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REGULARISATION OF A CARBON CYCLE MODEL-DATA FUSION
PROBLEM

S. Delahaies∗, I. Roulstone∗ AND N. K. Nichols†

Abstract. The problem of constraining variables and parameters in a model of a terrestrial ecosystem,
using observations of the net ecosystem exchange of CO2, is studied within the framework of four-dimensional
variational data assimilation (4DVAR). 4DVAR combines the observations, the nonlinear model and our
prior knowledge of the ecosystem states and parameters, by optimizing a cost function. At the heart of
the assimilation process lies a simple but non-trivial inverse problem involving a linear operator. Using a
singular value decomposition of the linear operator, we show that the inverse problem is ill-posed and we
use the truncated singular value decomposition to find a regularized solution.
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1. Introduction. Model-data fusion, or inverse modelling, is the process of best com-
bining our understanding of the dynamics of a system, observations and our prior knowledge
of the state of the system. Improving our understanding of the carbon cycle is an important
component of modelling climate and the Earth system, and a variety of inverse modelling
techniques have been used to combine process models with different types of observational
data.

Eddy covariance measurements, see [1], of net ecosystem exchange of CO2 (NEE) have
been used intensively for over a decade to confront the Data Assimilation-Linked Ecosystem
model (DALEC) with real data. DALEC is a simple box model for terrestrial ecosystems
simulating a large range of processes occurring at different time scales from days to mil-
lennia. The work of Williams et al. (2005), see [13], established the benefit of using NEE
measurements in a Bayesian framework to improve estimates of carbon stocks and fluxes for
ecosystem models, and to quantify uncertainties. Following this work, the REgional FLux
Estimation eXperiment (REFLEX), reported in [5], compared the strengths and weaknesses
of various inverse modelling strategies to estimate parameters and initial stocks for DALEC.
Nine participants were asked to use DALEC together with NEE measurements with the
inverse modelling technique of their choice and variants of the Ensemble Kalman filter and
Monte Carlo methods were preferred choices; most results agreed on the fact that param-
eters and initial stocks directly related to fast processes were best estimated with narrow
confidence intervals, whereas those related to slow processes were poorly estimated with very
large uncertainties. While other studies have tried to overcome this difficulty by adding com-
plementary data streams, see [11], or by considering longer observation windows, see [10],
no systematic analysis has been carried out so far to explain the large differences among
results of REFLEX.

DALEC is a simple model; it represents the basic processes at the heart of more so-
phisticated models of the carbon cycle. A qualitative analysis of its dynamical behaviour
has been carried out in [2]. It is not our intention to arrive at a conclusion about the via-
bility or otherwise of DALEC as a tool for data-fusion studies: rather, its merit is that its
simplicity facilitates close mathematical scrutiny. The analysis we carry out here may be
performed on more complex models (e.g. JULES), but it is imperative to understand the
nature of the inverse problem for a simple, yet non-trivial, example first. Our analysis is
carried out on the tangent linear approximation of DALEC. We consider a simple inverse
problem involving an overdetermined linear system with synthetic observations. Using a
singular value decomposition we show that the problem is seriously ill-posed, and we study
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the effect of noise in the observation on the relative error in the solution. Finally we propose
a regularization of the solution using a truncated singular value decomposition.

The paper is organized as follows. In Section 2 we present the DALEC evergreen model
and its tangent linear approximation. In section 3, we consider an inverse problem for
the tangent linear model of DALEC. Using singular value decomposition we show that the
problem is ill-posed, that is, the solution is sensitive to small errors. In section 4 we use the
truncated singular value decomposition to regularize the inverse problem. Finally we draw
conclusions in section 5.

2. DALEC evergreen: mathematical formulation. The DALEC model is a simple
process-based model describing an evergreen forest ecosystem as a set of five carbon pools
linked via fluxes. The carbon pools represent foliage (Cf), woody stems and coarse roots

Fig. 2.1: DALEC evergreen model:GPP is linked to the carbon pools (C) via allocation fluxes
(green arrows), litterfall fluxes (red arrows), decompostion (black arrow). Respiration is
represented by the blue arrows. The orange arrow represents the feedback of foliar carbon to
GPP. Each arrow can be seen as a process controlled by one parameter.

