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Abstract

We derive necessary and sufficient conditions for an infinite sequence of Radon
measures to be realized by, or to be the sequence of moment functions of, a fi-
nite measure concentrated on a pre-given basic semi-algebraic subset of the space
of generalized functions on R%. A set of such a kind is given by (not necessar-
ily countable many) polynomial constraints. We get realizability conditions of
semidefinite type that can be more easily and efficiently verified, via semidef-
inite programming, than the well-known Riesz-Haviland type condition. As a
consequence, we characterize the support of the realizing measure in terms of its
moments functions.

As concrete examples of basic semi-algebraic sets of generalized functions, we
present the set of all Radon measures, the set of all bounded Radon measures
with Radon-Nikodym density w.r.t. the Lebesgue measure, the set of all prob-
abilities, the set of all subprobabilities and the set of all point configurations.
These examples are considered in numerous areas of applications dealing with
the description of large complex system.

Our approach is based on a combination of classical results about the mo-
ment problem on nuclear spaces and of techniques developed to solve the moment
problem on basic semi-algebraic sets of R?. For this reason, we provide a uni-
fied exposition of some aspects of the classical real moment problem which have
inspired our main result. Particular importance is given to criteria for existence
and uniqueness of the realizing measure on R¢ via the multivariate Carleman con-
dition and the operator-theoretical approach. We also give a formulation of the
moment problem on general finite dimensional spaces in duality which makes clear

the analogies with the infinite dimensional moment problem on nuclear spaces.
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Introduction

It is still very difficult to describe, by looking at either their microscopic
or macroscopic scale measuraments, the physics of some complex or “random”
many-body systems such as a liquid composed of molecules or a galaxy made
of stars. Nevertheless, to obtain information about one of these systems it is
often very helpful to investigate some of its characteristics or physical parameters
which are easier to observe, measure and handle mathematically. For example, in
the case of a liquid, the characteristics under study are objects like the density,
the average distance between the molecules, the pressure, the viscosity, etc.. The
knowledge of these quantities provides information about the liquid state which
entirely describes the thermodynamical properties of the liquid (see [30]). An-
other example belongs to spatial statistics and consists in the study of population
dynamics in continuous spaces where it is important to understand the evolution
of individual births, deaths and movements (see [77]). In this case, the first spa-
tial moment is the mean density, the second parameters is the density of pairs of
individuals which measures how an individual correlates with its neighbour, etc..
Similar questions have been widely treated in heterogeneous materials and meso-
scopic structures (see [78]), stochastic geometry (see [52]), spatial ecology (see [54])
and neural spike trains (see [13, 37]), just to mention a few.

The main new contribution of this thesis is about the full power moment
problem on a pre-given subset S of 2'(R%), the space of all generalized func-
tions on R?. From a mathematical point of view, the choice of this framework
is convenient and general enough to comprehensively include all the applications
mentioned above. More precisely, we ask whether certain given generalized func-
tions are in fact the moments of some finite measure concentrated on §. If such a
measure exists we say that it realizes, on S, the prescribed sequence of generalized
functions. Moreover, we investigate how to delineate the support of the realizing
measure directly from some positivity properties of its moment functions. To
get the main theorem of this thesis we connect some well-known results about

the moment problem on nuclear spaces with the techniques recently developed
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to treat the classical moment problem on finite dimensional basic semi-algebraic
sets.

To be more concrete about the main result, homogeneous polynomials are defined
as powers of linear functionals on 2'(R%) and their linear continuous extensions.
Let us denote by Pee(2'(R?)) the set of all polynomials on 2'(R?) with coeffi-
cients in C>°(RY), where the latter is the set of all infinite differentiable functions
with compact support in R?. We find a characterization, via moment functions, of
measures concentrated on basic semi-algebraic subsets of 2'(R%), i.e. sets given

by polynomial inequalities. Namely, a basic semi-algebraic set S is of the form

s={neZ®)| A =0},

€Y

where Y is an arbitrary index set (not necessarily countable) and each P; is a
polynomial in Pes (2’ (R?)).

To our knowledge, the infinite dimensional moment problem has been only
treated in general on affine subsets (see [8, 5]) and cones (see [73]) of nuclear
spaces. Special situations have also been handled (see e.g. [81, 6, 39]). The results
concerning nuclear spaces are stated in Chapter 3. In the first two chapters of
this work instead we give a review of some classical results about the moment
problem on R¢ on which our approach is based. This exposition is mostly based
on the Riesz functional and the operator-theoretical approach.

Let us recall that the well-known K-moment problem, where K is a closed
subset of R?, asks when a given sequence of real numbers represents the successive
moments [, 27" - xg?p(dey, ... dxg), a; = 0,1,..., of a non-negative measure
i with support contained in K. If such a measure i exists, we say that the
given sequence is realized by p on K. Moreover, if p is unique we say that it is
determinate or that the moment problem has a unique solution.

The moment problem mainly consists in establishing necessary and sufficient
conditions for a sequence to be the moment sequence of a measure p and to
decide whether this measure is unique or not. An obvious necessary condition
for the solvability of the moment problem is the non-negativity of a certain form
associated with the initial sequence of numbers which are also called putative
moments. More precisely, given a sequence y of putative moments, one introduces
on the set of all polynomials the so-called Riesz functional L,,, which associates
to each polynomial its putative expectation and is solely expressed in terms of
the putative moments. If a polynomial P is non-negative on the pre-given set

K, then a necessary condition for the realizability of y on K is that L,(P) is
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non-negative as well. This condition alone is also sufficient for the existence of
a realizing measure concentrated on K C R? as stated by the Riesz-Haviland
theorem (see [64, 32]). The disadvantage of such a type of positivity condition
is that it may be rather difficult, and also computationally expensive, to identify
all non-negative polynomials on K, especially if the latter is geometrically non-
trivial. For this reason, a lot of work was devoted to develop more checkable
positivity conditions.

Let us first focus, for reasons that are we going to explain later, on the case
when K = R. This is also known as Hamburger’s moment problem named after
H. Hamburger who was one of the fathers of this rich branch of mathematics
(see [29]). A well-known result shows that all non-negative polynomials on R
can be written as the sum of two squares of polynomials (see [58]). On R, it
is therefore sufficient for the realizability of a sequence y to require that L, is
non-negative on squares of polynomials, that is, y is positive semidefinite. Such
a positivity condition, in contrast with the Riesz-Haviland condition, is easy to
check by semidefinite programming (see e.g. [45]).

After the discussion about the existence let us look at the uniqueness of the
Hamburger moment problem. A sufficient condition for the determinacy of the
moment problem on R is a growth restriction on y = (yn)nen, given by the

Carleman condition, i.e.
oo
1
g Yo" = +00.
n=1

In fact, if the moments of a measure u satisfy the Carleman condition, there is
no other measure v having the same moments as p. The condition was discov-
ered by T. Carleman in his treatise on quasi-analytic functions in 1926 (see [14]).
Actually, the weakest known condition that is sufficient for the uniqueness of the
measure realizing a positive semidefinite sequence y is that the class C{y,} is
quasi-analytic (see [38]). Recall that a quasi-analytic class of functions is a gen-
eralization of the class of real analytic functions based upon the following fact. If
f is an analytic function on R and at some point the function f and all its deriva-
tives are zero, then f is identically zero on R. Quasi-analytic classes are larger
classes of functions for which this statement is still true. The Denjoy-Carleman
theorem gives criteria on the sequence y under which the class C{y,} is quasi-
analytic. If the sequence is log-convex, i.e. y2 < y,_1y,s1 for any n € N, and if
Yo = 1, these criteria are equivalent to the Carleman condition.

For the moment problem on R, with d > 2, things are slighty different. In fact,

the positive semidefiniteness of y is not anymore sufficient for realizability as al-
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ready D. Hilbert pointed out in the description of his 17th problem (see [33]).
However, the positive semidefiniteness of y becomes sufficient if one additionally
assumes a restriction on the growth of the moments given by the so-called multi-
variate Carleman condition. Using the operator-theoretical approach we explain
the existence and uniqueness of the moment problem on R?. We will first start
from the case d = 1 so that the differences with the multi-dimensional case will
be more evident. Let us describe the general procedure we are going to use. By
the standard GNS construction (see e.g. [23, Sect. 4]), we set up a Hilbert space
starting from R[z] and from a positive semidefinite sequence y and define an in-
ner product through the Riesz functional L,. An operator of multiplication by
x is introduced too. The latter is symmetric but not self-adjoint. However, by a
classical results of J. von-Neumann and A. Galindo (see [63, 24]), there exist self-
adjoint extensions on a larger domain. These extensions have a spectral measure
which is non-negative and has y as a moment sequence. If the putative moments
fulfill the Carleman condition, the operator admits a unique extension and so the
realizing measure is determinate.

In dimension d > 2, the corresponding approach to get existence requires con-
ditions which automatically imply uniqueness, see Chapter 2 for more details.
Let us give an idea of why this happens. Symmetric operators of multiplication
by x;, for i = 1,....,d, are constructed on the space of polynomials. As in the
one dimensional case, these operators have self-adjoint extensions. However, in
order to get the existence of a realizing measure on R? we have to apply the
spectral theorem for several operators in which the essential requirement is that
the involved operators strongly commute. The latter means that the associated
unitary groups commute. To check this, the unitary groups and their mixed
products have to be uniquely determined by the operators and their powers on
the set of so-called quasi-analytic vectors, see a result due to A. E. Nussbaum
in [56]. This is based on the multivariate Carleman condition which also gives
uniqueness of the realizing measure. This argumentation makes clear why, in
higher dimensions, one cannot separate existence and uniqueness.

Beyond the case of K = R?, for a long time the moment problem was only
studied for specific subsets K of R rather than general classes of sets. Among
these we recall, for d = 1, the Stieltjes and the Hausdorff moment problem which
seek necessary and sufficient conditions for a sequence of numbers to be the
moment sequence of some Borel measure supported on the ray [0, co) (see [75, 76])
and on the closed unit interval [0,1] (see [31]), respectively. However, enormous

progress has recently been made for the moment problem on general basic semi-
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algebraic sets of R%. These results have the advantage to encode properties of
the support of the realizing measure in positivity conditions stronger than the
positive semidefiniteness. Namely, L, is non-negative on the quadratic-module
generated by the polynomials (P;);cy defining the basic semi-algebraic set K,
that is the set of all polynomials given by finite sums of the form » @Q; P, where

Q; is a sum of squares of polynomials. Semidefinite programming alllows then to
efficiently treat such positivity conditions.

Let us mention just a few works which inspired the results presented in this
thesis (for a more complete overview see [45, 47, 51]). In 1982 C. Berg and
P. H. Maserick showed in [10] that for a compact basic semi-algebraic K C R the
positivity condition involving the quadratic module is also sufficient. The sketch
of their proof is presented in Chapter 1. Concerning the higher dimensional
case, a few years later, K. Schmiidgen proved in [68] that for a compact basic
semi-algebraic K C R? a slightly stronger positivity condition, that is, L, is non-
negative on the pre-ordering generated by (P;);cy, is sufficient. This result was
soon refined by M. Putinar in [61] for Archimedean quadratic modules. Since
then, the problem to extend their results to wider classes of K has intensively
been studied, (see e.g. [60, 41, 15]). By additionally requiring a growth condition
which implies the multivariate Carleman condition, J. B. Lasserre has recently
shown in [46] that the non-negativity of L, on the quadratic module is sufficient
for the realizability on a general basic semi-algebraic set K C RY. One main
ingredient of all these works is to prove the existence of a realizing measure on R?
(this is the reason why we firstly discussed the “Hamburger moment problem”),
which is subsequently shown to have support contained in K. In order to show
the latter property and also the determinacy problem, a crucial point in the proof
is to show that the moments of a signed measure and the ones of a non-negative
measure are equal. Via what we call splitting procedure, this equality between
moments is replaced by another one which only compares the moments of two
non-negative measures. One of these two measures is such that either its support
is compact or its sequence of moments satisfies the Carleman condition. We show
that also in the case of compact support the Carleman conditions is automatically
implied and so the uniqueness of the realizing measure.

Henceforth, let us discuss the infinite dimensional moment problem also called
realizability problem. Using the central idea of the works about the classical mo-
ment problem on basic semi-algebraic sets, we prove that also for a moment
problem on an infinite-dimensional basic semi-algebraic set S, the non-negativity

of the Riesz functional on the associated quadratic module is sufficient for the



realizability of a sequence of putative moments satisfying a certain growth con-
dition.

To better understand the step from the finite to the infinite dimensional case, in
Chapter 3 we state the classical moment problem on a general finite dimensional
vector space which is in dual pairing with another vector space under a scalar
product. The most important theorem of this chapter, and fundamental tool used
in the proof of our main result, is due to Y. M. Berezansky, Y. G. Kondratiev
and S. N. Sifrin. In particular, it gives an answer to the solvability of the moment
problem on €', where the latter is the topological dual of a nuclear space 2 given
by the projective limit of a family of separable Hilbert spaces. This theorem is the
analogue for nuclear spaces of the result about existence and uniqueness for the
classical moment problem on K = R?. The equivalent of the multivariate Carle-
man condition is a growth condition on the sequence of putative moments. Such
a sequence is called determining because this property guarantees the uniqueness
of the realizing measure as well. However, in the infinite dimensional case, this
determinacy condition additionally involves regularity properties and growth re-
strictions on the moments as functions.

In our case, we will consider € to be the space of test functions C>°(R?) repre-
sented as the uncountable intersection of weighted Sobolev spaces and equipped
with the associated projective topology. The correspondent space of generalized
functions is Z,.,;(R?). Let us point out that usually C°(R?) is endowed with the
standard inductive topology and we denote its topological dual space by Z; ,(R?).
The inductive topology is strictly stronger than the projective one and, as a con-
sequence, Z,.,.(R?) is strictly smaller than 2}, ,(R?).

We will prove the existence and the uniqueness of the realizing measure on

!
proj

will be able to prove that this measure is actually concentrated on S. Moreover,

(R?) via the theorem due to Berezansky, Kondratiev and Sifrin and we

even solely in the context of the finite dimensional moment problem, the ideas
employed in the proof of our main result also extend to basic semi-algebraic sets
defined by an uncountable family of polynomials and to the most general bound
on the growth of the moments given by the multivariate Carleman condition. To
consider these kinds of sets in infinite dimensions, the use of the inductive topol-
ogy on C(RY) is essential as S is closed in 2/ ,(R?) with respect to the strong
topology and the latter topological space is Radon. Let us emphasize that, in
our main result, the only regularity assumption is that the putative moments are
Radon measures.

In the last part of this work we use the main theorem to derive realizability results
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under more concrete circumstances. Essentially, we need to find a representation
of the desired support as a basic semi-algebraic subset of the space of generalized
functions. The positivity conditions which we obtain depend on the chosen repre-
sentation of §. In particular, we investigate conditions under which the moment
functions can be realized by a finite measure concentrated on the space of all
Radon measures on R?. Furthermore, we show how to characterize, via moment
measures, the set of Radon measures with Radon-Nikodym density w.r.t. the
Lebesgue measure fulfilling an a priori L*°-bound, the set of all probabilities and
subprobabilities and, eventually, the space of point configurations. These exam-
ples demonstrate that, in contrast to the finite dimensional case, a semi-algebraic
set defined by uncountably many polynomials leads to very natural and treatable

conditions on the moments in the infinite dimensional context.

Even if we have already given most of the contents of the thesis, let us give a
brief outline.
Chapter 1 reviews, using the Riesz functional approach, necessary and sufficient
conditions for the solvability of the classical moment problem on a subset K of
the real line. Particular importance is given to the theorem due to Riesz (which
we revisit using a proof different from the original one) and, as consequence, to
Hamburger’s theorem used as essential tool to get the existence of the realizing
measure on basic semi-algebraic subsets of R (as Berg and Maserick do). We
investigate, by a nonstandard proof, the uniqueness of the solution via the Carle-
man condition and we describe some possible alternative approaches such as the
Weierstrass and the monotone class theorem and point out that these are not
suitable to be used in the proof of Berg and Maserick. In preparation for the
multi-dimensional case, we explain the existence (and uniqueness) of the moment
problem on R via the operator-theoretical approach.

Chapter 2 describes some aspects of the moment problem extended to R%.
It mainly focuses, by using the operator-theoretical approach, on the sufficient
conditions for a multi-sequence to be determinate. To get the existence of the
realizing measure on R? via spectral theorem, an important role is played by
the pairwise strong commutativity of the involved operators. This property is
guaranteed by a theorem due to Nussbaum which requires the existence of a
total set of quasi-analytic vectors for all the involved operators. The proof of
Nussbaum’s result is rewritten by using a path different from the original one.
Moreover, a proof due to Schmiidgen about the moment problem on compact

basic semi-algebraic set of R? is presented. Furthermore, we show how Lasserre
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treated the case of basic semi-algebraic set not necessarily compact.

Chapter 3 states the classical moment problem on a general finite dimensional
vector space which forms, under a scalar product, a dual pair with another vec-
tor space. Moreover, the background and the well-known result about the full
realizability problem on nuclear spaces are given.

Chapter 4 contains the main contribution of the thesis for the realizability
problem on S basic semi-algebraic subset of the nuclear space ;TO]-(Rd). We
consider a sequence m = (m™), ¢y, of putative moment functions consisting of
a special class of generalized functions. Indeed, each m(™ is a Radon measure on
R and so m™ € 7, .(R™").

As already said, existence and determinacy criteria for the moment problem
are related to the spectral theorem, to the quasi-analyticity of some classes of
functions and, for the multi-dimensional case, also to the strong commutativity
of certain symmetric operators. For this reason, in Appendix A we collect some
results from the theory of quasi-analyticity and in Appendix B some considera-
tions about the spectral theorem. In particular, we clarify the relation between
the powers of the operators and the moments of the spectral measure. FEvery
self-adjoint extension of the symmetric multiplication operator, associated with
the sequence y of putative moments, produces indeed a measure which realizes
y. Appendix C contains a collection of further auxiliar results used throughout

this dissertation.
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Chapter 1

The one-dimensional power

moment problem

In the present chapter we review, using the Riesz functional approach, neces-
sary and sufficient conditions for the solvability of the classical moment problem
on a set K C R. We particularly focus on the results due to Hamburger for
K =R (see [29]) and to Berg and Maserick for K basic semi-algebraic subset of
R (see [10]). In both cases the uniqueness of the solution is investigated.

We also give an operator approach explanation to the existence and uniqueness

of the moment problem which will be essential in the following chapters.

1.1 Statement of the problem

Let us recall that

Definition 1.1.1.
The support of a mon-negative Borel measure p on R is defined as the unique

smallest closed set supp(p) C R such that p(R \ supp(u)) = 0.
From now on, let K C R be closed.

Definition 1.1.2 (Moments on K).
Let 1 be a non-negative Borel measure p on R with support contained in K. The

number
/ z® p(dx), o € Ny,
K

is called the o -moment of u on K.

We denote by M*(K) the set of all non-negative Borel measures on R with



support contained in K and such that [, 2% u(dz) < oo for all & € Ny. Note

that in particular a measure in M*(K) has finite moments of all orders on K.

Remark 1.1.3.

The integrals should be computed on supp(u) which is contained in K. Neverthe-
less, we prefer to write the integral on K for notational convenience.

Moreover, there is no difference for the integrals if ju is seen as a measure on K
or as a measure on R supported on K. In fact, any measure on (K,B(K)) is in
one to one correspondence with a measure on (R, B(R)) supported on K. Hence,
for the moments of u in M*(K) we have that

/xo‘ p(dr) = / % p(dr) < oo, Vo € Nj.
R K

Let us observe that measures in M*(K) are automatically finite. In fact,
when a = 0, we have u(R) = pu(K) < oo. Thus, they are also Radon measures,

i.e. Borel measures finite on compact subsets of R.

Given p € M*(K) we are always able to compute the sequence of its moments

on K
(forrme)

which is called K-moment sequence of p.

The moment problem is a sort of inverse problem.

Definition 1.1.4 (Moment problem on K).
Given an infinite sequence of real numbers y = (Yo )aen,, find u € M*(K) such

that y, is the a™-moment of i on K, i.e.

Yo = / z® p(dr), Vo e Ny. (1.1)
K

If such a measure exists we say that the sequence y is realized by p, or that y has
a representing (or realizing) measure p, on K.
If the representing measure is unique we say that p is determinate or that the

moment problem has a unique solution.

The two main questions in solving the moment problem are: to find necessary
and sufficient conditions for a sequence y to be the moment sequence of a measure

p € M*(K) and to decide whether this measure is unique or not.
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The most well known examples of moment problems are the following.

e The Hamburger moment problem: K = R and (Y4 )aen, C R.
e The Stieltjes moment problem: K = [0,400) and (ya)aen, C RT.
e The Hausdorff moment problem: K = [a,b] and (Y4 )aen, C R.

e The Toeplitz moment problem: K is the unit circle in C and (y4)acz € C.

In this chapter we will only give a brief survey about real moment problems.
Namely, from now on, we will consider K C R and y = (Ya)aen, C R.

To describe the theory behind the moment problem we will make use of the
so-called linear functional approach.
Given y = (Ya)aen, We define the linear Riesz functional L, on the ring R[z] of

all polynomials with real coefficients as
L,(x%) ==y, o€ Ny. (1.2)

Let us notice that, for a polynomial p(z) := > paa® € R[z], with [ finite subset
ael

= Zpaya-

ael

of Ny, by linearity we have

In particular, when y is realized by p € M*(K) we have the following

Proposition 1.1.5.
Let y be a sequence realized by € M*(K). Then,

L,(p) = /K pla) ulde)

for any p € R[z].

Proof.
Since y is realized by p € M*(K), equation (1.1) holds. Then,

S = X (),
Ll

= | »(@)

K



1.2 Necessary conditions for the solvability of

the moment problem

In this section we study necessary conditions for a sequence y to be the K-
moment sequence of a measure p € M*(K).

From now on, Rj.[x] will denote the convex cone of real polynomials which
are non-negative on K. When K = R we simply write RT[z] instead of Ry |[x]

and we also drop the set R on the symbol of the integrals.

Proposition 1.2.1.

A sequence Y = (Ya)acn, has a representing non-negative Borel measure p sup-
ported on K only if L, is non-negative for all non-negative polynomials on K,
i.€.,

(EIMEM*(K) $.t. Yo :/ z*p(de), Va € No):><Ly(p) >0, Vp e R}[x])

K

Proof.
Assume that y is realized by p € M*(K). Then, by Proposition 1.1.5, we have
that

L,(p) = /K pla) uldz),

which is non-negative since p is supported on K where p is non-negative.

The following definition will play a central role in the further discussions.

Definition 1.2.2.
A sequence Yy = (Yo )aen, @5 called positive semidefinite if for any sequence (hy)aer C

R, with I finite subset of Ny,

> Yarshahs > 0.

a,Bel

Equivalently, y is positive semidefinite if for all h(z) := > hox® € Rlzx], with I
acl
finite subset of Ny,

L,(h*) > 0.

Some authors use a more general definition of positive semidefiniteness by
considering the ring C[z] of all polynomials with complex coefficients. The equiv-
alence between the definition of positive semidefiniteness in the real and complex

case is given by the following proposition.
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Proposition 1.2.3.
(Ly(h*) >0, VheR[z]) < (Ly(hh) >0, Vhe Clz]).

Proof.
If h € C[z] then hh = h? + h2 with hy, hy € R[z]. Therefore, if L,(h?) > 0 for all
h € R[z], we have that L,(hh) = L,(h?) + L,(h3) > 0 for all h € C[z].
Viceversa, if L,(hh) > 0 for all h € C[z], then in particular for all h € R[z]
we have that h = h and so L,(hh) = L,(h?) > 0.
[

A direct consequence of Proposition 1.2.1 is the following.

Corollary 1.2.4.
A sequence Y = (Ya)aen, has a representing non-negative Borel measure p sup-

ported on K only if y is positive semidefinite, i.e.,

(aueM*(fQ ot ya:/

2®p(dz), Yo € No>:>(Ly(h2) >0, Vh € ]R[a:]).

Proof.
The result directly follows from Proposition 1.2.1 because the polynomial h? is

non-negative on K.
O

Corollary 1.2.4 for K = R is the necessary condition of Hamburger’s theorem

whose sufficient part is stated in Subsection 1.3.2.

Let us see now some additional necessary conditions of positive semidefinite
type when the set K is basic semi-algebraic, i.e. given by the intersection of the
intervals where a certain number of fixed polynomials are non-negative.

Let us make some preliminary considerations.

We define the shift operator E on the set of sequences ¥ = (Ya)aen, int the

following way,
(EY)a = Yar1, « € Np.

For a real polynomial g(z) = > gsa?, with I C Ny finite, g(F) is the polynomial
pel



shift operator g(E) := Y gsE? (where EY is the identity operator), i.e.
Bel

G(E)Y)a = _ gsYars

Bel
We will make use of the following lemma several times.

Lemma 1.2.5.

Let y be a sequence and g € R[x]. Then,

Ly(a9) = Lymy(q) (1.3)
for all q € R[z].
Proof.
Let q(z) = > qoz®, with J C Ny finite. Then,
acJ
(99)(@) =D Y qagsr™*’
aed pel
and

Ly(q9) = L, (Z > qagprt? ) = D qagsLy(x**?)

acJ Bel acJ Bel

= > ) GaYsYars

aeJ pel

= > G0 Galass

acJ pel

= Y alg(Ey).

aeJ

= Lg(E)y(Q) .

CASE OF ONE POLYNOMIAL

Let K C R be the basic semi-algebraic set given by a fixed real polynomial g, i.e.

the set where g is non-negative. Namely,

K:={zeR:g(z) >0}. (1.4)



Proposition 1.2.6.
A sequence Y = (Ya)aen, has a representing non-negative Borel measure p on K

only if y and g(E)y are positive semidefinite, i.e.,

(aueM*(K) st ya:/

K

L,(h?) >0, Yh € R[z]
L,(h?g) >0, Yh € R[z]/

z*p(de), Vo € No)=>(

Proof.
Assume that y is realized by p € M*(K). By Corollary 1.2.4, we have that
L,(h?*) > 0 for all h € R[z]. Moreover, by (1.3) and Proposition 1.1.5, we get

Ly (h?) = L (%g) = /K W (2)g () p(d),

which is non-negative since p is supported on K where g is non-negative. Hence,
the sequences y and g(F)y are positive semidefinite.
O

Let us note that R can be thought as a basic semi-algebraic set of the form
(1.4) by taking g(z) = ¢, with ¢ > 0. In this sense, Proposition 1.2.6 coincides
with Corollary 1.2.4 for K = R.

CASE OF SEVERAL POLYNOMIALS

Let K C R be the basic semi-algebraic set given by the fixed real polynomials

g1, ---,9m, i.e. the set where all g;’s are non-negative. Namely,
K :=(){z €R:g(x) > 0}. (1.5)
j=1

Proposition 1.2.7.
A sequence Yy = (Ya)aen, has a representing non-negative Borel measure jn on K

only if y and g;(E)y, for j =1,...,m, are positive semidefinite, i.e.,

L,(h?) >0, Vh € R[z]
z*p(de), Va € NO>:> L,(h*g;) >0, Yh € R[z] |.

Jj=1,....m

<HMEM*(K) sl ya:/

K

Proof.
The conclusion follows applying the same procedure described in the proof of

Proposition 1.2.6 to each g;.
O



Remark 1.2.8.
The latter theorem also holds if in (1.5) we consider an uncountable number of
polynomials g;. Note that in this case K s still closed as intersection of closed

sets.

1.3 Sufficient conditions for the existence and

uniqueness of a realizing measure

In this section we prove Riesz’s theorem which characterizes the realizability
of a sequence y of real numbers by a measure u € M*(K) through a condition
involving the non-negativity of the functional L, on the set of non-negative poly-
nomials on K.

Successively, we investigate conditions for the uniqueness of the solution of the
moment problem. In particular, we present Carleman’s condition which ensures
the uniqueness of the Hamburger moment problem. The relative questions in the

case of K basic semi-algebraic are also treated.

1.3.1 Riesz’s existence result

Theorem 1.3.1 (Riesz, [64]).
A sequence y = (Ya)aen, has a representing non-negative Borel measure ji sup-

ported on K if L, is non-negative for all non-negative polynomials on K, i.e.,

<E|,u€./\/l*(K) s.t. ya:/

2 p(de), Vo € N0)<:<Ly(p) >0, Vp € R};[x]).

Proof.
Let V' be the vector space of all the real-valued continuous functions polynomially

bounded on K. Namely,
V:={feC(K)Imy eN, ceR" st. |f(z)] < c(l+|z|™), Ve K}.

Let V; be the ring R[z| of all polynomials with real coefficients. It is easy to
see that V is a vector lattice which is dominated by its subspace V. Then, by
Theorem C.0.6, L, can be extended to a (not necessarily unique) non-negative
linear functional, which we also call L,,, on V. If we can show that condition (Dec)

in Theorem C.0.7 holds on V, then we have that there exists a non-negative



measure p on (K, o(V)) such that

LAﬂzAf@M®)

for any f € V.

In particular, if f(x) = 2%, we have for all & € Ny

= Lyfa®) = [ auda),

which means that the sequence y is realized by p € M*(K).
Let us notice that the o-algebra generated by V coincides with the Borel
o-algebra on K. That is,
o(V) = B(K).

Let us prove this statement in two steps.

Step I: o(V) C B(K).

Every f € V is continuous on K and trivially measurable w.r.t. the o-algebra
B(K). In other words, B(K) is a o-algebra w.r.t. which all f € V' are measur-
able. Hence, o(V) C B(K) because o(V) is the smallest o-algebra w.r.t. which
all f € V are measurable.

Step IL: ¢(V') D B(K).

Let us first prove that o(V') contains the collection 7, of all open sets in K, i.e.
o(V) D 7g.

Let us recall that o(V) := {f7*(S)| S € B(R),f € V} and that, by defini-
tion of Borel o-algebra, 7, C B(K). Therefore, if we take A € 7, (and so
A € B(K) C B(R)) we can trivially write A as Id~'(A) where Id : x — x is the
identity polynomial with domain K. Hence, A € o(V) and so o(V) D 7.

Since B(K) is the smallest o-algebra containing 7y, we get our conclusion.

It only remains to verify that L, satisfies condition (Dec) in Theorem C.0.7.
Let (fn)nen, be a monotonically decreasing sequence in V' which converges point-
wise to 0, and let € > 0. Since fy > f, > 0 for each n € N and since f; € V,

there exists a non-negative integer my and a constant ¢ such that
fo(z) <c(l+|z|™), VneNy, VreK.

W.l.o.g. we can always assume that mg is even because if mq is odd there always



exists a constant ¢ > ¢ such that
fo(x) < (14 |z|™) < (1 +a™), VreK.
Let us define now the sets

K, = {z € K| fu(x) > e(1+4q(x))},

where g(x) = 2?(1 + 2™).
Each K, is closed in K w.r.t. the topology 7k because f,, and ¢ are continuous.

