping is used). This then results in a method which may be able to overcome some

of the limitations of the original MPCM, while also possessing the S Property.

6.11 Summary of this Chapter

In this chapter we have examined the ability of the MPCM to model various initial

boundary behaviours for the fourth-order problem (2.3)–(2.5) when n > 1. By con-

sidering initial conditions of the form (6.4) we were able to identify various different

initial behaviours of the boundary (supporting results in Blowey et al. (2007)). This

investigation highlights a range of situations in which the MPCM is unable to track the

moving boundary.

Further investigation of the behaviour of the q(x, t) function suggested that this was

due to the singularity present at the boundary. This investigation highlighted the issues

present in writing the fourth-order PDE (2.3) as a pair of second-order equations. It

was found that these issues occurred in both the MPCM and FEMPCM, in spite of the

weak forms used in the latter.

A discussion on the initial distribution of mesh points in the MPCM/FEMPCM was

presented. All numerical results presented in this thesis are obtained on an initially

uniform mesh. This can cause the method to be unable to resolve significant features of

the solution (for points close to the boundary). Alternative means of initially distributing

the mesh are discussed, highlighting advantages and disadvantages of each.

Two possible strategies for overcoming the problems discovered in the MPCM were

then proposed. The first of these was a hybrid numerical method which is potentially

able to model an initially unbounded boundary velocity. An outline of the method was

given, without numerical verification. The second strategy involved a direct expression

for the velocity without recourse to the q(x, t) function, using identities, and approxi-

mating this new expression numerically. The new implementation of the MPCM was

then shown to produce correct qualitative boundary velocities when compared to the
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original MPCM.

In the final chapter we shall provide a summary of the thesis, including conclusions

drawn throughout. We shall also provide a discussion on potential future directions of

the work.

179



Chapter 7

Conclusions and Further Work

In this final chapter we shall summarise the work in this thesis and present conclusions

that can be drawn from the progress made. We then provide an outline of future

directions in which the subject can be taken, either related directly to the work covered

in the thesis or natural extensions to the work which have not been previously covered.

7.1 Summary

In Chapter 1 we outlined the main aims of the thesis. These were to:

• Extend the finite difference work of Parker (2010) for a particular second-order

problem to higher orders (fourth and sixth) as well as to more general second-order

problems using a finite difference implementation of the velocity-based conserva-

tion method. These implementations, which use a scale-invariant time stepping

scheme, are theoretically able to propagate similarity solutions forward in time to

essentially within rounding error of the exact solution over a single time step. We

term this property of the numerical method the S Property.

• Produce an implementation of the BHJ method using higher order basis functions

and scale-invariant time stepping in order to propagate similarity solutions forward

in time to within rounding error. In principle, this finite element implementation
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is able to approximate solutions to those second, fourth and sixth-order problems

which admit such similarity solutions.

• Use these implementations to provide a comparison with the work in Blowey et al.

(2007) in order to verify whether the moving-mesh method is able to replicate the

small-time behaviours of solutions (computed in that paper using a fixed-mesh

method). It was hoped that the method can not only model such behaviour, but

do so at a reduced computational expense.

In Chapter 2 we introduced the nonlinear diffusion problems to be studied in the

thesis, with the emphasis being on the fourth-order problem (2.3)–(2.5). A study of

the literature relating to these problems was provided, which highlighted the known

behaviour of solutions to the problems as well as the various studies that have been

made. The chapter also described the properties possessed by the nonlinear diffusion

problems, such as mass conservation and the existence of similarity solutions to the

problems.

We then introduced the subject of using numerical methods for finding approxi-

mate solutions to nonlinear diffusion problems, using both moving-mesh methods and

fixed-mesh methods. This was presented in the context of one-dimensional (in space)

implementations, although some mention of methods in higher dimensions was made in

order to highlight the body of work that exists in the wider literature.

Chapter 3 then focused on a particular class of moving-mesh numerical method; the

velocity-based method. This class of method was central to the work done in the thesis

and as such is given a larger role in the discussion of the various methods. We described

a selection of existing velocity-based methods, including the conservation-based methods

on which the MPCM is based. The MPCM is a finite difference implementation of a

conservation method which generalises the work of Parker (2010) for a specific second-

order problem and which has been extended to work on the problems considered in this

thesis. Another influence on the MPCM is the BHJ method of Baines, Hubbard and

Jimack (Baines et al. (2005, 2006, 2011)) which has been used successfully in solving

some of the problems covered in this thesis.
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The majority of Chapter 3 focused on introducing the MPCM for the various orders

of problem considered. The conservation method uses local mass conservation in order

to establish the velocities of interior mesh points (with extrapolation used to obtain the

velocity at the boundary points), which is then used to move the mesh in time using a

suitable time stepping method. The local mass conservation is then used to recover the

solution algebraically on the updated mesh at the next time step. The chapter finishes

with a definition of the S Property, which we demonstrate in later chapters that the

MPCM possesses in certain circumstances.