(Cw), fine roots (Cr), fresh leaf and fine root litter (Cl) and soil organic matter and coarse
woody debris (Cs). The gross primary production (GPP), denoting the total amount of
carbon to be allocated, is calculated at a daily time step using the aggregated canopy model
(ACM) as a function of the site’s leaf area index and meteorological drivers (total daily
irradiance, minimum and maximum daily temperature, atmospheric CO2 concentration).
GPP is then allocated to carbon pools and respirations (autotrophic and heterotrophic) via
fluxes as depicted on Figure 2.1. The allocation processes are controlled by ten parameters.
An additional parameter, the foliar nitrogen content, is used in ACM to calculate the GPP.
The active variables are then the dynamic variables C = (Cf, Cr, Cw, Cl, Cs)

T together with
the parameters p = (p1, . . . , p11)T . The complete description of DALEC and the GPP
function can be found in [13]. A qualitative analysis of the dynamical behaviour of the
system was conducted in [2]. The evolution of the carbon pools at day t+ 1 is given by

Cf(t+ 1) = (1− p5)Cf(t) + p3(1− p2) GPP(Cf(t), p11,Φ),(2.1)

Cr(t+ 1) = (1− p7)Cr(t) + p4(1− p3)(1− p2) GPP(Cf(t), p11,Φ),(2.2)

Cw(t+ 1) = (1− p6)Cw(t) + (1− p4)(1− p3)(1− p2) GPP(Cf(t), p11,Φ),(2.3)

Cl(t+ 1) = (1− (p1 + p8)T (t))Cl(t) + p5Cf(t) + p7Cr(t),(2.4)

Cs(t+ 1) = (1− p9T (t))Cs(t) + p6Cw(t) + p1T (t)Cl(t),(2.5)
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Pool label description range initial state

C1 Cf foliar C mass 0/500 332
C2 Cr fine root C mass 0/500 313
C3 Cw wood C mass 0/30000 13121
C4 Cl fresh litter C mass 0/500 52
C5 Cs soil organic matter and woody matter C mass 0/15000 10024

Table 2.1: DALEC evergreen carbon pools with their respective range (gCm−2day−1).

Parameter label description range initial state

p1 Td decomposition rate 10−6/0.01 4.41 × 10−6

p2 Fg fraction of GPP respired 0.2/0.7 0.52
p3 Fnf fraction of NPP1 allocated to foliage 0.01/0.5 0.29
p4 Fnrr fraction of NPP2 alocated to roots 0.01/0.5 0.41
p5 Tf turnover rate of foliage 10−4/0.1 2.8 × 10−3

p6 Tw turnover rate of woods 10−6/0.01 2.06 × 10−6

p7 Tr turnover rate of roots 10−4/0.1 3.0 × 10−3

p8 Tl mineralisation rate of Cl 10−5/0.1 2.0 × 102

p9 Ts mineralisation rate of Cs 10−5/0.1 2.65 × 10−6

p10 Et temperature dependant rate parameter 0.05/0.2 6.93 × 10−2

p11 Pr Nitrogen use efficiency parameter in ACM 5/20 7.4

Table 2.2: DALEC evergreen parameters with their respective range.

where T is defined by

(2.6) T (t) =
1

2
exp(p10Tm(t)),

where Tm is daily mean temperature. Φ denotes the climate drivers: total daily irradi-
ance, minimum and maximum daily temperature, atmospheric CO2 concentration. The net
ecosystem exchange (NEE) of CO2 is estimated using DALEC as the difference between
GPP and respirations. It can be written as

(2.7) NEE(t) = (1− p2) GPP(Cf(t), p11,Φ) + p8ClT (t) + p9CsT (t).

The definition and acceptable range of the different carbon pools and allocation parameters
are summarized in Table 2.1 and 2.2. DALEC is designed to model a large range of processes
with very different time scales; this is reflected in the different scales of the carbon pools and
parameters. In order to avoid the computational problems caused by the different scales we
transform the active variables (CT ,pT )T ∈ Rn to normalized variables z = (zT1 , z

T
2 )T ∈ Rn,

where z1 = log(C) and z2 = log(p). We denote by Hi the nonlinear function that maps the
active variable z at day t0 to the NEE at day ti

(2.8) Hi : z 7→ NEE(ti).