Moreover, K,, is bounded because
1
K, C {re K| o(l+a™)>c(1+q()} = {m e K‘ 1+ql@) _ _}

- {xEK‘ ﬂgf}z{xeK’ x2§-}.
1+ g™mo € €

14 zmo €
By Proposition C.0.3, K, is then compact.

Since (fy)nen, decreases to zero pointwise, we have that

() K.=9. (1.6)

neNp

In fact, if there was T € K, for all n € Ny we would have
fa(@) > (14 ¢(T)) >€, VYneN,

which contradicts the assumption that (f,,)nen, decreases to zero.
Since K, is compact and (1.6) holds, there exists a non-negative integer N € N
such that K,, = () for n > N, i.e.

fa(z) <e(1+gq(z)), Yn>N, VzeK.

The latter condition, by non-negativity and linearity of L,, implies that for n > N
we have 0 < Ly(f,) < €(1+ Ly(g)). By the arbitrarity of €, we conclude that
lim L,(f,) = 0.

n—oo

[]

Let us notice that in Theorem 1.3.1 the realizing measure is not unique because
of the non-unique way to extend L, via Theorem C.0.6. Moreover, the space V'

of all continuous functions polynomially bounded on K is contained in L'(u) and

10



|z|* € V, for all @ € Ny, so we have that the realizing measure has finite moments

of any order.

Remark 1.3.2.

Theorem 1.3.1 is not very practical since the problem of characterizing non-
negative polynomials on a general set K is not very easy. Nevertheless, as we
are going to see in the following sections, when K s basic semi-algebraic we get
positive semidefinite type conditions efficiently checkable through a semidefinite

programming which is a technique of convex optimization (see [{4]).

1.3.2 Hamburger’s existence result

Let us introduce the following preliminary result.

Lemma 1.3.3 (Pdlya and Szego, [59)]).
A polynomial p € R|x] is non-negative on R if and only if it can be written as a

sum of squares of other polynomials, i.e.,
(p(2) 20, Vo€ R)=(p(@) = h3(x) + H3(x), In,hz € Rla]).

Proof.
(<) Trivially, a sum of squares of polynomials is non-negative on R.
(=) Let us suppose that a polynomial p € R[z] with highest degree term pogz??

is non-negative on R. Then p is of the form

o) =pu [T =2 T (5 = oot i) (2= (=), (17

=1

where \;, j = 1,...,r, are the real roots of even multiplicity 2m; (no multiplic-
ity can be odd otherwise in a neighborhooh of the corresponding real root the
polynomial would change sign) and a; + ib;, [ = 1,..., h, are the complex roots
in conjugate pairs.

Since

<$ — (a; + z'bl)> <x — (a; — ibl)> =(z—a)* +b,
we can write (1.7) as
r h
p(a) =pa [ [ (= = 2)*™ [ (& — a)® +17). (1.8)
j=1 =1
Note that the leading coefficient psy needs to be positive.

11



h
The product [] ((z — a;)? +b}) gives rise to a polynomial written as sum of
=1

two squares. Tn fact, and in general, if A = f2 + ¢> and B = t*> + k? where
f,g,t, k € R[x] then

AB

(fQ +92) (t2 +k2)

— f2t2 +f2/{32 +g2t2 +g2/€2

= (4 2ftgk + ¢°K*) + (f°K* — 2ftgk + g*t)
= UL*,E’E)Q + (&:_gg)2 =R+ 5?

:;R :ZS

and clearly R, S € R[x].
By repeating the latter procedure h — 1 times in (1.8), we get that

pe) = pa] (A (B4 )

= [ﬂ/deH (CL’ — )\])mj R]Q —+ [\/deH(l’ — )\j)mf S ’
7j=1 Jj=1
= T(z) :::(x)

Remark 1.3.4.

The representations (1.7), and as a consequence (1.8), of p are not possible when
we deal with polynomials in more variables. In fact, the fundamental theorem
of algebra does not hold for polynomials in more variables. Hence, for d > 2, a
non-negative polynomial on R? does not necessarily have a sum of squares repre-
sentation.

This was known already to David Hilbert in 1888 (see [33]) although his proof
was non-constructive. A first concrete example was given by Motzkin only in
1967 (see [53]). The Motzkin polynomial

2,2 2,4 4, .2
s(xy,x0) = 1 — 3zix; + xiwy + 2775

is non-negative on R? but it cannot be written as sum of squares. The non-

negativity follows from the standard inequality

at+b+c

5 > Vabe, a,b,c >0,

12



relating the arithmetic mean and the geometric mean, by taking a = 1, b = z3x3,
and ¢ = xi{x3.
To show that s cannot be written as sum of square we work by contradiction. Let
us suppose that the polynomials s can be actually written as sum of squares, i.e.
s(xy,29) =Y f2(x1,x2) for some polynomials f; € Rz, xs]. Since s has degree
6, each f; caln have degree at most 3. This means that s is given by a real linear
combination of

1, 1, x9, x%, T12o, x%, a:‘rf, xfarg, xla:g, x%

However, the term z3 does not appear in some f; because otherwise x% would

appear in s with positive coefficient. Similarly, x5 does not appear. Arguing in
the same way, the terms x2, 3, x1 and x5 do not appear either. For these reasons,
fi has the form

2 2
fi = a; + bjw129 + iy + diT 75,

Then we would have that Y b? = —3 which is a contradiction.

We can get as corollary of Riesz’s theorem the following important result (for

the original proof see [29]).

Theorem 1.3.5 (Hamburger, [29]).
A sequence Y = (Ya)acn, has a representing non-negative Borel measure (i sup-

ported on R if y is positive semidefinite, i.e.,

<E|,LL€M*(R) $.t. Yo :/xo‘,u(dx), Va € No)<:<Ly(h2) >0, Vhe R[m])

Proof.

Let us notice that whenever y is positive semidefinite we also have that

L,(h) >0, VheR¥[z]. (1.9)

In fact, by Lemma 1.3.3, any polynomial h € R*[z] can be written as sum of
squares. Namely,
h = h?+ h?

for some hy, hy € R[z]. Then

Ly(h) = Ly(h%) + Ly(hg)a

13



which is non-negative because L,(h?) > 0 and L,(h3) > 0, by the positive semidef-
initeness of y.
Condition (1.9) implies, by Theorem 1.3.1 for K = R, that there exists u €
M*(R) realizing the sequence y.
0

Remark 1.3.6.
The positive semidefiniteness condition for the moment problem can be also for-
mulated using the Hankel matrices.

If y = (Ya)aen, 1S a sequence of real numbers, the Hankel matriz H(y) is defined

H(y)(, 8) == Yarp—2

for all a, 5 € N.

Let us recall that, for a real symmetric square matrix H, the notation H = 0
stands for H being positive semidefinite.

Then, Hamburger’s theorem together with its necessary part (Corollary 1.2.4 for
K =1R), is reformulated as follows: “a sequence of real numbers y is realized on
R if and only if H(y) = 07. In other words,

<Ly(h2) >0, Vhe R[x]) — (H(y) >~ 0).

Since it is more convenient to work with finite dimensional matrices, the following

truncated Hankel matriz H,(y), n € Ny, is introduced.

Hn(y) (Oé, ﬂ) = Ya+p-25

with o, f € N such that 1 < o, < (n+1).

Then Hamburger’s theorem (together with Corollary 1.2.4 for K = R) can be
rephrased as “a sequence of real numbersy is realized on R if and only if H,(y) = 0
for alln € Ny”.

For a more detailed survey about the moment problem on K C R wvia Hankel

matrices see [43] and [47].

1.3.3 Uniqueness of the solution via Carleman’s criterion

Definition 1.3.7 (Carleman’s condition).

We say that a sequence (yn)nen, of Teal numbers, with ya, > 0 for all n, satisfies

14



Carleman’s condition if

> yp = o0, (1.10)

Theorem 1.3.8 (Carleman, [14]).
Let p,v € M*(R) have the same moments y,, i.e.

/xa,u(dx) - /x%<dx), Va € No. (1.11)

If (Ya)aen, satisfies Carleman’s condition (1.10) then p = v.

Proof.

By assumptions, (Ya)aen, satisfies (1.10), i.e.

> 1
;Q_M_oo.

By Remark A.0.20, the sequence (Y24 )acn, iS log-convex and so is the sequence
(V¥2a)acn,- By Denjoy-Carleman’s Theorem A.0.21 (w.lLo.g. we can assume
Yo = 1, see Remark A.0.22), the class C'{/y2} is then quasi-analytic (see Defi-
nition A.0.17 and Definition A.0.18).

Let us consider the Fourier-Stieltjes transforms of the finite measures p and v,

namely

Fi(t) = /em,u(d:z:) and Fy(t) := /emu(daﬁ), teR.

The function Fy(t) — Fy(t) is in the class C{\/yaq }. In fact, it is infinitely differ-

entiable on R and since

%Fl(t) = /(_im)ae—ixtu(dq}) and ;%P&(t) - /(—ix)ae_my(dx),

15



we have that

G (R0)| + |5 ()

- ’ / (—iz)%e " u(dx)| + ’ / (—iz)%e v (dx)

< [lerutdn) + [ falviar
< c#</x2a,u(dx)>%+CV(/x2al/(d:L’))% (1.12)

= C#(y2a>§ + Cu(y2a)§ (113)

- (Cu + Cu) VY2,

da
e (R0 - (0)

where in (1.12) and (1.13) we have made use of Cauchy-Schwarz’s inequality

(cp = VE(R), ¢, = /v(R)) and (1.11), respectively.

Moreover,
da

2 (F1(0) = B(0)) = 0

because
b0 = (=) [wtulde) = (i [avld) = L F(0)

By the quasi-analitycity of the class C{,/y2.}, the function Fy — F; is then
zero everywhere on R. Consequentely F} = Fy, i.e. p and v have the same
Fourier-Stieltjes transforms.

Let .Z(R) be the Schwartz space on R (see [63, Vol. I, Sect. V.3]). Then, by
Levy’s inversion theorem (see [63, Vol. II, p. 3]), we have that

/f p(dx) /f (1.14)

for any f € S (R).

16



In fact, if fdenotes the Fourier transform of f € . (R)

[ s - [ ( / f<t>emdt) ()
— / 7t ( / emu(dw)) dt

- / oo
_ / FO Bt

- / 7t ( / emy(dx)> dt
_ / ( / f(t)eiwdt) v(dz)

_ / F(a)v(de).

Since every characteristic function of a set A € B(R) is limit of compactly
supported functions in .(R), we have that (1.14) holds also for the characteristic

functions 1l 4, i.e.

for all A € B(R).
Then p = v.
O

Theorem 1.3.8 and Theorem 1.3.5 allow us to write the following result which

brings together existence and uniqueness of the moment problem on R.

Theorem 1.3.9.
A sequence Yy = (Ya)aen, has a unique representing non-negative Borel measure

i supported on R if y is positive semidefinite and satisfies Carleman’s condition,
i.e. if
e L,(h?) >0, VheR[z],
4 Z yQa_% = 00,
a=1

then 3 p € M*(R) such that

Yo = /xa p(dx), Va e Ny.

17



Proof.
Since the sequence y is positive semidefinite then, by Theorem 1.3.5, y is realized
by a measure p € M*(R). We want to show that this measure is also unique.
Let us assume that there exists another measure v € M*(R) which realizes y, i.e.
Yo = [2*v(dz) for all @ € Ny. In other words, we are assuming that there exists
another measure v having the same moments of . Then, by Theorem 1.3.8,
pw=uv.

O

Remark 1.3.10.

Let us note that in the previous theorem we did not specify that the sequence
Y = (Ya)aen, was such that yse > 0, for all a € Ny, as required in Definition 1.3.7.
In fact, this condition automatically holds whenever the sequence y s positive

semidefinite because, in particular for the polynomial x>¢, we do have
Yoo = Ly(z°%) > 0.

In conclusion, we state some results which will be useful in the next section.

Lemma 1.3.11.
If w e M*(R) has compact support C' then the sequence of its moments (Yn)nen,

satisfies Carleman’s condition (1.10).

Proof.
W.lo.g. we can assume that C' = [a1, as] with a;,as € R. Let ¢ := p(C) (¢ is

finite and non-negative as well as p). For a := max {|a;|, |az|} we have
yon < @c, Vn € Ny. (1.15)

In fact,

Yo 1= / r*u(dr) < / a®"u(dx) = a®"c.
c

c
Let us observe that @ = 0 or ¢ = 0 only happen when C' = {0} or C' = 0,

respectively. In both cases, yo, = 0 for all n € N and (1.10) is trivially true.

2n

For all the other cases, a®" and ¢ are always different from zero and by (1.15)

follows that
1 1
o L < -
(a?c)on — (yan)2n

Hence,
1

) S
12 _1 Z ik
— C 2n S ann'
a

n=1 n=1

18



Since lim ¢ 27 =1 # 0, the series of non-negative terms on the left-hand side
n—oo

1

n

oo
diverges and so does the series » v,
n=1

Proposition 1.3.12.
Let p,n € M*(R) such that

/mo‘,u(dm) = /xan(dx), Va € Np.

If 1w has compact support then u =n.

Proof.
By Lemma 1.3.11 the moment sequence of p satisfies Carleman’s condition. By

Theorem 1.3.8, = .
[]

1.3.4 Berg and Maserick’s solution on basic semi-algebra-

ic sets

In the following we derive sufficient conditions for the solvability of the mo-
ment problem when K is a basic semi-algebraic set. Let us make some preliminary

considerations for the proof of the main result which is Theorem 1.3.14.

Lemma 1.3.13.
Let C C R be closed. Suppose that y = (Ya)aen, s realized by pp € M*(C), i.e.

Yo = / x” ,u(dl'), Va € Ny.
C

Then, for any g € Rlx], we have that

(9(E)y)a = /Cxag(x)u(dx), a € Np.

Proof.
By (1.3) and by Lemma 1.1.5 for K = C' we have that

((E))a = Loy (a®) = Ly(2%g) = /C 2°g(z) p(de).
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CASE OF ONE POLYNOMIAL

Let K C R be the basic semi-algebraic set given by a fixed real polynomial g.
Namely,
K :={zeR:g(x) >0}

For the sake of brevity, we will sometimes write {g > 0}.

Theorem 1.3.14 (Berg-Maserick, [10]).
A sequence Yy = (Ya)acn, has a unique representing non-negative Borel measure

won K ify and g(E)y are positive semidefinite and K is compact, i.e. if
o L,(h*)>0, L,(h?g) >0, Vhe R[],
e K 1s compact,

then 3 p € M*(K) such that

Yo = / % p(dr), Va € Np.
K

Remark 1.3.15.
Let us recall that g(E)y positive semidefinite means that Lygy,(h*) > 0 which is
equivalent to write L,(h*g) > 0 since Lygy,(h*) = Ly(h*g) by (1.8).

Proof. (of Theorem 1.3.14)
The conditions L,(h?) > 0 and L,(h*g) > 0 for all h € R[x| imply, by Ham-
burger’s Theorem 1.3.5, that y and g(E)y are both realized on R, i.e. there exist

two non-negative measures u,v € M*(R) such that

Yo = /mo‘ p(de) and (g(E)y)e = /a:”‘ v(dx), Va e Ny. (1.16)
We are going to show now that ;1 and v are related to each other and that actually

pn e M*(K).
The integral representation of y in (1.16) implies, by Lemma 1.3.13, that

@B = [ a9(a)udz), Vo €N (117

We can write (1.17) as

(9(E)y)a = /K 2°g(z) p(dz) + / L)), Ve Ny
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Hence, by (1.16), we have that for any o € Ny

/K (@) p(dr) = (g(E)y)a— / 1%g(z) p(dz)

which can be written as

[ t@ig(o) utde) = [ 4 (v1de) = B e()g(e) uda).

The latter shows that the two non-negative measures on R
lggdp and dv— lp\ggdp (1.18)

have the same moments.
Since the measure 1l g dp has compact support, then the two measures in (1.18)

have to coincide by Proposition 1.3.12, i.e.

Iggdp =dv — 1g\ kg dp.

Then
lgdp+ lg\xgdp = dv
and hence

dv = gdpu.

Thus, the signed measure g du is actually non-negative as well as v. This implies
that u(R\ {g > 0}) = 0 and so supp(p) C {g > 0} =: K
Then, p has compact support too and so, by Proposition 1.3.12, if there is another
measure which realizes y this must be equal to u.

O

CASE OF SEVERAL POLYNOMIALS

Let K C R be the basic semi-algebraic set given by the fixed real polynomials
91, - -, Gm. Namely,

ﬂ{wER g;(z) > 0}.

Theorem 1.3.16 (Berg-Maserick, [10]).

A sequence Yy = (Yo )acn, has a unique representing non-negative Borel measure
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poon K ify and g;(E)y, for j = 1,...,m, are positive semidefinite and K is

compact, i.e. if
o L,(h?) >0, L,(h?g;) >0, VYheR[z|withj=1,...,m,
e K 1s compact,

then 3l p € M*(K) such that

Yo = / % p(dr), Vo € Ny,
K

Proof.

Assume that L,(h?) > 0, L,(h%*g;) > 0 for all h € R[z] and for j = 1,...,m. Let
us also suppose that at least one of the sets {g; > 0} is compact. For instance,
let {g1 > 0} be compact.

For each j = 1,...,m, the condition L,(h%g;) > 0 means that Ly g),(h*) > 0
(for all h € R[z]), and then by Hamburger’s Theorem 1.3.5 we have that there

exists a non-negative measure v; € M*(R) realizing the sequence g;(E)y, i.e.

@(Bw)a = [ ¥ wy(do), VaeNo j=L...m (1.19)
In particular this is true for j =2,... ,m.
In the rest of this proof, whenever it is not specified, we intend j = 2, ..., m and

(NS No.
By Theorem 1.3.14, L,(h?) > 0 and L,(h*g;) > 0, for all h € R[z], imply that
there exists a non-negative measure y € M*({g1 > 0}) such that

Yo = / % p(dr), Va € Ny. (1.20)
{9120}

We want to show that actually p € M*(K).
The integral representation of y in (1.20) implies, by Lemma 1.3.13, that we

also have
(9/(E)y)a = / z%gj(x) p(dr), Va € Ny.
{g1>0}

We can trivially write the latter as

z%g;(z) p(dx) + /on‘gj(x)u(d:c), Va € Ny,

(9;(E)y)a = /

A

where A :={g; > 0} N{g >0} and B := {g; <0} N {g > 0}.
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Hence, by (1.19), we have that for any o € Ny

[ a@ntin) = @Ew.— [ a0 na)

B

= [ vtde) = [ #*gta)utdo)
which can be rewritten as
e ta@)gs@ ntdo) = [ 0 () = La(e)gs (o) (o)
The latter implies that the two non-negative measures on R
Lag;jdp and dyvy — lpg;dp

have the same moments. Therefore, by Proposition 1.3.12, they coincide since
the first measure has compact support. In fact, since supp(u) C {g1 > 0}, we
have that

supp (1ag; dpr) ({95 = 0} N {g1 = 0}) € {g1 > 0}

and so supp (1 4g; du), as closed subset of the compact set {g; > 0}, is compact.
Hence,

dv; = gjdp, j=2,...,m.

Each signed measure g; du has to be non-negative as well as v;, then u(R\ {g; >
0}) =0forall j =2,...,m. Hence, supp(p) C {g; > 0} forall j =1,...,m. It
follows that

M(R\K):M<R\m{gj20}> = u(UR\{ngO}) (1.21)

< ) u@®\{g; >0}) =0,

Jj=1

which implies that supp(s) € K. Then, pu has compact support too and so by
Proposition 1.3.12 it is unique.

The case when all the sets {g; > 0} are all non-compact can be roughly proved
as follows. The main idea is to reduce the problem to the case where at least
one polynomial is non-negative on a compact set. W.l.o.g., this can be done
“normalizing” in a certain way the first two polynomials g; and g, (supposed
{g1 > 0} # {go > 0}) in order to get another polynomial g; which is non-

negative on a compact set A C R. Then, taking into account the “equivalent”
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system of polynomials g3, g3, - - ., gm (equivalent in the sense that the intersection
of the sets where g3, gs, ..., gm are non-negative is still K) the assertion follows
by similar arguments of the first part of this proof.

O

Remark 1.3.17.

Note that by the o-subadditivity of u, the latter theorem also holds if in (1.21) we
consider a countable number of polynomials g;.

If instead K is a basic semi-algebraic set given by an uncountable number of
polynomials g; we have to use the inner-regularity of the measure p. We analyze

this case in details and in a more general setting in Chapter 4.

Remark 1.3.18.
With the same notation as in Remark 1.3.6, in Theorem 1.3.14 we have that

(Ly(th) >0, Vhe R[x]) — (Hn(g(E)y) >0, Vne N0>.

It is then straightforward to reformulate Theorem 1.3.16 in terms of Hankel ma-

trices.

1.4 Alternative approaches to the uniqueness

problem

In this section we are going to study the problem whether a measure p €
M*(R) is uniquely determined by its moments with an approach alternative to
the one used in Subsection 1.3.3. In particular, we will proceed by analyzing
different cases depending on the form of supp(u).

As first step we consider measures with finite support.

Let §; be the Dirac measure concentrated in ¢t € R.

Lemma 1.4.1.
Let xq,...,z, € R with n € Ng. A measure p has finite support {zo, ..., x,} if
and only if

p(A) = p({wi})de.(A)
i=0
for any Borel set A C R.

Proof.
(=) Let {zo, ..., z,} be the support of the measure p and let A be a measurable
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subset of R. Then,

n

p(A) = p(An{ag,.. ea}) = Y n{w:}) = Zu({fci})%(fl)-
(<) Let us assume that p(A) = Zi: pu({x;})ds, (A) for any measurable subset A

of R. Clearly, the measurable set {x,...,z,} is in supp(x). On the other hand,
for (R\ {zo,...,z,}) we have that

n

pR\ w0, za}) = Y pl{wi}) 0, (RN {zo, .. 0})

1=0

which is zero because, for all i = 0,...,n, we have that 0., (R \ {zo,...,x,}) is
zero. Then, by Definition 1.1.1, we conclude that supp(u) = {0, ..., s}
O

Proposition 1.4.2.
Let p,v € M*(R) such that

/xa,u(dx) = /xau(dx), Va € Np.
If both measures have finite support then p = v.

Proof.
Let us call (z;)",, with n € Ny, the points of the union of supp(u) and supp(v).

By Lemma 1.4.1 we can write p and v as

W= i cidy, and v = i bidy,
i=0 i=0

where, for any i =0,...,n, ¢; = p({z;}) and b; = v({z;}) are real numbers.
Let us call (y#)aen, and (y%)aen, the moment sequence of p and v, respectively.

Since for any a € Ny

yh ::/xaduzzn:cixf‘ and y, = /xadV: Zn:bzx?

=0 i=0

and since we are assuming y* = y~, we have that
n n
g Gy = g bz
i=0 i=0
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which can be rewritten as

zn:l‘?(ci - bz> =0. (122)

Note that the matrix associated to the homogeneous system (1.22) in the

variables (¢; — b;), for i = 0,...,n, is the Vandermonde matrix
1 1 1 1
g 1 g -+ XTp
2 .2 2 2
V(l‘o,,l‘n) — xo 371 ]72 A xn
n n
xy af xh xl

whose determinant is given by

det(V(zo,...,zn)) = ] (2 — ).

0<i<j<n

In this case, det(V (zo,...,x,)) is always non-zero since all the x;’s are distinct.
It follows that the system (1.22) has only the trivial solution ¢; — b; = 0, i.e.
¢; =0b;, for i =0,...,n. Hence, u = v.

0

As second step, we generalize Proposition 1.4.2 to measures having compact

support. To this aim let us show the following lemma.

Lemma 1.4.3.
Let p,v € M*(R) such that

/xau(dm) - /xo‘y(dx), Vo € Ny, (1.23)

If both measures have compact support K then

/ f(@)uld) = / f@)wldz),  Vf € C(K).

Proof.
By (1.23) follows that

/p(az)u(dx) = /p(x)u(dx), Vp € R[z]. (1.24)
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In fact, if p(z) = > pax®, with I C Ny finite, then
acl

/p(fc)u(d:v) = Zpa/x p(dz) Zpa/x v(dz) /p(a:)u(dq:).

acl ael

Since K is compact, for any f € C(K) there exists a sequence of real polyno-
mials (P,)nen, Which uniformly converges to f (Stone-Weierstrass theorem, [66,
Theorem 7.24]). Moreover, all P,’s are measurable and uniformly bounded (i.e.
|P,| < M for some M € R).

By the dominated convergence theorem and by (1.24), we then have that

/ f@u(dz) = lim | Pu(a)u(de)

n—oo

= lim [ P,(x)v(dz) (1.25)

n—oo

_ / F(a)v(da

m
Proposition 1.4.4.
Let pi,v € M*(R) such that
/xa,u(dx) = /xau(dx), Va € Np.
If both measures have compact support K then p=v.
Proof.
By Lemma 1.4.3, we have that
/ f(z)u(dr) / f(z VfeC(K).
By Riesz-Markov’s Theorem C.0.5 we then have that p = v.
m

Remark 1.4.5.

Berg and Maserick’s theorems cannot make use of Proposition 1.4.4 (instead of
Proposition 1.5.12). In fact, in the proofs of Theorem 1.3.14 and Theorem 1.3.16,
we compare two measures on R and only one of them is known to have compact
support. In Proposition 1.4.4 and in Lemma 1.4.3 instead both the measures

have compact support and we cannot avoid this condition because it is essential

n (1.25).
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For the problem on a non compact interval, uniqueness is instead a more del-
icate question. In the following we are going to show that, in the non-compact
case, the assumption of two measures having the same moments needs to be sub-
stituted by a stronger condition involving the continuous and bounded functions
on the support of the measures.

For our purpose, we will make use of the following functional form of the

monotone class theorem which, in dealing with integrals, is often useful.

Theorem 1.4.6 (Functional monotone class theorem, [36] p. 37).

Let IC be a collection of bounded real-valued functions on K that is closed under
products (i.e. if f,g € K then fg € K), and let B be the o-algebra generated by
K. Let H D K be a vector space (over R) of bounded real-valued functions on K
such that

(a) H contains the constant functions
(b) if (fu)nen, C H with

sup sup |fp(k)| <oco and 0L fo < fi<--- < fu< oo,
neNg keR

then f:= lim f, € H.
n—oo

Under these conditions, H contains the class H%" of all bounded B-measurable

real-valued function on K.

Proposition 1.4.7.
Let p,v € M*(R) such that

/ f(@)uldz) = / faywlde),  Vf e CK),

where K, not necessarily compact, is the support of both measures. Then

/h(x),u(dx) = /h(a:)l/(dx), Vh € HY,
where HY™ is the class of all bounded B(K)-measurable functions on K.

In particular, p = v.

Proof.
Let K be the class C*(K) of all continuous and bounded functions f on K. The
class IC satisfies all the assumptions in Theorem 1.4.6. Note that B = B(K). In
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fact, K is metrizable! and we have that the Borel o-algebra B(K) on K and the

Baire o-algebra By(K) on K coincide, namely
B=0(K)=0(C'K))=By(K) = B(K).
Take H to be the class of all bounded B-measurable function h on K such that
/ h(x)u(dz) = / h(z)v(dz). (1.26)

The class ‘H satisfies conditions (a) and (b) of Theorem 1.4.6. In fact, the con-
stants are polynomial of zero degree, bounded on K, B-measurable and such
that (1.26) holds for them (see assumptions) and (b) holds because of Lebesgue’s
monotone convergence theorem. Then, by Theorem 1.4.6, we have that H D H57.
In particular, the characteristic functions of any A € B(K) are in H%" and so in
‘H. Hence, p = v.

O

1.5 Existence and uniqueness via operator the-
ory

In this section we are going to give an operator-theoretical explanation to the
existence (and uniqueness) of the Hamburger moment problem.
For classical notations, definitions and results of spectral theory we address to

Appendix B.

Let ‘H be a real Hilbert space with its inner product given by the bilinear form
(-,) : HxH — R UT :D(T) — H is a symmetric unbounded operator on H and

v € H is such that v € () D(T™), then the sequence <<’U, T"v)) is positive
n=1

semidefinite. In fact, for ;my finite sequence of real numbers (hgjb;lj?. oy hy) we
have that
n n n n n 2
SN hihi(o, Ty = O hiT', Y - hiT) = || hT'| > 0.
i=0 j=0 i=0 5=0 i=0

If, in addition, T was self-adjoint and v is such that T"v € D(T'), for any n € Ny,

IEvery subset of a metric space is metrizable. It is enough to take the restriction of the
metric on the space.
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then we could use the spectral theorem (see Corollary B.2.2) to show that there

exists a non-negative measure p,, € M*(R) (depending on v) such that
(v, T™) = /a:”,uv(d:v), Vn € Np.

It actually sufficies to require that 7" admits some self-adjoint extension T on a

bigger space D(T') D D(T') so that, under the same assumptions on v, we have
(v, T™) = (v, T") = /x",uv(dx), Vn € Np.

We can then formulate the moment problem on R in the following version.
Given a sequence of real number y = (Yq)aen,, find a symmetric operator 7" and
a vector v such that T" admits a self-adjoint extension T and in turn a spectral

measure i, € M*(R) associated to v such that
Yo = (v, T) = (v,f“v) = /x“uv(dx), Ya € Ny.

It is then fundamental to understand under which condition it is possible to have
self-adjoint extensions of a symmetric operator.
A first answer to this problem is given by the following simple and useful criterion

due to von Neumann.

Lemma 1.5.1 (von Neumann (see [63] Vol. II, p. 319), Galindo, [24]).

On a real Hilbert space every symmetric operator has self-adjoint extensions.

We will apply the latter to give an operator version of the Hamburger moment

problem in which only the existence of some self-adjoint extensions is needed.

Theorem 1.5.2 (Hamburger).
A sequence y = (Ya)aen, has a representing non-negative Borel measure fi sup-

ported on R if y is positive semidefinite.

Proof.
Let us consider the space R[x] of all real polynomials on R with the following

bilinear form defined by

a1 B a1 Bi
(pa) = QO _par™ > as7") =D > Palpars: pra € Rla].
a=0 B=0 a=0 B=0

Note that (p,q) = L,(pq), where L, is the linear functional on R[z] defined
in (1.2).
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Since the sequence y is assumed to be positive semidefinite, the form is non-
negative. In fact, (p,p) = L,(p*) > 0 for any p € R[z]. However, the form is not
an inner product because (p, p) = 0 does not necessarily imply p = 0. Indeed, if
we consider the sequence y = (1,0,0...) we have that y is positive semidefinite
and for o > 1 we have (2%, 2%) = L, (2%*) = ya, = 0 without being 2 identically
equal to zero.