In Chapter 4 the MPCM was modified for the fourth order problem (2.3)–(2.5) with

n = 1 in order to demonstrate that the method possesses the S Property when the initial

condition coincides with a similarity solution and a scale-invariant time stepping scheme

is used. By modifying the schemes used, the truncation error of each step of the method

was shown to be equal to zero over a single time step. This property was verified by

numerical results, although multiple time steps highlighted a build up of rounding error

incurred by the time stepping method. This build up of error was investigated and

bounded.

Chapter 4 also provided insight into how the MPCM possesses the S Property for

the second-order problem (2.7)–(2.9) for any choice of n. For the sixth-order problem

(2.10)–(2.12) with n = 1, the required modifications to the schemes in the MPCM are

presented. Numerical verification is not provided for the sixth-order problem due to a

lack of a working program code.

A departure from finite difference implementations took place in Chapter 5, with

the description of the FEMPCM. This required the introduction of weak forms of the

various equations in the different problems considered. We described the BHJ method

(from which the FEMPCM originated) with a few minor alterations for the fourth-

order problem (2.3)–(2.5), using piecewise linear basis functions throughout. We then

demonstrated that by choosing the basis functions in the FEMPCM to be of the same

order as the exact solution, the method for the fourth-order problem (2.3)–(2.5) with

n = 1 could be shown to possess the S Property. Numerical results were presented which
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verify the possession of the S Property, with a build up of rounding error present as in

the MPCM.

We then described the steps required to modify the FEMPCM for the second-order

problem (2.7)–(2.9) with any n and the sixth-order problem (2.10)–(2.12) with n = 1 so

that they possess the S Property.

In Chapter 6 we explored the fourth-order problem (2.3)–(2.5) for choices of n > 1,

for which there are no explicit similarity solutions which can be used to verify results

obtained from the MPCM. It was hoped that although the MPCM does not possess the

S Property in this instance, the method would still be able to model various expected

small-time behaviours of the solutions. In particular, a comparison between results

presented in Blowey et al. (2007) and results from the MPCM was proposed.

Examining the initial boundary velocities for the fourth-order problem (2.3)–(2.5)

with n > 1 and for initial conditions of the form (6.4) identified a regime in (n, α)

space such that the boundary would be expected to move with an initially unbounded

velocity. In this instance the MPCM would not be able to model such behaviour (as any

numerical method attempting to approximate the unbounded boundary velocity would

not). A range of α was also identified for which the function q(x, t) or ∂q
∂x would become

unbounded at the boundary. The current method of calculating the boundary velocity

used in the MPCM would therefore not be able to accurately approximate such values

due to the appearance of oscillations at points close to the boundary, which hinders the

effectiveness of the method.

An investigation into whether the FEMPCM (incorporating the q(x, t) function)

experiences the same issues with calculating the boundary velocity was made. It was

shown that the oscillations present in the MPCM also occur in the FEMPCM. Therefore,

despite the FEMPCM featuring integral forms covering the whole domain (as opposed

to merely point-wise representation as in the MPCM), the singularity at the moving

boundary still causes problems in the FEMPCM.

A discussion on the initial mesh distribution for the MPCM or FEMPCM was then

made. A uniformly distributed mesh was used for all numerical results in this thesis.
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For problems in which the method would be expected to possess the S Property, this

uniform mesh is suitable for producing results of the required accuracy. In the case of

the problems examined in Chapter 6, the initial mesh may benefit from being focused

closer to the boundary (with alternative means of initially distributing the mesh points

are discussed).

A possible means of alleviating the issue of modelling an initially unbounded bound-

ary velocity was proposed in the form of a hybrid numerical method, combining a fixed-

mesh method with the MPCM. At present this method is unverified, but a description

of how this could be implemented is given in §6.9, along with a critique of the issues to

be addressed in the implementation.

Finally, a formulation with an alternative expression for the velocity was proposed

which, when implemented numerically, alleviates the issues experienced with approxi-

mating the q(x, t) function (for nα ≥ 3). This alternative velocity does not contain any

of the products of terms which were shown to be problematic in the previous implemen-

tation. Numerical results show that this alternative velocity produces much improved

initial boundary velocities and is therefore a potential solution to the problems experi-

enced previously.