Let x ∈ Rn be a perturbation. We denote by Hi the tangent linear operator defined by

(2.9) Hi(z + x) = Hi(z) + Hix +O(‖x‖2),

where ‖‖ denotes the euclidean norm, and formally given as a row vector of size n by

(2.10) Hi =

[
∂NEEi

∂z

]T
.

DALEC, in its original form, is given as a FORTRAN code of roughly one hundred lines of
code. The tangent linear operator Hi can be derived using well documented techniques (cf
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[6]) or using automatic differentiation software (OpenAD, see [12]). Both approaches were
tested producing similar results up to machine precision. Here we work with a code derived
by hand.

The tangent linear model can be used to perform forward and backward sensitivity
analysis. Figure 2.2 shows the Jacobian matrix for the NEE for a time window of two
thousand days. This picture gives the sensitivity with respect to the normalized variables.
We see some differences among columns which represent the active variables. The columns

Fig. 2.2: Jacobian matrix for the NEE for 2000 days: each line represents the operator Hi

for i = 1, . . . , 2000. The matrix is scaled to enhance the different magnitudes.

corresponding to Cw, p1 and p6 keep the same gray color during all the time window; this
indicates that NEE is very weakly sensitive with respect to these variables. On the contrary
for Cf, p2, p3, p5 and p11 we see periodic oscillations showing a larger sensitivity of the NEE
with respect to those variables. The periodicity of the signal corresponds to the seasonal
variability of the climate drivers (temperature, solar irradiance). Further analysis of the
sensitivity of DALEC can be found in [3]. We will see in the next sections how these
features of the Jacobian matrix affect the model-data fusion problem.

3. An ill-posed inverse problem. The aim of data fusion is to determine the model
trajectory that best fits the observed data. The best fit minimizes the errors between the
observations and the model predictions of the observations. We study the simplest case
that exhibits the difficulties inherent to fusing NEE observations with DALEC in order
to demonstrate and investigate the nature of the problem and propose simple methods to
overcome the difficulties. To do so we focus on the tangent linear operator Hi using basic
linear algebra and analysis.

We start with a perturbation x0 ∈ Rn, hereafter called the truth, and we generate N ,
N > n, exact observations y = (y1, . . . , yN )T uniformly distributed in time {t1, . . . , tN} by

(3.1) y = Hx0,
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where H denotes the observability matrix, that is the N × n matrix defined by

(3.2) H =

 Ht1
...

HtN

 .
Let ε ∈ RN be a discrete white noise with variance ν2. We study the effect of the noise on
the least square solution

(3.3) xLS = argmin ‖Hx− (y + ε)‖,

of the overdetermined linear system Hx = y+ε. We consider a singular value decomposition
of H of the form

(3.4) H = UΣVT ,

where U is a N×N unitary matrix, V is a n×n unitary matrix and Σ is the N×n diagonal
matrix whose diagonal elements are the singular values σ1 ≥ · · · ≥ σn ≥ 0. The solution
xLS can be written as

(3.5) xLS =

n∑
i=1

uT
i (y + ε)

σi
vi,

where ui and vi are the left and right singular vectors, namely the column vectors of the ma-
trices U and V respectively. The solution corresponds to the maximum likelihood estimator
and its variance, used later in the construction of confidence intervals, is given by

(3.6) Cov(xLS) = (HTH)−1.

We now examine the maximum relative change in the solution, or relative error, due to noise
with standard deviation ν and defined by

(3.7) η(ν) =
‖xLS(ν)− x0‖

‖x0‖
.

The relative error in the i-th component of the solution is given by

(3.8) ηi(ν) =

∣∣∣∣xLS,i(ν)− x0,i

x0,i

∣∣∣∣ ,
for i = 1, . . . , n. It is well known, see [4, 7], that the relative error is bounded by

(3.9)
‖xLS − x0‖
‖x0‖

≤ κ(H)
‖ε‖
‖y‖

,

where κ(H) is the condition number of H defined by κ(H) = σ1/σn. When the condition
number is large the matrix is said to be ill-conditioned, the problem is ill-posed and the solu-
tion (3.5) is unstable: small perturbations to the system can lead to very large perturbations
in the solution.

