School of Mathematical University of
and Physical Sciences <y Readlng

Department of Mathematics and Statistics

Preprint MPS-2013-19
9 September 2013
Non-steady state heat conduction in
composite walls

by

Bernard Deconinck, Beatrice Pelloni
and Natalie Sheils




Non-steady state heat conduction in composite walls

Bernard Deconinck’ Beatrice Pelloni* Natalie Sheils'

t Department of Applied Mathematics
University of Washington
Seattle, WA 98195-2420
bernard@amath.washington.edu nsheils@amath.washington.edu

* Department of Mathematics
University of Reading
RG6 6AX, UK
b.pelloni@reading.ac.uk

September 9, 2013

Abstract

The problem of heat conduction in one-dimensional piecewise homogeneous composite ma-
terials is examined by providing an explicit solution of the one-dimensional heat equation in
each domain. The location of the interfaces is known, but neither temperature nor heat flux are
prescribed there. Instead, the physical assumptions of their continuity at the interfaces are the
only conditions imposed. The problem of two semi-infinite domains and that of two finite-sized
domains are examined in detail. We indicate also how to extend the solution method to the
setting of one finite-sized domain surrounded on both sides by semi-infinite domains, and on
that of three finite-sized domains.

1 Introduction

The problem of heat conduction in a composite wall is a classical problem in design and construction.
It is usual to restrict to the case of walls whose constitutive parts are in perfect thermal contact
and have physical properties that are constant throughout the material and that are considered to
be of infinite extent in the directions parallel to the wall. Further, we assume that temperature and
heat flux do not vary in these directions. In that case, the mathematical model for heat conduction
in each wall layer is given by [8, Chapter 10]:

i = ul) z € (aj,b;), (1a)

w9 (z,t =0) = ugj)(x), z € (aj,bj), (1b)

where ul)(x,t) denotes the temperature in the wall layer indexed by (j), x; > 0 is the heat-
conduction coefficient of the j-th layer (the inverse of its thermal diffusivity), = a; is the left



extent of the layer, and = = b; is its right extent. The sub-indices denote derivatives with respect

to the one-dimensional spatial variable x and the temporal variable ¢. The function u(()J )(m) is
the prescribed initial condition of the system. The continuity of the temperature u{) and of its
associated heat flux Hju(j ) are imposed across the interface between layers. In what follows it is
convenient to use the quantity o, defined as the positive square root of r;: o; = |/K;.

If the layer is either at the far left or far right of the wall, Dirichlet, Neumann, or Robin boundary
conditions can be imposed on its far left or right boundary respectively, corresponding to prescribing
“outside” temperature, heat flux, or a combination of these. A derivation of the interface boundary
conditions is found in [8, Chapter 1]. It should be noted that the set-up presented in also
applies to the case of one-dimensional rods in thermal contact.

In this paper, we use the Fokas Method [3], 5] [6] to provide explicit solution formulae for different
heat transport interface problems of the type described above. We investigate problems in both
finite and infinite domains and we compare our method with classical solution approaches that can
be found in the literature. Throughout, our emphasis is on non-steady state solutions. Even for the
simplest of the problems we consider (Section [3| two finite walls in thermal contact), the classical
approach using separation of variables [8] can provide an explicit answer only implicitly. Indeed, the
solution obtained in [8] depends on certain eigenvalues defined through a transcendental equation
that can be solved only numerically. In contrast, the Fokas Method produces an explicit solution
formula involving only known quantities. For other problems we consider, to our knowledge no
solution has been derived using classical methods, and we believe the solution formulae presented
here are new.

The representation formulae for the solution can be evaluated numerically, hence the problem
can be solved in practice using hybrid analytical-numerical approaches [4] or asymptotic approxi-
mations for them may be obtained using standard techniques [5]. The result of such a numerical
calculation is shown at the end of Section 2

The problem of heat conduction through composite walls is discussed in many excellent texts,
see for instance [2, [§]. References to the treatment of specific problems are given in the sections
below where these problems are investigated. In Section [2| we investigate the problem of two semi-
infinite walls. Section [3] discusses the interface problem with two finite walls. Following that, we
consider first the problem of one finite wall between two semi-infinite ones, and the problem of
three finite walls. Both of these are briefly sketched in Section [4 and full solutions are presented in
the electronic supplementary material.

2 Two semi-infinite domains

In this section, we consider the problem of heat flow through two walls of semi-infinite width, or of
two semi-infinite rods.

We seek two functions
ub(z,t), z € (—00,0), t>0, uB(z,t), z€(0,00), t>0,

satisfying the equations

uk(z,t) = orul, (x,1), x € (—00,0), t >0, (2a)
ult(z,t) = o%ull (x,1), x € (0,00), t >0, (2b)



the initial conditions

ub(z,0) = ub(z), x € (—00,0), (3a)
u(z,0) = ull(z), z € (0,00), (3b)

the asymptotic conditions

Egl UL(:L‘,t) =L, t>0, (4&)
li_}In u(xz,t) = yr, t>0, (4b)

and the continuity interface conditions

u®(0,t) = u"(0,1), t>0, (5a)
o2ul(0,t) = o%ul(0,1), t>0. (5b)

The sub- and super-indices L and R denote the left and right rod, respectively. A special case
of this problem is discussed in Chapter 10 of [§], but only for a specific initial condition. Further,
for the problem treated there both lim, o u(2,t) and lim,_, o u”(z,t) are assumed to be zero.
This assumption is made for mathematical convenience and no physical reason exists to impose it.
If constant (in time) limit values are assumed, a simple translation allows one of the limit values
to be equated to zero, but not both. Since no great advantage is obtained by assuming a zero limit
using our approach, we make the more general assumption

We define v(z,t) = ul(z,t) — 4L and v¥(z,t) = uf(z,t) — 4. Then v¥(z,t) and v (x,t)
satisfy

ol (x,t) = o2l (1), x € (—00,0) t >0, (6a)

vt (z,t) = ool (2, 1), x € (0,00) t>0, (6b)

lim v%(z,t) =0, t>0, (6¢)
T—r—00

ILm vfi(z,t) =0, t>0, (6d)
Tr—r0o0

vl (0,1) + 4L = 0vB(0,1) + 4T, t>0, (6e)

o3l (0,t) = o%vl(0,1), t>0 (6f)

At this point, we start by following the standard steps in the application of the Fokas Method [3],
9, [6]. We begin with the so-called “local relations” [3]

(e~ ket oLk tyL (3 1)), = (o2 Ret @ (yL (2 #) 4 ikv (2, 1)))a, (7a)

(e ket ORR* R (1 1)), = (ohe R HTRR L (B 1) 4 ikof (2, 1)))a. (7b)

These relations are a one-parameter family obtained by rewriting and .
Applying Green’s formula [I] in the strip (—o0,0) x (0,t) in the left-half plane (see Figure
we find



Figure 1: Domains for the application of Green’s formula for v¥(z,t) and v%(x,1).

(2,))s — (02 Hat@Lk?®s ()L (3 o) 4 ik (x,5)))p dds = 0

t 0
/ / (efik:x+(ULk)2va
0 J—o0
o o ) t )
:>/ eyl (z) do — / e~ ket oLk ty L (1 4) da +/ o7e LR (yL(0, 5) + ikv™ (0, 5)) ds = 0.
- 0
(8)

—0o0 o0

Since |z| can become arbitrarily large, we require k € C* in in order to guarantee that the
first two integrals are well defined. Let D = {k € C : R(k?) < 0} = D U D~. The region D is

shown in Figure
For k € C we define the following transforms:

t t
go(w,t) = / v’ (0,5)ds = / (0, 5) + 41 —~F) ds
0 0

R _ AL wt _ 1 t
(’Y Y )(e ) +/ ewsz(O’ 8) dS,
w 0

2t
7k el (0, 5) ds,

t
g1(w,t) = / el (0, 5)ds = —
0 91 Jo
0 .
ol (k, t) :/ e~ Fryl(x 1) da,

o
T (k, ) :/ e~ Ryl (g, ) da,
0
Using these definitions, the global relation is rewritten as

(k) — e L (k. 4) + iko2go((opk)?, ) + o2gi((ok)?,t) =0, ke Ct.
(opk)? is invariant under & — —k, so are go((opk)?,t)

(9)

oG

Since the dispersion relation wy (k)
and g ((opk)?,t). Thus we can supplement @D with its evaluation at —k, namely

— LRyl (g ) — kot go((oLk)?, t) + o2gi ((opk)2, t) = 0. (10)
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Figure 2: The Domains D" and D~ for the heat equation.

