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Abstract

This paper is concerned with solving numerically the Dirichlet bound-

ary value problem for Laplace’s equation in a non-locally perturbed half-

plane. This problem arises in the simulation of classical unsteady water

wave problems. The starting point for the numerical scheme is the bound-

ary integral equation reformulation of this problem as an integral equation

of the second kind on the real line in Preston et al. (2008, J. Int. Eqn.

Appl., 20, 121–152). We present a Nyström method for numerical solu-

tion of this integral equation and show stability and convergence, and we
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present and analyse a numerical scheme for computing the Dirichlet-to-

Neumann map. i.e. for deducing the instantaneous fluid surface velocity

from the velocity potential on the surface, a key computational step in un-

steady water wave simulations. In particular, we show that our numerical

schemes are superalgebraically convergent if the fluid surface is infinitely

smooth. The theoretical results are illustrated by numerical experiments.

Keywords: Water Waves, Nyström Method, Laplace’s Equation, Non-

periodic Surfaces

1 The Formulation of the Water Wave Problem

The fluid motion in a classical water wave problem is well-modelled as the mo-

tion under the influence of gravity of an incompressible, inviscid and irrotational

fluid. As the fluid is irrotational then the flow can be described as a potential

flow and the velocity v throughout the fluid is given by

v = (v1, v2) = ∇φ (1.1)

where φ is the velocity potential. Under the standard assumptions of water wave

theory the velocity potential satisfies Laplace’s equation in the fluid

∆φ = 0, (1.2)

and, in the absence of surface tension, Bernoulli’s equation

∂φ

∂t
= −

1

2
|∇φ|

2
− gx2, (1.3)

where x2 is the vertical component of x, on the free surface.

We consider in this paper the case when, at each instant in time, the fluid

occupies a perturbed half-plane domain of the form

Ω := {(x1, x2) : x2 < f(x1), x1 ∈ R} ,

where, for some constants f− and f+, the continuous function f satisfies

f− ≤ f(x1) ≤ f+ (1.4)
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for x1 ∈ R, so that the fluid surface Γ := ∂Ω = {(x1, f(x1)) : x1 ∈ R} is the

graph of a bounded function. We assume moreover some smoothness for Γ,

that, for some n ∈ N0 := N ∪ {0}, the derivatives of f up to order n + 2

exist and are bounded and continuous. At x = (x1, f(x1)) ∈ Γ, we define

n(x) = (n1(x), n2(x)) to be the unit normal vector directed out of Ω and

s(x) = (s1(x), s2(x)) to be the unit tangent vector that has a positive hori-

zontal component, s1(x) > 0.

Given a set G ⊂ R
m, m = 1 or 2, let BC(G) denote the set of real-valued

functions on G that are bounded and continuous, a Banach space under the

usual supremum norm. In terms of this notation, the main computational re-

quirement in evolving the fluid boundary as a function of time is the solution

to the following Dirichlet boundary value problem for φ:

Given boundary data φΓ ∈ BC(Γ), find φ ∈ BC(Ω̄) ∩ C2(Ω) such that

∆φ = 0 in Ω and φ = φΓ on Γ, (1.5)

It is shown in Preston et al. (2008) that this boundary value problem is well-

posed and that the solution satisfies the maximum principle

|φ(x)| ≤ sup
y∈Γ

|φΓ(y)| , x ∈ Ω.

A large part of this paper will be devoted to describing and analysing a nu-

merical scheme for (1.5) which is a discretisation of a boundary integral equa-

tion reformulation proposed recently in Preston et al. (2008). We will also

discuss the numerical computation, by boundary integral equation methods, of

the Dirichlet-to-Neumann map ΛΓ, which is the map with input φΓ and output

∂φ
∂n on Γ where φ is the solution to the above boundary value problem. Given

this map, we can determine the velocity on the boundary by

v|Γ = ∇φ|Γ = DφΓs + ΛΓφΓn, (1.6)

where DφΓ = ∂φΓ

∂s is the tangential derivative of φΓ. Hence we can evolve φΓ

and the boundary Γ (as the graph of a function f) using (1.3) and the kinematic

boundary condition that the surface moves with the fluid. Precisely, on Γ, we
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have that f and v = (v1, v2) satisfy

∂φ

∂t
= −

1

2
|v|

2
− gf,

∂f

∂t
= v2 − v1f

′. (1.7)

The formulation above separates the determination of the velocity potential

(1.5) at any given time from the evolution of the two parameters, the bound-

ary position and the Dirichlet boundary data (1.7). This separation naturally

enables the system to be modelled by explicit time-stepping numerical meth-

ods used throughout the water wave literature, for example Runge-Kutta and

Adams-Bashforth schemes, see Baker & Beale (2004); Beale et al. (1996); Hou

& Zhang (2002).

Let us spell out what the new contributions are in this paper. A main novelty

is that this paper appears to be the first publication to tackle the numerical

solution of the boundary value problem (1.5) in the general case of arbitrary

bounded continuous Dirichlet data φΓ, with neither the boundary Γ nor φΓ

assumed to be periodic. In the context of numerical simulation of periodic water

waves a numerical scheme, with a complete analysis, is provided in Hou & Zhang

(2002) which applies to (1.5) in the special case when Γ and φΓ are periodic (so

that, for some S > 0, f(s + S) = f(s), s ∈ R). The boundary-integral-based

scheme analysed in Hou & Zhang (2002) is one source of inspiration for the

numerical method proposed and analysed in this paper. (The other is work on

the numerical solution of acoustic rough surface scattering problems Meier et al.

(2000); Meier & Chandler-Wilde (2001); Meier (2001); Haseloh (2004).) But we

note that the restriction to periodic Γ and boundary data in (1.5) simplifies the

numerical scheme required and especially its analysis significantly. In particular,

as we discuss later in the final section, with this periodicity the operator in the

boundary integral equation formulation we describe is a compact perturbation

of the identity operator, so that stability and convergence of the type of scheme

we propose follows, to a large extent, from standard arguments, for example

based on collectively compact operator theory Atkinson (1997).

A main motivation in designing an effective numerical scheme for (1.5) and
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for computing the Dirichlet-to-Neumann map is to provide a tool for the main

computational problem at each time step for problems of simulation of non-

periodic water waves. We note, however, that our method does apply in the

special case when the surface is periodic. An attraction of our numerical scheme

and our analysis in that case is that it is clear from our results that our scheme

is stable and convergent uniformly with respect to the period S. Thus the

condition number of the linear system and the error in the numerical scheme

remain bounded in the limit as S → ∞. We also note that throughout we take

care to prove stability results and error bounds that are uniform with respect

to the surface Γ, provided f lies in a certain constrained set, defined by the

requirement (1.4) and by bounds on derivatives of f . Of course our motivation

here is again the application to the simulation of time dependent water waves,

where f varies in some constrained set as a function of time.

The structure of the paper is as follows. Section 2 recalls the integral equa-

tion formulation from Preston et al. (2008) that we will discretise; the main new

results in this section are mapping properties of the integral operator, regularity

results for the solution of the boundary integral equation, and an explicit rep-

resentation for and mapping properties of the Dirichlet-to-Neumann map. In

Section 3 we turn to discretisation and numerical analysis. Section 3.1 analyses

a Nyström method for the boundary integral equation based on discretisation

of the integral operator, which is parametrised so that the integration is on

the real line, by the trapezium rule. This analysis uses results from Meier &

Chandler-Wilde (2001); Meier (2001). In section 3.2 we discuss a discrete ap-

proximation to the derivative of a continuously differentiable function on the

real line based on localisation and trigonometric interpolation. In Section 3.3

we use the methods and results of Section 3.2 to formulate and analyse an ap-

proximate Nyström method which is superalgebraically convergent when the

Dirichlet data φΓ and Γ are smooth (in particular f ∈ C∞(R)), but which does

not require, as does the method of Section 3.1, access to the first and second

derivatives of f but only access to sampled values of f on a uniform grid. Our

intention is that this scheme in Section 3.3 should be of value in a time-stepping
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scheme for the water wave problem. In Section 3.4 we derive and analyse sim-

ilar methods for approximating the Dirichlet-to-Neumann map ΛΓ, and hence

for approximating the surface velocity v. Finally, in Section 4 we illustrate the

theoretical convergence results by numerical examples.

Notation. We collect here various notations used throughout, in particular

definitions of various function spaces that are necessary for the numerical anal-

ysis. Given an open or closed set G ⊂ R
m, m = 1 or 2, and n ∈ N0, let BCn(G)

denote the set of functions φ : G → R that are bounded and continuous and

have (partial) derivatives up to order n that are all bounded and continuous.

BCn(G) is a Banach space under the usual norm. We will abbreviate BC0(G)

by BC(G). For 0 < α ≤ 1, let BC0,a(G) ⊂ BC(G) denote the Banach space

of functions that are bounded and uniformly Hölder continuous with index α

and let BC1,α(G) denote the Banach space of functions ψ ∈ BC1(G) for which

∇ψ ∈ BC0,α(G).

For S > 0 and n ∈ N0 let BCnS (R) ⊂ BCn(R) denote the set those func-

tions φ ∈ BCn(R) that are periodic with period S. We abbreviate BC0
S(R) by

BCS(R) and let BC∞
S (R) := ∩n∈NBC

n
S (R). For p > 0 let wp(s) := (1 + |s|)p,

s ∈ R, and let BCnp (R) ⊂ BCn(R) denote the Banach space

BCnp (R) :=

{

u ∈ BCn(R) : ‖u‖BCn
p (R) := sup

m=0,..,n

∥

∥

∥
wpu

(m)
∥

∥

∥

BCn(R)
<∞

}

.