7.2 Conclusions

In conclusion, we have demonstrated both advantages and disadvantages in the use

of the MPCM for solving the type of nonlinear diffusion problems discussed in this

thesis. The ability of the MPCM to propagate similarity solutions forward in time to

the accuracy demonstrated in Chapter 4 is noteworthy and the manner in which it can

apply to different orders of problem is also of interest. The problems highlighted in

the case where the similarity solution is not known a-priori can be considered a major

disadvantage however, although some promising results in this area were observed.

Specifically, we conclude:

• The MPCM possesses the S Property (and therefore propagates similarity solutions
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forward in time to within rounding error if a scale-invariant time stepping scheme

is used) for problems of various orders (second/fourth/sixth) when the numerical

schemes are carefully modified.

In chapter 4 the numerical schemes of the MPCM were modified from the schemes

originally described in Chapter 3. These modified schemes were shown to have

zero local truncation error over a single time step when a similarity solution is

used as an initial condition and through the use of a scale-invariant time stepping

scheme. In practice we observed a build up of rounding error which was shown to

be due to the time stepping part of the method and this error was bounded. This

level of accuracy is present even in a small number of nodes, which reduces the

computational cost of the method.

• The FEMPCM can be implemented through careful choice of approximation spaces

so that it can also possess the S Property, producing a solution valid over the whole

of the domain at an increased computational cost (when compared to the MPCM

which is only valid at the mesh points).

Chapter 5 demonstrated that an implementation of the FEMPCM can also be

constructed which possesses the S Property for the same problems as previously

mentioned. As in the MPCM, a build up of rounding error is observed in the

numerical results, which is attributable to the time stepping method.

• There are a range of situations in which the MPCM (and FEMPCM) is unable to

accurately model the behaviour of the moving boundary of the fourth-order problem

(2.3)–(2.5), either due to the q(x, t) function or its derivative becoming unbounded

at the boundary or due to the boundary being expected to move with an initially

unbounded velocity.

In Chapter 6 we explored the applications of the MPCM to the fourth-order prob-

lem (2.3)–(2.5) for more general cases, since the ability of the method to produce

solutions for general n and for more general initial conditions is of interest to the

wider community. It was noted that for initial conditions of the form (6.4) there
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are choices of initial condition in which either the velocity or the functions q(x, t)

or ∂q
∂x can become unbounded at the boundary.

In the case of the initial boundary velocity becoming unbounded any numerical

method attempting to calculate this velocity will fail. In particular, the MPCM is

unable to be applied since it requires a finite velocity to update the mesh points.

If ∂q
∂x becomes unbounded at the boundary it will not be accurately approximated

by the MPCM, and the point-wise multiplication of un−1 and ∂q
∂x in the velocity

near the boundary will not be accurately performed, even if the product of these

two terms is finite. This then causes the boundary velocity to be inaccurately

approximated and could cause the boundary to behave in a different manner to

that expected (when compared with results from King (2001) and Blowey et al.

(2007)). These issues were also demonstrated with the FEMPCM.

• Proposed methods to combat the issues exhibited by the MPCM show promise; A

hybrid numerical method may allow an initially unbounded velocity to be modelled

but is unverified, while an alternative velocity expression could allow for more

accurate boundary velocities to be calculated when implemented into an alternative

MPCM.

Chapter 6 also introduced two proposed alternatives to the MPCM which may

potentially alleviate the issues reported in the previous bullet point. Each alter-

native tackles a separate issue, with the first of these (a hybrid numerical method)

using a combination of a fixed-mesh method and the MPCM to track an initially

unbounded boundary velocity. The fixed-mesh portion of the hybrid method uses

a scheme in which the boundary may advance at most one mesh point over a single

time step, which allows the method to approximate the solution until such a time

as the boundary velocity is able to be accurately approximated by the MPCM.

The solution at the end of the fixed-mesh time window is then used as the initial

condition for the MPCM. At present the hybrid method has not been able to be

implemented successfully.
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The second alternative involves avoiding the approximation of the q(x, t) function

entirely by rewriting the velocity expression using an identity. The MPCM approx-

imates the velocity using a point-wise multiplication which we have demonstrated

to be flawed in some cases. This alternative velocity expression avoids any mul-

tiplications which could cause such issues in the resulting velocity approximation

and can then be numerically approximated. This alternative velocity has been

shown to compute velocities with reduced oscillations when compared with those

obtained by the MPCM and is a promising area of future research.

7.3 Future Work

The results achieved in this thesis, particularly those in Chapter 6, have highlighted the

potential for further research on this topic in a number of areas. There are also some

areas which have not been discussed in this thesis but could be pursued in the future.