This relation is valid on k € C~. Using Green’s Formula on (0, 00) x (0,) (see Figure[l]), the global
relation for v®(z,t) is

(v = ) (elork)*t — 1
(oRk)?

ﬁé%(k’) - e(JRk)%@R(kv t) - ’LkO’% GO((O—Rk)Za t) + )) - O—%gl((JRk’)z? t) =0, (11)
valid in k € C™.

As above, using the invariance of wr(k) = (0rk)?, go((ork)?,t), and g1((ork)?,t) under k —
—k, we supplement with

2 L _ Ry(elork)*t _ 1
0 (—k) — e TRk 1) +iko?, (90((07%‘?)27” # )> Ty

(ork)?
— o791((ork)?,t) =0,

for k € CT.
Inverting the Fourier transforms in @ we have

1 0o 2 0o
vy = g [y dk g TE [ e g0k 1) + gr (91 ) ak

2 J_ o
(13)
for z € (—00,0) and ¢ > 0. The integrand of the second integral in is entire and decays as
k — oo for k € C~ \ D~. Using the analyticity of the integrand and applying Jordan’s Lemma [I]
we can replace the contour of integration of the second integral by — | aD-"
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1 [ . .
ol (e, t) = o / ethe (kP tgk () dk — 2L / RO (ikgo (o k), 1) + g1((oLk)? 1)) dk.
27'(' —00 27‘(‘ oD— ( )
14
Proceeding similarly on the right, starting from , we have
1 > ikz—(ork)%t
vz t) = 277/—006 ko=(ork)“t ol (1) df—
1 [ L _ Ry(elork)*t _q
— / eike—(ork)t <zkaR (go((URk‘)Q,t) + 0 —7 (<)7<Rk)2 ) +o1g1((ork)*,t) | dk,
1—erf | —2 +1/ etha—(ork)%t ol (k) dk+
9 UR 2
oo [ e koo (k. 0) + o (k). 0)
€z 1 > i x—(o 2¢ o
1 —erf 2\/» + 27r/ ke—=(ork)"t 5l (1) dk+
1 o ,
— 5 R OrR (ko2 g0 (o k)%, t) + o291 ((ogk)?, 1)) dk. (15)
T JoD+

for € (0,00) and ¢ > 0. Here erf(-) denotes the error function: erf(z) = % foz exp(—y?) dy.

The expressions and for v¥(x,t) and vf(x,t) depend on the unknown functions go
and g1, evaluated at different arguments. These functions need to be expressed in terms of known
quantities. To obtain a system of two equations for the two unknown functions we use and
for go((ork)?t), and g1((ork)?,t). This requires the transformation k — —ork/og in (I1). The
— sign is required to ensure that both equations are valid on C~, allowing for their simultaneous
solution. We find

7
kor(or + oR)
(0 = ) (1 = et

go((oLk)? 1) = (el (8 (—k, t) + 8% (ko Jor, ) — 0 (—k) — i (kor/or))+

oo ton) 10)
a1 ((opk)?,t) = 2(1(6("Lk)2t(oRf)L(k, t) — oo (ko /og,t)) + oL of (kor/og)+
o7 (oL + oR)
_ URUé( k)) + Z.(’YL — 'YR)(l — e(oLk) t)’ (17)

k‘O‘%(O‘L +OoR)

valid for k € C~. These expressions are substituted into and . This results in expressions
for v¥(x,t) and vf(z,t) that appear to depend on v” and v themselves. We examine the contri-
bution of the terms involving ¢% and ©. Starting with we obtain for v¥(z,t) the following
expression:
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Figure 3: The countour £~ is shown in green. An application of Cauchy’s Integral Theorem [I] us-
ing this contour allows elimination of the contribution of #¥(—k, t) from the integral expression .
Similarly, the contour £ is shown in red and application of Cauchy’s Integral Theorem using this
contour allows elimination of the contribution of 4®(—k,t) from the integral expression .

R _ L 1 oo
ety = ROy [ + 2= / ehe =L gl (1) dkt
o+ oR 9 a%t 27 J_o
OR — 0L ikz—(opk)?t AL / oL ikz—(ork)?t AR
+ e vy (—k)dk — e v (ko /or) dk+
/8D 27m(or + oR) 0 (=) op- m(or + oR) o (kor/or)

+/ _ILT R ikepL( k1) dk +/ — Tk R (kop fog,t) dk, (18)
ap- 2m(0or + OR) op- ™(0L +IR)

for z € (—00,0), t > 0. The first four terms depend only on known functions. To examine the
second-to-last term we notice that the integrand is analytic for all k € C~ and that 9*(—k, ¢) decays
for k — oo for k € C~. Thus, by Jordan’s Lemma, the integral of exp(ikz )™ (—k,t) along a closed,
bounded curve in C™ vanishes. In particular we consider the closed curve L~ = Lyp- U L where
Lop- =0D " N{k:|k|<C}and L, ={k e D™ : k| =C}, see Figure

Since the integral along L, vanishes for large C, the fourth integral on the right-hand side of
must vanish since the contour Ly~ becomes 9D~ as C' — oo. The uniform decay of 9% (—k, t)
for large k is exactly the condition required for the integral to vanish, using Jordan’s Lemma. For
the final integral in Equation we use the fact that 4% (koy/og,t) is analytic and bounded for
k € C~. Using the same argument as above, the fifth integral in vanishes and we have an
explicit representation for v*(x,t) in terms of initial conditions:



R _ L 1 oo
vl(z,t) = or(" = 77) 1+ erf x +— / ezkm_(oLk)Qtﬁg(kz) dk+

oL+ OR 2 U%t 21 J oo
OR — 0L ikz—(opk)tsL oL ikz—(oLk)*t R
+/ _IRTOILike—(onkPtal (L) dk — L 08 (ko /oR) dk.
A P O T o (hor/on)

(19)

To find an explicit expression for v%(x,t) we need to evaluate gy and g; at different arguments,
also ensuring that the expressions are valid for k € C* \ D*. From (16) and (17), we find

—Z . ~ ~ .
go((ork):t) = m(e(aRk)Qt(UL(kUR/ULJ) + 08 (—k,t)) — 0§ (kor/or) — 0(—k)) +
(vF = yB) (1 = elorb)’ty
k20'R(O'L + UR)
1 . . N
g1((ork)t) = m(e(”Rk)Qt(aRvL(kaR/aL, t) — o8 (=k, 1)) + o5 (=) +
L

+

I

i(yE — )1 — elork)’t)

—opig(kog/or)) — ko?(or + oR)
L

Substituting these into equation ([15]), we obtain

L R 1 oo
oAty = LT [ 2 + o= / ethr=(ork*t ol () dle+
or +0R 9 aét 27 J_ o
OR — 0L  ikz—(ork)%tsR / 9R ike—(ork)2t L
+ —— ¢ o (—k) dk + ——¢ 0y (kor/or,t) dk+
/am 2n(op + oR) 0 (=) opt+ T(oL + 0oR) o(kor/o1.1)

0L —OR  ike~R OR ikx A~ L
+/ —— """ (—k, t dk—/ ———e"™ v (kogr/or,t) dk. 20

op+ 2m(or + OR) (=) op+ ™(0L + OR) (kon/or,?) (20)
for z € (0,00), t > 0. As before, everything about the first three integrals is known. To compute
the fourth integral we proceed as we did before for v*(x,t) and eliminate integrals that decay in
the regions over which we are integrating. The final solution is

L _ R 1 oo

vz t) = 70L(7 1) 1—erf v + / e’kx_(aRk)Z’fﬁg(kz) dk+
o, + oRr 9. Jo2t 2 J_

R

OR = OL  iko—(onk)t / OR ikz—(opk)2t, L
+ T —k)dk + — k dk.
/6D+ 2m(or + oR) ‘ % (=) op+ T(oL + UR)e v (kor/oL)
(21)

R and

Returning to the original variables we have the following proposition which determines u
u fully explicitly in terms of the given initial conditions and the prescribed boundary conditions

as |z| — oo.