Let then N := {h € R[] : L,(h*) = 0} and let H, be the Hilbert space obtained

by completing R[z]/N w.r.t. the inner product (-,-), i.e. H, := R[z]/N. On H,,

the inner product will be denoted again by (-,-). Let us introduce the following

operator
X : Rz] — R[z]
h(z) = Zl hox® — (Xh)(x) = Zhaxa“.
a=0

a=0

Note that X is symmetric and by Schwarz inequality it maps N in N. In fact,
<X hl, h2> = Ly(fﬁhl hg) = Ly(hl IL’hQ) = <h1,X h2>

and
(Xh, Xhy = [(X2h, h)| < (X, X*R)2 (h, h)z

for all hy, hy € R[z] and h € N. In other words, we can write

X : R[z]/N — R[z]/N
h — Xh:=uzh,

where we made an abuse of notation on X and denoted by h the class [h]. By
Lemma 1.5.1, X admits some self-adjoint extension, call it X. By spectral theo-
rem (see Corollary B.2.2), then there exists a non-negative measure p € M*(R)
such that

(1, X°1) = /:L’O‘,u(da:), Va € Ng.

Note that 1 € D(X) and is such that X1 € D(X) for all o € Ny

In other words, we have that y is realized by p. In fact,

—_—

a—times

/xa,u(dx) (LX) = (1,XO1) = (1, X - X 1) = Ly(2®) = gy VYo € Ny,
]
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Let us note that as soon as the operator X has a unique self-adjoint extension
the moment problem is determinate.
Nussbaum in [56] showed that if 7' : D(T) — H, symmetric unbounded oper-
ator on a Hilbert space H, has a total set of vectors of uniqueness then T can
be extented to a self-adjoint operator. According to Nussbaum, a vector v € H

such that the moment sequence ((v, T”v>> is determinate is called vector of
n€eNg

uniqueness. We are going to use instead the equivalent definition in [63, vol. II,
Definition 2, p. 201].

First, let us introduce some preliminar notions.

Definition 1.5.3.
A symmetric operator T is called essentially self-adjoint if its closure T is self-

adjoint.
We have the following fact.
Theorem 1.5.4 ([63] Vol. I, p. 256).

Let B be a symmetric operator on its domain. Then B is essentially self-adjoint

iof and only if B has a unique self-adjoint extension.

Definition 1.5.5 (C*°-vectors).

A wvector v € H is called a C*™-vector if v belongs to the domain
D*(T) := (| D(T™).
n=1

The reason for this terminology lies in Proposition B.5.1.

Definition 1.5.6 (Vector of uniqueness).
Let v € D¥(T) with T symmetric operator on H. Let us define the set

N
D, = {ZtnT"v| to, €R,N € N}

n=0

and the operator

T, : D, — D,
N N
S t, T Z t, T,
n=0 n=0
1.e.
T, = T\DU )
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The vector v is called vector of uniqueness for T' if and only if the operator T, is
essentially self-adjoint on D, (as an operator on the Hilbert space D,).
Let V,,(T') denote the set of all vectors of uniqueness for T.

Finally, a subset S of H is total if the set of all finite linear combinations of

elements of S is dense in H.

Lemma 1.5.7 (Nussbaum, [56] (see also [63] Vol. II, p. 201)).
Let T' be a symmetric operator and suppose D(T) contains a total set of vectors

of uniqueness. Then T is essentially self-adjoint.

In the same paper, Nussbaum shows that certain classes of vectors, namely the
quasi-analytic vectors, are always vectors of uniqueness and so he can conclude
Theorem 1.5.9.

Definition 1.5.8 (Quasi-analytic vector).
A wvector v € D*®(T) is called quasi-analytic vector for T if

oo

1
ST = oo
n=1

Let D9(T') denote the set of all quasi-analytic vectors for T

The following result is a generalization of the classical analytic vector theorem
due to Nelson (see [55]).

Theorem 1.5.9 (Nussbaum, [56] (see also [69] p. 149)).
Let T be a symmetric operator on a Hilbert space H and suppose D(T') contains

a total set of quasi-analytic vectors. Then T is essentially self-adjoint.

Note that T is densely defined. In fact, if we call D the total set of quasi-

analitic vectors contained in D(T'), we have
D CD™T)cC D)

which implies that

H = SpanD C SpanD¥(T) C D(T) C H,

where the first equality holds by assumption.

Proof. (of Theorem 1.5.9)

First of all, we want to prove that any quasi-analytic vector v for T is a vector of
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uniqueness for T', i.e. the operator T, introduced in Definition 1.5.6 is essentially
self-adjoint on D,,. Note that T}, is symmetric as well as 7". Then, by Lemma 1.5.1
there exist self-adjoint extensions of T,,. Let us consider two of them, namely T,
and T,. Moreover, since v € D,, we have that Trv € D(T,) and T € D(ﬁ) for
any n € Ng. So by spectral theorem (see Corollary B.2.2), we know that there

exist two measures i, v, € M*(R) such that

0. 8"0) = [ a" (o)

and

(0,T,"v) = /:I:” vy(dz),

respectively.

Since for any v € D, we have fvv = ﬁ,v =T,v =Twv, then

<U,Tvnv> = (v, T"v) = <v,fvnv>, Vn € Ny,

and so

/a:”,uv(dm) = /x” vp(dz), Vn € Ng.

If we set y,, := [ 2" p,(dx), we have that the sequence (yy,)nen, satisfies Carle-

» a1
man’s condition ) y, 27 = 00. In fact,
n=1

HT"UH2 = (T"v,T"v) = <'U,T2”v> = /:UZ”,uU(d:c) = Yon
and so . .
L 1
STl =Dy
n=1 n=1

which diverges because v is quasi-analytic.

By Theorem 1.3.8, we can conclude that the two measures p, and v, coincide
since they have the same moments satisfying Carleman’s condition, i.e. u, = v,.
Since all the self-adjoint extensions of T, are equal we can conclude, by Theo-
rem 1.5.4, that T, is essentially self-adjoint on D, and so that v € V,,(T).

To sum up, we have proved that
DT C V,(T). (1.27)

If we call D the set of quasi-analitic vectors which is contained in D(T'), the
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relation (1.27) becomes
D ¢ D™T) C V,(T)

which implies that

H = SpanD C Span D(T') C Span V,(T') C H,

where the first equality holds by assumption. Hence, Span V,,(T') = H. Therefore,
by Lemma 1.5.7, T is essentially self-adjoint.
m

Note that Carleman’s Theorem 1.3.8 is only a result on quasi-analytic func-
tions. In fact, its proof does not involve any technique from operator, nor moment,

theory. For this reason we could use it in the previous proof.

We can finally present the operator-theoretical proof of Theorem 1.3.9 which,

for convenience, we report here.

Theorem 1.5.10.
A sequence y = (Yo )aen, has a unique representing non-negative Borel measure

i supported on R if y is positive semidefinite and satisfies Carleman’s condition,
i.e. if
e L,(h?) >0, VheR[z],
L Z y2a7i = 00,
a=1

then 3 p € M*(R) such that

Yo = /xa p(dx), Va e Ny.

Proof.
Let L, be the linear functional on R[z] defined in (1.2), and let H, be the

canonical Hilbert space associated with the positive semidefinite sequence v, i.e.

H, := Rlz]/N where N := {h € R[z] : L,(h?) = 0} (for details see proof of

Theorem 1.5.2). Let us introduce the following operator

X : R[z]/N — R[z]/N
h — Xh:=xh.

The operator X is symmetric. Moreover, we do have (and we will prove this at
the end of this proof) that the set D = {a*, k € Ny} is a total set of quasi-analitic
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vectors for X. Then, by Theorem 1.5.9, X is essentially self-adjoint. Moreover,
by Theorem 1.5.4, the closure X is the only self-adjoint extension of X.

By spectral theorem (see Corollary B.2.2), then there exists a unique non-negative
measure 1 € M*(R) such that

(1,X"1) = /:c“,u(da:), Va € No.

Note that 1 € D(X) and is such that X 1 € D(X) for any a € N.

In other words, we have that y is realized by pu, in fact

/xau(dx) — (LX) = (1L,XOD) = (1, X - X 1) = Ly(¢®) = g, Ve € Ny,
a—times
It remains to prove that the set of powers ¥, k € Ny, is a total set of quasi-
analytic vectors for X.
W.lo.g. let us suppose that yo = 1. Moreover, note that the sequence (yaq)aen,
is log-convex (see Remark A.0.20).

Since for any a € N
||Xal‘k||2 — <Xa$k,Xa$k> — Ly($a+k$a+k) _ Ly($2a+2k) = Yook,

we have that
1
HXafl?kH = (Y2a+2k)2, Vk € Ny.

Hence,
S TIX 75 =D (goaser) 2, Wk € N, (1.28)
a=1 a=1

In (1.28), the left-hand side series diverges because, by Theorem A.0.30, Carle-
man’s condition implies that the series on the right-hand side diverges too.

To sum up, we have shown that
{z*| k € Ny} € D®(X) C R[z]/N.

Since Span{z*| k € No} = R[z] we have that {z*| k € Ng} is total in H,.
[

Note that, although the uniqueness of the realizing measure could have been
directly derived by using Theorem 1.3.8, we gave the previous alternative proof
to be used as a model scheme for the analogous result in higher dimension (see
Chapter 2).
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Chapter 2

The multi-dimensional power

moment problem

In this chapter we are going to show and review some aspects of the moment
problem extended to higher dimension. We will mainly focus on the sufficient
conditions for a multi-sequence to be determinate. This will be done using the
operator-theoretical approach and the results of the classical moment problem
contained in the previous chapter.

In particular, we present the proof due to Schmiidgen ([68]) of a conjecture of
Berg and Maserick (see [10, p. 495] and [9, p. 119]) about the moment problem
on K compact basic semi-algebraic set of R%. Furthermore, we show how a similar
result has been provided by Lasserre (see [46]) for the case when K is a basic

semi-algebraic set not necessarily compact.

2.1 Preliminaries and statement of the problem

Let R[x] denote the ring of all real polynomials in the variable x := (z1,...,x4)
in R, whereas [x] denotes its subset of sums of squares (s.0.s.) polynomials. For

every a = (ay, ..., aq) € N¢ (the set of the d-tuples of non-negative integers), let
0
J
to be 1) and |a| := a; + -+ + ag. For an arbitrary set K C R? R [x] denotes

us introduce the following notations, x* := z{* ---z3* (where z) is understood

the convex cone of polynomials which are non-negative on K. As usual, we will
write R*[x] instead of Rf,[x]. A polynomial p € R[x], considered as a function

RY — R, is written as

p(x) = ) pax?, (2.1)
(with p, # 0 for finitely many «).
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Most of the definitions and theorems we made use of in the previous chapter
continue to hold also in higher dimensions. We will directly refer to them when-
ever we need throughout this section without rewriting the statement and the
proof for the multi-dimensional case.

Nevertheless, it is worth to rewrite the following basic definitions.

Let K C R? be closed.

Definition 2.1.1 (Moments on K).
Let p be a non-negative Borel measure pn on R with support contained in K. The

number

/ x® p(dx), o€ N,
K

is called the a—moment of u on K.

Explicitly, the number
/ ot wy? - xyiu(dey, ds, . deg), Q... aq € N,
K

is the (o, ag, ..., aq)—th moment of .

With the same notation of the previous chapter, given p € M*(K) (where
this time u is a measure on B(RY), x € R? and a € N¥) we are always able to

compute the multi-sequence of its moments on K

([ Xa”d"))@g’

which is called K-moment multi-sequence (or d-sequence) of p.

The next example will help us to understand better the previous definition.

Example 2.1.2.
Let K C R? and p € M*(R?) supported on K. The K-moment 2-sequence of

18

S Y2 p(dey, dag) [ axip(dey, das) [ 2Yx3p(dey, dusy)
fo x9u(dxy, drs) fo xypu(dry, dxs) fo rau(dry, drsy)
[ Biadp(dey, dus) [ aadp(day, des) [ aixdp(dey, dus)
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For example, the numbers

/l’%ﬂ(dl’l,d.fz), /x%u(dml,dxg) and /:le%u(dxl,dm)
K K K

are the (2,0)—th, the (0,2)—th and the (1,2)—th moments of u, respectively.

The multi-dimensional moment problem is instead the inverse problem.

Definition 2.1.3 (Moment problem on K).
Given an infinite multi-sequence of real numbers y = (ya)aeng, find p € M*(K)

such that 1y, is the a"—moment of u on K, i.e.

Yo = / x* u(dx), Va e Ng. (2.2)
K

If such a measure exists we say that the multi-sequence y is realized by u, or that
y has a representing (or realizing) measure p, on K.
If the representing measure is unique we say that p is determinate or that the

moment problem has a unique solution.

Example 2.1.4 (Moment problem on K C R?).

Let K C R2. Given a 2-sequence (matriz) of real numbers
Yo0,00 Yo,1) Y0,2)

Ya,00 Ya,1) Ya,2)

Y= Ya)aeNz =
(¥r)aerg Y0 Ye1) Ye2)

find a non-negative measure p € M*(K) such that
Y(ara2) :/ Pt ws?p(dry, drs),  Vay,as € N,
K

i.e. such that Yo, an) 15 the (a1, ag)—th moment of p.

Given y = (Ya)qene We define the linear Riesz’s functional L, on R[x] as

L,(x*) :=ya, a€NIL (2.3)
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For a polynomial as in (2.1), by linearity we have

Ly(p) - Z PaYa-

aGNg

In the following we are going to make use several times of the term L, (x?¥),
with i = 1,...,d and k € Ny, which is understood to be Ly (z9---z2* ... 29), i.e.

Y(,...2k,...,0) With 2k at the i-th place.

Remark 2.1.5.
To a multi-sequence y = (ya)aeNg is associated an infinite real symmetric matrix
M (y), called moment matrix. Its truncated version M, (y), withr € Ny, is defined

as the submatriz of M(y) whose rows and columns are indexed in N%r ={a €
Nd: |a] <71}, ie

M, (y)(a, B) := Ly(x*%X") = Yasg, Va,f € NI

Then, the condition of positive semidefiniteness of y can be given in terms of

moment matrices. Namely,

(Ly(hQ) >0, Vhe R[X]) — <M(y) =0

= (M,,(y) =0, Vre NO>.

Let us notice that when d = 1 the moment matrix coincides with the Hankel

matriz defined in Remark 1.5.6. In fact, given y = (yo, Y1, Y2, Y3, Y4 - - . ) we have

Yoy Yo Y1 Y2
o Y1
Mo(y) = [yol, Ml(Q)Z[ ], My(y) = |y1 y2 ys|,
Y1 Y2
Y2 Y3z Y4

When d = 2 the truncated moment matrices of

Y©,00 Y©,1) Y0,2)
Y00 Ya,1) Ya,2)
Y2,0) Ye,1) Y22
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are

Y(1,0 Y(2,0 Ya,1
Mo(y) = [ yooy |, Mi(y)= | L2 L9 U |
N (1,0)(0,0)
(0,0)(0,0)

For d > 3 the moment matrices approach is even more natural because it allows
to rearrange a given multi-sequence (an oo-hypercube) of numbers in terms of

an infinite matriz.

For ¢+ = 1,...,d, we denote by E; the shift operator on the set of multi-

sequences Y = (Ya)aena defined as follows.

(EiY)a = Yars®

where 6@ = (0,...,1,...,0) with 1 at the i-th entry. More generally, for a
real polynomial p(x) = 3 pgx?, with ps # 0 for finitely many 3, p(E) is the

BeENG
polynomial shift operator p(E) := > psE”, where EF = Efl e Egd, ie.
BeNd
(P(E)Y)a = > Paars, o €Nf. (24)
BeNd

2.2 Existence and uniqueness of the realizing

measure

2.2.1 Riesz-Haviland’s solution

Theorem 1.3.1 was subsequently extended to higher dimensions by Haviland.

Theorem 2.2.1 (Riesz-Haviland, [32]).
A multi-sequence y = (ya)aeNg has a representing non-negative Borel measure

supported on K if L, is non-negative for all non-negative polynomials on K, i.e.

(auem*u() st ya:/

x*p(dx), Ya € Ng)<:<Ly(p) >0,Vpe R};[x]).
K
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The proof of the latter theorem is a straightforward generalization of The-
orem 1.3.1. The only difference is that in this case we have to deal with the

euclidean norm |x| of the vector x.

As we have already observed in Remark 1.3.2, the difficulty in using Theo-
rem 2.2.1 consists in the challenging problem to characterize all the non-negative
polynomials on a set K C R? Nevertheless, also in this case, when K is of a
particular form we get positive semidefinite type conditions which can be easily

checked by semidefinite programs.

2.2.2 Nussbaum’s operator theoretical approach to the

existence and uniqueness problem on R?

The next theorem was stated in the following form by Berg in [9] but it has
been already proved by Nussbaum in [56]. It gives sufficient conditions for a
positive semidefinite sequence to be a moment sequence. Similar results were
obtained also by Shohat and Tamarkin in [72, p. 21}, by Devinatz in [20] and by
Eskin in [21].

Theorem 2.2.2.
Let d > 2.

If y = (Ya)aend is a multi-sequence such that
e L,(h?) >0, VheR[x],

e 1
o > L,(z2*) % =00, Vi=1,...,d (Multi-variate Carleman’s condition),
k=1

then there exists a unique non-negative Borel measure p on RY with finite mo-

ments of any order which realizes the sequence y.

We will see that, in contrast with Theorem 1.3.9, the condition of positive
semidefiniteness of y solely does not allow us anymore to prove, with analogue
techniques, the existence of a realizing measure on RY when d > 2. In other
words, we cannot prove the equivalent of Hamburger’s Theorem 1.3.5 for higher
dimensions. This is because non-negative polynomials on R? are not always s.o0.s.
(see Remark 1.3.4) and so we cannot pass through Riesz-Haviland’s theorem as
we used to do in the one-dimensional case.

For this reason, we are going to use the operator-theoretical approach and, in
particular, the spectral theorem for more than one self-adjoint operators (see

Corollary B.4.5) in which an important role is played by the pairwise strong
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commutativity of the involved operators (namely the closure of some X;’s). The
strong commutativity of such operators is guaranteed by Theorem 2.2.3 which
indeed requires the existence of a total set of quasi-analytic vectors for all X;’s
and some analysis of quasi-analytic functions.

For sake of semplicity, we will directly prove Theorem 2.2.2 for the case of

d = 2 operators.

Proof. (of Theorem 2.2.2 for d = 2)
Let L, be the linear functional on R[x] defined in (2.3) with d = 2, and let H, be

the canonical Hilbert space associated with the positive semidefinite sequence y,

Le. H, = R[x|/N where N := {h € R[x| : L,(h*) = 0} (for more details in one
dimension see proof of Theorem 1.5.2). On H,, the inner product will be denoted

again by (-,-). For j = 1,2, we introduce the following operators

X;: R[x|/N —R[x|/N

h(l’l,l'g) — (th)([L‘l,ZEQ) =y h([L‘hl'Q) .

Let us note that
e X, and X, are symmetric.

o If D := {a"ah|m,n € Ny} we have that X;D C D for j =1,2.

X1X2 h = X2X1 h for all h € D.

D is total in H,,.

D is a set of quasi-analytic vectors for both X; and X5. We will prove this
at the end of the proof.

Then, by Theorem 2.2.3, X; and X, are strongly commuting self-adjoint opera-
tors. This also means that X; and X, are essentially self-adjoint and so X; and
X, are the only possible extensions (see Definition 1.5.3 and Theorem 1.5.4).

By spectral theorem for more operators (see Corollary B.4.5), there exists a unique

non-negative measure p € M*(R?) such that

(1,717172721>—/ P ay? p(dy, drg),  V(aq, an) € N2

R2
a1 —times o —times

Note that 1 is such that the hypotheses of Corollary B.4.5 are satisfied.
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In other words, we have that y is realized by p on R?, in fact
/ XOp(dx) = (1K 1) = (1,X" - 1) = Ly(x%) = ya, Vo € N2,
]RQ

It remains to prove that D is a set of quasi-analytic vectors for both X; and
Xy. W.lo.g. let us suppose that y0 = 1. Moreover, note that the sequences
(Y(201,0))areNy AN (Y(0,2a2))asen, are log-convex (see Remark A.0.20).

Let us recall that a polynomial h is a quasi analytic vector for both X; and X5

if and only if Z | X1*R||"* = oo and Z || X5 h||* = .

Let us first prove that the powers 2"y, Wlth m,n € Ny, are quasi-analytic vectors
for the operator Xj.
In fact, for m,n € Ny, by using Cauchy-Schwarz’s inequality and the fact that

|22+ [2 = L, (a7 2) 12 = Ly(23%") = yo20)

= Y(2(2k+2m),0) and Hx

(NI

1
| X a2 = (@22 22 < 2?2 |22 = (Yeesrem)0)? (Yoea))?

and hence

1

00 i [e'e] 1\~ 3%
Z |1 X 2 ag || 7F > Z < 2(2k+2m),0 y(0,2(2n)))2> o
k=1

k=1

In the latter, the left-hand side series diverges because, by Theorem A.0.30 to-
gether with Lemma A.0.26 and Lemma A.0.28, the multi-variate Carleman con-
dition implies that the series on the right-hand side diverges too.

Similarly, we get that

Z || X 2| k= 0o0.

Theorem 2.2.3 (Nussbaum, [56] (see also [69] p. 153)).

Let A and B be two symmetric operators in a Hilbert H and D a set of vectors in
H which are quasi-analytical for both A and B and such that AD C D, BD C D,
AB¢ = BA¢ for all ¢ € D. If the set D is total in H, namely

SpanD = H,

then A and B are strongly commuting self-adjoint operators.

Remark 2.2.4.
Note that the assumptions AD C D, BD C D, AB¢p = BA¢ for all p € D also
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imply that, for any m,n € Ny, A"B"¢ = B"A™¢ for all p € D. To prove this,
let us proceed by induction on n.

Let m € Ny be fized and suppose that, for all j < n — 1, A™Bip = BIA™) for
all ¢ € D. Then, since ¢, By € D,

AmBngb — AmBn_l(ng) — Bn_lAm(ng)
= B"Y(A"B¢) = B" (BA™$) = B"A"¢.

Proof. (of Theorem 2.2.3)

Let us first note that since D C (D%(A) N D¥(B)) we also have that D C D%?(A)
and D C D%(B). Since SpanD = H, by Theorem 1.5.9, the operators A and B
are essentially self-adjoint, i.e. A and B are self-adjoint. Let us show that they
also strongly commute (see Definition B.4.3). For this aim, let us consider the

complexification of the real Hilbert ‘H which we call H again. Moreover, given
¢ € D (note that ¢ € D*(A) and ¢ € D>*(B)), let us consider the functions

fz: R —H

a +— fx(a) = engb
and

fE: R —H

= f5(0) == e"Po

S

which, by Proposition B.5.1, are C*°(R)-maps. Let us also define and consider

F1 : R? —C
(a,0) — (f5(0)9, fxla)g) = (e*Pp, e p)

and

Fs R? —C
(CL, b) — <eia2¢7 6—ib§¢> )

The functions F; and Fy are C*°(R?)-maps since fz, f5 € C*(R). Moreover, for
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all a1, Q9 € Np

0% g 02 = _ L
I _ ibB s a1AO‘1 —iaA
Az g L1 = G (e jb’( P)rATe jz’)
— <ia2§a2€ibB¢, (_i)alzale—iaA¢>

] <E°‘2eib§¢7 zale—iaj@

and, similarly,

g o™
b Da

F (CL b) joetal <A0‘1€iaz¢’ F‘X267ib§¢>.

If we evaluate the derivates of Fy and F» in (a,b) = (0,0) we get that

0% ogu
b2 Qg™
0% ogu
Obe2 Pg

F1(0,0) = %t (B¢, A ),

5 12(0,0) = it (A, BYg) = it (B, AN ¢),

where in the last equality we have made use of the self-adjointness of the operators
A and B and the fact that their powers also commute on D because so do A and
B (see Remark 2.2.4 and remember that A = A and B = B on D).

Since the derivates of Fy and F; in (0,0) are equal, we get that

6a2 aal
Shr Daor (Fy — F5) (0,0) = 0. (2.5)
Moreover, we have that
aaz aal
Shes Haar (11— 2) (a, b)’
aOQ aal aag aoq
= |55 e 1140 ~ G g FZ(a’b)’
aaz aal aag aal
<
< |9 2a —h (a,b)| + ‘3()0‘28 b (a, b)‘

_ <Ba2ezb3¢7 Aal e—iang)’ + ‘<AO‘1 eza2¢7 FQQG—ib§¢>

IA

[B™ePg|| - [[A™ e Ag|| + [[A™ e g]| - [B e Pl (2.6)
= 2([B¥¢||- [[A™¢]. (2.7)

Let us observe that to get (2.6) we made use of Cauchy-Schwarz’s inequality and

+icC

for (2.7) the fact that whenever C' is a self-adjoint operator, e is unitary, i.e.
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e+ is a bounded operator such that ||e*Cv|| = ||v]|. If we now set

Yam = |[A"¢l] and  yem =[[B"9l|

we can re-write the relation (2.7) in the following more suitable way

0% gm (
0b2 Qa1

By - FQ) (CL, b) < 2y(2,o¢2)y(1,o¢1)-

The previous relation and (2.5) imply, by Theorem A.0.32, that F; — F» =
on R? (note that, by symmetry of the operators, the sequences (y(Lm))

(y(va))meNO are log-convex, and w.l.o.g. we can suppose ||¢|| = 1).

Since Fy = F, on R? we have

<eib§¢’ 6—iaz¢> _ <€ia2¢’ e_ibgqb), Va,b € R, V¢ € D,

meENy

which also holds for all ¢ € H since D is total in H and the operators e**4

"B are continuous. The latter equality then becomes
(4, 0) = (P46, 6), Va,bEeR, Vo€ H,
or, equivalently,

<<€iazeib§ _ 6z‘b§6ia2> ¢,¢0) =0, Va,beR, Vo e H.

By polarization identity!, we get

(€8ME — PBE0T) iy ) =0, Va,b e R, Vb, i € H.

If in (2.8) we put ¢, = <eiaze“’§ - eibﬁei“2> Y1 we get that

L= = L= = 2
H(el‘lAele — e“’Be“‘A) 1/11H =0, ViYeH.
Then necessarily

(éiazeibﬁ . eibﬁeiaz> 2/11 — 0’ vwl c H,

If T is an operator on a complex Hilbert space H and x,y € H, then

and

and

(2.8)

(0, Ty) = 3G+ 9, T+ y) = lo =, T ) = flatin, T +iy) + e — iy, T~ iy)).
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and, as consequence,
6zaAesz — 6szezoLA

for all a,b € R. In other words, A, B strongly commute.

From Theorem 2.2.2 the following holds.

Corollary 2.2.5.
Let u,n € M*(RY) have the same moments yq, i.e.

/Xo‘p(dx) = Yo = /Xo‘n(dx), Va € Nd.

If (ya)aeNg satisfies multi-variate Carleman’s condition then p =n.

2.2.3 Schmiidgen’s and Lasserre’s solution on basic semi-

algebraic sets

Let g; € R[x], j =0,1,...,m, with go(x) = 1 for all x € R?, and let K C R?

be the basic closed semi-algebraic set given by

K = ﬁ{x € R%: g;(x) > 0}.

Jj=1

Let us introduce also the following subsets of the ring R[x].

The quadratic module

Qo = {Zajgj:ajex[x],j:o,...,m} (2.9)

and the preordering set
P = > ougsios €S, JC{L... ,m}y, (2.10)
JC{1,...m}

where for every J C {1,...,m} we set g; := [] gx, with the convention gy := 1.
keJ

Note that the preordering set is closed under the sum and the multiplication

of its elements whereas the quadratic module is closed only under the sum.
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CASE OF SEVERALS POLYNOMIALS AND K COMPACT: SCHMUDGEN

A first generalization of Theorem 1.3.16 to the multi-dimensional case is given

by the following theorem.

Theorem 2.2.6 (Schmiidgen, [68]).

A multi-sequence y = (ya)aeNg has a unique representing non-negative Borel mea-
sure p on K if y and (gj, - .. 9;,)(E)y, for all possible choices ji, ..., j, of pair-
wise different numbers from the set {1,...,m}, are positive semidefinite and K

is compact, i.e. if

(a’) Ly(h2> >0, Ly(h29j1 g]n) > 0, Vh € R[X],V{jl,...,jn}C{l,...,m} with
Ji 7 gk for i # k,

(b) K is compact,

then 3y € M*(K) such that

Yo :/ x* u(dx), Vo € NL
K

Note that the conditions in (a) can be replaced with the condition L,(p) > 0
forallp € Py g,

Proof. (of Theorem 2.2.6)
Let L, be the linear functional on R[x] defined in (2.3), and let H,, be the canonical

Hilbert space associated with the positive semidefinite sequence y, i.e. H, =

R[x|/N where N := {h € R[x] : L,(h*) = 0} (for more details in one dimension
see proof of Theorem 1.5.2). We denote by || - || the norm on H, given by the
product (-, -) on H, (it will be clear from the context if the same symbol is used
for the norm of the operators).

For j =1,...,d, let us introduce the following operator (we work directly with

the representing elements of a class)

X;: Rjx]/N — R[x|/N

h — X]h = Q?jh.

Since K is compact, and so bounded, there exists a positive constant o such that
0* —|x|? > 0 for all x € K. For the multiplication operator X; it is shown in [68]
that

|lz;hll < ollhll,  Vh € R[x]. (2.11)
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To prove (2.11) Schmiidgen makes use of the Positivstellensatz ([12, Corol-
laire 4.4.3, (ii)], cf. [74]) for the polynomial ¢* — |x|* (strictly positive on K),
namely the fact that there exist two polynomials G, H € P, 4. such that
(0* = [x)G=1+H.

The operator X is bounded and symmetric. In fact,

X;h h h
Bl sup WL leshll DR
R T N 1 I N
h0 h#£0 h#£0

and
(Xjh1, ha) = Ly(w;hihg) = Ly(hixhe) = (hy, Xjho),

for all hy, he € R[x]/N.

Moreover, it is easy to see that the operators X;, j = 1,...,d, pairwise commute
on R[x|/N,ie. XX, = X;,X;, for j; # jo. Since X; is bounded, by the B.L.T.
Theorem (see [63, Vol. I, p. 9]) we have that X, has a unique bounded extension
to H,, namely the closure Yj which is self-adjoint. The extended operators 7]-,
Jj =1,...,d, pairwise commute as well as X;, 7 = 1,...,d. Then, by spectral
theorem (see Corollary B.4.2), there exists a non-negative measure p € M(R?)
with supp(p) € o(X1,...,Xa) € Bjxy(0) X -+ X By (0) C [—0,0] x -+ %
[—o, 0] =: @ such that

(1L, Xy Xy Xy Xg 1) :/Q:cff‘l~--x2‘du(dx1,...,dxd). (2.12)
o1 —times aq—times

In other words, we have that y is realized by p on @), in fact
/ xu(dx) = (1, X" - 1) = (1, X* - 1) = L,(x*) = 9o, VYo e NI
Q
The latter also means that the functional L, has a representation as integral.
In particular, by the positive semidefinitess of (g;(E)y) we have that for any
j€{l,...,m} and for any h € R[x]

0 < Ly(g;h?) = /Q 05 ()R (x) ().

