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Key points

• Initialization improves temperature skill for 40 months from local to global scale.
• Evidence of exceeding the known limit of ENSO predictability considered of 1 year.
• Initialization improves the land precipitation skill on regional scale.
• The externally forced signal dominates global and decadal temperature skill.

This article aims at quantifying the improvement in
climate prediction skill as a function of temporal (from
monthly to decadal) and spatial scale (from grid-point to
global) when initializing a perturbed parameter ensemble
of nine variants of the Hadley Centre Climate Model ver-
sion 3. The focus is on near surface air temperature and
precipitation in the tropical band, the Northern and South-
ern hemisphere. For near surface temperature the forecast
system reproduces the overwhelming impact of the exter-
nal forcing at global spatial scale and at time scale of up to
10 years. Despite the widely recognized ENSO predictabil-
ity limit of 1 year, there are significant improvements with
initialization for the first 40 forecast months in the global
and tropical domains. In the Northern (Southern) hemi-
sphere, the initialization increases the skill in the first 12
(20) months on regional but not hemispheric scales though.
For precipitation, the initialization corrects the negative cor-
relation found at the global and tropical scale.

Index terms

decadal prediction, ensemble, perturbed parameters, ini-
tialization, interannual, regional scale.

1. Introduction

Providing climate-change information at interannual time
scales that could be useful to the agriculture, energy or
health sectors is one of the main societal priorities. Decadal
predictions aim at satisfying such urgent demand, focusing
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2Instituciò Catalana de Recerca i Estudis Avancats
(ICREA), Barcelona, Spain

3Laboratoire d’Océanographie et du Climat
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on time scales of several years to a few decades. While
climate change projection focuses on reproducing the long-
term trend in climate variables, decadal prediction also aims
at modelling the low frequency variability superimposed on
any radiatively-forced climate change [Meehl et al., 2009].
The potential predictability can be quantified by the ratio
of the temporal variability filtered over decadal time scales,
over the total variability. Regions exhibiting potential pre-
dictability indicate where there is a chance to find predictive
skill at long timescales. Because of the large heat-storage ca-
pacity of the ocean and its slow release, most of such low fre-
quency variability comes from the ocean and is driven by dif-
ferent mechanisms. Decadal potential predictability is found
over the oceans at middle to high latitudes [Boer and Lam-
bert, 2008]. Previous works have shown that the Atlantic
meridional overturning circulation (AMOC) is potentially
predictable a decade in advance and it has also been shown
(through a perfect model study of potential predictability)
that in the North Atlantic many variables such as sea surface
temperature, salinity, heat content or meridional transport
could be potentially predictable for many years [Griffies and
Bryan, 1997a, b]. In the Pacific, the model-based study from
Branstator et al. [2012] shows that the decadal variability
observed in the North Pacific sea surface temperature (SST)
is pronounced but not necessarily predictable. Guemas et al.
[2012] rather incriminate model deficiencies in the inability
to predict the North Pacific SST.
The study of potential predictability has lead to the attempt
of producing real predictions. Smith et al. [2007], Keenly-
side et al. [2008], Pohlmann et al. [2009] and Mochizuki et al.
[2010] obtained good results in the North Atlantic and North
Pacific. In climate predictions the following sources of un-
certainty compromise the forecast quality [Robson, 2010]:

• Internal variability: the natural (and not externally ra-
diatively forced) variability of the climate system.

• Model inadequacy: the parametrization of the physi-
cal processes is a source of uncertainty as the estimation of
the parameters introduce errors into the model. Moreover
some processes are not even simulated because they are not
known yet.

• Scenario uncertainty: uncertainties due to the unfore-
seeable evolution of socio-economic conditions, which influ-
ence the change in greenhouse gas emissions.