Proposition 1 The solution of the heat transfer problem (@—(@ s given by

R _ L 1 oo
UL(:E,t) _ ’YL + JR(7 ° ) 1—erf € + / ezkac—(aLk)Qtﬁg(k,) dk+
o, + oR 9. /o2t 2 J_
L
OrR — 0L ikz—(opk)?t AL / oL ikz—(ork)?t AR
+ e vy (—k)dk — e vy (kor /or) dk,
/aD 2 (oL + oR) 0(=H) op- T(0L + OR) o (kor/or)
(22a)
L _ R 1 0o
UR(:L‘,t) _ 7R + UL(7 g ) 1—erf £ + / ezkm—(ogk)%@(])%(k) dk+
oL +0R 9. Jo2t 27 J_ o
R
9rR — 0L ikz—(ork)%t, R / OR ikz—(ork)?t, L
+ —k)dk + k dk.
/6D+ 2m(oL + oR) ‘ % (=) op+ m(oL + UR)e v (kor/oL)
(22b)

Remarks.

e The use of the discrete symmetries of the dispersion relation is an important aspect of the
Fokas Method [3], /5, [6]. When solving the heat equation in a single medium, the only discrete
symmetry required is kK — —k, which was used here as well to obtain and . Due to the
two media, there are two dispersion relations in the present problem: w; = (opk)? and ws =
(crk)?. The collection of both dispersion relations {wy,ws} retains the discrete symmetry
k — —k, but admits two additional ones, namely: k — (or/or)k and k — (o1 /or)k, which
transform the two dispersion relations to each other. All nontrivial discrete symmetries of
{w1,ws} are needed to derive the final solution representation, and indeed they are used e.g.

to obtain the relations and .

e With o7 = op and 4% = 4% = 0, the solution formulae in their proper z-domain of
definition reduce to the solution of the whole line problem as given in [5].

e (lassical approaches to the problem presented in this section can be found in the literature,
for the case v, = 0 = yg. For instance, for one special pair of initial conditions, a solution
is presented in [8]. No explicit solution formulae using classical methods with general initial
conditions exist to our knowledge. At best, one is left with having to find the solution of
an equation involving inverse Laplace transforms, where the unknowns are embedded within
these inverse transforms.

e The steady-state solution to (2) with initial conditions which decay sufficiently fast to the
boundary values at oo is easily obtained by letting ¢ — oo in . This gives
limy oo (2, t) = limy_s00 uX(x,t) = (vFor +7%oRr) /(o +0g). This is the weighted average
of the boundary conditions at infinity with weights given by o1 and or. To our knowledge
this is a new result. It is consistent with the steady state limit (y% +~%)/2 for the whole-line
problem with initial conditions that limit to different values v and v as  — 4o0o. This
result is easily obtained from the solution of the heat equation defined on the whole line
using the Fokas Method, but it can also be observed by employing piecewise-constant initial
data in the classical Green’s function solution, as described in Theorem 4-1 on page 171 (and



comments thereafter) of [7]. It should be emphasized that the steady state problem for (215
or even for the heat equation defined on the whole line with different boundary conditions at
400 and —oo is ill posed in the sense that the steady solution cannot satisfy the boundary
conditions.

Using a slight variation on the method presented in [4] one can compute the solutions
numerically with specified initial conditions. We plot solutions for the case of vanishing boundary
conditions (v* = yf = 0) with

ull(z) = a2 R,

with ap = 25 and ap = 30. The Fourier transforms of these initial conditions may be computed
explicitly. We choose o = .02 and o = .06. The initial conditions are chosen so as to satisfy the
interface boundary conditions at ¢ = 0. The results clearly illustrate the discontinuity in the
first derivative of the temperature at the interface z = 0.

3 Two finite domains

Next, we consider the problem of heat conduction through two walls of finite width (or of two finite
rods) with Robin boundary conditions:
we seek two functions

uL(aj,t), x € (—a,0), t>0, uR(a:,t), x € (0,b), t>0,

satisfying the equations

uf (z,t) = orul, (x,1), —a<xz<0,t>0, (23a)
ult(z,t) = ohull (z,1), 0<z<b t>0, (23b)

the initial conditions

(), —a <z <0, (24a)
(x), 0<z<b, (24Db)

the boundary conditions

fL(t) = oquL(—a, t) + ozguf,(—a,t), t>0, (25a)
FR) = azul(b,t) + aqul(b, 1), t>0, (25Db)

and the continuity conditions

u*(0,t) = u(0,1), t>0, (26a)
otug(0,t) = oqul(0,1), t>0, (26b)

as illustrated in Figure |5, where @ > 0, b > 0 and «;, 1 < ¢ < 4 constant.

10
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Figure 4: Results for the solution and with uf(z) = z2e()’e, ull(z) = 2230 and
op = .02, o = .06, vL' = 4 =0, t € [0,0.02] using the hybrid analytical-numerical method of [4].
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L _ 2 L R 2 R
Uy = opuy, Uy = ORUyy i

I T
b

ol

Figure 5: The heat equation for two finite rods.

If a1 = a3 = 0 then Neumann boundary conditions are prescribed, whereas if s = g = 0 then

Dirichlet conditions are given.
As before we have the local relations

(efikar(aLk)QtuL(x,t))t :( % —ikz+(opk)? t( ($ t) —{—zku ( )))x) (273)
(e Rt @Rkt Ry 1)), = (o%e B TR (B (g 1) + ikuf (2, 1)))q. (27b)

We define the time transforms of the initial and boundary data and the spatial transforms of u

for k € C as follows:

0 . 0 .
ad (k) :/ e~ *yl(z) du, a* (k,t) :/ e~ Ryl (2, t) de,
7b . 7b .
al (k) :/ e~ heyli(z) d, (k. t) :/ e~ Ry Rz t) da,
0 0
R ¢ . ¢
fulot) = [ e puls)ds, Fuwt) = [ fals)ds
0 0
t ¢
hf(w,t):/o e“*ul(—a,s)ds, hOL(w,t):/O e“sul(—a,s)ds,
t ¢
R (w,t) :/0 e“sull(b, 5) ds, hE(w, 1) :/0 e“sufi(b, 5) ds,
¢ o2 [t
g1(w,t) = / e“*uk(0,5)ds = —}2% e*ul(0, 5) ds,
0 91 Jo
t t
go(w, t) :/ “su2(0,5) ds —/ “suR(0, 5) ds.
0 0

Using Green’s Theorem on the domains [—a, 0] x [0,¢] and [0, b] x [0, t] respectively, we have the

global relations

TG (1) = oF (1((oLk)? 1) + ikgo((o1k)?, 1)) — €0 (b (o1k)?, 8)+

+ ikh (oLk)?, b)) + af (k), (28a)
e TrRR R (k1) = e R (W (o pk)2, 1) + ikhE (orK)?), 1) — 03 g1((0Rrk)% )+
— ikohgo((ork)?, t) + i (k), (28b)

Both equations are valid for all & € C, in contrast to @D and . Using the invariance of

12



wr (k) = (opk)? and wr(k) = (ork)? under k — —k we obtain

TG (k. t) =03 (g1 ((01k)%, t) — ikgo((oLk)? 1))+

— ek (WL (o1 k)2, t) — ikhE ((oLk)2, 1)) + Ak (—k), (29a)
e R G (k) =eMoh(hf (ork)? t) — ikh (ork)?), 1)+
— 011 ((ork), 1) + ikokgo(ork)? ) + il (—k), (29b)