Since () is compact, by Stone-Weierstrass approximation theorem (|66, Theo-
rem 7.24]), we also have that for any f € C(Q)

0< /Q 0;(%) 2 (%)),
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or equivalently, for any f € C*(Q)
0< [ g0 fGou(dx).
Q

If we set L(f) := fQ 9j(x) f(x)p(dx), the integral representation of L is unique by
Riesz-Markov’s Theorem C.0.5. Then necessarily the signed measure g;(x)u(dx)
has to be non-negative. Since the latter condition has to be true for all j €

{1,...,m}, we can conclude that

supp(p) C {x € R?: g;(x) > 0, for j =1,...,m} = K.

Remark 2.2.7.
Note that the compactness of K implies a restriction on the growth of the even

i-entries of the given sequence y, i.e. L,(x?*) < o*. In fact, by (2.11)

Ly(@7") = (zf, ) = [|7|* = oz P < @i P <o < 0™ (2.13)

K3 1% (2

Bounds of this type, and even more general, will frequently appear in the next

section. Moreover, by (2.13) we have that

Ly(z%)_i > 9_1

1

and so

S L)y E >y

o0
k=1 k=1
i.e. multi-variate Carleman’s condition holds.

Theorem 2.2.6 was soon refined by Putinar for Archimedean quadratic module,
i.e. for quadratic modules @ such that N — |x|* € Q for some N € N.

Theorem 2.2.8 (Putinar, [62]).

A multi-sequence y = (ya)aeNg has a unique representing non-negative Borel mea-

L,(h*) >0, L,(h*g;) >0, VheR[x],j=1,...,m.

Putinar’s theorem is the right equivalent generalization of Theorem 1.3.16

by Berg and Maserick to the multi-dimensional case. In the case of d = 1 the
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assumption of Archimedian quadratic module is omitted because each quadratic
module is automatically Archimedian. In fact, by Theorem 2.15 in [43], Q..o

is Archimedian if there exists ¢ € Q... 4, such that {¢ > 0} is compact and in

m

the proof of Theorem 1.3.16 we said that this property can be always proved to

be true.

CASE OF SEVERALS POLYNOMIALS AND K NON-COMPACT: LLASSERRE

Lasserre generalized the results of the previous paragraph to closed basic
semi-algebraic sets not necessarily compact assuming a bound on y = (ya)aeNg

depending on a weight multi-sequence w = (wa)qend, Where wq = (2(';‘—‘})'

Theorem 2.2.9 (Lasserre, [46]).

A multi-sequence y = (ya)aeNg has a representing non-negative Borel measure p

and sup % < M for some M > 0, i.e.
aENg “

on K if L, is non-negative on Qg 4
if
(A) L,(h*) >0, L,(h?g;) >0, VheR[x],j=1,...,m,

m

(B) sup % < M for some M > 0,

aENg

then 3y € M*(K) such that

Yo :/ x* u(dx), Vo € NL
K

Note that the conditions in (A) are equivalent to the condition L,(p) > 0 for
all p € Qgy...gm-

For sake of simplicity, we prove Theorem 2.2.9 in the case of one polyno-
mial. The proof for several polynomials is then a straighforward consequence.
This simplification will also help us to understand better the analogies and the
dissimilarities with Theorem 1.3.14 due to Berg and Maserick.

For this reason, let us assume that the set K, non compact, is the set where
a fixed polynomial ¢ is non-negative.

We will make use of the following lemmas.

Lemma 2.2.10 (Lasserre, [46]).
Let y = (ya)aeNg such that sup % < M for some M > 0. Then, for all i =

«
aENg

1,...,d, and all k € N,
L, (x3%) < M(2k)!.
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Moreover, y satisfies the multi-variate Carleman condition

iLy =00, t=1,...,d.

k=1

Proof.
Forany k € Npand ¢ =1,...,d, let us set yor = y(o
with 2k at the i-th entry. Then,

7777777777

vkl oy 1Yl

<M = |yl < Mwy,
wzk aENd U)a

and so

Moreover, y satisfies the multi-variate Carleman condition. In fact, by apply-

ing in (2.14) the following bound (given by Stirling’s formula)

we get that

Ly (x2%)3% < (M(2k)1) 2% < M7 (2k)(2k)% ez~ < C - 2k

1

where k > kg is sufficiently large so that M i(Qk)iei’l < C with C positive
constant. Then,

i[’y(x?k);’“ ;i; ik = +00.

k=1

Similarly, the following can be proved.

Lemma 2.2.11 (Lasserre, [46] Lemma 5.1).

Let 11 be a non-negative Borel measure whose sequence of moments y = (ya)aeNg
is such that for alli =1,...,d, and all k € Ny, L,(z?*) < M(2k)! for some M.
Let p € R[x]| be such that L,(z¥p) >0 for alli=1,...,d, and all t € Ny. Then
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the sequence p(E)y satisfies the multi-variate Carleman condition

1
ZLP(E)y(ZU?k) =00, 1=1,...,d

oo
k=1

In Chapter 4, an extension of the previous lemma will be proved in the infinite

dimensional case.

Proof. (of Theorem 2.2.9 for one polynomial)
By Lemma 2.2.10 we have that for all i = 1,...,d, and all k € Ny, L,(2?*) <

]

M (2k)! for some M > 0 and y satisfies the multi-variate Carleman condition.
The conditions L,(h?) > 0 for all h € R[x]| and ) Ly(x?k)_i = +o0 for all
k=1

t = 1,...,d, imply, by Theorem 2.2.2, that there exists a unique non-negative

measure g € M*(R?) which realizes y, i.e.
Yo = /Xa p(dx), o€ NZ (2.15)

Moreover, the conditions L, (h?g) > 0, for all h € R[x], and L, (z?*) < M(2k)!
(for all i = 1,...,d, and all £ € Ny) imply, by Lemma 2.2.11, that g(F)y sat-

isfies the multi-variate Carleman condition ) Lg(E)y(xfk)’i. Hence, by The-
k=1
orem 2.2.2, g(E)y is realizable on R? i.e. there exists a unique non-negative

measures v € M*(R?) such that

(9(E)y)a = /x‘“ v(dx), o€ NL

The integral representation of y in (2.15) implies, by Lemma 1.3.13, that we also

have
(9(E)y)a = / xg(x) p(dx), € N

Then, for any o € N,
[ xat0utaz) =[x viax),

or, equivalently,

[ %o utdx) =[x viax),
where I'" = {x: g(x) > 0} and I'" = {x: g(x) < 0}.
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The latter can be written as
[ x s gto0 utax) = [ 5 (vldx) = - (x)g(o) ()
which shows that the two non-negative measures on R?
Ip+gdp and  dv — lgap+gdp (2.16)

have the same moments.
Moreover, the moments of the measure 1r+gdu satisfy the multi-variate Carle-

man condition. In fact, N+ du < dp and for allt =1,...,d, and k € Ny

[ et utax) < [ 4 () = L),

The conclusion follows by Lemma 2.2.11.
By Corollary 2.2.5 follows that the two measures in (2.16) must be equal and
this, in turn, implies that gdy = dv, i.e. the signed measure gdu is actually
non-negative as well as v. Then, supp(u) C {g > 0} =: K.

O

Theorem 1.3.16, due to Berg and Maserick, and Theorem 2.2.9, due to Lasserre,
as well as Theorem 2.2.6 due to Schmiidgen, have similarities and in their proofs

there are three main stages which is worth to point out.

1. BOUND ON THE SEQUENCE y.
Having a bound on the growth of the sequence y is important to ensure the
existence of a realizing measure 1 on R since, in more than one dimension,
this bound is necessary for the applicability of the spectral theorem.
In the case of d > 1, Lasserre assumes directly the bound.
Schmiidgen, instead, bounds the multi-sequence y via compactness of K
(which forces the associated operators X; to be bounded as well) before the
existence of the realizing measure is established (see Remark 2.2.7).
When d = 1, one does not actually need the bound since the existence
of the realizing measure is given by Hamburger’s theorem which can be
also proved without spectral theorem. Nevertheless, the compactness of
K C RY pushes, a posteriori, the sequence y realized by p to have the
bound |y,| < cal®! (where ¢, a are positive constant and o € N?). In fact,

| xutix)

Yol =

< / x| p(dx) < max]xo‘]/ p(dx) < alle.
K xeK K
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2. EXISTENCE AND UNIQUENESS OF THE REALIZING MEASURE L.

A common root in all theorems is the centrality of Carleman’s type con-
ditions which, as we have shown in Lemma 1.3.11 and in Lemma 2.2.10,
are derived and used by Berg and Maserick, as well as by Lasserre. In
particular, in Theorem 1.3.16 Carleman’s condition is obtained from the
compactness of K whereas in Theorem 2.2.9 the multi-variate Carleman’s
condition is a direct consequence of the a priori bound on .

Berg and Maserick in Theorem 1.3.16 use Hamburger’s Theorem 1.3.5,
which does not require the knowledge of any bound on ¥, in order to guaran-
tee the existence of a non-negative measure on R which realizes y. Moreover,
they obtain the Carleman condition a posteriori using the compact support
of the measure. Lasserre, instead, ensures existence and uniqueness of the
non-negative realizing measure on R? at the same time via Theorem 2.2.2
which he can use because the multi-variate Carleman condition is a direct
consequence of the a priori bound on y he assumes.

Instead, the use of the spectral theory is explicit in Schmiidgen.

3. TRICK TO GET THE SUPPORT OF /.
In all theorems (the same could be applied to Schmiidgen’s proof) we arrive
to a common point where the moments of a signed measure and the ones

of a non-negative measure are equal, i.e.

[xegeautax) = [xtvtdx), aeng (2.17)

This does not allow to conclude that the two measure are equal (it does not
even if both measures are non-negative). To overcome this problem, a sort of
“splitting procedure” is used to rewrite (2.17) in terms of two non-negative
measures depending on gdu and v. One of these non-negative measure is
such that either its support is compact or its sequence of moments satisfies
Carleman’s condition (note that in the first case Carleman’s condition is
implied again by Lemma 1.3.11). To sum up, it is possible to rewrite (2.17)

as
Sq 1= /xangu(dx) = /xo‘ Pour(dx), «a€ Ng,

where 7, and py,, are non-negative measures (depending on gu and gp, v,
respectively) with s = (Sa)aeNg satisfying the multivariate Carleman con-

dition.
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Remark 2.2.12.

Theorem 2.2.9 continues to hold if we consider a countable number of polynomials
gj. This consideration allows us, for example, to solve the full moment problem
on discrete and non-compact sets like the one of the natural numbers. In fact, Ny

can be written as the intersection of infinitely many polynomials as follows

No= [ {z € R[gj(x) > 0} n{z € R| g(z) = = > 0}
J€Ng
where g;(z) = x* — (2j + V)a + (j* + j) for j € No.
By using the inner-regularity of the realizing measure p, Theorem 2.2.9 also holds

for an uncountable number of polynomials g;. We analyze this case in details for

a more general problem in Chapter 4.
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Chapter 3

Generalized power moment

problem

3.1 Generalized power moment problem on fi-

nite dimensional spaces

In this section we are going to present the classical moment problem on a
general finite dimensional vector space W which is in dual pairing with another
vector space V under a scalar product. This will help to better understand
the next section and Chapter 4, where a moment problem for particular infinite

dimensional spaces is studied.
Dual pairing

Let V and W be two vector spaces over R and suppose that the function

() VxW =R
(v,2) — (v,2),

is a bilinear form on V' x W which is non-degenerate, i.e.

o ((v,x) =0, YweV)=z=0,

e ((v,2) =0, Ve e W)= v =0.

Then, the spaces V and W are said to be a pair in duality with respect to the

bilinear form (-,-) also called scalar product between V and W.
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Example 3.1.1.
Let V' be any vector space and let us consider the special case of W = V' (the
space of linear functionals on V). Then by defining

(v, f)=[fv), feViveV,

we have a bilinear form on V x V' which is non-degenerate.

The following propositions are of particular importance.
From now on, (V, W) is a pair of vector spaces in duality with respect to a bilinear

form (-, ).

Proposition 3.1.2 ([26] p. 65).

The map
o: V. —->W
v,
where
Ly(x):=(v,z), x €W, (3.1)

15 injective and linear.

Proposition 3.1.3 ([26] p. 76).
Assume that W has finite dimension. Then the injection o : V. — W' defined by
(3.1) is surjective and hence a linear isomorphism.

In particular, V' has finite dimension and dimV = dim W.

The latter proposition implies that, whenever W has finite dimension, any
linear functional on W is of the form [, for some v in V. More precisely, if
L € W’ then there exists v € V' such that

for all z € W.

Remark 3.1.4.

If V.and W are in duality with respect to (-,-) then ¢, as in (3.1), identifies V
with W'. By the symmetry of (-,-), also W and V' are in duality with respect to
the same product. Then, by repeating the steps as above, we conclude that the

analogous mapping of ¢ identifies W and V'.
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Dual pairing of tensor products

Let us recall the following definition.

Definition 3.1.5 (Tensor product).
If Ay, ... A, are linear spaces (over R), their tensor product is the linear space
A ®---® A, together with a n-linear form

®: Aix---xA4A —-A4R---®A,

(a1,...,0,) a1 ® - Qay,
such that, for any vector space U and any n-linear form
f™ A x - x A, = U,

there exists a unique (up to isomorphisms) linear map

with f o @ = f (Universal Property ).

In other words, from the latter definition the following diagram commutes.

(n)
A x -+ x A, f U
®
f
AA®---®A,

Suppose now that, for i = 1,...,n, the pair of spaces (V[i], W[i]) is in duality
with respect to the bilinear form (-,-);. We have the following fact (for more
details see [27, p. 33]): the pair (V[1]®---@V[n], W[1]®---®@W][n]) is in duality

with respect to the non-degenerate bilinear form
@ @un), 2] @ @xn))e = (v[1], z[1])1 - - (v[n], z[n))n.  (3:2)

In particular, if we consider n copies of the pair in duality (V,W), the spaces
Venr = V-V and W := W®---®W form a pair in duality with
——— ——

n—times n—times
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respect to the product
<Ul SRR Un, 1 K- ® .',Un> = <'U1,Z'1> e <Unaxn>‘ (33)

Note that in the bilinear form on V®* x W®" we dropped the subscript symbol
of tensor for simplicity.

Construct now the map

where
Lim (1 @+ ®xy,) = (v(”),xl R QT,), TR Qx, €W (3.4)

Corollary 3.1.6.
If W is a finite dimensional vector space, the map ¢ : VE — (W) defined as

in (3.4) is a linear isomorphism.

The latter means that any linear functional on W®™ is of the form [, for
some v™ in V& More precisely, if L € (W®") then there exists v € V&"
such that

L(x1®...®xn) :lv(">($1®®xn): <U(n),x1®"'®$n>,

for any z; ® -+ - ® x,, € W™,

Polynomials

Let us introduce the notion of polynomial in this general setting. In the

following, the spaces are considered to be finite dimensional.

Definition 3.1.7.

A map p: W — R is called homogeneous polynomial of degree n if there exists a
symmetric n-linear form f@™ . W*" s R such that p(z) = f") (z,x,...,z) for
any x € W.

If {e1,...,eq} is a vector basis for W then the previous definition coincides

with the classical definition of polynomial.
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In fact, let us consider the following map
I: R4 - W
d
(T1,...,1q) — x:= Z%@z‘, (3.5)
i=1
where in R? we consider the canonical basis. Note that the map I is a non canon-

ical isomorphism in the sense that it does depend on the choice of the basis on W.

Consider the following diagram.

RdIWpR

X1
f(n)
W><7L

d
The vector (z,...,x4) is mapped under I to z = ) z;e; € W and then
i=1

d d d
p(l’) - f(n) (Z Ty €4y Z LigCisgy - -y Z xinein>

i1=1 io=1 in=1

d
= ) wawn i, [ e, ). (3.6)

14eyin=1

The numbers f™(e;,, es,,...,€;,) are called the coefficients of the polynomial p
in the indeterminates x1,xs, ..., 4. In other words, (3.6) is a polynomial in the

classical sense.

Homogeneous polynomials can be conveniently expressed using symmetric
tensors. In fact, the latters allow arguments about n-linear maps to be carried
out in terms of linear maps only (see Universal Property in Definition 3.1.5).

The diagram which we have to keep in mind is the following.

p
w R
X i f
' poo 7
Xn Xn
|74 2N W
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If x € W then

p(l‘) = f(n) (I,...,l’)
= f(x@@x)
= f®").

Hence, we can give the definition of homogeneous polynomial via tensor product.

Definition 3.1.8.
A map p: W — R is called homogeneous polynomial of degree n if there exists a
linear form f : W& — R such that p(z) = f(z®") for any x € W.

Definition 3.1.8 says that a polynomial p is given by a linear functional on
Wen ie. fe (Wenry.
In turn this implies, by Corollary 3.1.6, that there exists v(™ € V& such that

p($) = f(n)<x> < ,1’) = f(a:@n) = <’U(n)7$®n>'

The latter is a general representation of homogeneous polynomials of degree n
whenever we have two spaces in dual pairing with respect to a bilinear form (-, -).

We can then define a generic polynomial of degree N on W as

N
P(z) =) (v™,2®"),
n=0
where z € W and v € V®" forn =0,..., N, with the convention (v(®, 220) =
v® € R.
Remark 3.1.9.

If {e;}4, is a basis for W and the latter is in dual pairing with V then, for each
j=1...,d, the vectors e; € V defined such that

L ifi=j,

0, otherwise,

(€j,€1) = 015 =

form a basis for V' (called dual basis).
In general, if {(a;);}L, is basis for A; then {ay, ® - ® an;, }¢
basis for Ay ® --- ® A,.

Hence, (e; ® 6]‘)?,]':1

vin=1 15 @

is a basis for the tensor product W®? in dual pairing
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with V2. Then, the set of vectors (&; ® éj)?jzl is the dual basis for V®? and

(6 ®€jr,e; @ ej) =y Oy j.

The moment tensor of a measure

Let p be a measure on W such that the map

m oy

(U1, ..., 0p) »—>/ V1, T (U, ) p(dx)

is well-defined. Note that the function m(™ is symmetric w.r.t. permutations of
its variables (vq,...,v,).
Since m™ is n-linear it can be seen as a linear map on the tensor product V&,

i.e. (with abuse of notation)

mm . ver LR
v »—>/ (n) p(dx) .

Note that m™ € (V®")'. Then, by duality (the result of Remark 3.1.4 holds also

for tensors), there exists m™ € W®" such that

(0™, m) = / (0™, 25" u(da)
w

for any v € Ven,

The function m™ is called the n-th moment tensor of p.

We now show how the moment tensors of p are related to the classical defini-

tion of moments which we gave on R

Let us consider the maps in (3.5). Let uy be the image measure of p under
the map I~! (see Definition C.0.8).

Since p4 is a measure on RY, its moments of order n, with n € N, are given by

mgi),zn = /d Ligy = ;E'm/i#(dl’h ce adxd)a
R

where iy, ..., 1, are selected from the set {1,...,d} in order to form sequences of

size n (whose elements are not necessarily distinct) such that the order of their
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elements is not taken into account, i.e. two sequences iy, ..., i, and o (i1, ..., i),
of which one can be obtained from the other by permuting its terms, are the same
(n) (n)

iy = T . Let us define the function

and m (i)

f: R4 — R

(1. . mq) = xyy -y,

with {i1,...,i,} € {1,...,d} as above.
Then, by Definition C.0.8, we have that

= [ adnn o dea) = @@, @)

d

if the second integral above exists. Let us note that if z = ) xz;e; € W and we
i=1
consider the dual basis {€1,...,€4} in V we have that

d d
<éj,.17> = <éjazaji€i> = in<éj,6i> = Ty, j = 1, c ,d.
i=1 i=1
Then I7'(z) = (21,...,24) can be written as ((¢;, ), ..., (4, 2)) and so
FU7H (@) = (i, 2) - (i, 7) = (8 ® - ® &, 27,

where in the last equality we made use of (3.3). So the second integral in (3.7)
exists.
Relation (3.7) then becomes

m® = / to - wop(den, . deg) = / (@ ® - © &, e Yu(de)
R4 w

= (6, Q- --Q8&,,m"). (3.8)
As element of W®", m™ can be written in terms of a basis (6, ® - ® ejn)?l =l
as
d
m™ — Z Nyoin €1 @ - @€, (3.9)
jl ----- jnzl
for some coefficients (Aj,,. ;. ), ;-

(m)
]17"'7.771/

The coefficients (A, ;)

J1yesdn

are the moments (m > of order n of piy. In

65



fact, substituting (3.9) in (3.8) we get

d
m(”) — . . <é®...®é‘ €'®"'®6‘>
1yesin J15-In 1 iny ~J1 In

jlv"'vjnzl
d

= Z )\j17---7j7z <éi17 6]1) e <éin7 6jn>

jlv"'vjn:]-
d

= : : )\j17"'7j7l 5i17j1 e 5in7jn - Ailr"?in *

jlv"'vjn:]-
So we have that

d

m™ = Z (/dmjl---xjnu#(dxl,...,dxd)> e, - Rej,.
R

J1yeesgn=1

Statement of the generalized power moment problem

We can sum up the previous subsection in the following definition.
Let W be a finite dimensional space in dual paring with V' with respect to (-, ).

Let 1 be a measure supported on W such that for every n € Ny and v € V"

/ (™ 2®™ p(dx) < +o0,
w

with the convention, (v@, 2®0) := () with v(® € R.

Definition 3.1.10 (Moment tensor).

The n—th moment tensor of i is defined as the symmetric function m,(f) e wenr
such that

(v("),mL”)>:/ (W™ 2®™ u(da), (3.10)

for all v™) € Ver,

By (3.10), a measure p always gives rise to its moment tensor mfln).

The tensor moment problem is a sort of inverse problem.

Definition 3.1.11 (Moment problem on W).
Given a sequence (m™),cx, of symmetric functions in W®™ with n € Ny, find a

measure | on W such that

1

3 PICEEE

m™ = m/(f) for n=20

i.e. such that m™ is the n—th moment tensor of i forn =0,1,.. ..

66



If such a measure p exists we say that (m(”))neNO realized by p on W.
If we require that the measure p has support contained in a measurable subset
S of W then we can reformulate the previous definition as we have done at the

beginning of Chapter 1.

3.2 Generalized power problem on nuclear spac-

€es

In the following we will consider all the spaces as being separable and real.

Let us consider a family (Hy)rex of Hilbert spaces (K is an index set contain-

ing 0). Suppose that Q = (| Hj, is dense in each Hj, and equip this linear space
keK
with the following topology. A neighborhood base about zero in € is understood

to be a collection of sets

Uspctirsen = {5 € 2 1l <1 1 fllm, <em

where ky,...,k, € K and ¢y > 0,...,&, >0 with m € N.
The linear topological space €2, constructed as above, is called the projective limit
of the spaces Hj,.

From now on, we will assume that the norms are directed by topological

imbedding, i.e.
W kl, /{32 e K Elkg . Hkg g Hkl R Hkg g Hk2 (topologlcally)

This implies that each neighborhood Uy, ,..e1.....c,, contains a neighborhood Uy,
for some k£ € K and € > 0. Therefore, a neighborhood base about zero for {2 can
be directly given by the collections of sets Uy.. with k € K and € > 0.

Let us also assume that € is nuclear, i.e. for each k € K there exists k' €
K such that Hy C Hy, and this imbedding is quasi-nuclear according to the

following.

Definition 3.2.1 (Quasi-nuclear operator and imbedding).
Let Hy and Hy be two Hilbert spaces and suppose that Hq is separable.
A continuous linear operator T : Hy — Hy is called Hilbert-Schmidt operator or

oo
a quasi-nuclear operator if Y- ||Te;||3;, < oo for some orthonormal basis (e;)32,

i=1
m Hy.
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An imbedding Hy C Hy is said to be quasi-nuclear if the imbedding operator
O : Hy — H, is quasi-nuclear.

Let us denote by € the topological dual space of Q.
W.lo.g. we assume that each Hj is imbedded topologically (i.e. densily and
continuously) into Hy. Then, the inner product on Hy determines a dual pairing
between €2 and €2 which, however, differs from the canonical one introduced in
(3.1). In fact, as Hy O €, each element y € H, gives rise to a continuous linear

functional [, in the following way. We consider the map

© . H() —

X iy

where

W) = 0m, €

Identifying x with [,, we get an imbedding of Hj in the space Y. (The identifi-
cation is unambiguous: if I, = 0, then x = 0.) If ' is endowed with the weak
topology, then the imbedding ¢ : Hy — € is obviously continuous. We have
constructed the chain

0D HyDN.

For n € 0 and f € Q, we denote by (f,n) the extension of (f, x)u, by continuity
as x — n with x € Hy (for more details, see [3, Chapter 1] and [5, Vol. I,
Chapter 1]).

Consider the n—th (n € Ny) tensor power Q®" of the space 2 which is defined
as the projective limit of H>"; in particular, for n = 0, HZ" = R. Then its dual

space is

(@) = (H#e = J ="

keK keK

which we can equip with the weak topology.

The spaces Q" and (Q®”)/ are a pair in duality with respect to the product
induced by (-, ) on £ x Q'. Namely,

(1@ @ fom @ @n) = (fr,m) - (frs )

Remark 3.2.2.
The bilinear form that establishes duality between Q%™ and (Q®") is actually the

inner product on HS™.
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Let us consider a finite Borel measure p on €' (u is called generalized process)

such that the map

mm o SR

(f17 . 7fn) = o <f1777> T <fn777>:u(d77)

is well-defined and continuous on 2*".

Since m™ is n-linear it can be seen as a linear map on the tensor product Q®"
due to the kernel theorem (see [7, Theorem 6.2, p. 163]). Then there exists
m™ € (Q®") such that

(R fum®) = [ () funhln).

for any fi,..., f. € Q.
The function m™ is called the n-th generalized moment function of pu.
Let us formalize better what we have done so far and let us introduce the
main objects involved in the generalized power moment problem.
A generalized process is a finite measure p defined on the Borel o—algebra on €2'.

Moreover, we say that a generalized process p is concentrated on a measurable

subset S C ' if p (Q'\ S) = 0.

Definition 3.2.3 (Finite n—th local moment).
Given n € Ny, a generalized process j1 on €)' has finite n—th local moment (or

local moment of order n) if for every f € Q we have

[ tgmirutan) < .

The latter condition implies that the functional

Qxn — R
(frooofu) = [ (1 ®-- @ fo,n®")pu(dn) (3.11)

Q/

is a well-defined linear functional on Q*". In fact, since p has n—th finite local
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moment, for any fi,..., f, € Q we get

S~
=

.
Il

[tnoeo o] < [ TTmlun)

1

/Q () < oo, (312

where we made use of the generalization of Holder’s inequality.

3=

IA
N

1

-
Il

The functionals in (3.11) are the moments of p. In the following, we will require
slightly more regularity on the moments but this assumption is easy to check in

most of applications.

Definition 3.2.4 (n—th generalized moment function).
Given n € Ny, a generalized process i on ' has n—th generalized moment
function in the sense of Q' if u has finite n—th local moment and if for all n the

functional f— [0, [(f,m)|"u(dn) is continuous.

This means that there exists a symmetric functional mu € (2%")" such that

r® - ® fmi) = /Q,<f1 &+ ® for ™ uld). (3.13)

In fact, by the assumption of continuity and by (3.12) the multilinear functional

(3.11) is continuous and so we can apply the kernel theorem. By convention,
(fo,n®%) := fo with fy € R.

Proposition 3.2.5.
If v is a generalized process on Q' with generalized moment functions (in the sense

of V') of any order, then for any n € N and for any f™ € Q%" we have

/Q/<f(”),n®”>u(dn) < o0

and

GO = [ 07 (). (3.14)

Proof. (n =2)

Let us consider f® € Q®2. Then, we can write

O =" ooy, (3.15)

t,j=1

70



p
for some ¢;,1; € 2. Let f,EQ) = Y. i ® ;. Since f,ﬁz) — f® as p = oo by

,j=1

(3.15), we have that the sequence (ff)) is a Cauchy sequence in Q%2 i.e.
peN

Vk € K we have that ||f;§2) — é2)||H};®2 — 0 as p,q — 0.

Consequently, the sequence ( f£2)> is a Cauchy sequence in L?(€, u). In fact,
peN

0 < | [ (W - 2 0) )
= /Q (B = 12 n®2>)2u(dn)‘
= /Q (2= 1) ,n®4>u(dn)‘

= [0 - 1) mi

®2
< mPlgey - || (52 = 1)

ot — 0, as p,q — o0,
where in the last equality and inequality we used (3.13) and the assumption
miY € ()% (ie. there exists k € K such that m{) € (HZ*)), respectively.
Then, since L?(€Y, ) is complete, there exists F' € L*(Q, u) with <f,g2),n®2) —
F(n) in L?(, ). This implies that there exists a subsequence ( féz))keN such
that <f;,§,f),77®2> — F(n), p—a.e. in €. On the other hand, by (3.15), we know
also that for all n €
(FP 0% = (2, %),

2)

Then, necessarily, we have that () n®2?) = F(n) € L*(Q, u). This means that

(/}f”’,77®2>2u(d77)>é <0

and, since p is finite, we get that

2

o utan < ([ @) e

N|=

< 00.

In conclusion, we proved that (f32,n%2) — (f® 1®2) in L}(€Y, u) and so

(f2 m®) = / D ) uldn) = | (FD 0 uldn).

Q/
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Moreover, by (3.15) we have

(2 m2) = (7, mi2)

Hence, by uniqueness of the limit, we get (3.14) for n = 2.
O

For a generalized processes p the moment functions m,(f) are given by (3.14).

The moment problem, which in the infinite dimensional context is often called

the realizability problem, addresses exactly the inverse question.

Problem 3.2.6 (Realizability problem on & C ).

Given a sequence (m™)> of symmetric functions with m™ € (Q®") for any
n € Ny, find a generalized process p with finite local moments of any order and
concentrated on a measurable subset S of Q) such that

m™ :mEL") for n=0,1,...

i.e. m™ is the n—th moment function of u forn=0,1....

If such a measure p does exist we say that (m(™)> is realized by pon S.

An obvious positivity property which is necessary for a sequence (m(™)

as above, to be the moment sequence of some measure on ' is the following.

Definition 3.2.7 (Positive semidefinite sequence).
Let m = (m™)2, where m™ € (Q%")" and m™ is a symmetric function of its n
variables. The sequence m is said to be positive semidefinite if for any fU) € Q®

we have
o0

Z«f@ ® f9), mi*y > 0.
i,j=0
The latter is a generalization of the classical notion of positive semidefiniteness
given in Definition 1.2.2.
Note that, as we work with real spaces, the involution on €2 considered in [5]
is here chosen to be the identity.
Let us introduce the property of determining sequence which essentially is a
growth restriction on the sequence of the m™’s. We will show that this condition

gives uniqueness of the realizing measure.

Definition 3.2.8 (Determining sequence).

Let m = (m™)22, where m™ € (Q®")" and m™ is a symmetric functional of its
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n variables. The sequence m is said to be determining if for any n € N and any
fis- -y fon € 2 we have

2n
’<f1 @ fons m(2n)>| <m? H Hfl”Hk(m) for some k(m) € K, (3.16)
=1

where (M), is a sequence of finite positive real numbers such that the class
C{m} is quasi-analytical (see Definition A.0.18).