Throughout, e1, e2 and e3 will be the standard unit coordinate vectors in

R
3; we will use the same notations e1 and e2 for the unit vectors e1 = (1, 0)

and e2 = (0, 1) in R
2.

2 The Boundary Integral Formulation and the

Dirichlet to Neumann Map

Choose H > f+ and let ΩH denotes the half-plane ΩH := {(x1, x2) : x1 ∈ R, x2

< H} and let ΓH := ∂ΩH = {(x1,H) : x1 ∈ R}. Note that the half-plane ΩH

contains the perturbed half-plane domain Ω. We define the Dirichlet Green’s
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function for the half-plane ΩH by

ΦH(x, y) := Φ(x, y) − Φ(x, yr), x, y ∈ R
2, x 6= y,

where

Φ(x, y) := −
1

2π
ln |x− y|

is the fundamental solution to Laplace’s equation in two dimensions and yr :=

(y1, 2H − y2) is the reflection of y in ΓH .

In Preston et al Preston et al. (2008) it is proposed to look for a solution to

the boundary value problem (1.5) in the form of a double-layer potential

φ(x) :=

∫

Γ

∂ΦH(x, y)

∂n(y)
µΓ(y)ds(y), x ∈ Ω, (2.1)

for some density µΓ ∈ BC(Γ). Note that the half-plane Green’s function is used

in the definition (2.1) in place of the usual standard fundamental solution Φ.

The following theorem is shown in (Preston et al., 2008, Theorem 3.1).

Theorem 2.1. The double-layer potential (2.1) with density µΓ ∈ BC(Γ) sat-

isfies the boundary value problem (1.5) if and only if µΓ satisfies the second kind

integral equation

µΓ(x) −

∫

Γ

∂ΦH(x, y)

∂n(y)
µΓ(y)ds(y) = −2φΓ(x), x ∈ Γ. (2.2)

Defining the integral operator KΓ by

(KΓψΓ)(x) := 2

∫

Γ

∂ΦH(x, y)

∂n(y)
ψΓ(y)ds(y)

we can rewrite (2.2) in operator notation as

(I −KΓ)µΓ = −2φΓ.

The point of using ΦH rather than Φ in (2.1) is that this choice ensures

that the integrals (2.1) and (2.2) are well-defined for all µΓ ∈ BC(Γ), indeed

that KΓ is a bounded operator on BC(Γ). From (Preston et al., 2008, Theorem

3.4), we have moreover the following theorem on the boundedness of the inverse

mapping (I −KΓ)−1.
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Theorem 2.2. The mapping (I −KΓ) : BC(Γ) → BC(Γ) is invertible with a

bounded inverse. Precisely, given Cf > 0, for some constant C > 0 depending

only on f±, H and Cf , it holds that

∥

∥(I −KΓ)−1
∥

∥ ≤ C,

whenever ‖f‖BC2(R) ≤ Cf .

It is convenient to introduce an isometric isomorphism JΓ : BC(Γ) →

BC(R), defined by (JΓaΓ)(σ) = aΓ((σ, f(σ))), σ ∈ R, for every aΓ ∈ BC(Γ).

Let µ ∈ BC(R) be defined by µ := JΓµΓ where µΓ is the solution of (2.2),

φ0 ∈ BC(R) be defined by φ0 := JΓφΓ and let kΩ be defined, for x ∈ R
2 and

σ ∈ R, by

kΩ(x, σ) =
∂ΦH(x, y)

∂n(y)

∣

∣

∣

∣

y=(σ,f(σ))

w(σ)

= −
1

2π

(

x− (σ, f(σ))

|x− (σ, f(σ))|
2 −

x− (σ, 2H − f(σ))

|x− (σ, 2H − f(σ))|
2

)

.n(σ)w(σ)

(2.3)

where w(σ) :=
√

1 + f ′(σ)2, n(σ) := n((σ, f(σ))) = (−f ′(σ), 1)/w(σ), and we

note that s(σ) := s((σ, f(σ))) = (1, f ′(σ))/w(σ). We can then rewrite (2.1) as

φ(x) =

∫

R

kΩ(x, σ)µ(σ)dσ, x ∈ Ω, (2.4)

and (2.2) as

µ(τ) −

∫

R

k(τ, σ)µ(σ)dσ = −2φ0(τ), τ ∈ R, (2.5)

where k(τ, σ) := kΩ((τ, f(τ)), σ), for τ 6= σ, while

k(τ, τ) =
−1

2π

(

f ′′(τ)

ω(τ)2
+

1

f(τ) −H

)

, τ ∈ R.

We will abbreviate (2.5) in operator form as

(I −K)µ = −2φ0, (2.6)

where K := JΓKΓJ
−1
Γ is the integral operator given by

(Kµ)(τ) =

∫

R

k(τ, σ)µ(σ)dσ, τ ∈ R.
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We now prove a mapping property for the integral operator K and show

that the smoothness of its kernel k is linked to the smoothness of the boundary.

Let

r1(τ, σ) :=

∫ 1

0

f ′(σ + (τ − σ)ξ)dξ

and

r2(τ, σ) :=

∫ 1

0

f ′′(σ + (τ − σ)ξ)(1 − ξ)dξ, (2.7)

for τ, σ ∈ R, and note that, by Taylor’s theorem (e.g. (Hardy, 1958, pp.327-8)),

for f ∈ C2(R) it holds that

f(τ) = f(σ) + (τ − σ)r1(τ, σ) = f(σ) + (τ − σ)f ′(σ) + (τ − σ)2r2(τ, σ). (2.8)

Theorem 2.3. If f ∈ BCn+2(R) and ‖f‖BCn+2(R) ≤ Cf for some n ∈ N0 and

Cf > 0 then k ∈ BCn(R2) and, for i, j ∈ N0 with i+ j ≤ n,

∣

∣

∣

∣

∂i+j

∂σi∂τ j
k(τ, σ)

∣

∣

∣

∣

≤
Ck

1 + |σ − τ |
2 , for σ, τ ∈ R,

where Ck depends only on n, f±, H and Cf . Furthermore K : BC(R) →

BCn(R) and there exists CK > 0 depending only on n, f±, H and Cf such that

‖K‖ ≤ CK .

Proof. For σ, τ ∈ R
2, σ 6= τ , by Taylor’s theorem (Hardy (1958)) we have

∂Φ(x, y)

∂n(y)

∣

∣

∣

∣

x=(τ,f(τ)),y=(σ,f(σ))

= −
1

2πw(σ)

−(τ − σ)f ′(σ) + (f(τ) − f(σ))

(τ − σ)2 + (f(τ) − f(σ))2

= −
1

2πw(σ)

r2(τ, σ)

1 + r1(τ, σ)2
. (2.9)

Given f ∈ BCn+2(R), it is clear that w ∈ BCn+1(R), r1 ∈ BCn+1(R2) and

r2 ∈ BCn(R2). Hence k ∈ BCn(R); moreover there exists a constant Ck > 0

dependent only on n, f±, H and Cf such that ‖k‖BCn(R) ≤ Ck.

Now ΦH(x, y) satisfies Laplace’s equation as a function of both x and y in

Ω̄H and by (Preston et al., 2008, Lemma 2.1), we have, for x, y ∈ Ω̄H with x 6= y

and y2 > f− − 1,

|∇yΦH(x, y)| ≤
3(H − f− + 1)

π |x− y|
2 . (2.10)
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Then, from the regularity estimates in (Gilbarg & Trudinger, 1977, Theorem

3.9) for solutions to elliptic partial differential equations, where Dn∇yΦH(x, y)

denotes any partial derivative of ∇yΦH(x, y) of order less than or equal to n

with respect to the components of x and y,

|Dn∇yΦH(x, y)| ≤
Cn

|x1 − y1|
2 , (2.11)

for x, y ∈ Ω̄H , |x1 − y1| > 1 and x2, y2 ∈ [f−, f+], where Cn > 0 depends only

on n, f± and H. Since we have already shown that ‖k‖BCn(R2) ≤ Ck it follows

that, for some C > 0 depending only on n, f±, H and Cf ,
∣

∣

∣

∣

∂i+j

∂σi∂τ j
k(τ, σ)

∣

∣

∣

∣

≤
C

1 + |σ − τ |
2 , i+ j ≤ n,

for σ, τ ∈ R, as required.

The remainder of the result now follows from (Meier et al., 2000, Theorem

2.4(a)).

We now turn to the Dirichlet-to-Neumann map ΛΓ. We first note that it is

shown in Preston et al. (2008) that I −KΓ is also a bijection on BC1,α(Γ) for

α ∈ (0, 1) in the case that f ∈ BC2(R) and that, analogously to Theorem 2.2,

as an operator on BC1,α(Γ),

∥

∥(I −KΓ)−1
∥

∥ ≤ C,

where C depends only on f±, H and Cf . Further, it is shown in Preston et al.