The predictability of the internal variability is associated
with information contained in the initial conditions. It is
measured by determining for how long the predicted distri-
bution of an ensemble of similar initial states is distinguish-
able from the climatological distribution [Teng and Bransta-
tor, 2010]. While weather and interannual climate predic-
tions attempt to address this source of uncertainty, climate

1

Nancy
Rectangle

Nancy
Rectangle



X - 2 VOLPI ET AL.: QUANTIFICATION OF INITIALIZATION IMPROVEMENTS

change projections do not. The relative importance of the
initial conditions in climate prediction is supposed to vary
with the time scale, and has been assumed to be a contin-
uous function that decreases with forecast time, becoming
negligible after several decades [Hawkins and Sutton, 2009].
It has been shown that there is skill beyond the first forecast
year and that the quality of the information about the initial
state can improve the climate forecasts in different regions
[Doblas-Reyes et al., 2013].
This work aims at comparing the predictive skill for the near
surface temperature and precipitation of an experiment ini-
tialized with observed data and one with no initialization,
both experiment accounting for the variable radiative forc-
ing. The reader has to distinguish that this is not a pre-
dictability study in the sense of Hawkins and Sutton [2009]
but instead is an analysis of the actual predictive skill. The
following objectives have been addressed:

• the spatial and time scales at which maximum skill is
found

• a quantification of the skill improvement provided by
the initialization

Section 2 presents the details of the data and the method
implemented. Section 3 shows the results for near surface
temperature and precipitation and section 4 aims at draw-
ing the conclusions and suggests open issues that could lead
to further work.

2. Data and method

The decadal hindcasts employed are from the perturbed-
parameter ensemble of the MetOffice Decadal Prediction
System (DePreSys PP). DePreSys [Smith et al., 2007; Rob-
son, 2010] is based on the global coupled ocean-atmosphere
model HadCM3 [Gordon et al., 2000]. The perturbed-
parameter ensemble of DePreSys PP is composed by eight
model variants with simultaneous perturbations to 29 at-
mosphere and sea-ice parameters [Murphy et al., 2004], plus
the standard model version. The selection of the variants
guarantees an approximately uniform sample of climate sen-
sitivity, and a wide range of different parameter settings to
sample the model uncertainty.
The atmospheric resolution is 2.5◦ × 3.75◦ with 19 verti-
cal levels, while the ocean component has a resolution of
1.25◦ × 1.25◦ with 20 vertical levels.
The decadal hindcasts consist in a set of ten-year long retro-
spective forecasts, starting every November from 1960 until
2005. Here two different experiments of the same forecast
system have been compared: NoAssim decadal hindcasts
are initialized from nine transient simulations with informa-
tion about greenhouse gases, tropospheric and stratospheric
ozone concentration and sulfur emissions taken from obser-
vations. The volcanic aerosol load is damped with a one-
year e-folding time. The variability in solar radiation is rep-
resented by repeating the previous eleven-year solar cycle.
This gives confidence on the reliability of the operational
decadal forecast system, unlike the Fifth Coupled Model In-
tercomparison Project (CMIP5 [Taylor et al., 2012]) hind-
casts that prescribe observed volcanic aerosols and solar ir-
radiance along the predictions. From the same transient
runs with identical external forcings the Assim experiment
is initialized by assimilating atmosphere observations of hor-
izontal winds, temperature and surface pressure, and ocean
observations of temperature and salinity.
The study has been carried out considering the following
domains: the global (poles excluded, i.e. 60N-60S), the
Northern hemisphere (NH, poles excluded, i.e. 20N-60N),
the Southern hemisphere (SH, poles excluded, i.e. 20S-60S)

and the Tropical band (TRO, 20S-20N). The skill measure
used here is the correlation computed along the space and
time dimensions. For the temperature the reference data are
GHCN [Fan and van den Dool, 2008] for land and ERSST
for ocean [Smith et al., 2008], both available until early 2010
at the time of the study. For precipitation the reference is
the CRU data [Brohan et al., 2006], that is available over
land until the end of 2006.
The anomalies at each grid point and for each one of the 120
time-steps of the hindcasts have been computed using the
per-pair method [Garćıa-Serrano and Doblas-Reyes, 2012]
in which the computation of the lead-time dependant cli-
matology account only for the years in which both obser-
vational and model data are available. Depending on the
reference data available and in order to guarantee the same
validation sample at all forecast times (i.e. same amount
of reference data available at all forecast time), the analy-
sis employs the start-dates included in the range 1960-1999
(hindcast starting in November 1999 and finishing in Oc-
tober 2009, when the observation were still available) for
temperature and 1960-1996 (hindcast starting in November
1996 and finishing in October 2006, when the observation
were still available) for precipitation.
The forecast-time accumulation is performed by accumulat-
ing data for consecutive forecast months, up to accumulating
the whole forecast period:

x1,i,j ; ...;
x1,i,j + x2,i,j + ...+ xt,i,j

t
;
x1,i,j + x2,i,j + ...+ x120,i,j

120

where xt,i,j is the ensemble mean anomaly at forecast time
t ∈ [1; 120], latitude i ∈ [min latitude of domain; max lat-
itude of domain ] and longitude j ∈ [ min longitude of do-
main; max longitude of domain]. The ensemble mean is the
average of the anomalies obtained for each model version.
In order to illustrate the skill dependence with the spatial
scale, between grid point level and global average, the imme-
diate neighbours at each grid point have been averaged along
all the possible directions. The case of zero neighbours is the
original grid, and the maximum amount of neighbours rep-
resents the area average of the domain defined by its latitu-
dinal extension. Successively the temporal variances and co-
variances between model and observed anomalies have been
computed for each spatial averaging. Finally the correlation
has been computed from the spatial average of variance and
covariance values:

ρg =
(Covxy)g

√

(V arx)g · (V ary)g

where ρg is the correlation for the degree of spatial aver-
aging g, (Covxy)g is the temporal covariance between the
model (x) and the reference data (y), averaged over the spa-
tially averaged data g; analogously (V arx)g is the temporal
variance of the model averaged with the spatial averaging g,
and (V ary)g is the temporal variance of the reference data
averaged over the spatial averaging g.
A student t-test has been applied and the p-value 0.01, 0.05
and 0.1 has been calculated and plotted. As the number of
degrees of freedom depends on the number of independent
data in time and space, a time and space dependency has
been arbitrary chosen for our study. It has been considered
a time dependence between 10 consecutive start dates which
corresponds to 10 years (the Atlantic multidecadal oscilla-
tion, AMO, for example can stay in the same phase for more
than 10 years). It has been considered an area dependency of
5× 5 grid points that approximately corresponds to an area
of 2000Km×2700Km. A smaller area dependence has been
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considered for the precipitation and it has been arbitrarily
chosen a 3 × 3 grid points corresponding to approximately
1250Km×1650km. The degrees of freedom for each spatial
averaging g are then calculated as:

DOFg = indepsd ·min
(nlat · nlon

5 · 5
, nlatg · nlong

)

where indepsd is the number of independent start dates, nlat
and nlon are the number of grid points in the original grid,
and nlatg and nlong are the number of grid points for the
degree of spatial averaging g. For precipitation this quan-
tity is multiplied by the proportion of land data, as there is
precipitation observational data available only over land.