The condition for a sequence to be determining can be given in a more general
formulation than (3.16) (see [5, Vol. II, p. 54]). We chose this definition because
it is easier to handle and, as we are going to see, it will show better the analogy
with the classical Carleman’s condition.

Let us state now the main result known in literature for the full realizability
problem on such a kind of space €’ (cf. [5, Vol. II, Theorem 2.1, p. 54]).

Theorem 3.2.9.

Let m = (m™), where m™ € (Q®™) and m™ is a symmetric function of its
n variables. If m is a positive semidefinite sequence which s also determining,
then there exists a unique non-negative measure i on ', with generalized moment

functions in the sense of Q' of any order, such that for any f™ € Q®"

(fm, mmy = 5 (FU, ) u(dn). (3.17)

Remark 3.2.10.

The steps of the proof of Theorem 3.2.9 are similar, but considerably more diffi-
cult, to those we studied in the proof of Theorem 2.2.2. Starting from a positive
semidefinite sequence, a Hilbert space H,, is constructed. A countable family of
unbounded commuting operators on H,, is introduced. As in the classical moment
problem, the domains of these operators are showed to contain a total subset of
quasi-analytic vectors. The existence of the latter set allows to extend this family
of operators to self-adjoint commuting operators on H,,. The spectral theorem
for infinitly countable unbounded self-adjoint operators (see [5, Vol. I, p. 314]) is
then used to prove that there exists a spectral measure fi on RY. In the remaining

part of the proof is shown that the sequence m is of the form (3.17).
Remark 3.2.11.

The proof of Theorem 3.2.9 shows that the measure 1 is actually concentrated
on one of the Hilbert spaces H’,(m) for some index k'(m) € K depending on the
sequence m (see [5, Vol. II, Remark 1, p. 72]).
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Chapter 4

Concrete conditions for
realizability of moment measures

via quadratic modules

In the following we are going to apply Theorem 3.2.9 for the special realiz-
ability problem when Q = 2,,,;(R?), which is the projective limit of a family
of weighted Sobolev spaces Hj, :== Wi (R?, ky(r)dr) and it is nuclear (see The-
orem 4.1.12). Hence, Q%" = 2,,,;(R™) and so the sequence m consists of gen-
eralized functions, ie. m™ e 2 (R™). We will actually take the m(™’s in
R(R?), which is a subset of Z,,,(R™) consisting of all Radon measures on R.
Theorem 3.2.9 gives a solution for the full realizability problem on Z,,.(R%)
whenever the sequence m is positive semidefinite and determining. Using this
result, we will show how to get necessary and sufficient conditions on such a m

to be the moment sequence of a measure concentrated on a basic semi-algebraic

SC 7, (RY).

proj

4.1 The space of generalized functions

Let us first recall some standard general notations.
For Y C R? let us denote by B(Y') the Borel o-algebra on Y, by C.(Y) the space
of all real-valued continuous functions on R¢ with compact support contained in
Y and by C*(Y) its subspace of all infinitely differentiable functions. Moreover,
C(Y) and C*°(Y") will denote the cones consisting of all non-negative functions
in C.(Y) and C°(Y), respectively.

We will denote by €2, the space €2 endowed with a topology 7 and by €2, its
topological dual space. The suffix will be dropped whenever the topology is clear
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from the context.
For any r = (ry,...,75) € R? and a = (ay,...,ay) € Nd we define r* :=

rit - .r9t. Moreover, for any f3 e N¢ the symbol D? denotes the weak partial
derivative o7 8‘ | - where |3 := Z Bi.
- 7"

The spaces Zjna(RY) and Z,,,.,;(R?) are obtained by endowing C°(R?) with
two different topologies which both make the latter into a complete locally convex

vector space.

4.1.1 Topological structures on C>(RY)

The first topology on the space C°(R?) is constructed as follows (see [63,

Section V.4, vol. I] and Section C.1 for more details and definitions).

Definition 4.1.1.
Let (Ap)nen be an increasing family of relatively compact open sets such that

U A,.. Let us consider the space C(A,) of all infinitely differentiable
neN

functions on R with compact support contained in A, and let us endow C(A,,)

with the Frechét topology generated by the seminorms
lells == || D%¢|,. = max |DPp(r)|, BEeN

Then as sets
CRY) = Jcr@,

neN

We denote by Zina(RY) the space C°(R?) endowed with the inductive limit topol-
09y Ting tnduced by this construction.

A neighbourhood base for T;,q about zero is given by

B.,.,0): = {0 CCR? : O balanced, absorbing and convez, — (4.1)
s.t. ONCE(A,) is open in C°(A,)} .

The previous definition is independent of the choice of the A,,’s.

Remark 4.1.2.
Let us define on C°(A,,) the following family of seminorms

lelea =D HlaX|D’3

Bl<a
BeNd

, ac€ No. (42)
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The two families of seminorms (||-||5)gena and (|||l <,)aen, are equivalent. The
latter family has the advantage to be directed, which in this case means that if
a <b then [gll, < el for all ¢ € C(R,).

In the following, we will choose the family of seminorms more convenient for our

aims.

The space C2°(R?) can be also endowed with a projective limit topology Tyr;

in the following way, (see [3, Chapter I, Section 3.10] for more details).

Definition 4.1.3.
Let I be the set of all k = (ky,ko(r)) such that ky € Ny, ky € C®°(RY) with
ka(r) > 1 for allt € RY. For each k € I, let us introduce a norm on C°(R?) by

setting

||90||_@k(Rd) = max ka(r Z | (D7)

18<ky
BeNd

Denote by Px(RY) the completion of C°(R?) w.r.t. the norm 1, (ay- Then as
sets
C(RY) =) Zr(RY).
kel
We denote by Dproj(RY) the space C°(RY) endowed with the projective limit topol-
09Y Tproj tnduced by this construction.

A neighbourhood base for 7,.,; about zero is given by

0):={Up: CCX(RY) : keI, 0<ceR}, (4.3)

Tproj
with
Uke = {0 € C2RY) - gl gy < < -

As sets, Dina(RY) and P (RY) are the same but the topologies 7;,q and 7.,

are not equivalent. In fact, the following relation holds.

Proposition 4.1.4.

Tproj g Tind

Proof.

To show 7p0; C Ting We need to prove that

VUk;g € B,

proj

(0), 30 € B,, (0): O C Up.. (4.4)
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For convenience, in Definition 4.1.1 we will take as A, the open ball B, (0) of
center 0 € R? and radius n € N, and we will consider on C° (B,(0)) the family
of seminorms defined in (4.2).

Let us fix k € I and € > 0. We show that (4.4) is satisfied for O = Uy,.. In
fact, the set Uy, is balanced, absorbing and convex because it is defined by the
seminorm ||-|| 5, ga) (see Proposition C.1.7). Moreover, Uy, N C>°(B,(0)) is open
in C(B,(0)).

To prove the latter we need to show that for any ¢ € Uy N CX(B,(0))

30 <&’ € R, 3a € Ny s.t. B4() € Upe N C(B,(0)), (4.5)
where B(¢) == {§ € C(B,(0) « [ — ¢ll, < &'}

Fixed ¢ € U NCX(B,(0)), let us choose:

e a € Ny such that a > k.
This implies that ||f||., > || fll<, for all f € CZ(B,(0)).

. 5_”80“@ (RD)
g = max 22(1‘) :
rcBnp (0)
Note that the assumptions on ks guarantee that 0 < max ko(r) < oo.
reB,(0)
If ¢» € B%(y) then we have
= max Z ‘ DB (Y —¢)) )‘ + “(zDHQk(]Rd)
I'EBn(O |ﬁ‘<k‘1
< max k:2( )) Z max ‘(Dﬁ(;b—(p))(r)‘ + 1€l 9, ey
reBn rEBn(O)
|B1<k1
= | Jmax ko (r ) [ — ell<i + el 9, wey
< | max kz ) 1 — ell<a + el 5, we)
reBn
< max k:g ) &' + 16l g mey = €
reBn

Hence, we proved that if ¢ € B%(y) then ¢ € Uy, NCX(B,(0)). Therefore, (4.5)
holds.
[l
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From Proposition 4.1.4, it follows that 2’ _.(R%) C

proj

(R%). The latter

md

inclusion is actually strict.

For instance, let us consider the case d = 1 and the function

DP(65(p DPy(
Z (95 Z

for any ¢ € C°(R). We can prove that 7 is in (R) but it does not belong to

Dyroj(R).

proj

Step L n € Z;,,4(R).
Recall that n € 7, ,(R) if and only if for every compact set A C R there exists

znd

a positive constant C' and an integer m such that, for any ¢ € C(A), we have
that [n(¢)] < C|l¢l|l<m (see [63, Vol. I, p. 148]).

Let m € N such that A C [-m,m]|. Take C' = 1. Then, for any ¢ € C°(A) we
have that

o)l = ﬁiD%w))| - émwn‘
< S|
=
< ) max|[D%(p(r))]
~ el
Step 1L: 1 ¢ 2,,,,(R).

Recall that n € Z,,.,:(R) if and only if there exists & € I such that n € Z;(R). We
then have to show that for every k € I and for all C' > 0 there exists ¢ € C2°(R)

such that
(W) > CllYll g, ) - (4.6)

For any k1 € Ny and for any A € R, let us consider a function ¢ € C((ky, k1+ 2)),
with k1 + 1 € supp(p), which we define via its (k; 4+ 1)-translated (along the op-

posite orientation of the r-axis) function

(Pkl’)\(r> = (Xflﬂ,)\) (T>

where
if |r| <

1
eCr(R d =

N
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and fi, » 0 [—1,1] — R is defined as follows.

fk1 AT / fk)1 1>\( )dt with fo >\( ) = sm()\r)

Let us notice that ¢y, » € C°(R) because x € C°(R) and fi, » € C*((—1,1)). In

particular, 0 € supp(gOkl,,\) and supp(wkl,A) - [—%7 %]

Moreover, for k; > 1 we have that D fy, z(r) = fr,—1.1(r) and so, in general, for

B<ki+1, DPfi  \(r) = fro—p(r) with f_1\(r) :== D fo(r).
Then, for any A we have that

In(e(r)| = [ D (p(ki + 1) = | D" (1, (0))]
= |Dk1+1 kal (O ’

k1+1
(kl ’ 1) D (0) DI i, 0(0)

_ |Dk1+1fk1 0)}
= [f-1(0)]

= [Dfo(0)]

= |Acos(A-0)]
= (Al

Furthermore, since |fo| < 1, we get that | fi, ] < 2% for k; > 0. In fact,

fralr)] < / Fea(Dldt < / Pi-1gs < o1
-1 -1

Moreover, we have that for any 3,7 € Ny with i < 5 < ky

B B—j
ok1— ,B-H( > 22161 B+]( > — 9ok Z < ) (6> = 309k—8 < gkt
J

Jj=
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Then, for k = (ki, ko(r)) € I, we have that

k1
H@H%(R) = max (kfz(T) Z ‘(Dﬁépkm)(r +ky + 1)‘)

reR
B=0
k1
= Irl}éiﬂi( (kQ(T - kl - 1) ; |(Dﬁ90k1,)\)<r)‘>

= max (kg(T — k1 —1) Z |(D6<ka1,/\>>(7”)|>

£=0

k1 B
= max kg(r—kl—l)z Z() Dﬂ]fkk()>
re 5=0 | j=0
k1 B
= max k?(r_kl_l)ﬁz_% Z( ) r) fia 5+]>\()>
kr B
< max ko(r — ky — 1) ok1 6”( )|D] ‘)
re 8=0 j=0
k1 ‘
< 6M(ky+1) max (kg(r — ki —1) Jz:; |DJX(T)‘>

k1
= 6k1(k1+1)maﬂé~<<k2 )Y |Dix r+k1+1)}>

j=0
= 6" (k +1) ||Xk1||@k(R)

where yy, is the (k; + 1)-translation (along the orientation of the r-axis) of x.
Therefore, (4.6) is satisfied by taking 1) = ¢ and A such that

AL > C6™ (k1 + 1) Xk ] 7, )

4.1.2 Measurability of 7, .(R?) in 2] (R

proj
Let us equip the space 7, (R?) with the weak topology 777/ i.e. the smallest
topology such that the mappings

(I)fi 9’ (Rd) — R

proj

7 = (fom) = n(f) (4.7)

are continuous for all f € C(RY).

ind

In the same way, we equip the space 2/ ,(R?) with the weak topology 7
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i.e. the smallest topology such that the mappings

\Ilf: znd(]Rd) — R

7 = (f,m) = n(f) (4.8)

are continuous for all f € C°(R?).

In this section we consider the relation between the spaces (Z,,;(R?), 727°7)
and (Z/,,(R?),7ir®) and their associated Borel o—algebras. Let us denote by
7ind the relative topology given by 774 on Dproj(R 4), which is defined as follows

ind

re={Un RY) :U e 74}

pT’Oj(
Proposition 4.1.5.
The topology TP coincides with ¥4 on 2!, . (R%).

proj

Proof.

Let us preliminarily recall that

e The relative topology 7 is the smallest topology such that the inclusion

map i : 7),.,;(RY) <= 2 ,(R?) is continuous.

e For any f € C*(RY), if ®; is defined as in (4.7) then

\I’f, as in (48), fulﬁlls (I)f = \I/f o1. (49)

Step I: 7Proi C yind

Let @ be the function defined in (4.7).

Hence, by (4.9), ®; is also continuous w.r.t. 7i"@ because W is continuous w.r.t.
7ind and i is continuous w.r.t. Find,

Since 7277 is the smallest topology such that the mappings ® for all f € C°(R?)
n (4.7) are continuous, then we have the conclusion.

Step II: 7ind C rproj

The inclusion map i is continuous w.r.t. 727 if and only if for all f € C°(R?)
we have Uy o is continuous w.r.t. 727%. By (4.9) we get that &y = U 04 and
®; is continuous w.r.t. 727 by the definition of the latter topology. Hence, i is
also continuous w.r.t. 7777,

Since 7¢ is the smallest topology such that 4 is continuous, we have the conclu-

sion.

O
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Corollary 4.1.6.

The o—algebra generated by TP coincides with the one generated by ¥4 on
; roj\ ~ind

Dppos(BY), e, a(rfr) = (7).

Proposition 4.1.7.
The o—algebra o(ti") N 2! (RY) coincides with o(Fin?).

proj
Proof.
Step I: o(7i"?) C o(7imd) N Dyroj(R d)

“ind 3

The o—algebra generated by 7,
ogy 7" je. the smallest o—algebra such that the sets O N 2 .(R?) are mea-

proj

is the smallest o—algebra containing the topol-

surable for any O € 7ind,

Hence, it sufficies to show that, for any O € 7, the sets O N Z,,,.(R?) are

measurable w.r.t. the o—algebra generated by 7"¢ restricted to 7 (RY).

This is true because a set O € 7i" is trivially measurable w.r.t. the oc—algebra
generated by 70" and therefore, O N 2/ _(R?) belongs to the o—algebra gener-

proj
ated by 7.0 restricted to Z,,,,(R?).

Step II: o(7") N 2! (RY) C o(Find)

proj

The o—algebra generated by 7.7 restricted to .@I’,m] (R9) is the smallest o —algebra

which makes the inclusion map i : Z,,,,(R?) —

Hence, it remains to show that the inclusion map i is measurable w.r.t. the

! 2(RY) measurable.

o—algebra generated by 7.

d

This is true because the inclusion map 7 results to be continuous w.r.t. 7i"® and

therefore i is also measurable w.r.t. the c—algebra generated by 7id.

]

Corollary 4.1.8.

The o—algebra o (T*) N D,,,(R) coincides with o(T57).

Let us recall some properties of 2, ,(RY) (for the definitions of Polish, Lusin

and Radon spaces see Definitions C.3.5, C.3.10 and C.3.13, respectively).
The space (C°(R?), 7,4) is Lusin, because every Frechét separable space is Polish,
and so Lusin, and the inductive limit of countably many Lusin spaces is Lusin
(see [71, Examples, p. 115]).
By [71, Corollary 1, p. 115], the space (Z,4(R?), 7"), where 7" the topology
of compact convergence, is Lusin. Let us consider the strong topology 7*¢ on

! a(R?). The space (Z,,(R%),7i") is Lusin. In fact, 72" coincides with 7.
(see [71, p. 115]). Then there exists 7/ with 7"¢ C 7/ such that (Z},,(R%),7’) is

Polish. Hence, since 74 C 7" we have that (Z},,(R?), 7i"%) is also Lusin.
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Since every Lusin space is a Radon space (see [71, Theorem 9, p. 122]), the

following proposition holds.

Proposition 4.1.9.
( {nd(Rd),TfZLd) is a Radon space, i.e. every finite Borel measure on 9; ,(R?) is

inner regular (see Definition C.3.1).

We were not able to find in literature analogous results about whether the

space ( ]’Woj(Rd), TPTo] ) is a Radon space or not. Moreover, this property does
not follow applying to Z,,;(R?) the same techniques as the ones used in [71]
for zlnd(]Rd)

4.1.3 The space %,,,/(R?) as projective limit of weighted

Sobolev spaces

In Definition 4.1.3 we introduced the topological space Z,,,;(R?) as the pro-
jective limit of the spaces Z;(RY), for all k € I. Here we show that Z,,.,;(R?) can
be constructed in a similar way starting from a collection of weighted Sobolev
spaces. This construction is more convenient for our purposes because it writes
Dproj(R?) as projective limit of Hilbert spaces. Moreover, it is possible to prove
that Z,,.;(R?) is nuclear.

Let us recall the notion of weighted Sobolev space Wi'(R?, ky(r)dr) for an
integer index k; and a positive continuous weight function ks on R?. The space
W (R?, ky(r)dr) is defined as the completion of C°(R?) with respect to the

following weighted norm

2
eyt o = | 3 [ 100 ke | 1)

[BI<kq
BENY

Note that, although the functions ¢ are real-valued, we prefer to write |-|? instead
of (+)2.
Definition 4.1.10 (Condition (D)).

We say that the set Ky C I satisfies Condition (D) if:
“For any pair k = (k1, ko(r)) € Ko there exists k' = (k, k(r)) € Ko such that

o ki > ki +1 (wherel is the smallest integer greater than %l)
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2
o ki(r) > (%lzgd(Dﬁq)(rﬂ) , Vr € R, for some function q(r) € CYR?)
chosen such that

ko(r)

dr < 00.
c@(r) =

¢(r) > ka(r), Vr € R and /
R

Note that the function q(r) depends on ky(r) and kj(r).”

Condition (D) is sufficient for the space projlim Wi (R? ky(r)dr) to be
(k‘l,k‘g(r))EKo
nuclear (see [3, p. 79]). In fact, we have that
Proposition 4.1.11.
If Ky fulfills Condition (D), then for every k = (ki,ka(r)) € Ky there exists
k' = (K, kb(r)) € Ko such that the embedding

WA (R, K, (r)dr) — W (RY, ky(r)dr)

1S quasi-nuclear.

Moreover, the following theorem shows that if we consider Ky = [ then the
projective limit of the corresponding weighted Sobolev spaces is not only nuclear
but also coincides with Z,,.,;(R?) (see [3, Theorem 3.9, p. 78] for the proof of
this result).

Theorem 4.1.12.

Let I be the set of all pairs k = (kyi, kx(r)) such that k; € Ny and ko(r) € C*(R?)
with ky(r) > 1, for allt € R The space Dproj(RY) coincides with the projective
limit of all the spaces Wit (R?, ko(r)dr) with k = (k1, kao(r)) € I and it is nuclear.

Let us note that the set of index I always fulfills Condition (D).
In fact, for any (ki, ka(r)) € I let k} > ky+1 (where [ is the smallest integer greater
than £) and kj(r) := 14+ Y [(D%q)(r)
1BI<!
p(r) > 1 such that [p, p(r)~'dr < co. Note that, [4, ’;gg; dr = [pap(r)~tdr < oo
and for all r € R? we have ¢*(r) = ky(r)p(r) > ko(r) and

? where q(r) = (kg(r)p(r))% for some

B =14 3 |(D)m [ > 3|00 0> > (max\(DBq)(rN) .

Bl<1 Bl<I A<t

Hence, since kj(r) > 1 for all r € R? and k), € C*(R?) because so is g, we have
that (K, k,(r)) € I.

84



Hence, the fact that projlim Wi (R?, ky(r)dr) is nuclear directly follows by
(kl,kz(r))el
Proposition 4.1.11.

Let us prove a useful inequality.

Proposition 4.1.13.

Given ¢ € C*(RY) and ko(r) € C®(R?), let k' = (K|, ky(r)) be a pair such that
4 < Kk} € N and kj(r) € C*(R?) with kj(r) > |(D%ky)(r)|? for all |k| < k;. Then
there exists a finite constant C' > 0 such that

Ra(m)le(m)] < Cliell

1 (R, k) (r)dr)

Proof.
Let us fix an integer k| > ¢ and denote by Bi(r) the open ball of radius 1
about the point r € R?. According to the Sobolev embedding theorem, for any
u € W;ll(Bl(r)), where Wzkﬁ(Bl(r)) = W;i(Bl(r), 1), we have that

HUHC(Bl(r)) < calu H

I(B ()

where ¢; is a positive constant independent of r.
Then for any u € C°(R?)

(4.11)

< allull kg

[u)] < ulleqery < allul, i, by

Bi(r)) —

Since kyp € C°(RY) then, replacing u(r) with (kep)(r) in (4.11), we get that

ka(r)p(r)| < callhapel] i

1 (Rd)
%
X103 / (D" (k) () de
lv|<K]
2 3
< o Z/ S Y D)) (D)) dr |
| <K, |k|<k] I\<K,
(4.12)

where the c¢,.\’s are the coefficients obtained from Leibniz’s formula applied in

the last equality. Using Cauchy-Schwarz’s inequality in the right-hand side of
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(4.12), we get

N

K 2
ka(r)p(r)] < e | D / e Y Y A l(Dke) ()P |(DY)(x)| dr
i<k 7R R<k IN<KS
%
1 . 2
<ad [ X [ 3 Y dnlomwp (0% ) dr
wi<k; 7R k<] N<k]

2
1

cad | [ S X X da| w0

IA<EY \IvI<ki [k][<k}

(ST

11 , 2
<add | [ 3 BOIDOE | = Clel,

/
1 (RY, K} (r)dr)’
A<k} ’

ISR\ vl <k |5l <kq

11
where ¢3 := max ( Y Cgm) and C 1= ci¢5¢3.

4.1.4 The space of Radon measure R(R?)

By R(R?) we denote the set of all Radon measures (i.e. all non-negative Borel

measures which are finite on compact sets) on R?. Namely,
R(RY) = {n: B(R?) = [0, +00] meas.| n(A) < 400, VA € B(R?), A compact} .

Proposition 4.1.14.
The following embedding holds
R(RY) Cc 7/

proj

(RY).

Proof.
For any n € R(RY), we want to show that the functional in (4.34) is an element
of

proj
k = (ki,ks(r)) € I and a finite positive constant ¢ such that for any ¢ € C>°(R?)

(RY). In other words, we need to prove that for any n € R(R?) there exist

we have

|<907 77>‘ < CH@”@k(Rd%

(see Definition 4.1.3 for the notations).
Let us consider a partition of unity {x,}>%, of R? such that for any n € N with
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n > 2 we have supp(xn) C B,(0) \ B,_2(0). Recall that for each ¢ € C>*(R?)
there exists NV € Ny such that ¢ € C° (By(0)). Therefore, for ky = 0, for some
real number b > 1 and for some ky(r) € C>(R?) such that for all 2 < n € N we
have ko(r) > n(supp(xn)) - |xn(r)| - " on supp(x,), the following holds.

fo'e) N+1 N+1
Ke.ml =[O x| =D e m| <D [(xn, )]
n=2 n=2 n=2
N+1
< SU n)) s ma n(r)o(r
< > nlsupp(xn)) ccmax X (r)e(r)
N+1
= > n(supp(xn)) max (Ixa(r)|- |o(r)])
- resupp(xn)
N+1
k(r) )
< ma r
< Zf)( 0 (o)
N+1
= Zb" max (ka(r)|(r)])
eruprn

< (Zb >mx oo = (s ) o

[]

For further topological and measurable properties of R(R?) see Section C.2.

4.2 Realizability problem on a basic semi-alge-
braic subset of 2/, .(R%)

proj
Let Peo (2),,;(R?)) be the set of all polynomials on Z,,,(R?) of the form

proj proj
P(n) =Y (oY, n™), (4.13)

where p(® € R and p¥) € C®*(R%), j =1,...,N with N € N.
We denote by £(Z),,;(R?)) the subset of all polynomials in Pe (Z2),,;(R?))

proj proj
which can be written as sum of squares of polynomials.

A subset S of Z,.,;(R?) is said to be basic semi-algebraic if it can be written
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as
S=(){n€ 2.,RY| Pi(n) >0}, (4.14)

€Y

where Y is an index set and P; € Pee (Z),,,(R?)).

proj
Note that we do not require that the index set Y is necessarily countable.

Moreover, if Zs is the set of all the polynomials P;’s defining S, we can define
the quadratic module Q(Zs) associated to the representation (4.14) of S as the
convex cone in e (Z,.,:(RY)) given by

proj

AZ7s) = J {ZQzP Qs € %( pMJ(Rd»}-

YoCY €Yo

|Y0‘<OO
W.lo.g. we assume that 0 € Y and we define P, as the polynomial such that
Py(n) =1foralln e 2,,,.(RY).

proj

Proposition 4.2.1.

The semi-algebraic set S defined in (4.14) is closed in (2], ,(RY), 7ind),

ind

Proof.
The main step is to prove that the polynomials P; defining & are continuous

w.r.t. 74 Each P, is of the form in (4.13) and so it can be written as

where Fj(n) := <p(j) n®) for j = 0,..., N(i). Therefore, to show the continuity

of P w.r.t. 7i"d it is enough to prove that all the mappings F}’s are continuous
w.r.t. de

Note that Fy(n) = pgo) E R and so it is trivially continuous. The function
Fi(n) = <p£1),n> with pz € CX(RY), is continuous w.r.t. 70" by definition of
weak topology. Hence, F} is also continuous w.r.t. 7.

It remains to show that Fj is continuous for j = 2,..., N(i). Let us prove it only
for j = 2 since the other cases follow similarly.

The mapping

F2: ( znd(Rd) md) - R
n = Fy(n) = (@ 0%, with p® € ¢*(R*),
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is continuous w.r.t. 7" because it can be written as the composition of five

continuous mappings, i.e.

(ZinaR), 71) —* = (Z4(R?) X Dq(RY), 77 5 7)

znd s

b

~

(Zna(RY) & D,q(RY), 77)

where:

e The map a defined as

a(n) = (n,n), V0 € D q(RY),
is continuous by definition of Cartesian product.

e Since we considered the algebraic tensor product 2/ ,(R?) @ 2. ,(R?) en-
dowed with the T—topology 7, (see [79, Definition 43.2]), the map b defined

as
b((nth)) =T & 12, vnla UPRS '@i/nd(Rd)7

1S continuous.

e The map c is the natural embedding of Z, ;(R")® %! ,(R?) in its completion

2! R @ 7! (R?) w.rt. 7, and hence ¢ is continuous.

ind

e The map d is the isomorphism given by Theorem 51.7 in [79] and hence it

1S continuous.

e The map e defined as

e(¢) = (', Q). V(€ Z,y(R™),

where p® € C®(R?), is continuous w.r.t. the weak topology 7" on the

space 2, ,(R*). Hence, it is also continuous w.r.t. the strong topology 7"
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on znd (RQd)

By continuity of P;, it follows that the set {n € 2/,,.(R%)| P;(n) > 0} is closed
in (2] ,(R), 7). Consequently, S is also closed in (2], ,(R?), 7).
[

Proposition 4.2.2.
The semi-algebraic set S defined in (4.14) is measurable in (2], ,(R?), o(tind)).

Proof.

By Proposition 4.2.1 we have that S € o(7"4). Furthermore, we know that
! (R endowed with 777 is a Lusin space and so Suslin (see Definition C.3.11).
This guarantees that o(7:"?) and o (7"?) coincide (see Proposition C.3.12). Hence,

S € o(rind).
[l

Let us consider Problem 3.2.6 for S given by (4.14). To solve this problem we
are going to make use of a version of the Riesz linear functional for the moment

problem on 2/ .(R%).

proj
Definition 4.2.3.

Given a sequence m = (m™)2, with m™ € &

orog (RI™) we define its associated

functional L,, as follows.

Ly :  Pee(2),,,RY)) —R

proj

) = S O) > Llp) = D (o, ™).

The following is the main theorem of this chapter.

Theorem 4.2.4.
Letm = (m™)>2 be a sequence such that m™ € R(R™) and m™ is a symmetric
function of its n variables. Assume that m fulfills the weighted Carleman’s type

condition
1

m(2n) (drq,..., dI'Qn)
n= 1 \/fR2nd Hlnl koo (r7)
for some ky(r) € C°(RY) with ko(r) > 1 for all v € RY.

Then m is realized by a unique non-negative finite measure p on S with

= 00, (4.15)

1
/S<k—2,n>m<dn) <00, Vn €N, (4.16)
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if and only if the following inequalities hold

Ly (h*) >0, Li,(Ph*) >0, Vh € Pex (2,

proj(RdD ) Vi € }/; (417)
and for any n € Ny we have

m(2”) (dI‘l, e ,drgn)
R2nd H1221 ka(7)

< 00. (4.18)

Remark 4.2.5.
Note that the condition in (4.17) can be replaced with conditions on the quadratic
module Q(Ps), i.e. L,(P) >0 for all P € Q(Ps).

Before proving Theorem 4.2.4 we need to show some preliminary results.

Lemma 4.2.6.

Letm = (m™)22, be a sequence such that m™ € R(R™™) and m™ is a symmetric
function of its n variables. If m is realized by a non-negative finite measure j on
2!...(RY) and m satisfies (4.15), then for all n € Ny we have that

proj

™) (dry, ..., dry,
— m (I‘1> ’r2)<oo,

rod ][y Ka(ry)

where in particular mg == (1, m).

Proof.
First of all let us note that by the realizability assumption follows that

mo = (L, m”) = p(Z,,,;(R7)).

Hence, my < oo since the realizing measure p is assumed to be finite.

Moreover, since we assume that (4.15) holds, we get
Moy, < 00, for infinitely many n. (4.19)
Now, let us recall that for any non-negative integer j there exists C' > 0 such that
Vi<ij, Vo eR, |z <C+|x).

Therefore, if we fix one of the infinitely many n for which (4.19) holds, then we
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have that for such an n there exists a finite positive constant C' such that

<C (1+ <¥,n>2"),

Vi< 2n, Ve 2, (RY, (X2 p)i< ‘(ﬁﬂ?)"
2

b’ ky

where R is a positive real number and yg is such that

1 if|lr| <R

. (4.20)
0 if [r| > R+ 1.