Inverting the Fourier transform in (28al),

1 oo .
u”(z, 1) = / k=Lt 52 (0 (o1 K)2,t) + ikgo((ork)?, 1)) dk+

1 o
-5 et n)=(Lk)*t o2 (L (g1 )2 8) + ikhk ((oLk)?, 1)) dk+
1 > ikx—(o 2¢ o
o mek Lkl (k) dk. (30)

The integrand of the first integral is entire and decays as k — oo for k € C~ \ D~. The second
integral has an integrand that is entire and decays as k — oo for k € C* \ DT. It is convenient to
deform both contours away from k = 0 to avoid singularities in the integrands that become apparent
in what follows. Initially, these singularities are removable, since the integrands are entire. Writing
integrals of sums as sums of integrals, the singularities may cease to be removable. With the
deformations away from k = 0, the apparent singularities are no cause for concern. In other words,
we deform DV to D(T and D~ to Dy as show in Figure @ Thus

-1 )
ul (2, t) / M=kt o2 (0 (k)2 1) + ikgo((oLk)?, 1)) dk+
oDy

Tom
1 .
-5 ezk(aJr:Jc)*(JLk)%U%(hlL((O_Lk)27t) + ikhé((ULk)2,t)) dk+
T JoDg
1 [ .
+— [ ekl g dk. (31)
2 J_ o

To obtain the solution on the right we apply the inverse Fourier transform to (28bl):

u(x,t) Z% / =0~ (rk)*t 62 (WR((gpk)2 1) + ikh&((oRk)2, 1)) dk+

—0o0

1 [ ,
— o | e ikohg(ork)?, 1) + oFgi (k)% 1)) dk+
1 [ .
+5- / k= (Ork* LR (1) dk. (32)

The integrand of the first integral is entire and decays as k — oo for k € C~ \ D~. The second
integral has an integrand that is entire and decays as k — oo for k € C* \ D*. We deform the
contours as above to obtain

13



Figure 6: The deformed domains D(T and Dy, used to avoid the origin.

uf(z,t) =

wt anthwt

e e (k1) + ik (k). 0) dk

o
1 . .

— 5 | R ikodgo(ork), 1) + 07 g1 (k). ) dk+
T JoDg
1 o 1kx—(o 2¢ .

+27r/_ooek TRkt 4R () dk.

Taking the time transform of the boundary conditions results in

fE(w,s) = arhE(w, t) + aoh(w, 1),

B (w, s) = ashll(w,t) + aghf(w,t).

AL(k) — 7T(O'L(62mk + 1)(e2ibkaL/ch _ 1) + O_R(62iak _ 1)(62ibkcrL/ch + 1))

= im(e¥F 4 1)(e2PkoL/r 4 1) (o, tan(bkor, JoR) + o R tan(ak)).

14

(33)

These two equations together with (29a) and (29b)) are four equations to be solved for the four
unknowns h{(w,t), hit(w,t), h¥(w,t), h¥(w,t). The resulting expressions are substituted in

Although we could solve this problem in its full generality, we restrict to the case of Dirichlet
boundary conditions (ag = a4 = 0), to simplify the already cumbersome formulae below. Then
) are determined, and we solve two equations for two unknowns. The system

is not solvable for hi*(w,t) and hf(w,t) if Ay (k) = 0, where



It is easily seen that all values of k satisfying this (including k£ = 0) are on the real line. Thus
on the contours, the equations are solved without problem, resulting in the expressions below. As
before, the right-hand sides of these expressions involve 4 (k,t) and @”(k,t), evaluated at a variety
of arguments. All terms with such dependence are written out explicitly below. Terms that depend
on known quantities only are contained in K and K%, the expressions for which are given later.

ik ik(z+2bor /oR) _

uL(x,t):KLJr/ ALK U

6Dy
_ ik(z+2a) ik(z+2a+2bor /oR) _
/ e (o, +0R) +e (oL UR)ﬂL(—k,t) Qe

oD~ 2A (k)

ik(z+2a+2bor, /oR) _ ik(z+2a)
ore R ore ~R
+ w't (ko /oR,t dk:+/ ———— 0 (—ko/og,t)dk+
oDg A (k) (korfon,) op;  Ar(k) ( fom1)
etk (z+2a) (UR _ UL) + eik(m+2a+QbaL/aR)(o.L + UR) I
+ A (&, t) dk+
/aDO+ 241 (k) &.2)
— etk(z+2a) (UL + UR) + eik(x+2a+2baL/ch)(JL _ UR) I
+ / AL (—k, t) dk+
oD 2AL (k)
ik(z+2a+2bor, /oR) _ ik(z+2a)
ore R oLe ~R
+/ u't(kor/oR,t dk—i—/ ————— 'Y (—kor/op,t) dk,
oDy Ap(k) (kor/on,?) opy  Ar(k) ( /om1)
(34)
and
ikx _ ik(z+2a0Rr /o)
R R e OR . [, ORE ~L
t)=K k t)dk —k t)dk
W) =K [ S bk [ =it honjon, .k
+/ etk (2b+x) (UL _ O'R) + 6ik(m+26+2aoR/oL)(aL + UR) aR<k t) bt
oD 2AR(k) 7
eikx(UR _ UL) _ eikz(x+2aaR/aL)(UL + UR) R
+ / aR(—k, t) dk+
oD 2Ag(k) (=)
ikx _ ik(z+2a0Rr /o)
URe ~L O'Re ~L
+/ u”(kor/or,t dk‘-l—/ u”(—kogr/or,t)dk+
op; Ar(k) (kor/o1.t) oDy Ap(k) ( fo1,t)
ez’km(gL + UR) _ eik(:r+2aaR/crL)(UL _ UR) R
u (K, t) dk
" /8D0_ 2A (k) Wk ) dkt
eik:c(O.R - UL) . eik(x-l—ZaaR/aL)(O.L + UR) R
+/ AR (—k, 1) dk, (35)
oD; 2A (k)
where

Agr(k) = Ar(kogr/or).

The integrands written explicitly in and decay in the regions around whose boundaries
they are integrated. Thus, using Jordan’s Lemma and Cauchy’s Theorem these integrals are shown

to vanish. Thus the final solution is given by K and K.
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Proposition 2 The solution of the heat transfer problem — s given by