The ill-posedness of the problem and its effect on the solution xLS is illustrated in
Table 3.1. As described above we choose a true perturbation x0, we generate N = 200
true observations uniformly distributed in days {t1, . . . , tN} and we form the observability
matrix H. The condition number of H is κ(H) = 1.6 × 109. Three different values for the
noise variance ν are considered: 10−7 corresponding to machine epsilon for single precision,
10−2, and 0.5 corresponding to a realistic level of noise for NEE measurements. The values
for ηi and η are reported in Table 3.1. As shown in the last row of the Table 3.1 the relative
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ν = 10−7 ν = 10−2 ν = 0.5

Cf 3.96e-14 2.87e-04 1.15e+00
Cr 1.07e-09 1.21e+00 1.58e+04
Cw 1.87e-08 2.29e+01 3.21e+05
Cl 4.67e-10 5.86e-01 7.65e+03
Cs 2.06e-10 4.45e-01 6.56e+02
p1 2.30e-06 2.65e+03 3.46e+07
p2 1.97e-14 1.11e-04 7.83e-02
p3 5.46e-14 9.83e-04 1.26e-01
p4 9.79e-10 1.17e+00 1.52e+04
p5 2.34e-14 8.43e-04 5.38e-01
p6 1.36e-08 1.41e+01 2.50e+05
p7 3.62e-11 4.03e-02 5.51e+02
p8 4.84e-10 5.86e-01 7.64e+03
p9 2.13e-10 4.42e-01 7.06e+02
p10 2.39e-14 1.38e-06 1.25e-01
p11 1.72e-14 1.03e-04 1.03e+00

η 1.35e-08 1.64e+01 2.31+05

Table 3.1: The change in the relative errors η and ηi defined in equations (3.7) and (3.8)
as functions of ν.

error η increases drastically as ν increases, and for a realistic level of noise (ν = 0.5) the
solution is not reliable. When ν = 10−7 all variables are correctly estimated with at least six
digits accuracy but yet we can see differences among variables. With a standard deviation
ν = 10−2 the parameters p1, p6, and the carbon pool Cw are far from their true value. More
generally we find an agreement with the results of REFLEX: parameters directly linked
to foliage and gross primary productivity are better estimated than parameters related to
allocation to and turnover of fine root/wood. The results of Table 3.1 reflect the sensitivity
analysis discussed in the previous section. The variables with respect to which NEE is the
most (resp. least) sensitive are the less (resp. more) affected by the noise. In the next section
we consider a well established method to reduce the impact of the noise on the solution of
the problem.

4. Regularization. Several methods exist to regularize ill-posed inverse problems;
their performance depends on the nature of the ill-posedness. The truncated singular value
decomposition (TSVD) is a popular method for regularization. TSVD consists in truncating
the sum in equation (3.5) in order to remove the smallest singular values, the most affected
by the noise. The solution is then given by

(4.1) xTSVD =

k∑
i=1

uT
i (y + ε)

σi
vi,

where k is the truncation rank. The covariance of the solution is given by

(4.2) Cov(xTSVD) = VΣ−2
k VT ,

where Σk is the matrix of singular values with the n−k smallest singular values set to zero.
The truncation rank k can be chosen using the L-curve method. The L-curve is a log-log
plot of the norm of the solution ‖xk‖ against the norm of the residual ‖Hxk − (y + ε)‖
parametrized by the regularisation parameter k. The optimal parameter corresponds to the
point of maximum curvature of the L-curve. Further details on the L-curve method can be
found in [9].
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We now apply TSVD to our inverse problem. As previously we choose a perturbation x0

and we generate the N = 200 true observations y uniformly distributed in time {t1, . . . , tN}
where y = (y1, . . . , yN )T is given by