(2008) that, if µ ∈ BC1,α(Γ) then φ given by (2.1) satisfies φ ∈ BC1,α(Ω̄) with

‖φ‖BC1,α(Ω̄) ≤ C ‖µ‖BC1,α(Γ) ,

where C, again, depends only on f±, H and Cf . The above results, combined

with (Preston et al., 2008, Theorem 3.1), imply that the Dirichlet-to-Neumann

map ΛΓ is a bounded operator from BC1,α(Γ) to BC0,α(Γ) with ‖ΛΓ‖ ≤ CΛ,

where CΛ depends only on f±, H and Cf . Moreover, explicitly,

∂φ

∂n

∣

∣

∣

∣

Γ

= ΛΓφΓ = MΓ(I −KΓ)−1φΓ, (2.12)

where the bounded operator MΓ : BC1,α(Γ) → BC0,α(Γ) is given by

MΓµΓ(x) =
∂

∂n(x)

∫

Γ

∂ΦH(x, y)

∂n(y)
µΓ(y)ds(y), x ∈ Γ.
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We now derive an alternative, more easily computable, expression for MΓµΓ.

Theorem 2.4. If µΓ ∈ BC1,α(Γ) then, for x ∈ Γ,

MΓµΓ(x) =

∫

Γ

mΓ(µΓ, x, y)ds(y)

where

mΓ(µΓ, x, y) =
∂ΦH(x, y)

∂s(y)

(

n(x).n(x)
∂µΓ

∂s
(x) − n(x).n(y)

∂µΓ

∂s
(y)

)

+

(

∂ΦH(x, y)

∂n(y)
n(x).s(y) − γ(x, y)n1(x)

)

∂µΓ

∂s
(y)

+

(

∂γ(x, y)

∂n(x)
n2(y) −

∂γ(x, y)

∂s(x)
n1(y)

)

µΓ(y),

γ(x, y) =
x2 + y2 − 2H

π |x− yr|
2

and ∂µΓ

∂s denotes the tangential derivative of µΓ.

Proof. Let µΓ ∈ BC1,α(Γ) and φ be the double-layer potential given by (2.1).

Now, since ∂
∂x2

Φ(x, yr) = ∂
∂y2

Φ(x, yr) and ∂
∂x1

Φ(x, yr) = − ∂
∂y1

Φ(x, yr), it holds

that

∇xΦH(x, y) = ∇xΦ(x, y) −∇xΦ(x, yr) = −∇yΦH(x, y) − 2e2
∂

∂y2
Φ(x, yr)

= −∇yΦH(x, y) + γ(x, y)e2 (2.13)

and

∂ΦH(x, y)

∂n(y)
= −∇x.(ΦH(x, y)n(y)) + n2(y)γ(x, y).

Thus, using the vector identity ∇∧∇ ∧A = −∆A+ ∇∇.A, we have

∇φ(x) = −

∫

Γ

∇x ∧∇x ∧ (ΦH(x, y)n(y))µΓ(y)ds(y)

+

∫

Γ

n2(y)∇xγ(x, y)µΓ(y)ds(y).

Now, using (2.13),

∇x ∧ (ΦH(x, y)n(y)) = −n(y) ∧∇xΦH(x, y)

= n(y) ∧∇yΦH(x, y) − γ(x, y)n(y) ∧ e2

= −
∂ΦH(x, y)

∂s(y)
e3 − γ(x, y)n1(y)e3,
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where e3 = s(y) ∧ n(y) = e1 ∧ e2, so that

∇x ∧∇x ∧ (ΦH(x, y)n(y)) = e3 ∧
∂

∂s(y)
∇xΦH(x, y) + n1(y)e3 ∧∇xγ(x, y).

So, interchanging the order of differentiation and then integrating by parts, we

have

∇φ(x) = e3 ∧

∫

Γ

∇xΦH(x, y)
∂µΓ

∂s
(y)ds(y)

−

∫

Γ

(n1(y)e3 ∧∇xγ(x, y) − n2(y)∇xγ(x, y))µΓ(y)ds(y).

Clearly the second integral is continuous in Ω̄ and, since ∂µΓ

∂s ∈ BC0,α(Γ),

applying (Colton & Kress, 1983, Theorem 2.20) we see that the first integral can

be continuously extended from Ω to Ω̄. Thus, taking the limit as x approaches

Γ and using (Colton & Kress, 1983, Theorem 2.20), we see that

∂φ

∂n
(x) = n(x).

(

e3 ∧

∫

Γ

∇xΦH(x, y)
∂µΓ

∂s
(y)ds(y)

)

− n(x).

(∫

Γ

(n1(y)e3 ∧∇xγ(x, y) − n2(y)∇xγ(x, y))µΓ(y)ds(y)

)

= n(x).

(

e3 ∧

∫

Γ

(− ∇yΦH(x, y) + γ(x, y)e2)
∂µΓ

∂s
(y)ds(y)

)

+

∫

Γ

(

∂γ(x, y)

∂n(x)
n2(y) −

∂γ(x, y)

∂s(x)
n1(y)

)

µΓ(y)ds(y)

where the first integrals in each line are to be understood as Cauchy principal

values and note that we have applied (2.13) again. Now splitting ∇yΦH(x, y)

into its normal and tangential components, we have

∂φ

∂n
(x) = −n(x).

(

e3 ∧

∫

Γ

(

n(y)
∂ΦH(x, y)

∂n(y)
+ s(y)

∂ΦH(x, y)

∂s(y)

)

∂µΓ

∂s
(y)ds(y)

)

−

∫

Γ

γ(x, y)n1(y)
∂µΓ

∂s
(y)ds(y)

+

∫

Γ

(

∂γ(x, y)

∂n(x)
n2(y) −

∂γ(x, y)

∂s(x)
n1(y)

)

µΓ(y)ds(y)

=

∫

Γ

(

n(x).s(y)
∂ΦH(x, y)

∂n(y)
− n(x).n(y)

∂ΦH(x, y)

∂s(y)

)

∂µΓ

∂s
(y)ds(y)

−

∫

Γ

γ(x, y)n1(y)
∂µΓ

∂s
(y)ds(y)

+

∫

Γ

(

∂γ(x, y)

∂n(x)
n2(y) −

∂γ(x, y)

∂s(x)
n1(y)

)

µΓ(y)ds(y). (2.14)

Finally, we have the identity
∫

Γ

∂ΦH(x, y)

∂s(y)
ds(y) = 0, x ∈ Γ,
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where the integral is understood as a Cauchy principal value, and therefore we

can subtract the term

∂µΓ

∂s
(x)

∫

Γ

∂ΦH(x, y)

∂s(y)
ds(y)

from (2.14) and hence the result is proven.

We now define the equivalent integral operator over R to MΓ, namely M :

BC1,α(R) → BC0,α(R) given byM := JΓMΓJ
−1
Γ . In the case that f ∈ BC2(R),

for ψ ∈ BC2(R), τ, σ ∈ R, let

pψ(σ) :=
n(σ)ψ′(σ)

ω(σ)
, qψ(τ, σ) :=

∫ 1

0

p′
ψ(σ + (τ − σ)ξ)dξ,

noting that,

qψ(τ, σ) =
pψ(τ) − pψ(σ)

τ − σ
, σ 6= τ. (2.15)

Further, let

m(ψ, τ, σ) = mΓ(J−1
Γ ψ, (τ, f(τ)), (σ, f(σ)))ω(σ)

= m1(ψ, τ, σ) +m2(ψ, τ, σ) +m3(ψ, τ, σ) (2.16)

where

m1(ψ, τ, σ)

:=



























1

2π

(

(τ − σ, f(τ) − f(σ))

(τ − σ)2 + (f(τ) − f(σ))2
−

(τ − σ, 2H − f(τ) − f(σ))

(τ − σ)2 + (2H − f(τ) − f(σ))2

)

·
(

n(τ). (pψ(τ) − pψ(σ)) s(σ) + n(τ).s(σ)pψ(σ)

)

, σ 6= τ,

1

2πω(τ)
qψ(τ, τ).n(τ) =

1

2πω(τ)
p′
ψ(τ).n(τ), σ = τ,

m2(ψ, τ, σ)

:=
1

π

(

(2(τ − σ)(2H − f(τ) − f(σ)), (τ − σ)2 + (2H − f(τ) − f(σ))2)

((τ − σ)2 + (2H − f(τ) − f(σ))2)2

)

·

(

n(τ)n2(σ) + s(τ)n1(σ)

)

ω(σ)ψ(σ)

and

m3(ψ, τ, σ) :=
1

π

(

2H − f(τ) − f(σ)

((τ − σ)2 + (2H − f(τ) − f(σ))2)2

)

n1(τ)ψ
′(σ).
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Then, by Theorem 2.4, for τ ∈ R,

(Mµ)(τ) =

∫

R

m(µ, τ, σ)dσ. (2.17)

The Dirichlet-to-Neumann map, Λ := JΓΛΓJ
−1
Γ , is then given by

Λ = M(I −K)−1.

We now prove a similar result to Theorem 2.3, by showing that the smooth-

ness ofm(µ, ·, ·) is dependent on the smoothness of f and µ and that the operator

M maps BCn+2(R) continuously into BCn(R).

Theorem 2.5. If f ∈ BCn+2(R), ‖f‖BCn+2(R) ≤ Cf and µ ∈ BCn+2(R), for

some n ∈ N0 and Cf > 0, then m(µ, ·, ·) ∈ BCn(R2) and, for i, j ∈ N0 with

i+ j ≤ n,

∣

∣

∣

∣

∂i+j

∂σi∂τ j
m(µ, τ, σ)

∣

∣

∣

∣

≤
Cm

1 + |σ − τ |
2 ‖µ‖BCn+2(R) , σ, τ ∈ R,

where Cm depends only on n, f±, H and Cf . Furthermore M : BCn+2(R) →

BCn(R) and there exists CM > 0, depending only on n, f±, H and Cf , such

that ‖M‖ ≤ CM .