ub(x,t) = K
< . _9iko2 g netk@+2a+bor jop)—(ork)?t
- / ke =Lkt ol (1) dk + /6 . L7R AT FE((oLk)? t) dk+
— 00 5
,L'ko.2 6ik(m+a)—(0Lk)2t or +op) — ikiO'2 6ik(x+a+2b0L/aR)—(0Lk)2t or — o ~
+/a e o + o8) VN L= 8) fi (02, 0) ks
0
+/‘ _eikz—(aLk)zt(UL + UR) + 6ik(1‘+260L/aR)—(crLk)2t(O.L _ O'R) ﬁL(k) s
- 2A L (k) 0
dD, L
+/ eik(:t+2a)—(0'Lk)2t(O.L + O.R) + eik(r+2a+2b0L/UR)—(ULk)2t(O.R _ O-L)ﬂL(ik) dbat
0Dy QAL(/{?) 0
_ ik(z+2a+2bor Jor)—(ok)?t ik(z+2a)—(opk)?t
ore R are ~R
k dk —k dk
¥ /aDO AL g (horfor) dk + /aDO AgryoChon/om) ks
iko2 6ik(x+a)—(aLk)2t(o.L + UR) — iko2 eik(x+a+2baL/aR)—(aLk)2t(O.L _ UR) .
<[t i FH(oeh)?, 1) di+
0
_Qiko.%o.Reik(a:—I—Qa-‘rbaL/UR)—(ULk)Qt(l +oLoR) - )
k), t)dk
+/8D3' OégAL(k‘) f ((UL ) ) ) +
+/‘ _eik(z+2a)—(ULk)2t(o.R _ UL) _ eik($+2a+2baL/aR)—(0Lk)2t(O.L + UR) aL(k) Qs
oDF 2AL(K) °
+/ eik(z+2a)7(aLk)2t(o.L + O.R) + eik(:r:+2a+2b0'L/O'R)f(o'Lk)Qt(o.R _ O-L),LALL(ik) diot
oDt 2AL(k) °
_ ik(z+2a+2bor, /or)— (oL k)%t ik(z+2a)—(op k)%t
ore R gre ~R
k dk —k dk
i /(9D0+ Ar(k) to(kor/on) dk + /aDU+ Ar(k) to(~horfon) dk,
(36)
for —a < x <0, and, for0 <z <b
uf(x,t) = KT
o X Qikor o2 eik(a}+aoR/oL)7(aRk)2t .
= / etha=(orh gl (k) dk + /8 . L Y FH((ork)? t) dk+
— 00 5
—iko2 eik(:c+b)—(URk)2t o —O0R) — iko2 eik(x+b+2aJR/JL)—(aRk)2t ~
+ /8 . L ( ~ A)R 0 & FE((ork)? t) dk+
0
_ ikz—(ork)?t ik(z+2a0r/or)—(ork)?t
URe ~L URe ~L
+/ UO(kUR/O'L)dk-I-/ UO(—]{?O'R/O'L)dk-i-
oD; Ag(k) oD; Ag(k)
+/ _eik(x+2b)f(URk)2t(o_L _ UR) _ eik(m+2b+2wa/UL)*(URk)Qt(O—L + UR) aR(k) b
oDy 2AR(K) :
+/‘ eikw—(aRk)Qt(O.L _ O.R) + eik(a:—l—?aaR/aL)—(JRk)zt(O.L + UR) aR(_k) Qs
oDy 2Ag(k) °
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QikO_LO_%eik(:p+ao’R/oL)7(URk)2t . ,
ork)?,t)dk+
Lo trs FH (o))
/ _Z'k.o.Reik(erb)f(aRk)Qt(O.L _ UR) _ Z’]{;O-}Q%eik(erbJFQaUR/UL)*(URk)Qt(O-L + UR) fR((J k)? t) s
oDy azAr(k) e
_ ikz—(ork)%t ik(z+2a0r/or)—(ork)?t
oRe L ORe L
uy (kop/op, dk:—i—/ uy (—kor/or,) dk+
/afjgr Ag(k) o(kor/oL) oD Ag(k) o /or)
/’ _eisz(chk)Qt(o,L + O.R) + eik(m+2a0R/0L)7(0Rk)2t(O.R _ O-L),&R(k) dk+
oDy 2Ag(k) ‘
/ eik::v—(URk)Qt(O.L _ UR) + 6ik(x+2aaR/aL)—(URk)Qt(O.L + UR) aR(_k) " (37)
Yo 2A (k) ’
Remarks.

e The solution of the problem posed in — may be obtained using the classical method of
separation of variables and superposition, see [§]. The solutions u”(z,t) and uf(x,t) are given
by series of eigenfunctions with eigenvalues that satisfy a transcendental equation, closely
related to the equation Ar (k) = 0. This series solution may be obtained from Proposition
by deforming the contours along 0D, and GD(J{ to the real line, including small semi-circles
around each root of either Ar (k) or Ar(k), depending on whether u”(z,t) or uf¥(z,t) is being
calculated. Indeed, this is allowed since all integrands decay in the wedges between these
contours and the real line, and the zeros of Ay (k) and Ar(k) occur only on the real line, as
stated above. Careful calculation of all different contributions, following the examples in [3],[5],
shows that the contributions along the real line cancel, leaving only residue contributions
from the small circles. Each residue contribution corresponds to a term in the classical series
solution. It is not necessarily beneficial to leave the form of the solution in Proposition
for the series representation, as the latter depends on the roots of Ar (k) and Ar(k), which
are not known explicitly. In contrast, the representation of Proposition [2| depends on known
quantities only and may be readily computed, using one’s favorite parameterization of the
contours 0Dy and dD{ .

e Similarly, the familiar piecewise linear steady-state solution of — with Dirichlet bound-
ary conditions [8] can be observed from and by choosing initial conditions that decay
appropriately and constant boundary conditions f1,(t) = v* and fr(t) = 7. It is convenient
to choose zero initial conditions, since the initial conditions do not affect the steady state. As
above, the contours are deformed so that they are along the real line with semi-circular paths
around the zeros of Az (k) and Ag(k), including & = 0. Since one of these deformations arises
from DS“ while the other comes from D, the contributions along the real line cancel each
other, while the semi-circles add to give full residue contributions from the poles associated
with the zeros of Ay (k). All such residues vanish as ¢t — oo, except at k = 0. It follows that
the steady state behavior is determined by the residue at the origin. This results in
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ob(v =) byFo? +ayfod

L
u”(xz,t) = T , —a<x <0,
(%) bo? + ao?, bo? + ao?,
u(xz,t) 010" ~r) bylo}, +ay"oh 0<z<b
’ bo? + ao? bo? + ac? ' ’
L R L R

which is piecewise linear and continuous.
—L

e A more direct way to recover only the steady-state solution to with limg e f1(2) = f
and limy o f(t) = ?R constant is to write the solution as the superposition of two parts:
ut(z,t) = ul(z) + al(x,t) and uf(z,t) = uf(x) + @f*(z,t). The first parts u” and u” satisfy
the boundary conditions as t — oo and the stationary heat equation. In other words

0= o2l (z), —a<xz<0,
0 = o%ull (), 0<z<b,
7' = aw"(—a) + agik(—a),

T = azafi(b) + agal ().

A piecewise linear ansatz with the imposition of the interface conditions results in linear
algebra for the unknown coefficients, see [§]. With the steady state solution in hand, the
second (time-dependent) parts @ and @ satisfy the initial conditions modified by the steady
state solution and the boundary conditions minus their value as t — oo:

ak(z,t) = oral, (x,1), a<x<0,t>0,
alt(z,t) = ohall (z,1), O0<z<b t>0,
a*(z,0) = u(z,0) — " (z), —a<xz<0,
™ (z,0) = uli(z,0) — 7% (x), 0<z<b,

FEE) — F° = aqib(—a,t) + aziik(~a, 1), t>0,

FRE) = 7 = sl (b, t) + asil (b, ), t>0,

where, as usual, we impose continuity of temperature and heat flux at the interface = = 0.
The dynamics of the solution is described by @’ and @f, both of which decay to zero as
t — oco. Their explicit form is easily found using the method described in this section.

4 Other problems

With the basic principles of the method outlined in the previous two sections, problems with
more layers, both finite and infinite, may be addressed. We state two additional problems below
and include solutions for specific initial conditions. More complete solutions can be found in the

electronic supplementary material.
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Figure 7: The heat conduction problem for a single rod of length 2a between two semi-infinite rods.

4.1 Infinite domain with three layers

In this section we consider the heat equation defined on two semi-infinite rods enclosing a single

rod of length 2a.
We seek three functions

uL(x,t), x € (—o0,—a), t>0, uM(x,t), x € (—a,b), t>0, uR(x,t), x € (byoo), t>0,

satisfying the equations

uk(z,t) = orul, (z,1), —o0 <z < —a, t>0,
uM i (x,t) = o2 uM 4o (2, 1), —a <z < a, t>0,
ult(z,t) = o%ull (z,1), a <z < 00, t>0,

uk (z,0) = ub(z), —00 <z < —a,
uM(z,0) = uMy(x), —a <z < a,
ult(z,0) = ulf(z), a <z < 00,

the asymptotic conditions

lim wul(z,t) =0, t>0,
T—>—00

lim ul(z,t) =0, t >0,

T—r00

and the continuity conditions

ut(—a,t) = uM(—a,t), t>0,
uM (a,t) = ut(a,t), t>0,
otuk(—a,t) = o3uM (—a,t), t>0,
o2uM(a,t) = okuli(a,t), t>0,

as shown in Figure [7}

(38a)
(38h)
(38c)

(39a)
(39b)
(39¢)

The asymptotic conditions are not the most general possible but are used here to simplify

calculations. To our knowledge, no aspect of this problem is addressed in the literature.