3. Results

Figure 1 shows the two-meter temperature correlation be-
tween the decadal hindcasts and the reference data as a
function of forecast time and spatial averaging. Each row
represents a different domain, the global, the Northern hemi-
sphere (NH), the Southern hemisphere (SH) and the Trop-
ical band, respectively. The first column shows the skill of
the NoAssim hindcasts, the second column the Assim skill
and the third one is the skill improvement of Assim over
NoAssim. Figures S1 and S2 in the supplementary material
show the results of the study using land-only and ocean-only
data, respectively. The first column of figure 1 (NoAssim
experiment near surface temperature skill) shows that when
the model is not initialized with observations, the skill grows
nearly monotonically with spatial and time averaging. This
leads to a maximum of skill regardless of the domain consid-
ered, at the top right corner of the figure where the spatial
averaging and temporal accumulation are the largest (i.e.
the whole domain is averaged and the time accumulation
includes all forecast months), which suggests an increasing
role of the varying forcing as the time series are smoothed.
The smaller domains show that the NoAssim skill is larger
in the extra-tropics, pointing toward a larger relative con-
tribution to the skill of the forcing signal over the internally
generated one in the extra-tropics compared to the tropics,
particularly for the 1 to 5-year time scale.
Assim shows an additional maximum of skill in the global
domain at the beginning of the forecast centred at the ac-
cumulated month 10 (figure 1b). In the NH and SH of the
initialized experiment (figure 1e,1h) there is also an increase
in skill with space and time accumulation without the peak
that appeared in the global domain at the beginning of the
forecast accumulation. The skill of Assim in the Tropical
band (figure 1m) shows in addition to the maximum at large
spatial averaging, a peak for short accumulation forecast
times. This peak seems to originate from the added value of
the initialisation associated with the El Niño Southern Os-
cillator (ENSO) as illustrated in Figure 2 which is explained
in detail below. Figure 1c shows that the improvement given
by the initialization in the global domain is significant for
the accumulation of the first 40 forecast months. Moreover
the maximum improvement due to the initialization appears
at intermediate spatial scales, which is an additional moti-
vation to analyse the skill in smaller domains such as the
NH, the SH and the tropical band.
Comparing the skill of the NH and SH (figure 1d, 1g) for
the NoAssim experiment SH shows less skill. Also for the
Assim experiment (figure 1e, 1h) there is a less steep con-
tours in SH. When looking at the initialization improvement
(figure 1f, 1i) significant results are shown for the first 12 ac-
cumulated months in the NH and 18 accumulated months in
SH. At the larger-scale spatial averaging, which corresponds
to the whole NH/SH domain (top of the panels of respec-
tively figure 1f and 1i), the improvement is not significant

at the 90% confidence level. To better identify the differ-
ent origins of the skill for the Assim and NoAssim, figure
2 illustrates the temperature anomalies in different domains
(respectively the global domain in the first row and the trop-
ical domain in the second row) and at different forecast time
accumulations (first forecast month in the first column, and
for the accumulation of all forecast months in the second
column). All the grid points of each domain are averaged
in all panels. In particular, figure 2a corresponds to the
temperature anomalies at the first forecast month for the
46 start dates used in this study. The anomaly correla-
tion coefficients generated by those anomalies correspond to
the top left points in figure 1a (NoAssim) and 1b (Assim).
Similarly, figure 2b illustrates the temperature anomalies of
the averaged forecast period and the corresponding anomaly
correlation coefficient is represented by the top right corner
points of figure 1a and 1b. Analogously, the top left and top
right anomaly correlation coefficients in figure 1l and 1m are
generated respectively by the anomalies illustrated in figure
2c and 2d. Figure 2a shows that NoAssim ensemble has
more spread than Assim (this is also shown in the panels
2c and 2d for the tropical domain discussed below). When
integrating over time the role of the radiative forcings gets
dominant and both Assim and NoAssim have a correlation
with the reference data higher than 0.9 (Fig 2b).
Compared to other domains the Tropical band of NoAssim
(figure 1l) has the lowest skill. The skill figure of Assim in
the Tropical band (1m) shows in addition to the maximum
at global average, a peak at the beginning of the forecast
accumulation. The maximum improvement of the initial-
ization is given during the accumulation of the first 4 fore-
cast months (figure 1n), while significant improvements are
shown until 40 forecast months and improvements last up
to the first 50 forecast months. Such improvement at the
beginning of the forecast is also shown in figure 2. Fig-
ure 2c shows the temperature anomalies of the first forecast
month when averaging over the whole tropical band. Assim
has a correlation of 0.94 while NoAssim has a correlation of
0.38. These correlations are significantly different with at
least 99% confidence level. NoAssim reflects the continuous
warming without showing any variability consistent in time
with the reference data. This is mainly due to the fact that
NoAssim does not have any information about the phase and
amplitudes of contemporaneous events, while Assim does.
The correlation of the observed Niño 3.4 SST index with
the tropically averaged reference data is of 0.69, which also
suggests that the variability in the Tropical band is domi-
nated by the variability of ENSO. Figure S3a of the supple-
mentary material shows the Niño3.4 SST index anomalies
for the first forecast month. Assim has a correlation with
ERSST of 0.99 while NoAssim has a negative correlation.
Similarly to figure 2b for the global domain, in figure 2d for
the Tropics, when the forecast time is accumulated over the
120 forecast months, both experiments have a correlation
with the observations higher then 0.9 due to the large role
of the external forcings. The results suggest that most of
the skill improvement with initialization found in the global
domain are associated with the tropical region. Figure S3b
of the supplementary material shows that with the accumu-
lation of the whole forecast period the Niño3.4 SST index
skill decreases with respect to that shown in figure S3a. As
a result, Assim and NoAssim have similar skill of around
0.55. Figure S3c shows how the Niño3.4 correlation dif-
ference evolves as the forecast time accumulation increases,
with the situations in figure S3a and S3b being the two ex-
tremes. The difference in correlation decreases with forecast
time accumulation. During the first forecast year the cor-
relation difference is greater than 1, which means that the
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initialization actually corrects the sign of the NoAssim cor-
relation. Moreover the correlation is significantly different
at 90% level for accumulations of up to 40 forecast months,
which explains the results found for the TRO in figure 1.
The results described above are consistent across the dif-
ferent model version used. Figure S4 of the supplementary
material shows the skill in the global domain for each in-
dividual version of the forecast system. When using the
linear trend of the global-mean temperature as a proxy for
the climate sensitivity, it was found that when the trend is
stronger the NoAssim experiment (first column figure S4)
has a larger skill at all spatial and temporal scales. More-
over, the Assim panels (second column figure S4) show that
the impact of initialization is stronger when the trend is
weaker. The model versions in figure S4 are ranked follow-
ing the climate sensitivity estimates shown in figure S5, from
the model version with higher climate sensitivity to the one
with the lowest.
The NoAssim precipitation (first column figure 3) has neg-
ative correlation with the CRU data in the global domain
(figure 3a) and the Tropical band (figure 3g). Some positive
skill is found in the NH (figure 3d) at large-scale averaging
and full forecast time accumulation. from the study as we
use land only data. The correlation with CRU of the ini-
tialized experiment displays significantly positive skill (con-
fidence level of 90%) in every domain (second column figure
3) for an accumulation of up to 20 forecast months. The
maximum skill is found in the Tropics (figure 3h) for an ac-
cumulation of 12 forecast months. Improvement with the
initialization is found in the global domain (figure 3c) for
all forecast time accumulations and spatial scales averaging,
except for the averaging of the largest spatial scales. These
improvements are the strongest over the TRO region (figure
3i) and are mainly due to the correction of the NoAssim
negative skill by the initialization.