Proof. For τ, σ ∈ R, let p(σ) := pµ(σ), q(τ, σ) := qµ(τ, σ), and writem1(µ, τ, σ)

as

m1(µ, τ, σ) = m1,1(µ, τ, σ) +m1,2(µ, τ, σ)

on recalling equation (2.16) and where

m1,1(µ, τ, σ) :=



























1

2π

(τ − σ, f(τ) − f(σ))

(τ − σ)2 + (f(τ) − f(σ))2
· s(σ) (p(τ) − p(σ)) .n(τ),

σ 6= τ,
1

2πω(τ)
p′(τ).n(τ), σ = τ,

and

m1,2(µ, τ, σ) :=
1

2π

(τ − σ, 2H − f(τ) − f(σ))

(τ − σ)2 + (2H − f(τ) − f(σ))2
· s(σ) (p(τ) − p(σ)) .n(τ)

+ k(τ, σ)
n(τ).s(σ)ψ′(σ)

(ω(σ))2
.
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If f ∈ BCn+2(R) then n1, n2, s1, s2, w ∈ BCn+1(R) and, by Theorem 2.3, k ∈

BCn(R2), which implies m1,2(µ, ·, ·),m2(µ, ·, ·),m3(µ, ·, ·) ∈ BCn(R2).

It remains to show that m1,1(µ, ·, ·) has the required continuity. Now, for

τ, σ ∈ R, τ 6= σ, using (2.8) and (2.15), we have

m1,1(µ, τ, σ) =
1

2πω(σ)

τ − σ + (f(τ) − f(σ))f ′(σ)

(τ − σ)2 + (f(τ) − f(σ))2
(p(τ) − p(σ)) .n(τ)

=
1

2πω(σ)

1 + f ′(σ)r1(τ, σ)

1 + r1(τ, σ)2
q(τ, σ).n(τ),

and, since r1(τ, τ) = f ′(τ), q(τ, τ) = p′(τ), the same formula applies for τ = σ.

In the proof of Theorem 2.3 we have already observed that r1 ∈ BCn+1(R2),

and clearly p ∈ BCn+1(R2) so that q ∈ BCn(R). Thus m1,1(µ, ·, ·) ∈ BCn(R).

So m(µ, ·, ·) ∈ BCn(R2). Moreover, using the above proof, we see that there

exists a constant Cm > 0, depending only on n, f±, H and Cf , such that

‖m(µ, ·, ·)‖BCn(R) ≤ Cm ‖µ‖BCn+2(R).

Since also the bounds (2.10) and (2.11) hold, we see that, for τ, σ ∈ R,

∣

∣

∣

∣

∂i+j

∂σi∂τ j
m(µ, τ, σ)

∣

∣

∣

∣

≤
C

1 + |σ − τ |
2 ‖µ‖BCn+2(R) , i+ j ≤ n,

where C depends only on n, f±, H and Cf . Hence, by (Meier et al., 2000,

Theorem 2.4(a)) again (taking b = m(µ, ·, ·) and letting φ ≡ 1 in the definition

of M b in the notation of Meier et al. (2000)), M : BCn+2(R) → BCn(R) and

‖M‖ ≤ CM as required.

We can now rewrite the velocity on the surface, given by (1.6), with respect

to the horizontal component of the surface by using the isometric isomorphism

JΓ. Let ν : R → R
2 be defined by ν = (ν1, ν2) := JΓv|Γ. Then, from (1.6) and

(2.17),

ν(τ) =
φ′0(τ)

ω(τ)
s(τ) + (Mµ)(τ)n(τ), τ ∈ R. (2.18)

Remark 2.6. It follows from Theorems 2.3 and 2.5 that if the surface and

boundary data are infinitely smooth ( i.e f, φ0 ∈ BC∞(R)) then the density

and hence velocity, given by (2.18), are also smooth ( i.e. µ ∈ BC∞(R) and

ν ∈ BC∞(R) ×BC∞(R)).
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3 Discretisation and the Nyström Method

In this section we propose and analyse a discretisation of the integral equation

(2.6) and of the expression for the normal velocity (2.12). To carry out this

discretisation we need two operators, a numerical integration or quadrature

operator to approximate the integrals found in (2.6) and (2.12) and a discrete

derivative operator to determine approximations to f ′ and µ′. We initially

consider a partially discrete system in which just the quadrature operator is

applied and use results from Meier et al. (2000) to show stability and convergence

for this initial scheme, where the key feature is the assumption that we can know

or calculate k exactly. Then we define and analyse a more fully discrete scheme

in which we use a trigonometric discrete derivative operator to numerically

calculate k̃, an approximation to k. Throughout, the discretisation step length

will be h := 2π/N , for some even N ∈ N.

3.1 Quadrature Operator and the Initial Nyström Scheme

We choose the trapezium rule for the quadrature and define the quadrature

operator by

Ihu := h
∑

j∈Z

u(jh),

and quote the following theorem on its accuracy.

Lemma 3.1. (Meier et al., 2000, Theorem 3.9)

If u ∈ BCnp (R), n ∈ N, n is even and p > 1 then, for h > 0,

∣

∣

∣

∣

∫ ∞

−∞

u(σ)dσ − Ihu

∣

∣

∣

∣

≤ C ‖u‖BCn
p (R) h

n,

where C > 0 depends only on n and p.

Applying Ih to (2.6), we define a Nyström method approximation µN ∈

BCn(R) to µ by

µN = φ0 +KNµN , (3.1)
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where

KNψ(τ) := IN (k(τ, ·)ψ(·)) = h
∑

j∈Z

k(τ, jh)ψ(jh), τ ∈ R.

Explicitly, (3.1) is

µN (τ) = φ0(τ) + h
∑

j∈Z

k(τ, jh)µN (jh), τ ∈ R. (3.2)

The values µN (ih), i ∈ Z, are determined by setting τ = ih and solving the

resultant infinite set of linear equations.

Meier et al. (2000) proves results on the convergence of Nyström methods

for second kind integral equations of the form

x(τ) = y(τ) +

∫ ∞

−∞

(a(τ, σ) ln |τ − σ| + b(τ, σ)x(σ)) dσ, τ ∈ R,

where a, b ∈ Cn(R2) and a(τ, σ), b(τ, σ) decay like |τ − σ|
−p

as |τ − σ| → ∞, for

some p > 1. We can apply the results of Meier et al. (2000) by taking a = 0 and

b = k ∈ BCn(R2). Theorems 2.2 and 2.3 show that the two conditions (Meier

et al., 2000, C ′′
n) and (Meier et al., 2000, E) are satisfied, so the following three

theorems on the stability and convergence of the Nyström approximation (3.1)

follow from Theorems 2.2, 2.8 and 3.13 in Meier et al. (2000).

Theorem 3.2. If f ∈ BC3(R) and ‖f‖BC3(R) ≤ Cf , for some Cf > 0 then

KN : BC(R) → BC(R) is bounded and

‖KN‖ ≤ C,

where C depends only on f±, H and Cf .

Theorem 3.3. If f ∈ BC3(R) and ‖f‖BC3(R) ≤ Cf , for some Cf > 0 then

there exist N̄ ∈ N and C > 0, such that, for all N > N̄ , (I−KN )−1 : BC(R) →

BC(R) is bounded and

∥

∥(I −KN )−1
∥

∥ ≤ C, (3.3)

where C depends only on f±, H and Cf . Furthermore, if φ0 ∈ BC(R) then, for

N > N̄ , (3.1) has a unique solution µN ∈ BC(R) and

‖µN‖BC(R) ≤ C ‖φ0‖BC(R) .
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Theorem 3.4. If f ∈ BCn+2(R), φ0 ∈ BCn(R) and ‖f‖BCn+2(R) ≤ Cf , for

some Cf > 0 and n ∈ N0 with n even, then there exists N̄ ∈ N, such that, for

all N > N̄ ,

‖µ− µN‖BCn(R) ≤ C ‖φ0‖BCn(R) h
n, N > N̄ ,

for some C > 0 depending only on n, f±, H and Cf .

3.2 Discrete Derivative Operator

It is convenient in this section to utilise the following summation notation:

N/2
∑

j=−N/2

′′
uj :=

1

2

(

u−N/2 + uN/2
)

+

N/2−1
∑

j=−N/2+1

uj .

For u ∈ BC2π(R), let uh ∈ BC2π(R) be the trigonometric polynomial given by

uh(σ) =

N/2
∑

k=−N/2

′′
ûke

ikσ, σ ∈ R, (3.4)

where the coefficients ûk are given by

ûk =
1

N

N/2
∑

l=−N/2

′′
u(lh)e−ilkh, k = −

N

2
, ...,

N

2
.

It is a standard result that uh interpolates u at jh, j ∈ Z, i.e. uh(jh) = u(jh),

j ∈ Z. We can use the fast Fourier transform to calculate the coefficients ûk.

Theorem 3.5. (Meinardus, 1967, Theorem 41)

If u ∈ BCn2π(R) and uh is defined by (3.4) then

‖u− uh‖BCm
2π(R) ≤ Cn ‖u‖BCn(R) h

n−m,

for m = 0, 1, ..., n − 1, where the constant Cn > 0 depends only on n. In

particular, if u ∈ BC∞
2π(R) then uh exhibits superalgebraic convergence, i.e.

‖u− uh‖BC2π(R) = o(hn) as h→ ∞, for all n ∈ N.