To solve this problem, one would proceed with the following steps:

1. Write the local relations in each of the three domains: left, middle, and right.
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2. Use Green’s Theorem to define the three global relations, keeping track of where they are
valid in the complex £ plane.

3. Solve the three global relations for u”(xz,t), u(z,t) and u®(x,t) by inverting the Fourier
transforms.

4. Using the & — —k symmetry of the dispersion relationships on the three original global
relations, write down three more global relations. This uses the discrete symmetry of each
individual dispersion relation.

5. Deform the integrals of the solution expressions to Dar or Dy as dictated by the region of
analyticity of the integrand.

6. Use the discrete symmetries of the dispersion relationship to the collection of global relations
for go(w, ), g1(w,t), ho(w,t), hi(w,t). Care should be taken that relations can only be solved
simultaneously provided their regions of validity overlap. At this stage, as in the previous
two sections, the discrete symmetries from one dispersion relation to another come into play.

7. Terms containing unknown functions are shown to be zero by examining the regions of ana-
lyticity and decay for the relevant integrands, and the use of Jordan’s Lemma.

For brevity of the presentation, we will assume u™ (z,0) = 0 = u®(x,0). The solution to the
non-restricted problem can be found in the electronic supplementary material. After defining the
transforms

b (k) :/ e~ *eyl(z) da, / “tkey Lz, t) da,
aM (k) :/ e~ Ry M (2, t) da, / —tkey B 1) de,

t t
e“*uM(a, s) ds:/ e“sufi(a, s) ds,
0

we proceed as outlined above. The solution formulae are given in the following proposition:

Proposition 3 The solution of the heat transfer problem ([38)-(41]) with M (z,0) = uf(z,0) =0
18

1 ©
wE(w,t) = / ¢ikr= (LR () dht

21 J_
| ih(a+20) (o1 k)? | A
_ 2/a AL(]{;) ((UL + UM)(UM _ UR) + e4zka0L/01\4(gL — O'M)(O'M + O'R)) ug(—k) dk,
D
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for —oo <z < —a with Ap(k) =7 (o, — om)(om — oR) + etiakaL/om (gp 4 onr)(oar + oR)),

uM(a:,t) = —onp(onm — UR)/

oDy Ap(kon/or) oL
eik(a:+a—aaM/0L)—(JMk)2t I ko
+opylopy+o U dk,
mlom R)/aDg Ap(konfon) 0 ( oL)

ik(z+ataon /o) —(onk)?t —k
¢ aé( UM) dk+

for —a <z < b with Ap(k) =7 (o1, + onm)(om + or) + eXakor/oM (51 — gpr)(oar — or)). Lastly,

the expression for uf'(z,t), valid for x > a, is

uf(z,t) = 20’MO'R/

8D3' AR(k) oy,

4.2 Finite domain with three layers

We consider the heat conduction problem in three rods of finite length as shown in Figure

We seek three functions

ub(2,1), € (=a,0), t>0, uM(zt), z€(0,b), t>0, uf(x,t), ze(bo),

satisfying the equations

uf (z,t) = ofug,(w,1), —a <z <0, t>0,
uM(x,t) = o2 uM (2, 1), 0 <z <D, t>0,
ufl(z, 1) = ofug,(z,1), b<z<c, t>0,

uF (z,0) = ub(z), —00 <z < —a,
uM(z,0) = uMy(x), —a <z < a,
ult(z,0) = ulf(z), a <z < 00,

the boundary conditions

fL(t) = aluL(_a7t) + a2u£(_a7t)> t> Oa
fR(t) = O‘BUR(C) t) =+ a4uf(6, t)a t> Oa

and the continuity conditions

ul(0,t) = u™(0,1), t>0,

uM (b, t) = ul(b,1), t>0,

a2uk(0,t) = o2ul(0,1), t>0,
o2 (b,t) = ohull(b,t), t>

21

ik(x—a—aog/or+2a0r/on)—(oRrk)?t
¢ ak (]WR> dk.

t>0,

(42a)
(42b)
(42¢)

(43a)
(43Db)
(43c)

(44a)
(44D)
(44c)



Figure 8: The heat equation for three finite layers.

The solution process is as before, following the steps outlined in the previous section. For
simplicity we assume Neumann boundary data (a; = as = 0), zero boundary conditions (f7(t) =
fE(t) = 0), and uM(z,0) = 0 = u(2,0). The solution with u (z,0) # 0 and u?(z,0) # 0 is given
in the electronic supplementary material. We define

0
ﬂoL(k:)—/ e Ryl (z) du, ﬂL(k,t):/ e~ Ryl (x,t) da,
b . c .

fLM(k):/ e~ Ry M (2, t) da, fLR(k,t):/ e~ Ry Rz, t) d,
0 b
t t

gf(w,t):/ e*ul(—a,s)ds, gé(w,t):/ e“*ul(—a,s)ds,
0 0

t t
hi(w, t) :/ e“Sull(c, 5) ds, hE(w, t) :/ e“sult(c, s) ds.
0 0

The solution is given by the following proposition.

Proposition 4 The solution to the heat transfer problem — with a1 = a3z = 0, fL(t) =
Rt =0, and uM(x,0) = u®(2,0) = 0 is

1 >
ub(z,t) = 2/ em_(“Lk)2t1l€(k) dk+
™ —0oQ

ikz—(oLk)?t ) ]
+/ e (GszkJL/JR(O_L_O_M)(O_M_O_R) + eszUL(C/O’R+b/UM)(O_L+0_M)(O_M_O_R)+
apy 2A1(k)

+ €2icl~wL/JR(UL o UM)(UM + UR) + eZibk’UL(l/UR-i-l/UM)(JL + UM)(UM + UR)) ﬁg(/{?) dk+

ik(z+2a)—(op k)3t ) )
+ / ¢ (tebk"L/"R (or,—0n)(on —oR)+e2koLlelortb/on) (o) 4oy ) (opr—oR)+
op; 2AL(k)
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+ eZickUL/UR(UL _ UM)(UM + UR) + e2z'bl<:t7L(1/012-!—1/01\/1)(JL + UM)(UM + UR)) ﬁé’(—k‘) dk+
6ik(w+2a)—(aLk)2t
/

eQikaL/UR(
py 2AL(k)

or+on)(op—oRrH

(e2ikUL(C/UR+b/UM)((TL—O'M)(O'M—O'R)+

+ eQikaL(l/”R“/”M)(aL —om)(om +oR) + e%Ck"L/"R(UL +on)(onm + O‘R)) ﬂg(k) dk+

/ eik(m+2a)—(UL k)2t
7]

eZik’UL (¢/ortb/on) (
p; 2Ap(k)

or—om)(om—0oR)+ or+om)(om—or)+

<62ikaL/JR(
+ eZiCk”L/"R(aL —oym)(om +oR) + e%bk"L(l/"R“/"M)(aL +on)(opm + O'R)) ﬂOL(—k) dk,

for —a < x <0 with

AL(]C) - <€2ibk0L/aR(o,L _ UM)(UM . UR) + eZik(caL/oReraL/aMJra)(O,M . O'L)(UM _ UR)+

tekor(e/ontblon) (g 4 gyr) (o — og) + 2 FOOLIORYD (61 4 gy (oR — oar) +
+eHkILIOR (1 — gpp)(oar + oR) + e2Ratbor/ortboL /o) () Y (oar + oR) +

_'_621'bk(0L/aR+aL/aM)(O,L +UM)(UM +0'R) N e?ik(caL/aR+a)(O,L + UM)<UM + UR)) )

Next,

_ pik(a+b)—(onrk)?t ) )
UM(.%',t) :/ e oM (eQch‘UM/O'R(O.M N UR) + eQZkaM/UR(O_M + UR)) ﬁg(kUM/UL) dk+
oDy A (k)