4. Conclusions

In this work the improvements associated with the initial-
ization of a decadal forecast system have been quantified.
Moreover it has been documented how the added value of
the initial condition information varies with the temporal
and spatial scales.

• For near surface temperature, it has been found that
when increasing the spatial scales and temporal accumula-
tion the external forcing influence becomes more important.
DePreSys PP correctly reproduces the surface temperature
response to the variation of external forcings. This leads to
a maximum of skill at time scales of 10 years and for regional
to large scales. This is not the case for land precipitation,
for which the sign of the correlation with the observations
is negative.

• By introducing information of the state of the climate
system through the initialization a new peak of surface tem-
perature skill appears from the beginning of the forecast to
the first 40 forecast months in the global domain and the
tropical band. This seems to be due to the correction pre-
diction of ENSO, which is usually considered limited to 1
year. Globally the skill improvements due to the initializa-
tion are mainly coming from the Tropics.

• The NH is more skillful than the SH for near surface
temperature. The improvements brought by the initializa-
tion are statistically significant with a confidence level of
90%, respectively in the NH for the accumulation of the
first 12 forecast months and in the SH for the first 20 fore-
cast months and from the grid point scale to the regional
spatial scale. The reason for not getting statistically sig-
nificant results when averaging over the whole hemisphere
might be due to the small number of independent data avail-
able. A longer re-forecast period would be necessary to get
more robust results.

• The skill results for near-surface temperature are con-
sistent across the different model versions. When using the
linear trend of the global-mean temperature as a proxy for
the climate sensitivity, it was found that when the trend is
stronger the NoAssim experiment has a larger skill at all
spatial and temporal scales. The Assim experiment shows
that the impact of initialization is stronger when the trend
is weaker.