Define a discrete approximate mth-order differential operator Ḋm
h : BC2π(R)

→ BC2π(R), for m ∈ N0, by

Ḋm
h u(σ) := u

(m)
h (σ) =

N/2
∑

k=−N/2

′′
(ik)mûke

ikσ, σ ∈ R. (3.5)
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Note that Ḋ0
hu = uh. We now investigate the accuracy of Ḋm

h u as an approx-

imation to the mth derivative of u. The following follows immediately from

Theorem 3.5.

Corollary 3.6. If u ∈ BCn2π(R) then, for m = 1, ..., n− 1,

∥

∥

∥u(m) − Ḋm
h u
∥

∥

∥

BC2π(R)
≤ Cn ‖u‖BCn

2π(R) h
n−m.

Let χ ∈ BC∞(R) be a ‘cut-off’ function, compactly supported about 0,

satisfying 0 ≤ χ(σ) ≤ 1, χ(σ) = χ(−σ), χ(σ) = 0 if |σ| > π and χ(σ) = 1 if

|σ| ≤ 1 where σ ∈ R. We further define the translation operator Tσ : BC(R) →

BC(R) by (Tσu)(τ) = u(τ−σ), for σ, τ ∈ R and a 2π-periodic extension operator

E : BC(R) → L∞(R) by the requirements that (Eu)(σ) = u(σ), −π < σ ≤ π

and (Eu)(σ + 2π) = (Eu)(σ), σ ∈ R. Using E, χ, Tσ and Ḋm
h we can define a

discrete differential operator Dm
h on BC(R) by

(Dm
h u)(σ) = (Ḋm

h E(χTσu))(0), σ ∈ R. (3.6)

Theorem 3.7. If u ∈ BCn(R) then, for m = 1, ..., n− 1,

∥

∥

∥u(m) −Dm
h u
∥

∥

∥

BC(R)
≤ Cn ‖u‖BCn(R) h

n−m,

where Cn depends only on n and χ.

Proof. The operator Tσ : BCn(R) → BCn(R), for σ ∈ R, is bounded with

‖Tσu‖BCn(R) = ‖u‖BCn(R), for σ ∈ R. The mapping BCn(R) → BCn2π(R),

u → E(χu) is bounded with ‖E(χu)‖BCn
2π(R) ≤ C ‖u‖BCn(R) where C depends

only on n and χ. Hence the mapping BCn(R) → BCn2π(R), u → E(χTσu) is

bounded with ‖E(χTσu)‖BCn
2π(R) ≤ C ‖u‖BCn(R), where C depends only on n

and χ. Further, for all σ ∈ R, u(σ + δ) = E(χTσu)(δ), |δ| ≤ 1. Therefore, by

Corollary 3.6, the results hold.

From the definition of the discrete derivative operator, through equations

(3.5) and (3.6), it is clear that for u ∈ BC(R) and m ∈ N0 the values Dm
h u(jh),

j ∈ Z, depend only on the values of u(x) at x = jh, j ∈ Z. To make this

explicit, for ũ = {ũj}j∈Z ∈ l∞(Z), define EN ũ ∈ BC(R) to be the piecewise
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linear function satisfying EN ũ(jh) = ũj , j ∈ Z. Define D̃m
h : l∞(Z) → l∞(Z) by

(D̃m
h ũ)j = Dm

h EN ũ(jh), j ∈ Z. (3.7)

Then, explicitly,

(D̃m
h ũ)j =

N/2
∑

k=−N/2

′′
(ik)mck, (3.8)

where

ck =
1

N

N/2
∑

l=−N/2

′′
χ(lh)e−iklhũl−j .

In section §3.4, we will need to approximate derivatives from approximations

to functions at the interpolation points jh. The final theorem of this section

details how this additional approximation affects the accuracy of the discrete

derivative operator.

Theorem 3.8. Suppose that u ∈ BCn(R), for some n ∈ N, that, for N ∈ N,

ũN := {ũj,N}j∈Z ∈ l∞(Z) with ũj,N ≈ u(jh), and that, for some p ∈ N and

C1 > 0,

max
j∈Z

|u(jh) − ũj,N | ≤ C1 ‖u‖BCn(R) h
p,

(where h = 2π/N). Then, for m = 1, ..., n− 1,

max
j∈Z

∣

∣

∣
u(m)(jh) − (D̃m

h ũN )j

∣

∣

∣
≤ C ‖u‖BCn(R) h

q,

where q = min{n−m, p−m− 1} and C depends only on n, C1 and χ.

Proof. By (3.7) and (3.8) and as ‖χ‖BC(R) = 1, we have

max
j∈Z

∣

∣

∣Dm
h u(jh) − (D̃m

h ũN )j

∣

∣

∣

= max
j∈Z

∣

∣

∣

∣

∣

∣

∣

1

N

N/2
∑

k=−N/2

′′
N/2
∑

l=−N/2

′′
(ik)mχ(lh) (u((l − j)h) − ũl−j,N ) e−ihkl

∣

∣

∣

∣

∣

∣

∣

≤ C1 ‖u‖BCn(R) h
p 1

N

N/2
∑

k=−N/2

′′
N/2
∑

l=−N/2

′′
|k|

m

≤ 2−mC1 ‖u‖BCn(R) h
pNm+1 ≤ 2πn+1C1 ‖u‖BCn(R) h

p−m−1.
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Combining this inequality with Theorem 3.7, it follows that

max
j∈Z

∣

∣

∣u(m)(jh) − (D̃m
h ũN )j

∣

∣

∣

≤
∥

∥

∥u(m) −Dm
h u
∥

∥

∥

BC(R)
+ max

j∈Z

∣

∣

∣Dm
h u(jh) − (D̃m

h ũN )j

∣

∣

∣

≤ Cn ‖u‖BCn(R) h
n−m + 2πn+1C1 ‖u‖BCn(R) h

p−m−1,

where Cn is defined as in Theorem 3.7.

3.3 The Fully Discrete Nyström Scheme

We now define a numerical approximation to the kernel of the integral equation

k by applying the differential operator (3.6) to approximate the derivatives f ′

and f ′′ by Dhf and D2
hf , respectively. Thus, our approximation is defined, for

τ, σ ∈ R, by

k̃(τ, σ) =



























−1

π

(τ − σ)Dhf(σ) − (f(σ) − f(τ))

(τ − σ)2 + (f(τ) − f(σ))2
+ k̃r(τ, σ),

σ 6= τ,

−1

2π

D2
hf(τ)

1 + (Dhf(τ))2
+ k̃r(τ, τ), σ = τ,

where

k̃r(τ, σ) =
1

π

(τ − σ)Dhf(σ) − (2H − f(σ) − f(τ))

(τ − σ)2 + (2H − f(τ) − f(σ))2
.

The fact that the function k is bounded relies on ((τ, f(τ)) − (σ, f(σ))) and

n(σ) being perpendicular to each other in the limit as τ → σ. The vector

((τ, f(τ)) − (σ, f(σ))) is not necessarily perpendicular in the limit τ → σ to

the approximation to n(σ) obtained by replacing f ′ by Dhf . Hence k̃ is not

necessarily bounded and the convergence analysis of Theorems 3.3 and 3.4 does

not hold when replacing k by k̃. For this reason we now work on a discrete level.

For N ∈ N, let LN : BC(R) → l∞(Z) be the restriction mapping defined

by LNψ = {ψ(jh) : j ∈ Z} for ψ ∈ BC(R); clearly ‖LNψ‖∞ ≤ ‖ψ‖BC(R).

Recalling that φ0 = JΓφΓ is the inhomogeneous term in (2.5), let φN = LNφ0 =

{φ0(jh)}j∈Z = {φj}j∈Z.

For j ∈ Z, let xj = (jh, f(jh)) and xrj = (jh, 2H − f(jh)), and let

ωj =
√

1 + (Dhf)(jh), nj = ((Dhf)(jh),−1)/ωj , sj = (1, (Dhf)(jh))/ωj ,

(3.9)
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so that nj and sj are approximations to n(xj) and s(xj). Further, let kij =

k(ih, jh) and k̃ij = k̃(ih, jh), for i, j ∈ Z. Define discrete operators, related to

the integral operator K, K̄N , K̃N : l∞(Z) → l∞(Z), by

(K̄Nψ)i = h
∑

j∈Z

kijψj , and (K̃Nψ)i = h
∑

j∈Z

k̃ijψj , i ∈ Z,

and note that (K̄NLNψ)i = KNψ(ih), i ∈ Z, so that from (3.2) it follows that

the sequence µ̄N := {µN (jh)}j∈Z satisfies the equation

µ̄N = φN + K̄N µ̄N .

The approximate Nyström scheme we are proposing is to solve, instead of this

equation, the equation

µ̃N = φN + K̃N µ̃N . (3.10)

We calculate µ̃N = {µ̃j}j∈Z
by solving (3.10), which is the infinite set of linear

equations

µ̃i = φi + h
∑

j∈Z

k̃ij µ̃j , i ∈ Z. (3.11)

The attraction of solving (3.11) in preference to (3.2) is that computing the

coefficients k̃ij requires only the values of f(ih), i ∈ Z, and not also the values

of f ′ and f ′′ at all of the grid points.

The next result on the existence and boundedness of K̄N and (I − K̄N )−1

follows from Theorems 3.2 and 3.3 by standard arguments for Nyström methods

(see (Atkinson, 1997, p. 113)). In this (and subsequent) theorems we will use

‖·‖∞ to denote the induced operator norm for bounded operators on l∞(Z).