_ ik(z+b+2a0prfor)—(oak)?t ] )
+/ e oM (62wkUM/gR(UM—O'R)‘i‘@mbkaM/UR(O'M—i-O'RDﬂg(—UM/UL)dk+
oD; A (k)
_ pik(z4b)—(onrk)t A A
+/ e oM <e2zckaM/aR(O_M _ UR) +e2zbkaM/aR(0M + UR)) ﬁ(l)'(kUM/O'L) dk+
oDy A (k)
0
’ik(l‘+b+2a0’1w/0'[,)—(O'Iuk)2t . )
_/ e oM (62ZCkUJM/UR(O'M—UR)+€21ka]V[/UR(UM+UR)>ﬁ€<_kUM/UL)dk7
oD An (k)

for 0 < x < b, with

AM(k) - (eik(aaM/aL+b+caM/aR)(aL - UM)(UM o UR) + eQbikaM/aR(UM _ UL)(UM _ UR)+

te2kom(b/ortaloL) (g 4 oy)(opr — og) + 2RCMITREY (61 46y Y(oR — oar) +
_‘_GQik(aU]V[/UL-I—bO'M/O’R-‘rb)(O.L _O_M)(O_M +O_R) +€2iCkO'M/O'R(O_M _ O.L)(O.M _|_0.R) +

_eQibk(aM/aR-‘rl)(aL + UM)(UM + UR) + eQile(c/aR-‘ra/UL)(aL + UM)(UM + UR)) ,

and

23



R _2eik(x+b+baR/aM)—(URk)Qt I
U ((L‘,t) :/ (UMUR)’ELO (kUR/O'L)dk-I-
oDy Ar(k)

(oaror) 5 (—kor/or) dk+

/ _26ik(m+b+baR/UM+2aoR/oL)7(0Rk)2t
+
oD; Ag(k)

/ 9eik(z+btbor/onr)—(ork)?t ( ) L(k Jop) dk
+ omoRr) Uy (kor/or) dk+
oDy Ap(k) ‘
/ 9¢ik(z+b+bog/or+2a0R/oL)—(oRrk)?t ( ) L( kon/or) dk
+ OMOR g (— OR/0O], 5
FYors Ag(k) °

for b <z < c with

AR(k) - (eQibk(O_L - O'M)(UM - UR) + eZik(aaR/0L+ba'R/ch+c)(O_M o O'L)(O'M - UR)+
+ €2ik(baR/aM+c)(JL +UM>(UM - UR) + e?ik(aaR/aL—i-b)(UL + UM)<UR _ UM)+
+ ¥k (g, — ap)(on + o) + eXRA/TLHIYIR/OM) (51— 5 (op 4 oR)+

+62ibk(l+aR/UA1)(JL +UM)(UM + UR) N €2ik(aoR/oL+c)(0L + O'M)(UM +UR)> )
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A Electronic Supplementary Material

A.1 Infinite domain with three layers

In this section we consider the heat equation defined on two semi-infinite rods enclosing a single
rod of length 2a as defined in the main paper, (38)-(41) without imposing uM(x,0) = 0 = ufi(z,0).

That is, we seek three functions
ub(z,t), z € (—o00,—a), t>0,

satisfying the equations

uM(z,t), z € (—a,b), t>0,

uB(x,t), x e (b,oo), t>0,

uk(z,t) = o2ul (z,1), —o0 <z < —a, t>0, (46a)
uM(x,t) = o2 uM (2, t), —a <z < a, t>0, (46b)
ul(z,t) = o%ull (z,1), a <z < 00, t>0, (46¢)
the initial conditions
uf (z,0) = uf (x), —00 <z < —a, (47a)
uM(x,0) = uMy (), —a <z < a, (47b)
ull(x,0) = ult(z), a <z < 00, (47¢)
the asymptotic conditions
lim ul(x,t) =0, t>0, (48a)
T——00
lim ul(z,t) =0, t>0, (48b)
T—r00
and the continuity conditions
u(—a,t) = uM(—a,t), t >0, (49a)
uM(a,t) = ul(a,t), t >0, (49b)
otul(—a,t) = o3 u (—a,t), t >0, (49¢)
o2 uM(a,t) = o%ul(a,t), t>0. (49d)

After defining the transforms
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—a
ub (k) = / e~ Ryl (x) da, u*
—0o0 o
a a
ad (k) :/ e~ heydl (2) d, oM (k) :/ e~ *yM(z 1) dz,
oo oo
ad (k) :/ eyl (x) de, WP (k, 1) :/ e~ Ry Rz t) da,
e o2 [t ‘
hi(w,t) = / e“*ul(—a,s)ds = —1\24 e“uy’ (—a, s) ds,
0 oL Jo
t t
ho(w,t) = / e“*ul(—a,s)ds = / e“suM(—a, s) ds,
0 0
t o2 [t
nw.t) = [ eutllas)ds= T | esulias)ds,
0 oM Jo
t ¢
go(w,t) = / e“uM(a,s)ds = / e“*ul(a, s)ds,
0 0
we proceed as outlined in the preceding sections. The solution formulae are given in the following

proposition:
Proposition 5 The solution of the heat transfer problem — 18
00 ik(z+a+3acr, /o) —(opk)?t k
L _ L ke (ork)2e AL _ /6 AM< 0L>
ux,t)= e ug (k)dk—orp(op + 0 U dk+
@) =5 R ah=anlow +on) | *———1 (2
eik(m+2a)7(aLk)2t sk
((aL Vou)(on — or) + €4ROLITM (61 gy (oar + aR)) Ak (—k) di+

6ik(1‘+a+a0'L/O'R+2aO'L/O']\/[)—(O'Lk‘)2t AR(kO—L)dk
u )

Ar(k) \or

2 / AL
eik(ac—f—a—i—aal /O’M }—(O'[ k)) t M
8D0

orL(cr—0o 0
sonen |
for —oo <z < —a with Ap(k) =7 (o, — om)(om — oR) + etiakar/om (gp 4 onr)(oar + oR)),

AL (_kUM> dk+

(_kUL>dk —20L0M
oM

00 ik(z+ataon for)—(oark)?t
M _ 1 ike—(opnk)2t s M 1y B / e
ut(z,t)= e uy (k)—om(o o U
@0=3/ ¢ 0 —omton—on| b (S
(O'L_O'M)(UM_UR) eikx—(aMk)QtagJ(k) /ez’k(m—&—a—aoM/aL)—(aMk)Qt AL<kUM>
+ dk+opy(op+o U dk+
2 opy; Ar(kon/or) mlon+on) oy Ar(kon/or) \or
ik(z+3a+aoy /or){onk)?t _ ik(x+2a)—(oark)?t 5 M/
_O'M(O'L+0'M)/e fLOR(k’O'M>dk;_(O'L+O'M)(O'M UR)/e ' (—k) At
op; Ar(kom/or) OR 2 op; Ar(kom/oL)
_ ik($+2d)*(0’]\/jk)2tAM _ _ ik(m+4a)f(0']uk)2t’\M _
4 (O'M 0'L>(O'M+O'R)/€ Ug (k) dkf—F(UM UL)(O'M O'R)/e Ug ( k?) dk‘—l—
2 opy Ar(kor/oR) opy  Ar(kor/or)
eik(az+3a—a0M/aR)—(aMk)2t R *ij’M
+opmlony —o U dk,
mlon = o) /aD; R (ko /o) 0( o )
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for —a < x < b with Ap(k) =7 (o, + om)(om + o) + e¥RorR/IOM (61 — ) (on — o). Lastly,
the expression for u®(x,t), valid for x > a, is identical to that for u”(z,t) with the replacements
a<+r —a, R< L, and 0D, <+ —8D6F.