Xr € C(RY) and Yg(r) := {
Integrating both sides, we get for all 1 < 2n

% ! X n
[ it < On(Zh ) +C [ X ),
j, (Rd) 2 ‘@;roj (Rd) 2

proj

that is

®1 ®2n
L) e seee [ () e,
Do (RY) 2 7' (Rd) 2

proj proj

with " := Cu(2},,;,(R?)) < co.
By assumption the sequence m is realized by the measure p and so the previous

inequality becomes

/ HXR—(”)m(i)(drl, cdr) <O+ C/
Ridl

1 ]CQ(I’D R2nd

2n

XR_(I‘l)m(Qn)(drh sy dray,).

1 R ()

Using the monotone convergence theorem for R — oo we have that

m(i)(ciirh o, dry) <C'icC m(Q”)(ciil, ..., dray,) |
Rid Hl:l ko (1) R2nd Hl:l k(1)

1.e.

m; < C' + Cma,,.

Using (4.19) in the previous relation we get that m; < oo for any i < 2n. But
this is true for infinitely many n and so we get that m; is finite for all i € N.
O

Proposition 4.2.7.
If a sequence m = (m(™)2_ with m™ € R(R™) and m™ symmetric function of
its n variables, satisfies (4.15) and (4.18) for some ky(r) € C*°(R?) with ky(r) >

1, for all v € R%, then m is a determining sequence, i.e. (3.16) holds for m.
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Proof.
Let n € N. Then, for any fi,..., fon, € C°(R?), we get that

f1 (I'1> e an(rgn)m(Q") (drl, R ,drgn)

R2nd

(5 & fon @) =

n m® (dry, dra,)

< [ Tkt lsceo) i

=1

mP (dry, ..., drs,
HOHfl r;)] dr, 2n)

) o ko (1)

IN

R2nd =1

n m 2n drl, .. drgn)
- H )4 / L2 ko)
=1 nd = 1

where k] and kj(r) are defined as in Proposition 4.1.13 (whose bound is used to

get the latter inequality).
Moreover, if we define m,, := \/CQ” <fR2nd M) then by (4.18) m,,

H?;H ka(r;)
are finite for all n € Ny and (4.15) implies that

1
Z \/_n c Z \/ Jroama P o) -

Hz 1 k2(rr)

Since for any n € N we have that ér>1f vmy < Ym,, then
>n

o

1
I
fjuf vim
Thus, by Theorem A.0.19, the class C{m,} is quasi-analytical. Hence, (3.16)
holds for k(m) = (ki, k5(r)).
O

Definition 4.2.8.

Given a sequence m = (m™)> . with m™ € R(R™) and m™ symmetric
function of its n wvariables, and given a polynomial P € Pee(Dy,,;(RY)) of
the form (4.13), we define the sequence pm = ((pm)("))zozo such that for any

f € C=(R")

(™ ( = Z V@ f0, mnt), (4.21)



Lemma 4.2.9.
Let m = (m™)2, with m™ € R(R™) and m™ symmetric function of its n

n=0
variables. Let P and Q two polynomials in Pes(D,..:(R?)). Then,

proj

L (PQ) = Lpm(Q).

Proof.

Two polynomials P and @ of different degree can be represented as

Pn) :=>_ W0, Q) => (¢, n®),

with N = max{deg P,deg @}, by simply adding some coefficients equal to zero
in the polynomial of smaller degree. Therefore, the product of P and () can be

written as

N
(PQ)(n) = > (P @ ¢, =),

So we have that

N N
Ln(PQ) = Ly (ZZ " & q("')m@(k”)))

Proposition 4.2.10.
Let P € Peee (D5 (RY)) and let m = (m(™)2° . be such that m™ € R(RM) and
m™ symmetric function of its n variables. If m is realized by a non-negative

finite measure p on 27, ,.(R?) then the sequence pm is realized by the measure

proj
Pu on 2., .(R?).

proj

Proof.
Assume that P is of the form (4.13). We want to prove that for any f™ ¢
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C(R")

(f™, (pm)™) = (f, =™ P (n) p(dn).
2, ., (R9)

proj

This is true since the following holds.

N
(f™ (pm)™y = Z(p(j)(@f(”),m(””))

j=0

= > )T ) (122
]ZO proj
N

= (£, 0" (o, ™) (dn)

= /@ (f, =™ P (n) p(dn).

d
proj (R )

Note that in (4.22) we made use of the assumption that m is realized by pu.
O

Note that if the sequence m is realized by a finite non-negative measure p on
Doros
Proposition 4.2.10 in the following way:.

(RY), then the equality in Lemma 4.2.9 can be alternatively proved by using

First of all, let us observe that for any polynomial P € P¢=(Z,

pmj(]Rd)) of the
form (4.13) we have that

Ln(P) = Z<p(j)7m(j)>
= Z(/@ o (p‘j’,n®j>u(dn)>
= /j - (Z (p(j),n®j>> u(dn)

- / P(n) uldn). (4.23)
D
Hence,

Lu(PQ) = [ PoQu s = [ QP ) = Ln(@),

(R4)

proj proj
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where in the last equality we used Proposition 4.2.10.

Proposition 4.2.11.
Let m = (m™)2, be such that m™ € R(R™) is a symmetric function of its n
variables and (4.15) holds for some ko(r) € C°(RY) with ky(r) > 1 for allr € R%.

Suppose that the associated sequence (m,)>, with

m™ (dry, ..., dr,)
red [ ka(ro)

is log-convex (w.l.o.g. suppose also mg=1).

my, ‘=

Then, the sequence pm satisfies

= 0. (4.24)

1 \/f (pm) (2")(dr17 dran)
= R2nd IT72, ka(r)

Proof.
Since in the polynomial P the coefficients pi) € C®(R7?) and ky(r) € C*(R%)
with ko(r) > 1 for all r € R%, we get that for all y € R4

J J
0< p(j) Vi, ¥ ko(y) < max p(j) X1, .., X ko(x;) < 00.
T I) ) LR TN ) ) (L
) J
Let ¢; := max Ip9 (x4, ..., %;)| T] k2(x:), then we have that
(X1,-..,%;) Esupp(pld)) =1

/ (pm) (2n) (dI‘l, .. ,dI‘Qn)
R2nd Hl221 k2(rl)
N . .
_ Z/ p(]) (r2n+17 cee 7r2n+j)m(2n+j)(dr17 cee 7dr2n+j)
R(n+9)d [T k(1)

< Z/ 12n2+n+1k5 () [P (roni, - - - Toney ) M) (dry, ... drg,y ;)
N R@nt)d 1777 ka(ry)
< 25]' / mETdry, - i)
N j=0 R2n+j)d HQMJ k2<rl)
N
< Z5jm2n+j < (Z(S) max Mo j = d(N) max{ma,, Mo, n},
=0
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N

where §(N) := > 0; and in the last equality we used that the sequence m,, is
j=0

unimodal by Proposition A.0.31. We can distinguish two cases:

o If max{ma,, Mons N} = Mmap, then

(4.25)

OO 1 o0
(2n Z ’
n= 1 \/fRQnd (pm) #(dr1,...,drzn) n=1 \/ )m2n

Hz 1 ko (ry)

By assumption, we have that Z T—

n=1

W = oo and so, by Lemma A.0.28,

nZ::l W = oo as well. Hence, the left-hand side of (4.25) diverges.

o If max{ma,, moni N} = Mopyn, then

= 1
> . .
\/ (pm) <2n> (dri,....dro,) Z 2n 5 (4 26)
n= 1 ngnd n=1

N)ma,
Hl 1k2(rl) ( ) i

By assumption, we have that Z QW = o0 and so Z : m
by Theorem A.0.30 and Lemma A 0.28. Hence, the left- hand side of (4.26)

diverges.

Proposition 4.2.12.
Let m = (m™)22 be such that m™ € R(R) and m™ is symmetric function

of its n variables. If m is realized by a measure p on 9’ .(R?) with finite local

proj
moments, then the sequence
m™ (dry, ..., dr,)
My = -
red [y ko)
15 log-conve.
Proof.
Since m = (m™)>2 is realized by a measure p on Z,,,.(R%), then for any
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€ 7 ,.(R?) and for yx defined as in (4.20) we get

proj

5 < m(")(drl,...,drn)>2
my, = 0
Rnd Hl 1 ( )

2
= < lim Hl 1 X (r) (")(drl,.. drn)>

R—o0 Jpnd l 1k2(rl)

~ lim < [T IXR(rl)m(n (dry, .. drn)>2

R—o Rnd Hl 1k2(rl

)
() )

(R ko’

(A8 () / (Rd)<XRﬂ7>”“u(d77)]

IN
5

8
~ 3

PT‘OJ

®n—1 YR ®n+1
- an[ (32) et [ (32) 7n®"+1>u(dn)]
—00 (Rd @;/woj(Rd) 2

n+1
= lim / Hl 1 XR(rl) m("= 1)(dr1,.. drn—l)/ MW("“M%W
R=00 | Jpona [T75 ko () roved [[2) ka(r)
_ / m(= )(drl,...7drn1)/ m D (dry, ... dr,q )
R(n—1)a 17 kalry) R(n-+1)d " k(1)
= Mp_1Mn41-
O

Proof. (of Theorem 4.2.4)

Necessity

Assume that m is realized by a non-negative finite measure y on S. Then, by
using (4.23), we get that for any h € Pe (Z),,;(R?)) and for any i € Y

Lo (h%) = / B0 pldn) and Ly (Ph?) = / Pi(n)2(n) ldn).

Hence, the inequalities (4.17) follow from the obvious fact that integrals of non-
negative functions w.r.t. a non-negative measure are non-negative. Moreover,
(4.18) follows by Lemma 4.2.6.

Sufficiency

Using the fact that a generic polynomial h € P (Z,,;(R?)) has the form

proj
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N
h(n) = S (h™ n®) with h(™ € C>°(R"?), the condition

n=0

Ln(h?) >0, Y he Pew (2),,,RY),

proj

can be rewritten as

Z (WD @ b9 )y >0, VA € C2(R™).

t,j=0

The latter means that the sequence m is positive semidefinite in the sense of
Definition 3.2.7. Moreover, (4.15) and (4.18) imply that m is also determining
by Proposition 4.2.7.

Summarizing, the sequence m is positive semidefinite and determining. Hence,
Theorem 3.2.9 guarantees the existence of a unique non-negative measure p on
7! .(R?) with all finite generalized moment functions realizing m, i.e. for any

prOJ
fi e e (R)
Uy = [ ),
o (RY)
Moreover, by Proposition 4.2.10, the sequence pm is realized by the signed
measure Py, i.e. for any f € C®(R"™)

U )y = [ P, (.27
On the other hand, since by Lemma 4.2.9 L, (Ph?) = L, n(h?), we have
that L,(h?) = Ln(Ph?) > 0 for any h € Pee (Zp,0;(RY), ie. the se-
quence p;m is positive semidefinite. By Proposition 4.2.12, the sequence of all
= Jana % is log-convex. The latter and (4.15) imply that the
sequence pm fulfills (4.24) by Proposition 4.2.11. Arguing as before (note that
the equivalent of (4.18) for the sequence pm is true by Lemma 4.2.6 applied to
p,m), we get that the sequence pm is also determining.
Hence, by Theorem 3.2.9, the sequence p,m is realized by a unique non-negative

measure v on Z,,.(R?), i.e. for any f e C*(R™)

G = [ (et (1.28)

pmJ
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Then by (4.27) and (4.28) we get that for any f™ € C>°(R"?)

/ (P, =) Py ) = / (. =Y (d)
! (RY) /

d
proj proj (R4)

or, equivalently,

[ enpoutan = [ e,

d
@1/9140]' (R )

where A; .= {n € Z,,.,;(R?) : P,(n) >0} and B, := {n e Z,

The latter can be rewritten as

o oy (RY) < Py(n) < 0},

[ a s mpntan = [ (#00) (vdn) — L ()R utan).
7", 7.,

pros (BY) ros (RY)
which shows that the two non-negative measures on Z,,.,:(R%)
14, Pdp and dv— Ly wapa,Fidp (4.29)

have the same moment functions.
Let us call m™ the sequence of all moment functions of 1 4,du and let us show
that pm™ is determining.

Since m is realized by u on 2 .(RY), for any n € Ny and for any positive real

proj
number R we have that

XR - Xr(r7)
22 )y u(dn) = m™ (dry, ..., dr,),
L Gutan = [ L)

proj

where yr € C°(R?) is the one defined in (4.20). Using the monotone convergence
theorem for R — oo we have that
m™ (dry, ..., dr,)

[t = [ Tttt (4.30)
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Since 1 4,dp < p and since (4.30) holds, we have that

m+(2n) (dI’l, Ce ,dI‘Qn) / 1 2
o = o= 1) g, () pldn
/]R?mi [T, ka(ry) %mj(Rd)</€2 ) (m)(cln)
1
< [
!0 (RY) 2

proj

m(2”) (dI‘l, Ce ,drzn)

R2nd Hl221 ko (rl)

From the latter inequality follows that m™ satisfies the weighted Carleman’s con-
mtTCn) (dry ... dra,)
1221 ka(ry)

realized by the measure 1 4,1, we have that (m;),en, is log-convex by Proposi-

dition and, for any n € Ny, fRQnd < 00. Moreover, since m* is
tion 4.2.12. By Proposition 4.2.11 also pm™ satisfies the weighted Carleman’s
condition. Hence, by Proposition 4.2.7, pm™ is determining.

As the two non-negative measures in (4.29) both realize the determining se-
quence pm™, they coincide since Theorem 3.2.9 also guarantees the uniqueness

of the realizing measure. It follows that P,du = dv, i.e. the signed measure P;du

!/

oj(R?) as well as v. Therefore, we have

is actually a non-negative measure on

that
VieY, u(2,.,;R)\A)=0. (4.31)
The set S = [ A; € o(7"9), as the intersection of closed sets (see Proposi-
i€y
tion 4.2.2). Since S € Z,,,,,;(R?), by Corollary 4.1.8 we also get that S € o (757%7).

It remains to show that p is concentrated on §. If YV is countable, then the con-
clusion immediately follows from (4.31) by using the o—subadditivity of u. In
the case when Y is uncountable, the latter argument does not work anymore but
we can still get that the measure is concentrated on § proceeding as follows.
Since o(7;"%) restricted to Z,,;(R?) coincides with o(727*) by Corollary 4.1.8,
!/

we extend the measure p to a measure y' on Z;, ,(R?) in the following way

W (M) = p(MNZ,,,;RY), VM Ea(r,").

p

As (2], 4(R?), 7i"d) is a Radon space by Proposition 4.1.9, the finite measure /'

ind » lw
is inner regular. This means that for any M € o(7"¢) and for any € > 0 there
exists a compact set K. in 2, ,(RY) such that
K. C M, (4.32)
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with
W (M) < ' (K.) +e. (4.33)

Let us apply this property to M = 2/ ,(R?)\ S. Using the definition of S, we
get
M = znd(Rd) \S znd d) \ (ﬂ AZ) = U znd(Rd) \ A; )
iey iey
Hence, due to (4.32), for any ¢ > 0 there exists a compact set K. in 2] ,(R?)
which fulfills (4.33), i.e

K. CU (Z},a(RN\ A;).

€Y

As the collection of the sets 2!

! J(RY)\ A; forms an open cover of K., the com-

pactness of K. in (Z},,(R?), 7i"%) implies that there exists a finite open subcover

? w

of K., i.e. there exists a finite subset J C Y such that

K. C|J(Zh®)\ 4)) .

ied

Therefore, we have that

0< (K. < 4 (U (Z5naRY) \ 4 ))

< ZM ima(RY) )\ A)
- Zu(( La(R%)\ 4) 0 ), (RY)

icJ

= 21 (Zs R\ 4)

ied

= 0,

where in the last equality we used (4.31).
By (4.33), we then have that

1 (2, gRY\S) < e+ p/(K.) =e.

Since the previous relation holds for any € > 0, we have that i/ (Z],,(R?)\ S) =
0, which means that p is concentrated on S and so is its restriction pu.

It remains to show (4.16). Since the measure p is concentrated on S, (4.30)
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gives that

1 m™ (dry, ..., dr,)
—, n d — - Y 9 n
/S ( s )" p(dn) e T ()

where the inequality holds by Lemma 4.2.6.

< 00,

[
4.3 Applications
In the following we provide some concrete applications of Theorem 4.2.4.
4.3.1 The space of Radon measures R(R?)
Theorem 4.3.1.
The set R(R?) of all Radon measures on R? is a semi-algebraic subset of 7,,;(RY),

1.e.
RRY = [\ {n€ PR :P,(n) >0}
peC > (RY)

where ®,(n) := (p,n) as in (4.7).

In order to prove Theorem 4.3.1 let us introduce some useful embeddings
which involve R(R¢) and 2!

proj
in (4.7) as a function of the first variable, i.e. for any Radon measure

(RY). First of all, let us consider the dual pairing

(m) o C(RY)
@

— R

(4.34)
= < 77]> = fRd @(r)n(dr)
Moreover, let us recall that given a space €2, and C' C ), the dual cone C*+ C

of C' is defined as follows.
Ct={FecQ :F(p)>0, VpeC}.

Theorem 4.3.2.
There exists a bijective correspondence between the Radon measures on R? and
the continuous non-negative linear functionals on the space Dproj(RY). Namely,

R(RY) = (2,

proj

(R)".

Proof.

Let n € R(R?). The functional (-,n) defined as in (4.34) is an element of
L

(Zprei(RY))
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In fact, by Proposition 4.1.14, (-, 7) is an element of 2/,,.(R?) (i.e. it is contin-
uous w.r.t. the projective limit topology). Moreover, the functional (-, ) is non-
negative because for any ¢ € C*°(R?) we have that (p,n) = [p. @(r)n(dr) >0
since 7 is a non-negative measure.

Conversely, by a theorem due to L. Schwartz (similar to the Riesz represen-
tation theorem, see [11, Theorem 5.3.1], [70, Theorem V]), every non-negative
linear functional on %, (]Rd) can be represented as integral w.r.t. a Radon mea-
sure on R?. In particular, this theorem holds for every continuous non-negative

linear functional on Z,,,;(R?). O

The following is Theorem 4.2.4 stated for S = R(R?) represented as in The-

orem 4.3.1.

Theorem 4.3.3.
Letm = (m™)2, be a sequence such that m™ € R(R™) and m™ is a symmetric
function of its n variables. Assume that m fulfills the condition (4.15) for some
function ky(r) € C®(R?) with ko(r) > 1 for all v € RL Then m is realized by
a unique non-negative finite measure p on R(RY) satisfying (4.16) if and only if
the following inequalities hold.

Lin(h?) >0, Yh € Pew (2),0;(RY), (4.35)

proj

Ln(®,h%) >0, Vh € P (Z,0,;(RY), Voo € CH2(RY), (4.36)

proj

/ 2n dI'17.. dr2n> < o0 Vn € NO
2nd Hl 1 ko (1)

where O, :== (p,n).

Remark 4.3.4.

Using the fact that a generic polynomial h € P (.@z’,mj( d)) has the form
N

h(n) = >S°(h™ n®) with h™ € C(R™), the conditions (4.35) and (4.36) can
n=0

be rewritten as

Z<h(i) ® h(j)’ m(i+j)> >0, VR ¢ CSO(RM),
(2]
and
S (D @ 1D @ g, ) 20, WA € C(R), Vo € € (RY).
i,J

Recalling Definition 4.2.8, we can easily see that these conditions respectively
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mean that the sequence (m™),en, and its shifted version ((s,m)™),en, are pos-
itive semidefinite as in Definition 3.2.7.

In particular, if for each n € Ny there exists a function o™ € L'(R™ \) such
that m™(dry, ... dr,) = o™ (ry,...,1,)dr,---dr,, then (4.35) and (4.36) as-

sume the following concrete form

Z/ h(l) (I’l, c. ,I‘Z)h(J) (ri+1, .. ,I‘iJrj)Oé(iJrj) (I‘l, . 7I'Z‘+j)dr1 cee dr/L'Jrj Z O,
i Rd(i+3)

Z h(l) (I‘l, ey I‘z)h(]) (ri+1; ey ri+j)(’0(y)a(i+j+1) (1‘1, ey rH_j, y)dl‘l e dI‘H_jdy Z 0,

©J Rd(i+i+1)

for all 9 € C*(R*) and for all ¢ € CH>(RY).

These conditions respectively mean that (a(”))neNO s positive semidefinite and
that for A—almost all y € R? the sequence (™D (-y))nen, is positive semidefi-
nite (in the generalized sense). This reformulation makes clear the analogy with
the Stieltjes moment problem where necessary and sufficient conditions for the
realizability of a sequence of numbers (My)nen, on RT are that (my)nen, and

(Mpi1)nen, are positive semidefinite.

4.3.2 The space of sub-probability measures SP(R?)

Theorem 4.3.5.
The set SP(R?) of all sub-probabilities on R, i.e.

SP(RY) := {n € R(RY) : n(R?) < 1} (4.37)

is a semi-algebraic subset of 7, (R%). More precisely, we get that

T0J

SPRY)=RE®)N () {n€Z,;R):Tyn) >0} (4.38)

pect ™ (rd)
lello<1

where T'y(n) =1 — (p, ).

Proof.

Step I: C

Let n € SP(RY) as in (4.37), then n € R(R?) and n(R?) < 1. The latter relations
imply that, for any ¢ € C>°(R?) with [|¢| . <1,

0<(p,m <1
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and then
(p,m? < 1.

Step II: D
Let n € R(R?) such that for any ¢ € CH>°(R?) with |l¢]| <1

1— (p,n)*>0.

Therefore,
0<(pm) <L (4.39)

To prove n € SP(R?), it remains to show that n(R?) = (lga,n) < 1.
Let us note that the function Irs can be approximated pointwise by an increasing
sequence of functions {x g} rer+ C C°°(R?) with || x|l = 1 (see (4.20)). Hence,

by using the monotone convergence theorem and (4.39), we have that
N(RY) = (Lga,n) = { lim xg,7) = lim (xr,n) < 1.
—00 R—o0

]

Using the representation (4.38), we can explicitly rewrite Theorem 4.2.4 for
S = SP(R?) as follows.

Theorem 4.3.6.

Letm = (m™)>2 be a sequence such that m™ € R(R™) and m™ is a symmetric
function of its n variables. Assume that m fulfills the condition (4.15) for some
function ko(r) € C®(R?) with ko(r) > 1 for all v € RY. Then m is realized by a
unique non-negative finite measure i on SP(R?) satisfying (4.16) if and only if
the following inequalities hold.

Lin(h?*) >0, Yh € P (Dhyo;(RY)) (4.40)
Lin(®yh*) >0, Yh € P (Zh,0;(RY)) , Vo € CH2(RY), (4.41)
Lin(Toh®) >0, Yh € Pex (Dy,0;(RY)), Vo € CHPRY), o], < 1, (4.42)

M) (dry, ..., dray
/ rl’ I o Yne N, (4.43)
2nd (rl>

where ®,(n) := (p,n) and T,(n) :==1— (p,n)>.

Actually, the result in Theorem 4.3.6 also holds if we drop the assumption
that m fulfills (4.15) and (4.43) as they follow from the remaining ones. Indeed,
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we can prove the following theorem.

Theorem 4.3.7.

Letm = (m™)>2, be a sequence such that m™ € R(R™) and m™ is a symmetric
function of its n variables. Then m is realized by a unique non-negative finite
measure (1 on SP(R?) if and only if the (4.40), (4.41), (4.42) hold.

Proof.

Sufficiency

Assume that (4.40), (4.41) and (4.42) are fulfilled and let us show that (4.15)
and (4.43) hold for the function ky = 1. In fact, for any ¢ € C°(R?) and for any
n € N we can apply (4.42) for h(n) = (¢, 1)™Y. Then, we have the following

Lon({, 1)) < L ({0, )2 D).

[terating, we get that
Lm(<90777>2n) < Lp(1).

Consequently, for any real positive constant R, if we take in the previous inequal-

ity ¢ = xg as in (4.20), then we have that

2n
‘AdHMﬁmwwﬁhwﬂM:LMWWngMﬂ)
REE i1
Therefore, using the monotone convergence theorem as R — oo

m (dr, . dray) < Li((L7™) = m® < oo,
R2nd
Hence, the conditions (4.43) and (4.15) hold for ks = 1 and so we can apply
Theorem 4.3.6.
[

This proof was inspired by the results of Schmiidgen about the moment prob-
lem on a semi-algebraic compact subset of R? in [68]. In fact, SP(R?) is a compact
subset of R(R?) w.r.t.the vague topology 7,. The compactness follows from [18,
Corollary A2.6.V], using the observation that SP(R?) is closed in (R(RY),7,)

and that sup n(A) < oo for every bounded Borel set A in R%
neSP(RY)
However, Schmiidgen’s technique does not apply straightforwardly to the case of

realizability on SP(R?) because he treats the case when the semi-algebraic set is

defined by finitely many polynomials and not by infinitely many as in our case.
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Remark 4.3.8.
The representation (4.38) is not unique. In fact, it is possible to give other repre-
sentations of SP(RY) as semi-algebraic set using slight modifications in the proof

of Theorem 4.3.5. For example, we can write

SPRY) = () {n€ Zho,®RY): (p,1) — (.m)> > 0},
pecd ™ (rd)
<1

or also

SP(Rd) = ﬂ {77 € @;/)roj(Rd) : <<)0,77> 2 O} N ﬂ {77 € @;/)roj(Rd) 11— <90,77> Z 0} .
peCH > (R) pect % (rd)
llell oo <1
(4.44)

Depending on the choice of the representation, we get different versions of Theo-
rem 4.3.6. Indeed, if

SPRY) = [\ {n€Z,,;RY:P(n) >0}

peCH ™ (RY)

then necessary and sufficient conditions for the realizability of the sequence (m™),en,
on SP(RY) are that the sequence (m™),en, and all its shifted versions ((p,m)™),en,
(see Definition 4.2.8) are positive semidefinite in the sense of Definition 3.2.7.
For instance, using the representation (4.44), we get Theorem 4.5.6 with the con-
dition (4.42) replaced by

L (Quh*) >0, Vh € Pe (D,

proj

(RY), Vo € CI2([RY), lloll, <1, (445)

where Qu(n) :=1—(p,n). Note that we cannot drop the assumptions (4.15) and
(4.43) with the trick inspired by Schmiidgen and used in the proof of Theorem 4.3.7
because it does not work for the representation (4.44).

The condition in (4.45) can be rewritten more explicitly in terms of moment

measures as

S (A9 @ hD), m) = SR @ b9 @ p, M) > 0,

i,j i,J
for all K € C2(R™) and for all ¢ € CH=(R?) with ||¢||., < 1.

In particular, if for each n € Ny there exists a function o™ € L'(R¥, \) such that
m™ (dry, ..., dr,) =a™(ry,...,r,)dr, - dr, then (4.45) assumes the following
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concrete form

Z/ h(l) (I‘l, . 7I‘i)h(j) (ri+17 . 7I‘i+j)04(i+j) (I‘l, ey r7;+j)dr1 e dri_,_j
RA(i+3)

7/ RO ey, ) B9 (g, i) e(y)a D (0, ey, y)dey - drgydy >0
R

d(i+i+1)
for all K € CX®(R“) and for all ¢ € CH°(RY) with ||¢||,, < 1. This means
that for A—almost all y € R? the sequence (a™(-) — o™V (- y)),en, is posi-
tive semidefinite. Moreover, as already discussed in Remark 4.5.4, the conditions
(4.40) and (4.41) of Theorem 4.3.6 give that (a™),en, is positive semidefinite
and for A—almost all y € R? the sequence (a1 (-, y))nen, is positive semidefi-

nite.

This reformulation makes clear the analogy with the Hausdorff moment prob-

lem as treated in [19], where [0,1] is represented like
0,1]]={zeR:x>0}Nn{zeR:1—-2>0}

and so necessary and sufficient conditions for the realizability on [0,1] of a se-
quence Of numbers (mn>nENo are that (mn>nENOf (mn-i-l)nENo and (mn_mn+1)n€No
are positive semidefinite. Also here, we can get different (but, a posteriori, equiv-

alent) conditions on (my,)nen, depending on the representation we choose for [0, 1]

(see [10]).

4.3.3 The space of probability measures P(R?)

Using the results in Subsections 4.3.1 and 4.3.2, it is possible to prove the
following version of Theorem 4.2.4 for S = P(R?) the set of all probabilities.

Theorem 4.3.9.
Letm = (m™)2 be a sequence such that m™ € R(R™) and m™ is a symmetric
functions of its n variables. Then, m is realized by a unique non-negative finite

measure 1 on P(RY) satisfying (4.16) if and only if the following inequalities hold.

Lin(h*) >0, VYh € Pee (Z,0;(RY)), (4.46)
Lin(®ph®) >0 ,Vh € P (D),0;(RY)) . Vo € CHZ(RY), (4.47)
Lin(Teh®) 2 0 ,Vh € Pege (D05 (RY)), Vg € CEZ(RY), ol < 1, (4.48)
mM(RY) = (4.49)
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where ®,(n) == (,n), Tp(n) :==1— (p,n)>.

Proof.

Necessity

Let us assume that the sequence m is realized by a non-negative finite measure p
on P(R%). W.lo.g. let us assume that y is a probability, i.e. m® = p(P(R?)) =
1. In particular, m is realized on the set SP(R?) D P(R?) by the same measure .
Hence, Theorem 4.2.4 applied for § = SP(RY), implies the conditions (4.46),
(4.47) and (4.48).

It remains to show the condition (4.49). Let us approximate llzs by the increasing
sequence of functions {Xg}rer+ C CI*°(R?Y) introduced in (4.20). By using
the monotone convergence theorem and the assumption that m is realized by u
on P(R?), we have that

mORY = (g, m)
AT (1)
(g, X, )

- (1)
A, X M)

= Jlim {(Xr,mp(dn)
0 JPRY

= / lim (xr, n)p(dn)
P(RY)

R—o0

= / (Mlga, n)pu(dn)
P(R4)

= [, nlen) = uP(ED) =1

Sufficiency

Let us assume that (4.46), (4.47), (4.48) and (4.49) hold. Due to Theorem 4.3.7,
the first four conditions imply that there exists a unique finite non-negative mea-
sure p realizing m on SP(RY). W.lo.g. we can assume p to be a probability

on SP(RY). It remains to prove that actually
u(P(RY) =1.
This is equivalent to prove that

p({n € SPRY) : 1 () =0} ) = 1. (4.50)

Let us note that the function Irs can be approximated pointwise by an increasing
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sequence of functions {xr}rer+ C CI>°(R?) with ||xg|,, = 1 (as in (4.20)).
Hence, we have that for all n € SP(R?)

lim (1= (xg,m) =1- (Lga,n).

R—o0

Moreover, by (4.38) we have that for all n € SP(R?) and for any R € R*

1—(xr,m) 20
and so we also get that for all n € SP(RY)
1— (ga,n) > 0. (4.51)

By the monotone convergence theorem, we get that

[ i) = [ (Gl (@52
© JSP(RY) SP(R4)

On the other hand, we also have that

lim (1= (xr.m)u(dn) =1— lim xr(r)mW(dr) =1 - mM(R?) =0,
R—oo | op(rd) R—00 Jpd
(4.53)

where we used that m is realized by p on SP(R?) and the assumption (4.49).
Thus, by (4.52) and (4.53), we have

/SP(]Rd)(l — (Lga, n))u(dn) = 0.