Theorem 3.9. If f ∈ BC3(R), ‖f‖BC3(R) ≤ Cf and Cf > 0 then there exists

N̄ ∈ N and C > 0, such that

∥

∥K̄N

∥

∥

∞
≤ C, for N ∈ N, and

∥

∥(I − K̄N )−1
∥

∥

∞
≤ C, for N ≥ Ñ ,

where C depends only on n, f±, H and Cf .

We now show the accuracy of K̃N as approximation to K̄N .
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Theorem 3.10. If f ∈ BCn+2(R) and ‖f‖BCn+2(R) ≤ Cf for some Cf > 0

and n ∈ N0 and with n even, then there exists C > 0 such that

∥

∥

∥K̄N − K̃N

∥

∥

∥

∞
≤ Chn+1 log (1 +N), for N ∈ N,

where C depends only on n, f±, H and Cf .

Proof. From (2.3) and the definitions of k and k̃ we see that, for i, j ∈ Z, i 6= j

kij − k̃ij = −
1

2π

(

xi − xj

|xi − xj |
2 −

xri − xj

|xri − xj |
2

)

· (n(xj)ω(jh) − njωj) ,

while, from (2.7) and (2.9), for i = j,

kii − k̃ii = −
1

2π

(

f ′′(ih)

w(ih)2
−
D2
hf(ih)

ω2
i

)

.

(Preston et al., 2008, Lemma 2.1) implies that
∣

∣

∣

∣

∣

xi − xj

|xi − xj |
2 −

xri − xj

|xri − xj |
2

∣

∣

∣

∣

∣

≤
c

(ih− jh)2
, i, j ∈ Z, i 6= j, (3.12)

and clearly also
∣

∣

∣

∣

∣

xi − xj

|xi − xj |
2 −

xri − xj

|xri − xj |
2

∣

∣

∣

∣

∣

≤
c

|i− j|h
, i, j ∈ Z, i 6= j, (3.13)

where c > 0 depends only on f± and H. Combining these results with Theorem

3.7, we have

∥

∥

∥K̄N − K̃N

∥

∥

∥

∞
= sup

i∈Z

h
∑

j∈Z

∣

∣

∣kij − k̃ij

∣

∣

∣

≤ sup
i∈Z

h

2π





∑

j∈Z,j 6=i

∣

∣

∣

∣

∣

xi − xj

|xi − xj |
2 −

xri − xj

|xri − xj |
2

∣

∣

∣

∣

∣

|n(jh)w(jh) − njwj |

+

∣

∣

∣

∣

f ′′(ih)

w(ih)2
−
D2
hf(ih)

w2
i

∣

∣

∣

∣





≤ sup
i∈Z

Ch





∑

j∈Z,|i−j|≥N

hn+1

(ih− jh)2
+

∑

j∈Z,1≤|i−j|<N

hn+1

|i− j|h
+ hn





≤ C



hn
∞
∑

j=N

1

j2
+ hn+1

N−1
∑

j=1

1

j
+ hn+1





≤ Chn+1 log (1 +N).
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The following is a special case of a standard Banach algebra perturbation

result (e.g. (Rudin, 1991, pp.248)).

Theorem 3.11. If (I − K̄N )−1 exists and is bounded, and

∥

∥

∥K̄N − K̃N

∥

∥

∥

∞
≤

1

2
∥

∥(I − K̄N )−1
∥

∥

∞

, (3.14)

then (I − K̃N )−1 exists and is bounded with the bound given by

∥

∥

∥
(I − K̃N )−1

∥

∥

∥

∞
≤ 2

∥

∥(I − K̄N )−1
∥

∥

∞
. (3.15)

We now present the main convergence result for the numerical scheme defined

by (3.10).

Theorem 3.12. If f ∈ BCn+2(R) and ‖f‖BCn+2(R) ≤ Cf , for some Cf > 0

and n ∈ N0 with n even, then there exists Ñ ∈ N and C > 0, such that, for

all N > Ñ a uniquely determined solution µ̃N ∈ l∞(Z) to (3.10) exists and, for

φ0 ∈ BCn(R),

‖LNµ− µ̃N‖∞ ≤ C ‖φ0‖BCn(R) h
n,

where C depends only on n, f±, H and Cf .

Proof. By Theorems 3.3 and 3.10 we can choose Ñ such that for all N > Ñ ,

(3.3) and (3.14) hold and therefore, by Theorem 3.11, (I − K̃N )−1 exists and

is bounded by (3.15). So, for N > Ñ , (3.10) has a unique solution µ̃N =

(I − K̃N )−1φN . Further, from Theorem 3.9, µ̄ = (I − K̄N )−1φN . Combining

these relationships we have

µ̄N − µ̃N = (I − K̃N )−1(I − K̃N )µ̄N − (I − K̃N )−1φN

= (I − K̃N )−1(I − K̃N )µ̄N − (I − K̃N )−1(I − K̄N )µ̄N

= (I − K̄N )−1(K̄N − K̃N )µ̄N

and therefore, by Theorems 3.3, 3.4 and 3.10,

‖LNµ− µ̃N‖∞ ≤ ‖LNµ− µ̄N‖∞ + ‖µ̄N − µ̃N‖∞

≤ ‖µ− µN‖BC(R) +
∥

∥(I − K̄N )−1
∥

∥

∞

∥

∥

∥K̄N − K̃N

∥

∥

∥

∞
‖µ̄‖BC(R

≤ C ‖φ0‖BCn(R) h
n,

as required.
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3.4 Velocity Approximation

We now analyse an approximation to the velocity ν, given by (2.18), by utilising

the discrete derivative operator and µ̃N , given by (3.10), in an approximation

to M . Precisely, we will approximate velocity values on a uniform grid, i.e.

approximate νN := LNν = {νj,N}j∈Z.

To construct a first approximation, for i, j ∈ Z, ψ ∈ BC(R), let mij(ψ) =

m(ψ, ih, jh), where m is given by (2.16). Define an operator M̄N : BC(R) →

l∞(Z) by

(M̄Nψ)i := h
∑

j∈Z

mij(ψ), i ∈ Z,

so that M̄ is a trapezium rule approximation to the operator LNM , where

M is defined by (2.17). Then a first approximation to νN = {νj,N}j∈Z is

ν̄N := {ν̄j,N}j∈Z where

ν̄j,N =
φ′(jh)

ω(jh)
s(jh) + (M̄µ)jn(jh), j ∈ Z. (3.16)

Lemma 3.13. If f ∈ BCn+2(R), ‖f‖BCn+2(R) ≤ Cf , for some Cf > 0 and

µ ∈ BCn+2(R) solves (2.5) then

max
j∈Z

|νj,N − ν̄j,N | ≤ C ‖φ0‖BCn(R) h
n

where C > 0 depends only on n, f±, H and Cf .

Proof. The only approximation in (3.16) is in the Dirichlet-to-Neumann oper-

ator M . By (Preston et al., 2008, Lemma 2.1) (see (3.12)), Theorem 2.5 and

(2.16), we see that m(µ, τ, ·) ∈ BCnp (R) where p > 2 and τ ∈ R. Therefore, by

Lemma 3.1,

|(Mµ)(τ) − Ihm(µ, τ, ·)| ≤ Chn.

We next construct a fully discrete approximation to νN , using the above

lemma to analyse its accuracy. Recalling the approximations ωj , nj , and sj
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introduced in (3.9), and writing xj and nj in terms of their components as

xj = (xj,1, xj,2) and nj = (nj,1, nj,2), define m̃ij : l∞(Z)3 → l∞(Z2) by

m̃ij ({ψk}k∈Z, {ψ
′
k}k∈Z, {ψ

′′
k}k∈Z)

= −
1

2π

(

xi − xj

|xi − xj |
2 −

xri − xj

|xri − xj |
2

)

·

(

(njni.sj + sjni.nj)
ψ′
j

ωj
− sj

ψ′
i

ωi

)

+
1

π





(

2(xri,1 − xj,1)(x
r
i,2 − xj,2), |x

r
i − xj |

2
)

|xri − xj |
4



 ·

(

(ninj,2 − sinj,1)ωjψj

)

+
1

π

(

xri,2 − xj,2

|xi − xrj |
4

)

ni,1ψ
′
j , i 6= j,

and by

m̃ii ({ψk}k∈Z, {ψ
′
k}k∈Z, {ψ

′′
k}k∈Z)

=
1

2πω2
i

(

ψ′′
i −

(Dhf)(ih)(D2
hf)(ih)ψ′

i

ω2
i

)

+
1

4H2π

(

ωiψi + ni,1ψ
′
i

)

, i = j.