• NoAssim has no precipitation skill in the global domain
and the Tropics at almost any spatial and time scale. The
initialization corrects the negative sign of the NoAssim cor-
relation and has a beneficial impact for all time scales and
spatial averaging in both domains. Much is still needed to
improve multiannual precipitation forecasts, especially con-
sidering that precipitation is a key variable with large socio-
economic consequences.
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(RES).

References

Boer, G. and S. Lambert, 2008: Multi-model decadal poten-
tial predictability of precipitation and temperature. Geo-
phys. Res. Lett., 35 (L05706), doi:10.1029/2008GL033234.

Branstator, G., H. Teng, G. A. Meehl, M. Kimoto, J. R. Knight,
M. Latif, and A. Rosati, 2012: Systematic estimates of initial-
value decadal predictability for six aogcms. J. Clim., 25,
18271846.

Brohan, P., J. Kennedy, I. Harris, S. Tett, and P. Jones, 2006:
Uncertainty estimates in regional and global observed temper-
ature changes: a new dataset from 1850. Geophys. Res. Lett.,
11 (D12106), doi:10.1029/2005JD006548.

Doblas-Reyes, F., et al., 2013: Initialized near-term regional cli-
mate change prediction. Nature Communications, in press.

Fan, Y. and H. van den Dool, 2008: A global monthly land surface
air temperature analysis for 1948-present. Geophys. Res. Lett.,
113 (D01103), doi:10.1029/2007JD008470.
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Figure 1: Correlation of Assim and NoAssim near-surface temperature with GHCN and ERSST data

depending on the forecast time and the spatial averages. a), b) c) illustrates the global domain of

respectively Assim and NoAssim experiments and their difference. Analogously d), e), f) the Northern

Hemisphere domain, g), h), i) the the Southern Hemisphere and l), m), n) the Tropical band. Note

that the colour bar for the third column is different from the others. The x axis indicates the number

of consecutive months included in the average (from 1 up to the whole forecast period). The y

axis represents the meridional extent of the spatial average at which the variances and the covariances

between model and observations are computed. From those values the area average has been computed.

The correlation has been calculated from the area average of the variances and covariances. The one-

tailed student t-test has been computed and the black dotted, dashed and solid contours are respectively

the p-value 0.01, 0.05 and 0.1. Details on the computation of the number of degrees of freedom in the

text.
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 a)                                                 b) 

c)                                                  d)

Figure 2: Anomaly time series of Assim and NoAssim near-surface temperature with GHCN and

ERSST in the global domain (a,b) and tropical band (c,d). Fgure 2a shows the time series of the first

forecast month with a spatial average over the whole global domain, 2b is the anomalies timeseries

of all the forecast-months average over the whole global domain. In solid black the reference data.

Assim ensemble mean anomalies are is solid red while the Assim ensemble members in dotted red.

Analogously the NoAssim ensemble mean anomalies are in solid blue and the NoAssim ensemble

members in dotted blue. Figure 2c and 2d are the same as figure 2a and 2b but in tropical band. The

year in the abscissa corresponds to the start date of each individual hindcast. Note that the legend

indicates the correlation of Assim with the reference data and the correlation of NoAssim with the

reference data. In panels 2a and 2c the correlation between the observed Niño3.4 SST index with the

tropically averaged reference data is also shown.
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Figure 3: Correlation of Assim and NoAssim precipitation with CRU data depending on the forecast

time and the spatial averages. a), b) c) illustrates the global domain of respectively Assim and NoAssim

experiments and their difference. Analogously d), e), f) the Northern Hemisphere domain and g), h),

i) the Tropical band. Note that the colour bar for the third column is different from the others. The

x axis indicates the number of consecutive months included in the average (from 1 up to the whole

forecast period). The y axis represents the meridional extent of the spatial average at which the

variances and the covariances between model and observations are computed. From those values the

area average has been computed. The correlation has been calculated from the area average of the

variances and covariances. The one-tailed student t-test has been computed and the black dottetd,

dashed and solid contours are respectively the p-value 0.01, 0.05 and 0.1. Details on the computation

of the number of degrees of freedom in the text.
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