Since 1 is non-negative and, by (4.51), the integrand is also non-negative on SP(R?),

the previous relation implies that

1 — (llga,n) =0, p—as.,

which is (4.50).
[

As we have already observed in the previous section, when we write Theo-

rem 4.2.4 for SP(R?) we can always choose ky = 1. Furthermore, note that if m
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is realized by a finite non-negative measure 1 on SP(R?) then for ky = 1 we get

@n)(dry, ..., dry,
/ m (2::17 9 r2 ) — m(2n) (drl, L ,dr2n>
R2nd lel ]{32(1'1) R2nd

= [ o)
SP(R?)

< u(SPRY) < 0.

Hence, the conditions (4.18) and (4.15) hold.

The previous consideration is also true when we state Theorem 4.2.4 for the set

of all probabilities P(R?).

4.3.4 The set of L>**—bounded density measures

Theorem 4.3.10.

Let ¢ € RT. The set S, of all Radon measures with density w.r.t. the Lebesque

measure A on R? which is L>—bounded by c, i.e.

S. = {n € R(RY) : n(dr) = f(r)A(dr) with f >0 and || f| 1~ < ¢}

is a semi-algebraic subset of 7,.,;(R?).

More precisely, we get that
S=REYN () {1 Doy : el ) — () = 0}.
peCH > (RY)

Proof.
Step I: C

(4.54)

(4.55)

Let n € S, then by definition (4.54), we have n € R(R?) and n(dr) = f(r)\(dr)

for some f > 0 with || f||z~ < c.
Hence, for any ¢ € C;7°(RY) we get

o) = [ oot

= [ e )
£l [ oo
e [ ) = et .

IN

IA
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Step 1I: O
Let n € R(R?) such that

clp, ) — (p,n) >0, YV € CH(R?). (4.56)

Since C>*(RY) is dense in LP(RY, ) for any signed Radon measure p, we have
that C>°(R?) is dense in L'(R? X\ — n). Hence, the condition (4.56) holds for all
¢ € LY(R4 )\ —n) and in particular for ¢ = 14, where A € B(R?) bounded, we
have

n(A) < cA(A), VA € B(R?) bounded. (4.57)

The latter relation implies that if A(A) = 0 then n(A) = 0, i.e. n < A. Con-
sequently, by the Radon-Nikodym theorem, there exists 0 < f € L*(R%, \) such
that

n(dr) = f(r)\(dr). (4.58)

By (4.58) and by (4.56) for ¢ = 1 4, for any A € B(R?) bounded, we get that

/ flr / n(dr) < /A Adr).

Hence, f(r) < ¢ A—a.e. in each bounded A and therefore || f||L~ < c.
[

Using the representation (4.55), we can explicitly rewrite Theorem 4.2.4 for
S =S, as follows.

Theorem 4.3.11.

Let c € R*. Let m = (m™)>2, be a sequence such that m™ € R(R™) and m™
is a symmetric function of its n variables. Assume that m fulfills the condition
(4.15) for some function ko(r) € C®(R?) with ko(r) > 1 for all v € RY. Then
m is realized by a unique non-negative finite measure p on S, satisfying (4.16) if

and only if the following inequalities hold.

Lin(h*) >0, Yh € Peee (ZDy,0;(RY)) (4.59)
Lin(®yh®) >0, Vh € Pepe (D),0;(RY)) Vo € CHP(RY), (4.60)
Lin(Teph?) >0, Vh € Pex (25,0;(RY) Vi € CHP(RY), (4.61)
(2n)
m (azlzl, 5 ron) <00, Vn € Ny, (4.62)
R2nd 121 Ka (1)

where ®,(n) = (@, n) and Tcp(n) = c(p, \) — (@, n).
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Remark 4.3.12.

Proceeding exactly as in Remark 4.3.8, we can observe the analogy between real-
izability problem on S, and the moment problem on [0, c|.

In fact, if for each n € Ny there exists a function o™ € L'(R™, \) such that

m™ (dry, ..., dr,) = o (ry,...,1,)dry - - - dry,

then (4.59), (4.60) and (4.61) give respectively that (a™),cn, is positive semidef-
inite and that for A—almost all y € R? the sequences (a™*V(-,y))pen, and
(ca™ () —a V(- y)),en, are positive semidefinite. Similarly, necessary and suf-
ficient conditions for the realizability of a sequence of numbers (my,)nen, on [0, ],

where
0,c]={zeR:z>0}N{zeR:c—x >0},

are that (My)neny, (Mnt1)nen, and (¢ - My — Mpy1 )nen, are positive semidefinite

(see [19]).

4.3.5 The set of point configurations N (RY)

Theorem 4.3.13.
The set of all Radon measures on R? taking as values either a non-negative integer

or infinity, i.e.
N(R?) = {n e RRY)| n(B) € (N U {+00}),¥B € B(R)},

is a semi-algebraic subset of 7, (R%). More precisely, we get that

T07J

NRY= [\ {n€Z,;®RY): (% 9% >0}, (4.63)
keN pect > (re)

!
proj

and it is defined as follows. For any f € C°(R?) and for any n € N

The power n®* of a generalized function n € (R?) is called factorial power

no_1\n—k |
ey =S EXT S ) (6

k=1 M yeeny np €N 1 k

with
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For example, in the cases n = 1 and n = 2 the previous definition gives

(fEnh) = (fim) and  (f20%%) = (f.m)* = (f%.m).

The name “factorial power” comes from the fact that for any n € R(R?) and for

any measurable set A

(5", ") = n(A)(n(A) —=1)--- (n(A) —n+1).

Note that the definition of factorial power results natural in the setting of point
configurations N (R?) (see [42]). In fact, if n € N(R?) there exists I C N and
x; € RY (i € I) such that

n=Y 0, (4.65)

el
where [ is either N or a finite subset of N. Moreover, if I = N then the sequence
(7;)ic; has no accumulation points in R? (see [18]). Therefore, the definition
(4.64) becomes

/

<f®n7n®n> = ' Z f(x“) ’ f(xln>7

where >’ denotes a sum over distinct indices (for more details see [42]).

Proof. (of Theorem 4.3.13)

Step I. C

Let us assume that n € N(RY). Hence, by (4.65) for any k € N and any ¢ €
CH>°(R?) we have that

<90®k7 77®k> = Z So(xil) toe 90<xzk) > 0.

Step II: D
Let n € 9/

proj

(RY) such that for any k € N and for any ¢ € C>°(R?)
(" n"*) = 0. (4.66)

In particular, for k = 1 we have that n € R(R%).
Moreover, since C°(R?) is dense in L*(R%,7), the condition (4.66) also holds for
any ¢ € L'(R%,n) with ¢ > 0. In particular, for ¢ = 14 with A € B(R?) bounded
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we have that
0 < (15", 7%y =n(A)(n(A) =1)---(n(A) =k +1), VkeN, (4.67)

Hence, for any A € B(R?) we get that n(A) € Ny U {+oc}.
O]

Using the representation (4.63), we can explicitly rewrite Theorem 4.2.4 for

S = N(RY) as follows.

Theorem 4.3.14.

Letm = (m™)22, be a sequence such that m™ € R(R™) and m™ is a symmetric
function of its n variables. Assume that m fulfills the condition (4.15) for some
function ky(r) € C®(R?) with ko(r) > 1 for all v € RL. Then m is realized by
a unique non-negative finite measure p on N'(R?) satisfying (4.16) if and only if
the following inequalities hold.

Ly (h*) >0, Yh € Pe (gjgmj(Rd)) ,

Lin(®yxh®) >0, Yh € Pexe (D),0;(RY)), Vo € CH(R?), VE €N, (4.68)

proj
/ m(Q”) (drl, R ,drgn)
a7 ka(r)

where D 1 (n) := (pF, nF).

< 00, Vn € Ny,

Note that the condition (4.68) involves infinitely many polynomials of ar-
bitrarily large degree. However, we can show another version of the previous
theorem which only involves polynomials of at most second degree and which

gives a realizing measure on the space N;(R?) of all simple configurations, i.e.
Ni(R?) = {n € N(RY)|V x € RY, n({x}) € {0,1}}.

Theorem 4.3.15.

Letm = (m™)2, be a sequence such thatm™ € R(R™) and m™ is a symmetric
function of its n variables. Assume that m fulfills the condition (4.15) for some
function ko(r) € C®(R?) with ko(r) > 1 for all v € RY. Then m is realized by a
unique non-negative finite measure p on Ny(R?) satisfying (4.16) if and only if
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the following inequalities hold.

Lin(h*) >0, Yh € Peee (ZDy,0;(RY)) (4.69)
Lin(®p1h?) 2 0, Yh € Pee (Z,,;(RY)), Vip € CHP(RY), (4.70)
Lin(®y2h®) >0, Yh € Pee (Z,,;(RY)), Vip € CHP(RY), (4.71)
(2n)
mn (6221, 5 ron) < 00, Vn € Ny, (4.72)
R2nd 11 Ko (1)
m® (diag(A x A)) =mM(A), YA € B(RY) compact, (4.73)

where dmg(/\ X A) = {(X> X) ’X € A}; (I)go,1<n) = <90: 77) and (I)<p,2(77) = <90®27 77®2>'

Remark 4.3.16.
Note that by Theorem 4.2.4, the conditions (4.69), (4.70), (4.71), (4.72) are nec-
essary and sufficient for the existence of a unique non-negative finite measure

realizing the sequence m on the set

Si= () n€Zpo;®RY: (o) >0} 0 () {n€Zpo;(RY : (92%,9°%) >0}
peCT ™ (RY) PECE ™ (RY)

Let us note that N,(R?) ¢ N(RY) C S.

Proof.

Sufficiency

Let us assume that (4.69), (4.70), (4.71), (4.72) and (4.73) hold. W.lL.o.g. we can
suppose that the measure u given by Remark 4.3.16 is a probability on §. Hence,
it remains to show that y is actually a probability on N (R?).

Let n € S. Then, for any ¢ € C;H>*(R?)

(p,n) >0 and (p®* n°?) > 0.

Since C°(R?) is dense in L'(R<,n), the previous condition also holds for any
¢ € LY(RY,n) with ¢ > 0. In particular, it holds for ¢ = 14 where A € B(R?)
bounded, i.e.
{ n(A) =0
n(A)n(A) —1) = 0.
The latter relations imply that n(A) € {0} U [1,+oc] and so that there exist
I CN, x; € R? and real numbers a; > 1 (i € I) such that

n=Y_ by, (4.74)

el

117



On the other hand, using (4.73) and the fact that m is realized by p on S we get,

via approximation arguments, that for any A € B(R?) compact

0= m@)(dz'ag(/\ x A)) — m(l)(A) _ /S <<]1diag(AxA),77®2> _ <]1Aa77>>,u(d77)7
and so
(Lagiagaxn), 122y — (La,n) =0, p—ae.

By (4.74) the latter becomes

0= Z aiaj—Zai:Zai Zaj—l

i,j€I el el jelI
X;=xX;EA x;EA x; EA Xj=X;

Since a; > 1 for all 4 € I, we necessarily have that

Z&j—le.

jel

Then for all ¢ €
a;i—1+ Y a;=0. (4.75)
725

Since a; — 1 and ) a; are non-negative numbers, (4.75) implies that

jFiel
X=X

ViEI, CLl':]. and V],Ze]Wlthj;éZ, Xj%Xi.
Hence, we got that for p—almost all n € S

n = 25,{2, and n({x}) €{0,1}
il

which means that for p—almost all € S we have n € N,(R?), i.e. p(N;(RY)) = 1.
Necessity
Let us assume that the sequence m is realized by a non-negative finite measure
pon Ny (R?). W.lo.g. we can suppose u(N;(R?)) = 1. Hence, we can extend p
to the whole S by setting p(n) = 0 for all n € S\ N,(R?). In this way we have
that m is realized by u also on S and p(S) = 1.
By Remark 4.3.16, it only remains to show the condition (4.73).
Recall that for any n € N,(R?) we have that there exist I C N and x; € R? such
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that

77—25 and n({x}) € {0,1}.

el

Therefore, for any A € B(R?) compact

<]ldiag(A><A)77]®2> - <ILA7 Z ﬂdzag(AxA XlJX] Z ]lA Xz == U. (476)

i,5€1 iel

On the other hand, using the fact that m is realized by p on N,(R%) we get, via

approximation arguments, that for any A € B(R%) measurable and compact

®(diag(A x A)) —mV(A) = /S ((Matiagireny, n°2) = (W) ). (477)

In conclusion, (4.76) and (4.77) give (4.73).

119



Conclusions and open problems

The main objective of this work was to give necessary and sufficient condi-
tions for a sequence of Radon measures to be the sequence of moment functions
of a finite measure concentrated on a pre-given basic semi-algebraic subset of the
space of generalized functions on R?. Getting conditions of semidefinite type was
possible by using classical results about the moment problem on nuclear spaces
and techniques built to solve the moment problem on basic semi-algebraic subsets
of RY. We demonstrated the usefulness of these results in some concrete situa-
tions. The necessary and sufficient conditions depend on the polynomials used
in the representation of the semi-algebraic set under consideration. Furthermore,
we reviewed and clarified the role of the Carleman condition and the uniqueness
result in the context of the moment theory. In the case of the classical moment
problem we were able to slightly extend a result of Lasserre.

This work opens up further developments. A first natural generalization of
Theorem 4.2.4 is studied in [35] in which the sequence m = (m(™),cx, of puta-
tive moment functions is made of generalized functions which are not necessarily
Radon measures. The essential parts of the proofs are the same as in this thesis.
Nevertheless, we decided to present here the results under the conditions that
the putative moment functions are Radon measures because this allowed us to
give slight different proofs which are more natural and less abstract in this case.
For each concrete case, our theorem leads to the question of finding appropriate
polynomials for the representation of the semi-algebraic set to get conditions as
easy as possible. Different applications given by different physical problems will
require a careful investigation of the related polynomials.

Moreover, in view of [4, 6, 48, 49], it would be interesting to discover whether
analogous results can be obtained if the sequence m is made of correlation func-
tions which are more natural in the context of point configuration type spaces.
More precisely, given a sequence of symmetric Radon measure p = (p™)> . we

would look for the existence of a generalized process p on €' such that for any
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n € Ny and for any f™ € Q®" we have

/

(F, oy = / (), g uldn),

assumed the integral is finite. The difference is that n®" is a modified tensor
power of n% (see (4.64)).

The case when the sequence m (or p) is truncated up to a certain order N,

N
n=0

i.e. m = (m™)N_, with N € N, still remains unsolved. The truncated realizabil-
ity problem is of substantial importance because in a lot of practical applications
one has to deal with a limited number of data given by the limitation of observa-
tions in experiments, which gives statistical reliable information only about few
moments. The main difficulty for such a line of research is that even in the finite
dimensional case the truncated moment problem is far less developed than the
full one.

It would be interesting to investigate if it is possible to extend the results of
R. E. Curto, L. A. Fialkow, M. G. Krein and A. A. Nudel'man (see [17, 40]) for
the truncated moment problem to the infinite dimensional case.

Another open path in this theory is to improve the determining condition in

concrete cases.

121



Appendix A
Quasi-analiticity

Let us recall the basic definitions and state the results used throughout this

thesis concerning the theory of quasi-analiticity.

Definition A.0.17 (The class C{M,}).
Given a sequence of positive real numbers (M), we define the class C{M,}
as the set of all functions f € C*°(R) such that for any n € Ny

I1D" fllo < B5Bf M,

where D™ f is the n—th derivative of f, | D" f||, :=sup |D" f(z)|, and s, By are
zeR

positive constants only depending on f.

Definition A.0.18 (Quasi-analytical class).
A class C{M,} is said to be quasi-analytical if the conditions

feC{M,}, (D"f)(0)=0, VneN,,

imply that f(z) =0 for all x € R.

The main result in the theory of quasi-analiticity is the following (see [34,
Theorem 1.3.8] and [16] for a detailed proof).

Theorem A.0.19 (The Denjoy-Carleman Theorem).
Let (M), be a sequence of positive real numbers. Then, the following conditions

are equivalent.

1. C{M,} is quasi-analytical.
2.3 BA = oo, where B, = ér>1f /M.
ne1 n >n
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The previous theorem, as well as some of the following propositions, can be
proved more easily if one assumes that the sequence of positive numbers (M),

satisfies the assumptions
4 MO = 17
o M? < M, 1M1, n €N (log-convexity).

Remark A.0.20.
If pw € M*(R), then the sequence M = (M,)5>,, with M, = [|z["u(dz), is

n=0-

log-convex. In fact, by Cauchy-Schwarz’s inequality, we have that for any n € N

([ IxI"u(dx))2 - (= |:c|"“u<dx>)
(o ) )

- n an+1

By writing 2n = 22 + 222 (with n € N) we get, as before, that M3, <

My, _9Ma, 5 or, in other words, M3, < My n—1yMyny1y. The latter means that
the sequence of the even moments of u, namely the sequence m = (my)5, with
my, = Mo, is log-conver.

Note that, if © € M*(R) is a probability, mo = My = 1.

Let us state the Denjoy-Carleman theorem under the assumption of log-convexity
(see [14] and [67, Theorem 19.11] for the proof of the theorem in this case).

Theorem A.0.21 (Denjoy-Carleman’s Theorem for log-convex sequences).

Let (M) be a log-convexr sequence of positive numbers with My = 1. Then,

the following conditions are equivalent.

1. C{M,} is quasi-analytical.

1

2.

= .

8
E

3
Il
—

3.

qey

Remark A.0.22.

The assumption of log-convexity involves no loss of generality regarding the quasi-
analytic classes. In fact, one can prove that for any sequence (M), there
always exists a log-convex sequence (Mn)ﬁozo, with My = 1, such that the classes

C{M,} and C{M,} coincide. More precisely, the sequence (M), is the convex
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reqularization of (%)fﬁzo by means of the logarithm (for more details see [50,
Chapter VI, Theorem 6.5.1II] and [25]).

Lemma A.0.23.
A function f is convex if and only if for all y < z < x the following holds.

(z—y)f(2) < (z=y)f(x)+ (x —2)f(y). (A1)

Proof.

Let us recall that, by definition, a function f is convex if and only if

fQz+ (1 =Ny) <Af(x)+ (1= A)f(y) (A.2)

for any A € [0, 1].
Let us consider z := Az + (1 — A)y with A € [0,1]. Then we have A = Z=% and,
by substituting the latter in (A.2), we get (A.1).

<

O

Lemma A.0.24.
For a sequence of positive real numbers (M), the following properties are equiv-

alent.

(a) M? < M, M,y for anyn > 1.

o0
(b) (2L is monotone increasing.
Mn-1 ) =1

(c) (InM,,)>2, is conver.
Proof.

(a) and (b) are obviously equivalent by dividing or multiplying by M,,.
If (¢) holds then, by Lemma A.0.23, we have

2In M, <InM,.1 +InM,_,,

which is equivalent to (a).

oo

Let us assume (b), then we need to check the convexity of (In M,,)>2 ;.

For any positive integers n, m, k such that n < k < m the following inequality

holds. i
1 M; 1 M;
E < E .
k—n ln(M» )_m—k 1H(M~ )’ (A.3)

j=n+1 i—1 j=k+1 j-1

where we used the assumption (b) and the fact that the denominators of the

pre-factors are equal to the number of summands in both sums.
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The inequality (A.3) is equivalent to

1 k
Z;:?;; j{: (1H]VQ —'hlﬂ45_1) S

Jj=n+1

1 m
(lnM' —lnM~_1),

which can be rewritten as

(m—k)(In My —InM,) < (k —n)(In M,, — In My).
The latter becomes

(m—n)In My < (k—n)IlnM, + (m —k)In(M,).
Hence, by Lemma A.0.23, the condition (c) holds.

Lemma A.0.25.

If the sequence (M), of positive real numbers, with My = 1, is log-convex then

(/M2 is monotone increasing.

Proof.
From (b) it follows that

1.e.

or equivalently

Lemma A.0.26.
Assume that (M), with My = 1, is a log-convex sequence of positive real

numbers. Then, for any 7 € N,

oo

1
2 VI
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if and only if

> 1
;”’ Mjn,

Proof.
If the series Z \/— diverges for some j € N, then also Z F does since the

latter Contams more summands, i.e.

On the other hand, fixed 7 € N, we have

© 4 - . . 1 -1
— + +...+ +
nz:l VM, 1 ( R Mjn "R/ Mjni1 O Mjnﬂ‘—l) nz:l VM

where in the last inequality we made use of Lemma A.0.25. Hence, if (L/;Mi
n=1 "

o0

diverges then

n=1
Lemma A.0.27.

Let (M), be a sequence of positive real numbers. Then, for any k € Ny,

- T</11\47 diverges as well. ]

n=1
if and only if
i Mn+k—1 _
n—1 Mn+k

Proof.
These two series differ only by a finite number of positive summands. In fact, we
have that

[e's) Mn_ k Mn
Z Mnl - Z 1
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Lemma A.0.28.
Assume that (M), is a sequence of positive real numbers. Then, for any posi-

tive constant 9,

=1
;m:

00
if and only if
i 1
=00
Vo M,

Proof.
In the case 6 = 1 the theorem trivially holds.

Assume that 3 -1 = o0 and let us define t(n) := 5.
£ oir o

e If 0 < § < 1 then #(n) is increasing and so for any n € N we have du M7 <
(hm 5%) M. This implies that

n—oo

8
8

e If § > 1 then ¢(n) is decreasing and so for any n € N we have §= M <
1
0 M. This implies that

>

2L

Oql>—‘

Assume that for any § > 0 we have ) w=— = co. Since t(n) — 1 asn — oo,
n=1 "

there exists N € N such that, for any n > N, we have that t(n) > % and then

1 2
< .
VoM, — /M,

Lemma A.0.29.
Let (M),
Then, for any k € Ny,

with My = 1, be a log-convex sequence of positive real numbers.

=1
;m:m

127



if and only if

S

n=1 n+

A

Proof.
By Theorem A.0.21 and Lemma A.0.27 we have that for any k£ € Ny

=1
D A=

3
—

if and only if

- Mn+k71
= A4
2 My (A.4)
For any n € Ny, let us define
Bn _ Mn+k
M,
Then, by the log-convexity of (M,,)52,, we get that (B,)5, is log-convex as well.
In fact, for any n € N,
M? M, k1 M,
BQ — n+k < n+k—1 n+k+1 — Bn, Bn )
n M]? e — Mk Mk 1 +1
Moreover, By = 1. Hence, (A.4) becomes
By,
n=1
By Theorem A.0.21, the latter is equivalent to
=~ 1
P i
n=1 Bn
which is indeed
—~ 1
> = 0. (A.5)
n Mn+k
n=1 M,
The conclusion follows by Lemma A.0.28 applied to (A.5) for § = Mik
O
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Theorem A.0.30.

Let (M,)52,, with My = 1, be a log-convez sequence of positive real numbers. If

n=0-
=1
>

n=1 n

then for any h € Ny

oo

1
— = .
nz:l 2Vn M2n+h
Proof.

Let us distinguish two cases.

1. Case h even

Let us consider h = 2k for some k € Ny and let us define the following sequence

An =V M2n7 n e N07

which is log-convex. In fact, by assumption, we get that

2
M,

IN

M2n—1M2n+1
\/MQn—Q \/MQn\/MQn \/M2n+2
V MZn—QMQn V M2n+27

IN

which becomes

My, < v/ My 27/ Map .

Hence, the latter implies

A2 = My, < \/M2n—2\/M2n+2 = Ap1Ang.

Note that Ag = /My = 1.
With this relabeling, 1;1 QKL/;M? = oo becomes > 7 ’%/LAT = 00. Applying Lemma A.0.29
to the sequence (A4,)5%, we get that for any k € Ny

=1
ZQ/A—ZOO’

n—1 n+k

1.e.

—_

> =

n—1 2n+2k
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2. Case h odd
To get our conclusion also in the case h = 2k — 1 for some k£ € N, we need to

consider separately two subcases.

2.1. Suppose (M,,)5%, is bounded, i.e. there exists a finite positive constant ¢

such that M, < c¢ for any n € Ny. In particular, we have that

(A.6)

for any n € N.

o0
. 1 . 1 . .
Since e 1 as n — oo, the series T diverges and the conclusion

follows by (A.6).

n=1

2.2. Suppose (M), diverges. Then there exists N € N such that for any
n > N we have that M, > 1. Hence, for any n > N, we get that

1 1
< . AT
s~ W D
Moreover, by Lemma A.0.25, we have that for any n € N
1 1
(A.8)

< .

Since Z 2\/7 = 00, Z — W = 00 by (A.8), which implies by (A.7)

that

Z - m = . (A.9)

Let us consider now the following sequence defined as

By =1
B, =¥\ /M1, neN.

The sequence (B,,)52, is log-convex. In fact,

° B2 M3<\/M)2:%:Tm13\/M3:BQZBOB2

e By assumption, we get that for any n > 2

2
M2n—1

IN

M2n72M2n

\/M2n73 \/M2n71 \/M2n71 \/M2n+1
\/M2n—3 \/M2n+1 M2n—17

IN
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1.e.

My, < \/M2n—3\/M2n+1-

Hence, the latter implies

=,
|
|
=
7
A

M
—‘“’;\/M%,NMM

\/_ V 2n 3 \/ 2n+1

Bn—an+1 .

With this relabeling, (A.9) becomes

;n%B o

which, by Lemma A.0.28, is equivalent to

275

n=1

—_

n

Applying Lemma A.0.29 to the sequence (B,)5°,, we get that for any k € N

|
; Vn Bn+k -

and so we have
1

n=1 \/ M2n+ 2k—1)

By Lemma A.0.28, the latter implies the conclusion.

= OQ.

Let us recall a simple but useful property.

Proposition A.0.31.
If a finite sequence of positive real numbers (M,)N_, is log-convex then it is uni-

modal, i.e. there exists n € {0,1,..., N} such that

Mn 2 Mn-‘,—l; vn S n
Mn S Mn+1, Vn > n.
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The following result is a generalization of Theorem A.0.21.

Theorem A.0.32 (De Jeu, [38]).
Let (M1,m))meng and (M m))meny, with Ma gy = M) = 1, be two log-convex

sequences of positive real numbers such that

> _ 1 > _ 1
(M) ™ =00 and Y _ (Mam) ™ = oo
m=1 m=1

Let f € C®(R?) and let A and r be non-negative constants such that

’ o2 o

0b*2 Qg1 (f) (g, b)' = AT@1+Q2M(17O‘1)M(27062)

for all ay,ay € Ny and all (a,b) € R?.

Then, if
9% o
ob*2 Ja™

f is identically equal to zero on R2.

(f) (0, O) = O, VC(l, Qg € No,

Proof.
For a; € Ny we define the function ¢,, by

o
(bal <b> = aaal

£(0,b), beR.

Then, for ay € Ny, all the as-th derivatives (w.r.t. b) of ¢,, vanish at 0 € R by
assumption.
Moreover, since
dOéQ
'—agbal(b)‘ < AT Moy r*?Moa,), beR,
dbe2 N
=AY
where A’ is a positive constant, by the Denjoy-Carleman Theorem A.0.21 we have
that the class C{M9q,)} is quasi-analytical, i.e. ¢,, is identically zero on R, for
an arbitrary a; € Nj.
For each b € R define 1(a) := f(a,b) with a € R.
Since o
T t(0) = 9 (1)
and ¢,, = 0 on R, we have that all the derivatives of 1, vanish at 0 € R too, for
arbitrary b € R.
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Additionally, we have that

oo
\ ba)

da™

< AMooyr™ Maa:)
——

=AY

for all a,b € R (A" is a positive constant).
By the Denjoy-Carleman theorem, the class C{Mq q,)} is quasi-analytical, i.e.
we have that 1, is identically zero on R. Hence, f = 0 on R?.

0
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Appendix B

Spectral theory

In this chapter we review some basic definitions and fundamental results of

the general spectral theory.
Although the notation is standard we recall here the most used objects. We
consider a Hilbert space H with its inner product given by the sesquilinear form
(-,-) : H xH — C. We denote by .Z(H) the class of all linear and bounded
operators T : H — H.

The Hellinger-Toeplitz theorem says that an everywhere-defined operator T’
which satisfies (Tv,w) = (v,Tw), for all v,w € H, is necessarily a bounded
operator. This suggests that an unbounded symmetric operator 7" can be only
defined on a subset of the Hilbert space H. Then for an unbounded operator
T we denote by D(T) its domain, namely a linear subspace of H which we will
always suppose to be dense in H.

Let D(T™*) be the set of all w € H for which there exists a z € H such that

(Tv,w) = (v,2), YveDT). (B.1)

For each w € D(T™), we define T*w = z. The operator T* is called the adjoint
of T. For z to be uniquely determined by (B.1) we need the fact that D(T) is
dense in H.

Let us recall that an unbounded operator T is called

o symmetric if and only if (Tv,w) = (v, Tw), Yv,w € D(T),
e self-adjoint if T is symmetric and D(T') = D(T™),

o unitary if T is invertible and 71 = T,

There are several, but equivalent, formulations of the spectral theorem. The

most well-known version broadly says that a self-adjoint operator can be identified
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with a multiplication operator. We will analyze these theorems in the case of
bounded and unbounded self-adjoint operators. Ultimately, we will show what

happens when we deal with a tuple of operators.

B.1 Multiplication operator

Let us first show some preliminary facts.
Let (X, u) be a finite measure space (i.e. pu(X) < +o00). By L>®(X,u) we de-
note the space of all measurable functions (complez-valued) which are essentially

bounded, i.e. bounded up to p-null sets. A norm on this space is given by
]|z :=inf{C >0 |g(z)| < C for p-almost every x € X},

for g € L>(X, p).
For any g € L>(X, i), the linear map

Mg: L2(X7:u) _>L2(X>/L)

o = Mypi=gp (B.2)

is continuous. In fact, for any ¢ € L?(X, 1) we have

2
1Myl = /X 9(2) (@) u(dr) < g1l 2,

so M, is well defined and continuous with norm || Mg|| #r2(x,u) < |9z

Moreover, for any ¢, s € L*(X, 1)

(Mg (1), 902>L2(X,u) = /){9(417)@1(55)802—(56)#(6537) = {¢1, M§(802)>L2(X,u)-

Therefore, M; = My and M, is self-adjoint if and only if g is real-valued.

B.2 Spectral theorem for unbounded self-adjoint

operators

The following is the multiplication operator form of the spectral theorem for

unbounded self-adjoint operators.

Theorem B.2.1 (Multiplication operator form, [63] Vol. I, p. 260).
Let H be a separable Hilbert space and let T : D(T) C H — H be a self-adjoint
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operator. Then there exist a measure space (X, p) with u finite, a real-valued
function g : X — R which is finite a.e. on X, and a unitary map U : L*(X, p) —
‘H such that

o UH(D(T)) =D(M,) ={p € L*(X,n) | gp € L*(X, 1)},
o UT'TU = M, on D(M,), i.e. U(gp) =T (Up) for ¢ € D(M,),

where M, is the operator of multiplication by g.