The point of this definition is that, where µ is the solution to the integral

equation (2.6), m̃ij(LNµ,LNµ
′, LNµ

′′) is a first approximation of mij(µ) ob-

tained by approximating the derivatives of f by the discrete derivative operator

(3.6). Moreover m̃ij(µ̃N , D̃hµ̃N , D̃
2
hµ̃N ) is a further, fully discrete approxima-

tion, obtained by additionally approximating LNµ by µ̃N , given by (3.11), and

computing its numerical derivatives using (3.8). Using these approximations,

define the operators M̂N : BC(R) → l∞(Z) and M̃N : l∞(Z) → l∞(Z), which

are approximations to M̄N and to M̄NLN , respectively, by

(M̂Nµ)i := h
∑

j∈Z

m̃ij(LNµ,LNµ
′, LNµ

′′), i ∈ Z,

and

(M̃N µ̃N )i := h
∑

j∈Z

m̃ij(µ̃N , D̃hµ̃N , D̃
2
hµ̃N ), i ∈ Z. (3.17)

Using M̃N µ̃N , we define our final, fully discrete velocity approximation ν̃N =

{ν̃j,N}j∈Z by

ν̃j,N =
(D̃hLNφ)j

ωj
sj + (M̃N µ̃N )jnj , j ∈ Z. (3.18)

In the last theorem of this paper, we analyse the convergence of ν̃N to νN .
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Theorem 3.14. If φ0 ∈ BCn(R), f ∈ BCn+2(R), ‖f‖BCn+2(R) ≤ Cf , for some

Cf > 0 and some n ∈ N0 with n even, then there exists C > 0, depending only

on n, f±, H and Cf , such that

max
j∈Z

|νj,N − ν̃j,N | ≤ C ‖φ0‖BCn(R) h
n−2,

for all N > Ñ , where Ñ is as defined in Theorem 3.12.

Proof. We firstly note that solving the integral equation (2.6), with φ0 ∈ BCn(R)

and f ∈ BCn+2(R), gives, by Theorem 2.3, µ ∈ BCn(R) and hence, by Theorem

2.5, m ∈ BCn−2(R2). In the remainder of this proof, we will show the accuracy

of the approximations used in (3.18) to the five components (φ′, ω, n, s and M)

of (2.18). By straightforward application of Theorem 3.7 to f ′ ∈ BCn+1(R),

and similarly to the analysis in Theorem 3.10, we have the three bounds

max
j∈Z

|ω(jh) − ωj | ≤ C1h
n+1, max

j∈Z

|n(jh) − nj | ≤ C2h
n+1,

and

max
j∈Z

|s(jh) − sj | ≤ C3h
n+1, (3.19)

where C1, C2 and C3 depend only on n and Cf . Note that (D̃hLNφ)j =

(LNDhφ)j , for j ∈ Z, and that φ′ ∈ BCn−1(R). Therefore, by applying Theo-

rem 3.7, we also have

max
j∈Z

∣

∣

∣φ′(jh) − (D̃hLNφ)j

∣

∣

∣ ≤ C4h
n−1,

where C4 depends only on n and Cf .

All that remains is to prove the accuracy of M̃N µ̃N as an approximation to

Mµ, and to do this we analyse the successive approximations given by (3.17).

We have, by Lemma 3.13 with µ ∈ BCn(R),
∥

∥LNMµ− M̄Nµ
∥

∥

∞
≤ Chn−2.

Furthermore, by (3.12), (3.13) and (3.19), we have

∥

∥

∥M̄Nµ− M̂Nµ
∥

∥

∥

∞
= sup

i∈Z

h
∑

j∈Z

|mij(µ) − m̃ij(LNµ,LNµ
′, LNµ

′′)|

≤ Ch



sup
i∈Z

∑

j∈Z,j 6=i

hn+1

(ih− jh)2
+ hn





≤ Chn





∑

j∈N

1

j2
+ h



 ≤ Chn,
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where C depends only on n, f±, H and Cf .

Finally, by Theorem 3.12, ‖LNµ− µ̃N‖∞ ≤ Chn and therefore, by Theorem

3.8 with p = n,

∥

∥

∥LNµ
′ − D̃hµ̃

∥

∥

∥

∞
≤ Chn−2,

∥

∥

∥LNµ
′′ − D̃2

hµ̃
∥

∥

∥

∞
≤ Chn−3.

Now, utilising these bounds and (3.12), (3.13), and (3.19), we have

∥

∥

∥
M̂Nµ− M̃N µ̃

∥

∥

∥

∞

= sup
i∈Z

h
∑

j∈Z

∣

∣

∣m̃ij(LNµ,LNµ
′, LNµ

′′) − m̃ij(µ̃N , D̃hµ̃N , D̃
2
hµ̃N )

∣

∣

∣

≤ Ch



hn−3 +
∑

|j|≤N,j 6=0

hn−2 +
∑

|j|≥N

hn−2

(jh)2





≤ Chn−2

(

1 + hN +
1

hN

)

≤ Chn−2,

where C depends only on n, f±, H and Cf , as required.

4 Numerical Results

In this final section, we give numerical results that illustrate the proven con-

vergence rates. To produce these numerical results we first reduce the infinite

system (3.11) to a finite linear system, doing this by one of two methods.

The first method is a basic truncation scheme which corresponds to replacing

the range of integration of R in (2.4) and (2.5) by the finite interval [−A,A],

where A = NAh, for some NA ∈ N. Precisely, the numerical scheme is to

compute an approximation to µ on [−A,A] by solving (3.11) with the range of

summation reduced from Z to {−NA, ..., NA}, i.e. by solving

µ̃i = φi + h

NA
∑

j=−NA

k̃ij µ̃j , i = −NA, ..., NA. (4.1)

Then an approximation to φ is given by (2.4) approximated by the trapezium

rule; explicitly

φ(x) ≈
−h

2π

NA
∑

j=−NA

(

(x− xj).nj
(x− xj)2

−
(x− xrj).nj

(x− xrj)
2

)

wj µ̃j , x ∈ Ω. (4.2)
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Moreover, to approximate the velocity on Γ we use (3.17) and (3.18), with the

range of summation in (3.17) reduced to {−NA, ..., NA}. We do not in this

paper make an attempt to analyse the additional errors introduced by these

truncations of the range of summation, or their stability and convergence. We

note that in Meier & Chandler-Wilde (2001); Meier (2001); Chandler-Wilde et

al. (2002); Haseloh (2004); Lindner (2006) this truncation process, a so-called

‘finite section’ approximation, is studied in detail for several related problems.

In the second method, we achieve a finite linear system by assuming (or

approximating by) a periodic boundary and periodic boundary potential, thus

enabling the infinite system of equations to be reduced to a finite system over

a single period. Many other works, for example Baker & Beale (2004); Beale et

al. (1996); Dold (1992), have shown results for this periodic case. To determine

the discrete periodic system, we must first reformulate the infinite system given

by (3.11). As the boundary and potential are periodic it follows, from the

compactness of the operator K̄N in (3.10) on the space of bounded periodic

sequences and the Fredholm alternative, that the solution µN of (3.10) is also

periodic. Thus, fixing on the case that the boundary and boundary data are

periodic with period 2π, fj , φj , µj all share the periodicity that aj = aj+mN

for m ∈ Z, as do the dependent variables, wj , nj , sj . Taking advantage of this

periodicity, we can rewrite (3.10) as

µ̃i = φi + h
D2
hf(ih)

wi
µ̃i − h

N
∑

j=1,j 6=i

µ̃jwjni ·

∞
∑

k=−∞

∇xΦ(x,xj+kN )

∣

∣

∣

∣

x=xi

− h

N
∑

j=1

µ̃jwjni ·

∞
∑

k=−∞

∇xΦ(x,xrj+kN )

∣

∣

∣

∣

x=xi

, i = 1, . . . , N. (4.3)

It is convenient at this point to use the isomorphism of R
2 with the complex

plane C, thinking of xj = (xj,1, xj,2) and nj = (nj,1, nj,2) as points xj =

xj,1 + ixj,2 and nj = nj,1 + inj,2 in the complex plane. Then, applying (Linton,

1998, equation 3.60), it follows that (4.3) can be written as

µ̃i = φi + h
D2
hf(ih)

wi
µ̃i − h

N
∑

j=1,j 6=i

Re

(

n̄j cot

(

xi − xj

2

))

µ̃jwj

+ h

N
∑

j=1

Re

(

n̄j cot

(

xi − x̄j − 2Hi

2

))

µ̃jwj , i = 1, . . . , N, (4.4)
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and we can apply similar formulae from Linton (1998) to obtain an analogous

expression for the normal velocity approximation, M̃N µ̃N , starting from (3.17),

and an analogous approximation for φ(x) as a finite sum, starting from (2.4)

approximated by the trapezium rule with step-length h.

In our numerical experiments we set h = 2π/N , with N = 2, 4, 8, ...., 1024,

and choose H = 1 in the definition of ΦH throughout. We construct examples

for which we know the solution analytically by, having chosen a surface profile

Γ, choosing a φ ∈ BC(Ω̄) ∩ C2(Ω) that satisfies (1.2) in Ω. Clearly φ then

satisfies the boundary value problem (1.5) with φ0 := φ|Γ, and we can compute

analytically the normal velocity on Γ and the exact velocity potential at some

test point in Ω; in the experiments below we choose as test point x = (0.1,−1.2).