(4.3) yi = Htix0, i = 1, . . . , N,

and finally we add a white noise ε with standard deviation ν = 0.5. We used Hansen’s
regularization tools [7] to perform the TSVD method. The truncation rank k = 7 is found
using the L-curve shown on Figure 4.1. Table 4.1 shows the regularized solution, the standard

Fig. 4.1: L-curve: log-log plot of the norm of the solution ‖xk‖ against the norm of the
residual ‖Hxk − (y + ε)‖ parametrized by the regularisation parameter k. The blue curve
shows an interpolation of the discrete L-curve (red points); the green point corresponding to
k = 7 is the corner of the curve.

deviations and the relative errors. The last column of Table 4.1, presenting the relative error
in the regularized solution, can be compared with the last column of Table 3.1 which shows
the relative error of the unstable solution with the same level of noise. Whereas the relative
errors in the unstable solution range from 7.83 × 10−2 to 3.46 × 107 the relative errors in
the regularized solution range from 2× 10−2 to 1. The standard deviations are of the same
magnitude as the variables, but considering the large ranges for the variables (see Table
2.1 and 2.2) they nevertheless provide relatively narrow confidence intervals. We see that
TSVD has the effect of keeping small the variables that cannot be estimated correctly: for
the variables Cs, p1 and p6, for which the relative errors were the biggest in Table 3.1, the
relative error is close to 1. As previously stated the results of the regularization should to
be related to the sensitivity analysis depicted on Figure 2.2: TSVD performs better on the
variables with respect to which NEE is the most sensitive and prevents the variables with
respect to which NEE is the least sensitive from growing unboundedly.

Figure 4.2 shows the noisy observations (red points) together with the true trajectory
for the NEE (red curve) and the trajectory obtained with the regularized solution (blue).
Finally the 95% confidence area (blue shaded area) is constructed using a χ2 test. We see
that the regularized solution matches the truth with a narrow confidence interval in the
three-year observation period. Moreover the regularized solution remains close to the truth
with still a narrow confidence interval in the next three-year period.
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x ν ηi

Cf 53.2 56.9 0.080
Cr 34.7 67.3 0.357
Cw 1.9 2.7 0.999
Cl 6.5 16.0 0.689
Cs 1739.3 778.2 0.172
p1 -5.8E-10 4.2E-10 1.000
p2 0.12 0.056 0.217
p3 0.04 0.048 0.141
p4 0.11 0.13 0.346
p5 3.6E-4 5.4E-4 0.352
p6 3.7E-10 5.5E-10 0.999
p7 4.6E-4 7.3E-4 0.220
p8 4.8E-3 0.3E-3 0.204
p9 4.3E-6 1.8E-6 0.185
p10 1.3E-2 1.0E-2 0.020
p11 1.6 1.2 0.133

Table 4.1: TSVD solution: solution, standard deviation and relative error.

Fig. 4.2: NEE time series: true trajectory (red curve), NEE observations (red points),
trajectory obtained with the TSVD solution (blue), the blue shaded area is the 95% confidence
interval for the regularized solution.

5. Concluding remarks. The problem of estimating parameters and initial stocks
for the DALEC model using NEE observations has been the subject of many papers in
recent years [5, 10, 11, 13]. Inverse modelling techniques such as Ensemble Kalman filter
and Monte Carlo methods have proven their ability to correctly estimate some parameters
and to reduce the uncertainty of the predicted carbon fluxes; however, to date there is no
consensus on the reason why some parameters remain poorly estimated and how to address
this issue. This paper adopts the formalism of variational data assimilation to try provide
insights into these questions. We derived the tangent linear model of the DALEC evergreen
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model and we considered a simple inverse problem for the linearisation of DALEC using
synthetic observations. The small size of the problem allowed us to use basic linear algebra
to show the ill-posedness of the problem. We then considered the truncated singular value
decomposition and we showed that this method provides a robust solution.

Having found a regularization of this much studied model-data fusion problem, we are
investigating other techniques, and studying their application to more sophisticated models
of the carbon cycle. This work will be complemented by studies of the dynamical system
aspects of these models (cf. Chuter et al. 2013), and analyses of the performance of data
assimilation algorithms using eddy covariance measurements.
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