In other words, the following diagram

U
Lz(X7/J“) — H

commutes and the operator T : D(T') C H — H can be identified with the oper-
ator M, : D(M,) C L*(X,u) — L*(X, p).

Corollary B.2.2.
Let H be a separable Hilbert space and T an unbounded self-adjoint operator with
domain D(T) in H. Let v be such thatv € D(T), Tv € D(T), ..., T* v € D(T)

for any a € N, then there exists a finite measure p, on R such that

/|r!a,uy(dr)<oo and <v,m>:/r%(d7~), (B.3)

forall0 <5 <a.

Proof.
Let us prove (B.3) for a = 1. First, we represent 7' as a multiplication opera-
tor My. Let v € D(T). Then,

(v,Tv) = (v,UM,U )
= (U v, M,U ')

— [ o |0 @) )

= /Rrg* (‘U‘lv{2u> (dr),
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where g, (|U'v[?u) is the image meaure of |U~'v|?y under g (see Definition C.0.8).

So we have found
fy = G <|U*17J‘2,u) : (B.4)

The measure u, is finite because p is finite and the following holds
12 _ 2 _ _
po(R) = / g. ([U=1of* ) (dr) = /X |(U") (@) pldz) = (U0, U"0) = (v,0).

Note that (v,Tv) < 400 because (U v, M;U 'v) < oo being U v € D(M,).

Moreover, always with the assumption v € D(T') we have that
(Tv,Tv) = (U'TUU ', U'TUU ')
= (MU v, M,U 'v)
_ 2
= [ @) | ) @ uds)

- /RTQQ* <’U‘1U}2u) (dr)

= /RT’QMU(CZT)-

Similarly, since U~'v € D(M,), we have [ r?u,(dr) < oo. Since |r| < 1+1r* we
also deduce that [ [r[s,(dr) < co.
Requiring that v € D(T) and Tv € D(T), we have (v, T?v) = (Tv, Tv) and
so (B.3) holds for a = 2. The cases « > 3 similarly follow.
O]

B.3 Spectral theorem for bounded self-adjoint

operators

Theorem B.3.1 (Multiplication operator form, [63] Vol. I, p. 227).

Let H be a separable Hilbert space and T € £ (H) a bounded self-adjoint operator.
Then there exists a finite measure space (X, p), a unitary operator U : L*(X, n) —
H and a bounded real function g on X, such that U o My, =T o U where M, is
the operator of multiplication by g.

Equivalently, for any ¢ € L*(X, 1)

(UMTU)p(z) = g(x)p(x),  for u-almost every x € X.

In other words, the following diagram
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U
LZ(X> M) —H

K

U
LQ(Xa :u) —H

T

commutes and the operator 7' : ‘H — H can be identified with the operator
M, : LA(X, n) = L3(X, p).

Corollary B.3.2.
Let ‘H be a separable Hilbert space, let T' € L (H) be a self-adjoint operator and
let v € H be a fived vector. There exists a finite non-negative Radon measure i,

(depending on v) on the compact set o(T) C R such that
(v, T"0) = / P (dr) < 400
o(T)

for any a € Ny.

The proof of the latter corollary is similar to the one of Corollary B.2.2.

Moreover, for any v € H we have that
supp g (|U " v|*n) € o(T),
where ¢,(|U " v|?u) is the image meaure of |U~'v|*u under g (for more details

see [63, Section VII.2]).

B.4 The case of several operators

We can develop a multiplication operator form spectral theorem for a d-tuple
of self-adjoint operators. Recall that if S and T" are two bounded self-adjoint op-
erators acting on the same Hilbert space ‘H we say that they commute if ST = T'S.

Theorem B.4.1.
If T = (T1,...,Ty) is a d-tuple of commuting, bounded, self-adjoint operators

on H separable, then there exists a finite measure space (X, pn), a unitary map
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W L*(X,u) — H and real-valued g; € L=(X, ) such that

W T We(x) = g;(2)p(x), e L*(X,pn), j=1,...,d.

Corollary B.4.2.

Let T = (T1,...,Ty) be a d-tuple of pairwise commuting bounded self-adjoint
operators acting on the same separable Hilbert space H and let v € H. Then

there exists a unique non-negative measure fi, (depending on v) on RY such that

(v, Tv) = / r%,(dr) < oo
o(T)

for all o € Ng.

Note that the support of u, is compact since it is contained in the compact

joint spectrum o(T) C Byjzy(0) x -+ X By (0) € R (for more details see [69,

p. 104]).

Proof. (of Corollary B.4.2)

Let ve H, let n € Nand iy,...,

in € {1,...,d}. Then,

(0, T, - T,v) = (0, WMy, W™t - WM, W)
= (W o ! 92‘ "'Mginwilw
= Wl ]\4921 gan’1v>
= /Xgi1 () - g3, (2) | (W) (2)] u(dx)
= [ (@) | V) @ )
- /R Fule) e (W40 ) (),
where
h: X —R?
z = (q1(x),. .., 94(2)),
and
fn: R4 — R
(T1yevoyTa) Ty Ty,
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]

If S and T are instead unbounded operators, defined as maps from their do-
main to their range, the previous definition of commutativity may not make sense
on any vector in H. For example, we might have the case of Ran(S)ND(T) = {0}.
In such a case T'S does not have any meaning.

Let us introduce a characterization (which we take as definition) of strong com-
mutativity for unbounded and self-adjoint operators. This makes use of the ex-
ponential operator e*¥ defined via spectral theorem in the functional calculus
form?!(see [63, Vol. I, Section VIIL3]). Note that the collection (eiss)seR is also
called the unitary group associated to S.

Definition B.4.3 ([63] Vol. I, p. 271, [69] p. 132).

Let S and T be self-adjoint operators on a Hilbert space H.

Then, S and T strongly commute if and only if

ezsseth — ethesz

for all s, t € R.

The following is the most general spectral theorem we are going to give so far.

Its proof can be obtained similarly to the proof of Theorem B.2.1.

Theorem B.4.4.

If (11, D(Th)), ..., (Tq, D(Ty)) are strongly commuting unbounded self-adjoint op-
erators on H separable, then there exist a measure space (X, p1), a unitary map
W L*(X,u) = H, and real-valued g; € L>=(X, u) such that for any j =1,...,d,

o W (D(T}) = D(M,),
o W'T;Wo(x) = gj(x)p(x), ¢ € D(M,,),

where M, is the operator of multiplication by g;.

From the latter theorem one can obtain Theorem B.4.1.
Similarly to the proofs of Corollary B.4.2 and Corollary B.2.2 we derive the

following.

Corollary B.4.5.
Let (Ty,...,Ty) be a d-tuple of pairwise strongly commuting self-adjoint opera-
tors acting on the same Hilbert space H. Let v € H be such that Vn € Ny,

'If S is bounded we can directly define the exponential by power series converging in norm,

oo .
o, ¢isS Z $2 "S”

n!
n=0
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Viy, ..o yinyr € {1,...,d} we have T; ---T; v € D(T;,.,) (for n = 0 we set

T; - Ty,v = wv). Then there exists a unique non-negative spectral measure i,

n+1

(depending on v) supported on RY such that for any n € Ny

/|rin oy o (de) < oo and (v, T, - Tyv) = /ril <1y fy(dr).  (B.5)

B.5 Results of independent interest

Proposition B.5.1 ([69] p. 145).

Let T be an unbounded self-adjoint operator on its domain D(T) dense in the
Hilbert space H. Then v € H belongs to D>(T) (see Definition 1.5.5) if and only
if the function f(t) := e¢"Tv is a C*-map of R into H.

Proof.
(<) Since f is a C*°-map of R into H, the n-th derivative of f,

f(n) (t) _ inTneitTU7

is continuous for all n € Ny. Then necessarily v € D(T™) for all n € Ny and
therefore v € D>(T).
(=) We want to prove that for any n € Ny

F(t+€) — ()

€

lim
e—0

- 7| <o,

where f((t) is the n-th derivative of f w.r.t. the variable ¢.
In our case, fixed n € Ny, we have
f(n) (t) _ Z-nTneitTv’
f(nJrl)(t) _ Z'nJrleJrleitT,U7

f(n)<t+€) — inTnei(t+E)TU.
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Hence,

2 2

Trett (e“T — 1 - z'eT) v

€

H ft+e) = ) — ef ()

€

Treit? (e“T —I— z’eT) v TretT (eieT — 1 — z'eT) v

= < ) >

€ €
T2n gi2tT (eieT I ieT)2 v)
2

on_i2tx e — 1 —jex\”
= [ x7e e o (d),

where in the last equality we made use of the functional calculus form of the spec-

= (v

tral theorem. Applying the dominated convergence theorem and de L’Hopital’s

? v — 1 —jex\”
:/ e lim (—) oy (dx)
e—0 €

(. J
~~

=0

formula we get our conclusion, i.e.

f(t+€) — f(t) — ef ™D ()

€

lim
e—0

Let us remember that we can apply the dominated convergence theorem if

- . 2
1ET
4 et —1—iex
:L_2n612t;t
€

This is true because, since

Vo € R,

< g(x) with /g(:r;),uv(dx) < 00.

1 1
v — 1= / iex €“ds = jex —1—/ iex (eisex — 1) ds,
0 0
we have that

e — 1 —iex| = < €|z|2

1
/ 1ex (ei“"” - 1) ds
0

and so

€

e — 1 —jex\’
:L,2n€i2ta: < ) | S 4m2n+2.
Thus, if we take g(z) := 2?"2 we have, by (B.3), that

[ st = [ 2uin) = [ o in),
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which is finite for all n € N because v € D>(T).
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Appendix C

Miscellanea

Let us report here some standard results which we used throughout this thesis.

Proposition C.0.2 (Heine-Borel property).
A subset A of RY (d € N) is bounded and closed in R? if and only if A is compact.

Corollary C.0.3.

Let K be a closed subset of R?. Then a subset A of K is bounded and closed in
K if and only if A is compact.

Theorem C.0.4 (Riesz, [67, 2]).

Let K be a locally compact topological space with a countable base. For any

bounded linear functional L on C*(K), there exists a unique Borel reqular measure

(see Definition C.3.1) v on K such that

L(f) = /K f(@)u(de)

for all f in C®(K). Moreover, C°(X) C L'(u) and since 1 € C*(X) the measure

is finite.

Theorem C.0.5 (Riesz-Markov, [63, 2]).
Let X be a compact space. For any non-negative linear functional L on C(X),

there exists a unique non-negative measure p on X such that

L(f) = /X F()lde)

IThe assumption of K closed is important. In fact, if we consider K open in R, then we can
always find a subset of K which is bounded and closed in K but not compact. For istance, if
K =(0,1) and A = (0, 3] we have that A is bounded and closed in K but not compact.
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for all f in C(X).
Moreover, C(X) C L'(u) and since 1 € C(X) the measure is finite.

Let V be a vector space.
V' is a vector lattice if for every v € V we also have that |v| € V.
We say that a subspace Vy of V' dominates V if for every v € V there exist
v, 09 € Vj such that v < v < ).
Theorem C.0.6 (Riesz-Krein, [49, 1]).
If V 1is a vector lattice and Vi is a subspace which dominates V', then any non-

negative linear functional on Vy has at least one non-negative linear extension

onV.

Daniell’s integration theory gives the following theorem.

Theorem C.0.7 (Daniell, [65, 57]).
Let V' be a vector space of functions on K which is a vector lattice. Let L be a

non-negative linear functional on V' for which the following condition holds.

(Dec) If (Un)nen, @5 a sequence of functions in V' monotonically decreasing to zero,
then lim L(v,) = 0.

n—o0

Then there ezists a unique non-negative measure p on (K,o(V)), where o(V') is

the o-algebra generated by V', such that

foranyv eV.
Moreover, V- C L'(u1) and if 1 € V the measure is finite.

Definition C.0.8 (Image measure, [28]).
Let Q1 and €y be two measurable spaces. Given a measure p on §2y, we define

the image measure of u under a measurable function F : Q1 — s as the unique

measure g on o such that

A f(F(w1))p(dwy) = A f(w2)pp(duwy)

for any measurable f : Qs — R such that f o F' is integrable.
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C.1 General properties of locally convex spaces

In this section we collect some classical results about locally convex spaces.

The main reference is [63, Section V, vol. I].

Definition C.1.1.

A seminorm on a vector space X is a map p: X — [0,400) such that
1. p(z+y) < px) +ply), Va,yeX.
2. plax) = |alp(z), VYaeR(orC),Vre X.

Definition C.1.2.
A locally convex space is a vector space X (over R or C) with a family (pa)aca

of seminorms (A is an index set).

Definition C.1.3.

A net (zg)gep in a locally conver space X is called Cauchy net if and only if,
for all e > 0, and for each seminorm p,, there is a By € B such that if B,y > By,
then we have p(xg — ) < €.

X s called complete if every Cauchy net converges, i.e. there exists v € X such

that po(zs —x) — 0 for all v € A.

Theorem C.1.4.
A locally convex space X is metrizable if and only if the topology on X is generated

by some countable family of seminorms.

Definition C.1.5.

A complete metrizable locally convex space is called a Fréchet space.

Definition C.1.6.

A subset O of a vector space X is called convex if for any x,y € X and t € [0,1]
we have that tx + (1 —t)y € O. The set O is called balanced if for any x € O
and A € R with |A\| = 1, we have \x € O. The set O is called absorbing if for
every x € X we have tx € O for some t > 0.

Proposition C.1.7.

If pays-- - Pa, are seminorms on a vector space X, then the set

{r e X fpa, (@) <& [pa, ()| < €}

15 balanced, convex, absorbing set.
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Theorem C.1.8.

Let X be a complete real (or complex) vector space. Let X,, be a family of sub-
spaces with X,, C X, 11 such that X = |J X,,. Suppose that each X,, has a locally

n=1
convex topology so that the restriction of the topology of X, 11 to X, is the given
topology on X,,. Let % be the collection of balanced, absorbing, convex sets O in
X for which O N X, is open in X,, for each n. Then,

1. % is a neighborhood base about 0 for a locally convex topology.

2. The topology generated by % is the strongest locally convex topology on X

so that the injections X,, — X are continuous.
3. The restriction of the topology on X to each X, is the given topology on X,,.
4. If each X,, is complete, so is X.

Definition C.1.9.
The locally convex space X constructed in Theorem C.1.8 is called the strict

inductive limit of the spaces X,,.

Theorem C.1.10.
Let X be the strict inductive limit of the locally convexr spaces {X,}22,. Then a
linear map T from X to a locally convex space Y 1is continuous if and only if the

restriction of T to each X, is continuous.

C.2 Topological and measurable structures on
R(RY)

Let us consider Z,,.(R?) equipped with the weak topology 72" defined in
Section 4.1.2 and recall that a neighbourhood base for 727 about v € Z,.,.(R%)

is given by the following family (see [5, Vol. I, Chapter I, p. 16])
B, (V) = {ﬂ Oype(v) :m € Ny, ... b, € CX(RY),0< e € R}
j=1

where Oy (v) == {n € 2,,,,(RY) : [{),n —v)| < e} . Note that a neighborhood
about any vector v is taken to be a translated neighborhood of zero introduced
in Section 3.2.

Let us consider now the space R(R?). By Proposition 4.1.14 we have that
R(R?) is a subset of 2/

! 0j(R?), s0 we can equip R(R?) with the relative topology
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~proj ; proj / dy
7h% induced by 72 defined on 2, .(R?), i.e.

7l ={UNRRY) : U e}

On the other hand, we can equip it with the vague topology 7, i.e. the smallest

topology such that the mappings

(I)fi R(Rd) — R
no o= A{fin)= Rdf(r)n(dr)

are continuous for all f € C.(R?) (see [2, p. 192]). Note that ®; is exactly the
functional defined in (4.34) as a function of the second variable.
The space (R(R?), 7,) is Polish (see [18]).

Let us give now a neighbourhood base of each of the two topologies introduced
on R(R?). According to the definitions of 727 and 7, on R(R?), whenever
Uy (v) == {n € R(RY) : |(¢¥,n — v)| < e} with & > 0, we have that

e A neighbourhood base for 777/ about v € R(R?) is given by
Baproi (V) = {ﬁ Upe(v) in €N, ..., ¥, €CPRY), 0 < € R} .
j=1
e A neighbourhood base for 7, about v € R(R?) is given by
B, (V) = {ﬁ Upe(V) :n €N, g1,...,0, €EC(RY), 0<c € R} :
j=1

(Note that for any v € R(R?) and any 1 € C2°(R?) we clearly have that Uy, (v) =
Oyie () N R(R).)

Proposition C.2.1.
The topology 7™ and the vague topology T, are equivalent on R(R?).

Proof.

Step I: 7, C 7P

For any function ¢ € C.(R?) there exists a positive real number R, such that
supp(¢) C Bpg,, where Bg, is the open ball in R? of radius R, and centered
at the origin. Let us denote simply by x,, the function g, € C2°(R?) given in

148



(4.20). Fixed a finite positive integer N and v € R(R?), if we consider the set
Uyoin(v) == {n € RRY) : [{xp,n — )| < N},
then the families
By (V) = {W MU (V) : W € Bopoi (v), € Cc(Rd)}

B (v) = {V NUynW): Ve, (v), pc CC<Rd)}

are neighbourhood bases about v for 777/ and 7, respectively.

In fact, for any ¢ € C.(R%), the set U,_,n(v) is an open neighbourhood of v w.r.t.
both 727 and 7,,. Moreover, since %,pro; (V) and %, (v) are neighbourhood bases
about v then for any other neighbourhood N(v) of v there exist W € B.pros (V)
and V € %, (v) such that v € W C N(v) and v € V C N(v). This im-
plies that, for any ¢ € C.(R?), the sets W* := U, .nv(v) N W € %% (v) and
V*i=Uy,n(v)NV € % (v) are such that v € W* C N(v) and v € V* C N(v),
which exactly means that #% (v) and % (v) are neighbourhood bases about v

for 7P7% and 7, respectively.

By Hausdorff criterion (see [80, Theorem 4.8, p. 35]), 7, C 777 if and only if
Vv e R(RY),VV* € Bi (v) IW* € Blpos(v) st. W C V. (C.1)
Actually, it is possible to prove the following stronger property

Vv e R(RY, Vo € C(RY), Ve >0 Ty € CO(RY), Fe* >0
s.it. Uper(v) NUyin(V) C Upie(v) N Uy, in (V). (C.2)

Let us recall that for any ¢ € C.(R%) there exists a sequence (¢y,)nen C
C°(Bg,) such that || — ¥p|lc — 0 as n — oo, i.e. for any e > 0 there exists
n € N such that for any n > n we have ||¢ — ¥,]|0 < € (see [22, p. 47]).

Hence, for any ¢ € C.(R?) we can choose ¢ := 9, € C2°(Bp,) for a sufficiently

large n € N such that
€

_ o < ——
o =l < 5

. (C.3)

In addition, let us choose

(C.4)
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Then, for any 1 € Uy« (v) N Uy n(v), we have that

IN

(o —v.n =)+ [{¢,n—v)]
[ e=vn-

(o, — )]

IN

+&*

- ‘/Rd ]lsupp(gofw)«O - ?/J)d(n - V) + e*
< e = Y]l /Rd ]lsupp(@—w)d(n —v)|+¢€
<l =l | [ Mol =0)| 4

+e*

< o=l | [ xoln =)

g
< gy Nte=e

where in the last inequality we used the relations (C.3) and (C.4).

To complete the proof it remains to prove that (C.2) implies (C.1).
Fixed v € R(R?), let us consider V* € % (v). By definition we have V* =

N Up,ic(v) N Uy, .n(v), for some ¢; € C(RY), some n € N, some 0 < ¢ € R and
j=1

some ¢ € C.(R?). By (C.2) we have that there exist ¢; € C°(R?) for j =1,...,n
and 0 < &* € R such that

U%;E*(”) N wa;N(V) - Usoj;E(V) N wa;N(V)'

Hence, if we define W* := [ Uy,.-(v) N Uy, .n(v) then we have that W* C V*

J

=1
and W* € #%,,,,(v), i.e. (C.1) holds.

7

Step II: 77797 C 7,

By Hausdorff criterion, 727 C 7, if and only if
Vv e RRYVIW € Bopros(v) IV € By (v) s.t. VCW. (C.5)

The property (C.5) trivially holds because any W € Z_pro; (v) is also an element
of A, (v) since C*(RY) C C.(R?).
O

Corollary C.2.2.
The o—algebra generated by 7777 coincides with the one generated by 7, on R(RY),

i.e. o(7P99) =o(1,).
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Proposition C.2.3.

The o—algebra o(TP7) N R(R?) coincides with o(7P77).

Proof.

Step I: o(777%9) C o(7P7) N R(R?)

The o—algebra generated by 777/ is the smallest c—algebra containing the topol-
ogy 7779 i.e. the smallest o—algebra such that the sets ONR(R?) are measurable
for any O € 7777,

Hence, it remains to show that, for any O € 7777 the sets O NR(R?) are mea-
surable w.r.t. the o—algebra generated by 777/ restricted to R(RY).

This is true because a set O € 727 is trivially measurable w.r.t. the o-algebra
generated by 7777 and therefore, O N R(R?) belongs to the o-algebra generated
by 7P restricted to R(R?).

Step II: o(7P77) N R(R?) C o(7Eo7)
The o—algebra generated by 7777 restricted to R(R?) is the smallest o—algebra

which makes the inclusion map i : R(RY) < 2/ .(R?) measurable.

o
Hence, it remains to show that the inclusion map ¢ is measurable w.r.t. the
o—algebra generated by 7P

This is true because the inclusion map 4 results to be continuous w.r.t. 777/ and
therefore 7 is also measurable w.r.t. the o—algebra generated by 7777

]

Corollary C.2.4.
The o—algebra o(TP7) N R(R?) coincides with o (7).

All these considerations still hold if we replace ( o (R%), 7Proi ) with the space

(2],4(R?), 7ind), where 7/ is the weak topology on ], ,(R?) defined in Sec-

ind w w ind

tion 4.1.2. Hence, o(7,) coincides with the trace o—algebra on 2 ,(R?), i.e.

o(r,) = o(72) N R(RY). In particular, every measurable set in (R(R%), 0 (7))

is also measurable in (2] ,(R?), o(7i"4)).

C.3 Notes on Radon measures on topological

spaces

These notes are taken from [71] and [2]. In [2], a Borel measure is not only a
measure defined on the Borel c—algebra on a space X but also finite on all com-
pact subsets of X. However, we will consider the latter as an extra requirement.

In the following we are going to consider always non-negative measures.
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Preliminaries

Let us recall some basic definitions.

Definition C.3.1.
Let (X, T) be a Hausdorff topological space and let B(X) be the Borel c—algebra

on X. Let u be a Borel measure on X, i.e. a measure defined on B(X).

The measure p 1s said to be

e Locally finite if every point of X has an open neighborhood of finite p—measure,

1.€.

VeeX, AU, € 7 with x € U, s.t. p(U,) < oo.
e Inner regular if for every B € B(X) we have that
wu(B) =sup{u(K): K C B, K compact},
or equivalently if

VB € B(X),Ve >0, 3K, C B compact s.t. u(B) < u(K.) +e.

e Outer regular if for every B € B(X) we have that
w(B) =inf{u(0) : B C O, O open},
or equivalently if

VB € B(X),Ve >0, 3B C O, open s.t. u(B) > u(O.) —e.

e Regular if it is both inner regular and outer regular, or equivalently if VB €
B(X), Ve > 0, 3K, compact and O, open such that

K. CBCO. and (O \ K.) < e.

Definition C.3.2 (Radon measure).
Let X be a Hausdorff topological space. A Borel measure i is called Radon

measure if
e 1 is locally finite

® /i 1S inner reqular.
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Proposition C.3.3 ([2] p. 154).
Let (X, T) be a Hausdorff topological space and p a Borel measure on X. Then,

(i locally finite) = (u finite on compact subset of X).

Proof.
Let K C X compact. Since pu is locally finite, each point x € K has an open

neighborhood U, with u(U,) < oo, then K C |J U,. By compactness, there exist
zeK
finitely many of these neighborhoods, say the ones corresponding to x1, ..., Z,,

covering K. Then,

n

p(K) < p (U Uxi) <Y ulUs,) < +o0.

=1

Concerning the opposite direction, we have the following result.

Lemma C.3.4 ([2] Lemma 25.4, p. 155).
Let (X, 7) be a Hausdorff topological space in which every point has a countable

neighborhood basis and let p be a Borel measure on X. Then,
(u locally finite) <= (u finite on compact subset of X and inner regular).

Hence, 1 is a Radon measure.

Polish spaces

Definition C.3.5 (Polish space, [71] p. 92, [2] p. 157).

Let (X, 1) be a Hausdorff topological space.

(X, 1) is Polish if X is separable and T can be defined by a metric dx on X for
which X is complete. Equivalently, (X, T) is Polish if T has a countable basis and

T can be defined by a metric dx on X for which X is complete.

Recall that X separable means that there exists a countable dense subset of
X and that a countable basis for 7 is a countable system of open sets such that
every open set O in 7 is the union of those from the system which are subsets of
O. The equivalence of the two definitions stated above is due to the fact that for
a metrizable space, the existence of a countable basis for its topology is equivalent

to the existence of a countable dense subset.
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The class of Polish spaces is closed under countable products and topological
sums, countable intersections and projective limit of countable subfamilies. An
open (or closed) subset of a Polish space is Polish. However, finite unions of
Polish spaces are not necessarily Polish.

Let us also recall that a Frechét space is Polish if and only if it is separable.

Radon measure on Polish spaces

Lemma C.3.6 ([2] Lemma 26.2, p. 158).
Let (X, 7) be a Hausdorff topological space which is Polish. Then,

(u finite Borel measure on X) = (u regular).

In particular, i s a Radon measure.

Theorem C.3.7 (|2] Theorem 26.3, p. 160).
Let (X, 7) be a Hausdorff topological space which is Polish. Then,

(i locally finite Borel measure on X) = (u is a o—finite Radon measure on X).

Corollary C.3.8.
Let (X, 7) be a Hausdorff topological space which is Polish. Then,

(p is Radon measure on X) < (u is a locally finite Borel measure on X).

Corollary C.3.9 ([2] Corollary 26.4, p. 161).
Let (X, 1) be a Hausdorff topological space which is Polish. Then,

(1 Radon measure on X) = (p outer reqular).

The previous corollary can be restated as follows: “every locally finite Borel

measure on a Polish space X is regular”.

Lusin and Suslin spaces

Definition C.3.10 (Lusin space, [71] p. 94).

Let (X, 7) be a Hausdorff topological space.

(X, 1) is said to be Lusin if there ezists a topology 7' on X stronger than 7 (i.e.
T C 7') such that (X, 7") is Polish.
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Equivalently, (X, T) is said to be Lusin if there exists a Polish space (Y,0) and a

continuous bijective map from'Y to X.

The class of Lusin spaces is closed under countable product and topological
sums, disjoint countable unions, countable intersections, complements, countable

projective limits. Every open (or closed or Borel) subset of a Lusin space is Lusin.

Definition C.3.11 (Suslin space, [71] p. 96).
Let (X, 7) be a Hausdorff topological space.
(X, 1) is said to be Suslin if there exists a Polish space (Y,0) and a continuous

surjective map from'Y to X.

All stability properties given for Lusin spaces also hold for Suslin spaces. This
class is further closed under quotient, continuous image, countable inductive limit.
However, the class of Suslin spaces is not closed under complementation. More-

over, every Suslin space is separable.

Let us recall the following important property.

Proposition C.3.12 ([71] Corollary 2, p. 101).
If 1 and 15 are two comparable topologies on a Suslin space X, then the Borel

o—algebra generated by 71 and 15 coincide.

Radon spaces

Definition C.3.13 (Radon space, [71] p. 117).
Let (X, 7) be a Hausdorff topological space.
(X, 1) is called a Radon space if every finite Borel measure on X is inner reqular

(and so a Radon measure).
Note that if (X, 7) is Polish, then by Lemma C.3.6 we have that

Proposition C.3.14 (Radon space, [71] p. 117).
Let (X, 7) be a Hausdorff topological space which is Polish.

(X, 1) is Radon space if and only if every finite Borel measure on X is reqular.

The class of Radon spaces is closed under countable topological sums, count-
able unions, countable intersections, complements, continuous images, injective
images.

It is possible to show that

(X Polish) = (X Lusin) = (X Suslin) = (X Radon).
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Locally compact spaces

Definition C.3.15 (Locally compact space, [2] p. 166).
Let (X, 1) be a Hausdorff topological space.

(X, 1) is locally compact if each of its point has at least one compact neighborhood.

Theorem C.3.16 ([71] Theorem 6, p. 111).
Let (X, 7) be a Hausdorff topological space which is locally compact. Then, the

following are equivalent.
e X is Polish.
e X s Lusin.
o X s Suslin.
e X has a countable basis for its topology.

Definition C.3.17 (0—compact, [2] p. 181).
A locally compact space (X, T) is o—compact when it can be covered by a sequence

of compact subsets.

Proposition C.3.18 ([2] p. 182).
FEvery locally compact space which has a countable basis for its topology is also

o—compact.

Radon measure on locally compact spaces

First of all let us note that if (X, 7) is locally compact then the opposite
direction of Proposition C.3.3 holds. Namely, we have the following.

Proposition C.3.19.
Let (X, 1) be a locally compact Hausdorff topological space and ju a Borel measure
on X. Then,

(u locally finite ) < (p finite on compact subset of X).

Proof.

Let us show the missing direction.

Since X is locally compact, for any = € X there exists a compact neighborhood
C, of x. Since p is assumed to be finite on compact sets then u(C,) < oc.

Consequently, u is locally finite.
O
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The latter proposition, together with Theorem C.3.16 and Corollary C.3.8,

allows us to give the following characterization.

Proposition C.3.20.
Let (X, 7) be a locally compact Hausdorff topological space which has a countable

basis. Then,
(p is a Radon measure on X) < (u is finite on compact subset of X).

It is possible to prove the following.

Proposition C.3.21 ([2] Corollary 29.7).
Let (X, 1) be a locally compact Hausdorff topological space which is o—compact.
Then,

(1 Radon measure on X) = (u outer regular).

This result holds also for a locally compact Hausdorff topological space which
has a countable basis. This can be obtained either by using Proposition C.3.18
and then Proposition C.3.21 or by using Theorem C.3.16 and then Corollary C.3.9.

Proposition C.3.22 ([2] Corollary 29.11).
Let (X, 7) be a locally compact Hausdorff topological space. Then,

(u finite Radon measure on X) = (p outer reqular).

Theorem C.3.23 ([2] Theorem 29.12).
Let (X, 7) be locally compact Hausdorff topological space which has a countable

basis. Then,
(i locally finite Borel measure on X) = (u regular).

Hence, p is a Radon measure.

The previous theorem can be deduced by using Theorem C.3.16 and then
Corollary C.3.8 and Corollary C.3.9.
We can easily conclude that if X is locally compact and has a countable basis,
then
(u is a locally finite) < (u is Radon measure).
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