In our first numerical example the surface Γ is sinusoidal, given by Γ =

{(σ, 0.2 sin(σ)) : σ ∈ R}, and the velocity potential is given by φ(x) = Φper

H̃
(x, x∗),

x ∈ Ω̄, where H̃ = 1.0 and x∗ = (−0.2, 0.6). Here, for H ∈ R and x, y ∈ R
2,

Φper
H (x, y) :=

∞
∑

k=−∞

ΦH(x, y + 2πke1)

=
1

2

(

ln

(

2

∣

∣

∣

∣

sin

(

x − y

2

)∣

∣

∣

∣

)

− ln

(

2

∣

∣

∣

∣

sin

(

x′ − y

2

)∣

∣

∣

∣

))

,

on using (Linton, 1998, equation 3.60) again, where x = x1 + x2i and y =

y1 + y2i are the points in the complex plane corresponding to x and y and

x′ = x1+(2H−x2)i. The 2π-periodicity of Γ and of the Dirichlet data φ0 := φ|Γ

imply that the infinite linear system (3.11) reduces to the finite linear system

(4.4). In Table 4.1 and Figure 4.1 we tabulate and plot for this example two

different relative errors as a function of N . The first of these is the relative

error between the exact velocity potential at x, the test point, and the velocity

potential calculated numerically. The second is the relative discrete ℓ2 error

between the known normal velocity and that computed numerically, precisely

the relative ℓ2 error in the values (M̃N µ̃N )i sampled at i = 1, . . . , N , i.e. over one

period. Estimated orders of convergence (EOC) are also tabulated, computed

by the formula

EOC = log2(Error for given N/Error for 2N),
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so that EOC = p if the error is proportional to N−p.

The numerical results in Table 4.1 and Figure 4.1 are consistent with the

superalgebraic convergence predicted by Theorems 3.12 and 3.14 when f ∈

BC∞(R). Precisely, it can be seen that both approximations converge at an

increasingly rapid rate, the values for EOC increasing, reaching a maximum

value of over 20 before any further increase in accuracy is limited by rounding

errors.

In the above example we have demonstrated, indirectly, the convergence

predicted by Theorem 3.12, but have not shown this convergence directly since,

for the above example we do we know the true density µ. In a second example we

consider the special case where the surface is flat, precisely Γ := {(σ, 0) : σ ∈ R}.

Choosing Dirichlet data φ0 := φ|Γ, where the velocity potential φ is given by

φ(x) = −
1

2
(Φper

H (x, x∗) − Φper
3H (x, x∗∗)) , x ∈ Ω̄,

where x∗ = (x∗1, x
∗
2), with 0 < x∗2 < H and x∗∗ = (x∗1, 4H − x∗2), it follows from

(Preston et al., 2008, Theorem 4.3.1) that the density µ in (2.4) and (2.5) is

given by

µ(σ) = Φper
H ((σ, 0), x∗), σ ∈ R. (4.5)

As in the first example, the 2π-periodicity of Γ and of the Dirichlet data

φ0 := φ|Γ imply that the infinite linear system (3.11) reduces to the finite linear

system (4.4). In Figure 4.2 we plot the relative discrete ℓ2 error between the

known density µ and its numerical approximation found by solving (3.11). The

numerical results plotted in this figure illustrate the superalgebraic convergence

predicted by Theorem 3.12 when f ∈ BC∞(R).

In our third and final example we obtain a finite linear system by truncation

(so that we use (4.1) and (4.2)), the boundary Γ has the Gaussian profile Γ =

{(σ, 0.2 exp(−σ2)) : σ ∈ R}, and the boundary data is φ0 := φ|Γ, where the

potential φ is given by φ(x) = ΦH(x, x∗), where x ∈ Ω̄ and x∗ = (−0.2, 0.6).

The truncation is performed with A = Pπ where P = 1, 2, 4, ..., 64. We present

the relative error between the exact velocity potential at x, the test point,

and the velocity potential calculated numerically using (4.2) in Table 4.2 and,
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Figure 4.1: Relative errors in potential at the test point and in normal velocity

for the first example (sinusoidal surface profile).

for each fixed P , values of EOC are also tabulated. It can be seen that the

approximation given by (4.2) converges to φ(x) as N → ∞ and P → ∞ and

that, for fixed large P (when the errors induced by the truncation are small)

the values for EOC increase initially as N increases up to nearly EOC = 9,

consistent with the superalgebraic convergence predicted by Theorems 3.12 and

3.14 when f ∈ BC∞(R). The relative errors from Table 4.2 are plotted in Figure

4.3 where, for P large, the predicted superalgebraic convergence as N increases

can be observed and, for N large, algebraic convergence as P increases can be

observed. In Table 4.3 the relative ℓ2 error between the known normal velocity

and that calculated by reducing the range of summation to {−NA, . . . , NA}

in (3.17) is tabulated, this the discrete ℓ2 error based on comparing (M̃N µ̃N )i

with the exact normal velocity for i = −PN/2, . . . , PN/2; the same values are

plotted in Figure 4.4. The trends are similar to those observed in Table 4.2

and Figure 4.3, except that, for the same values of N , the relative errors are

larger and the EOC values are not so large for the normal velocity. Further, as

P increases with N fixed and large, algebraic convergence is observed in Figure

4.4, but at a slower rate than for the potential.

Further numerical results can be found in (Preston, 2007, Chapter 4).
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N Potential Normal Velocity

2 4.93e-001 7.25e-001

2.62 0.44

4 8.02e-002 5.35e-001

5.93 1.70

8 1.32e-003 1.65e-001

6.97 2.46

16 1.05e-005 3.00e-002

11.60 8.00

32 3.38e-009 1.17e-004

25.20 10.13

64 8.77e-017 1.05e-007

2.13 24.86

128 2.00e-017 3.44e-015

0.03 2.27

256 1.96e-017 7.13e-016

0.01 -1.29

512 1.95e-017 1.74e-015

0.03 -1.38

1024 1.91e-017 4.53e-015

Table 4.1: Relative errors in potential at the test point and in normal velocity,

plus values of EOC, for the first example (sinusoidal surface profile).
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Figure 4.2: Relative ℓ2 error in density for the second example (flat surface)
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P

N 1 2 4 8 16 32 64

2 7.28e-01 7.29e-01 7.28e-01 7.28e-01 7.28e-01 7.28e-01 7.28e-01

2.29 2.27 2.27 2.27 2.27 2.27 2.27

4 1.49e-01 1.51e-01 1.51e-01 1.51e-01 1.51e-01 1.51e-01 1.51e-01

5.97 5.11 5.07 5.06 5.06 5.06 5.06

8 2.38e-03 4.38e-03 4.51e-03 4.52e-03 4.53e-03 4.53e-03 4.53e-03

0.24 4.80 7.33 8.61 8.92 8.96 8.97

16 2.02e-03 1.57e-04 2.81e-05 1.15e-05 9.37e-06 9.09e-06 9.05e-06

0.03 0.09 0.57 2.25 5.24 7.99 6.97

32 1.97e-03 1.47e-04 1.90e-05 2.43e-06 2.48e-07 3.57e-08 7.21e-08

0.01 -0.00 -0.01 -0.04 -0.39 -0.18 4.11

64 1.96e-03 1.47e-04 1.90e-05 2.50e-06 3.24e-07 4.06e-08 4.17e-09

0.00 0.00 -0.00 -0.00 -0.00 -0.04 -0.34

128 1.96e-03 1.47e-04 1.90e-05 2.50e-06 3.25e-07 4.17e-08 5.29e-09

0.00 0.00 0.00 -0.00 -0.00 -0.00

256 1.96e-03 1.47e-04 1.90e-05 2.50e-06 3.25e-07 4.17e-08 -

0.00 0.00 0.00 -0.00 -0.00

512 1.96e-03 1.47e-04 1.90e-05 2.50e-06 3.25e-07 - -

0.00 0.00 0.00 -0.00

1024 1.96e-03 1.47e-04 1.90e-05 2.50e-06 - - -

Table 4.2: Relative error in the approximation (4.2) to the potential at the test

point and values of EOC. Third example (Gaussian surface profile).
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Figure 4.3: Relative error in the approximation (4.2) to the potential at the test

point. Third example (Gaussian surface profile).
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P

N 1 2 4 8 16 32 64

2 6.75e-01 6.73e-01 6.73e-01 6.73e-01 6.73e-01 6.73e-01 6.73e-01

0.25 0.21 0.21 0.21 0.21 0.21 0.21

4 5.68e-01 5.81e-01 5.81e-01 5.80e-01 5.80e-01 5.80e-01 5.80e-01

1.12 1.12 1.12 1.12 1.12 1.12 1.12

8 2.61e-01 2.67e-01 2.66e-01 2.66e-01 2.66e-01 2.66e-01 2.66e-01

3.37 3.34 3.34 3.34 3.34 3.34 3.34

16 2.52e-02 2.63e-02 2.63e-02 2.63e-02 2.63e-02 2.63e-02 2.63e-02

1.64 4.15 4.18 4.18 4.18 4.18 4.18

32 8.13e-03 1.48e-03 1.45e-03 1.45e-03 1.45e-03 1.45e-03 1.45e-03

-0.18 2.10 4.11 5.04 5.30 5.33 5.34

64 9.21e-03 3.46e-04 8.42e-05 4.42e-05 3.69e-05 3.60e-05 3.59e-05

-0.14 -0.12 0.13 0.78 2.16 3.86 5.43

128 1.02e-02 3.76e-04 7.70e-05 2.57e-05 8.23e-06 2.48e-06 8.34e-07

-0.10 -0.08 -0.01 -0.00 0.00 0.03

256 1.09e-02 3.96e-04 7.76e-05 2.57e-05 8.22e-06 2.44e-06 -

-0.06 -0.05 -0.01 -0.00 -0.00

512 1.14e-02 4.09e-04 7.79e-05 2.57e-05 8.23e-06 - -

-0.04 -0.03 -0.00 -0.00

1024 1.17e-02 4.18e-04 7.81e-05 2.57e-05 - - -

Table 4.3: Relative ℓ2 error in normal velocity (with EOC) for the third example

(Gaussian surface profile).
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Figure 4.4: Relative ℓ2 error in normal velocity for the third example (Gaussian

surface profile).
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