We shall discuss some of these areas in this section.

The alternative velocity expression (6.20) produces a different implementation of the

MPCM (the MPCMb, say) which warrants further study, particularly in light of encour-

aging preliminary results. It would be of interest to see whether such an implementa-

tion is able to produce convergent boundary trajectories which can then be compared

to those presented in Blowey et al. (2007). If this comparison can be made then the

MPCMb could produce approximate solutions to the fourth-order problem (2.3)–(2.5)

which match the small time behaviours expected from the existing literature, but at a

fraction of the computational cost.

As an additional consideration, the current implementation of the MPCMb in §6.10

uses low-order schemes to approximate each terms. If the schemes were modified such

that in the case when n = 1 the schemes used to calculate the velocity are of higher-

order and are exact for quartic u(x, t) and linear v(x, t), then it could be shown that this

implementation possesses the S Property in the l∞ norm. The MPCMb would then be a

method which possesses the main strength of the MPCM (possession of the S Property),

with the ability to accurately model boundary behaviours for nα ≥ 3.
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Implementation of the hybrid numerical method is also a possible future research

avenue, as discussed in §6.9. The main issue with the method is the time point at

which the method switches from a fixed-mesh to a moving-mesh method, as this is

not obvious a-priori. This value may also be dependent upon the value of n and the

initial condition used, since it is intended that the fixed-mesh part of the method be run

until the boundary velocity is able to be approximated accurately by the moving-mesh

portion.

There is also more work to be achieved on the current implementations of the MPCM

and FEMPCM, particularly with regard to the sixth-order problem (2.10)–(2.12). Nu-

merical results were omitted from this thesis for the MPCM as a working program code

was not available. The method as described in Chapter 4 is expected to possess the S

Property, but currently the program code is unable to approximate the quartic p(x, s)

function to the required accuracy.

Finally, a natural extension to the work in this thesis is to move into higher spatial

dimensions. A logical extension into two spatial dimensions would be an implemen-

tation of the FEMPCM, since two-dimensional finite element methods have been used

successfully in the past (such as the BHJ method of Baines et al. (2005, 2006, 2011)).

Implementing the FEMPCM using the correct approximation spaces should enable the

FEMPCM to possess the S Property in higher dimensions, albeit with increased com-

plexity in the implementation of higher-order basis functions.
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L. Giacomelli, H. Knüpfer, and F. Otto. Smooth zero-contact-angle solutions to a thin-

film equation around the steady state. J. Differential Equations, 245:1454–1506, 2008.

H.P. Greenspan. On the motion of a small viscous droplet that wets a surface. J. Fluid

Mech., 84:125–143, 1978.

G. Grün. On the convergence of entropy consistent schemes for lubrication type equa-

tions in multiple space dimensions. Mathematics of Computation, 72:1251–1279, 2003.

G. Grün and M. Rumpf. Nonnegativity preserving convergent schemes for the thin film

equation. Numerische Mathematik, 87:113–152, 2000.

G. Grün and M. Rumpf. Simulation of singularities and instabilities arising in thin film

flow. European J. Appl. Math., 12:293–320, 2001.

D. Huang, Q. Yang, and S. Zhou. Group properties and invariant solutions of a sixth-

order thin film equation in viscous fluid. Journal of Mathematical Physics, 54:013510,

2013.

193



W. Huang and R.D. Russell. A high dimensional moving mesh strategy. Applied Nu-

merical Mathematics, 26(1):63–76, 1997.

W. Huang and R.D. Russell. Moving mesh strategy based on a gradient flow equation for

two-dimensional problems. SIAM Journal on Scientific Computing, 20(3):998–1015,

1999.

W. Huang and R.D. Russell. Adaptive Moving Mesh Methods. Springer, New York,

2011.

W. Huang, Y. Ren, and R.D. Russell. Moving Mesh Partial Differential Equations

(MMPDES) Based on the Equidistribution Principle. SIAM J. Numer. Anal., 31:

709–730, 1994.

M. Hubbard, M.J. Baines, and P.K. Jimack. Consistent dirichlet boundary conditions

for numerical solution of moving boundary problems. Applied Numerical Mathematics,

59:1337–1353, 2009.

J. Hulshof and A.E. Shishkov. The thin film equation with 2 ≤ n < 3: Finite speed of

propogation in terms of the l1-norm. Adv. Differential Equations, 3:625–642, 1998.

H. Jiang and N. Wei-Ming. On steady states of van der waals force driven thin film

equations. Euro. J. Appl. Math., 18:153–180, 2007.
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