A.2 Finite domain with three layers

In this section we consider the heat conduction problem in three rods of finite length as defined
in the main paper by — without assuming u (z,0) = 0 = uf(x,0). That is, we seek three

functions
u (z,1), € (=a,0), t>0, uM(xt), z€(0,b), t>0, ul(z,t), ze(be), t>0,

satisfying the equations

uf (z,t) = orul, (x,1), —a <x <0, t>0, (50a)
uM i (z,t) = o3 uM Lo (2, 1), 0 <z <b, t>0, (50b)
ult(z,t) = o%ull (z,1), b<z <ec, t>0, (50c)

uk (z,0) = ub(z), —o0 <z < —a, (51la)
uM(z,0) = uMy(x), —a <z < a, (51b)
ult(z,0) = uli(z), a <x < 00, (51c)

the boundary conditions

FE@t) = aqut(—a, t) + agul(—a,t), t >0, (52a)
FE() = azul®(c, t) + agul(c, 1), t >0, (52b)
(52c)

and the continuity conditions

u®(0,1) = u™(0,1), t>0, (53a)
uM (b, t) = uf (b, 1), t>0, (53b)
o2uk(0,t) = o2,uM(0, 1), t>0, (53c)
o2 (b,t) = okul (b, 1), t>0. (53d)

The solution process is as before, following the steps outlined in Section sec:3i of the main paper.
For simplicity we assume Neumann boundary data (o; = a3 = 0) and zero boundary conditions
(fE(t) = fE(t) = 0). We define
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o 0
ab(k) = / —ikay (1) da, AL, 1) = / ke Ly 1) d
_b _b
i) = [ e (@) M) = [ et (o) da,
0 0
al (k) :/ e~ Ryl (z) d, W (k, 1) —/ ke B t) da,
b b
t t
97 (w, t) :/ e“*uk(—a,s)ds, 9o (w t):/ e“*ul(—a,s)ds,
0 0
t o2 [t
hi(w,t) :/ “suL(0,5)ds = ]\2/[ (0,s)d
0 oL Jo
¢ t
hE(w,t) :/0 e“sul (0, s) ds :/0 “suM(0, ) ds,
t o2 [t
ofitert) = [ eullbs)ds = T [ esul(h, ) as
0 OMm Jo
¢ t
gt (w, 1) :/ e“suM (b, s) dS:/ wsult(b, s) ds,
0 0
¢
hR(w,t) :/ ews R
0

t
hOR(w,t):/ e“sult(c, s) ds.
0

The solution is given by the following proposition

Proposition 6 The solution to the heat transfer problem — with a; = ag = 0 and fL(t)
fRt)=0is

1 > ikz—(ork)?t
271_/_Ooek (k)% ol (k) dk+

eik:pf(aLk)Qt
e
opy 201 (k)

+ 2zckcrL/ch( ;- O'M)(O'M +O_R) + 62ibkoL(1/aR+1/UM)(O_L + UM)(UM + UR)) (k‘) dk+

eik(m+2a) —(opk)?t
o,
op; 20L(k)

ub(z,t) =

(621bkaL/aR(0L_O_M)(O_M_O_R) + e2tkor(e/ortb/on) (5 ) 4 g ) (o —oR)+

(62zbkcrL/ch(0L_O_M)(O_M_UR)+e2ik0L(c/aR+b/aM)(0L+O-M)(UM oRr)+

+ BQZCkUL/UR( . — O'M)(O'M +0R) + eZikaL(l/URJrl/UM)(O-L + UM)<UM + UR)) ( k) dk+
ik(x+2a+bor Jon)—(ork)?
- / ‘ (e*PkoL/oR (g0 — o) +eHHMILI7R (0 p +oR) )iy (kop /on)dk+
oD; Ap(k)

/ eik(m+2a+boL/oM)—(oLk)2

0

'L sick
(6 ic O'L/O'R(
Dy Ar(k)

tO’L

on—0R)+XRLITR (g1 4 o))l (ko o) dk+
+/ 20L0m zk(z+2a+20¢7L/oR+bo’L/URerO'L/O'M) (ork)?*t R
op; Ar(k)

Gy (kor/or) dk+
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9 .
/ OLOM ezk(m+2a+boL/0R+bO—L/O—M)_(O.Lk)2ti\LOR(7]{0'L/O'R) dk+
op; Ar(k)

eik(w+2a)—(oL k)2t
/59D()+ 2AL(k)

<e2ikUL(C/‘7R+b/UM) (or—on)(onm —UR)—l—eQikaL/UR (or+om)(om—orH

+ e2bkoL (ot oM (5 — oy ) (oar + o) + €XFILITR (o + aar) (oar + UR)) al (k) dk+

eik(:erZa)—(UL k)2t
/¢9D()+ 2AL(k)

(ezibkgL/”R (o1 —0n)(on —og)+e2kore/ortblon) (o) 4oy Y(op —oR)+

+ HKILIOR (g — gpp)(oar + o) + 2RO AORTYOM) (61 4 g (o + UR)) g (—k) dk+
eik(z+2atbor fon)H{ork)’t &
- /ar)g Ap(k)
eik(a+2a+bor fon ) Hork)t
- /ar)g Ap(k)

9 .

/ OLOM ezk(m+2a+2coL/oR+boL(1/0R+1/<7M))*(ULk)QtaoR(ko.L/o_R) dk+
ong AL(k)

0

200Mm ik(z+2a+bor (1/or+1/on))—(ork)2t s R
|, R ifi(~hor/ow) dk,
0

for —a < x < 0 with

L (62ibkaL/aR (ot _GR)+62ickaL/aR(UM+gR)> {L(J)\/l(k‘aL/UM)dk—F

oL (eQiCk"L/"R(UM —0OR) —l—eQibk"L/"R(aM—i-aR)) W (—kopfoy)dk+

Ar(k) = <€2ibkaL/aR(UL — our)(oar — oR) + €2RETLITRYILITNAA) (61 oY (os — o)+
tekoLle/ortb/on) () 4 gyr)(on — o) + e2FOOLITRYD) (6 4 o) (oR — o) +
+eBkILITR (51 — opp)(oar + o) + e2RaFboL/oRYbILIOM) (6 Y (o0 + 0R) +
+62ibk((’L/0R+"L/UM)(JL +on)(op +oR) — e2ik(cor/or+a) (o +onm)(om + JR)) .

Next,
uM(z,t) = ! /oo eikx*(UMk)ztﬁéV[(k:) dk+
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—0o0

_ ik)(x-i—b)—(O'[Mk:)Qt . .
+/ e oM (62wkgM/gR(o_M i O'R) + 62zbkoM/oR(O_M 4+ UR)) ﬂoL(k?O'M/UL) dk+
oD, A (k)

/’ _eik($+b+2(lo’1\/[/a'[/)f(0'1wk)Qt
+
oD; Apr(k)

oM (eZic’mM/UR (oM —UR)+€2ikaM/UR(UM+UR)> Ul (—koy Jor)dk+

ik‘x‘—(djwk’)zt ) ) )
—/ c NV (UM—UL—I—eka”M/"L(UL—l—UM))(eQZkaM/UR(UM—UR)—i—eQMk"M/UR(UM—FUR))%W(k)dk—i-
oDy 4AM

ik‘xf(O'j\/Ik)zt . X .
_/ € X (k) (O‘M—O‘L—i—emakaM/UL(O’L-FO'M))(@’QZCIWM/UR(UM—UR)+€2Zbk0M/UR(O‘M—FO'R))QAL(])W(—k‘)dk‘-i—
oDy 28M

_ ik(iv-i-O'M/UR(b-i-Qc))—(a’Mk:)2t '
+/ € X - oM (O'M —op + eZzakUM/aL(O.L 4 O'M))ﬁ(])%(kO'M/UR) dk+
oDy m (k)
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Z x+b0'1w/a'R) (O']\/[k)2t )
+/ oM (o — o1 + eZwkaM/aL(O.L + O'M))fbé{(—k‘UM/O'R) Akt
oDy A (k)
—etk(z+b)— (onrk)?t ) '
+/ — oM <€2zckaM/UR(O.M —oR) + €2zbkaM/UR(o'M + O’R)) ﬂoL(kO'M/o'L) dk+
oD,
zk z+b+2a0 /0 ovk)?
/ (w+bt2a0n/ (L;)( k) Lo (e2ickaM/aR(O'M*O‘R)+62ibkmv1/aR(aM+UR)) ( konr/or)dk+

- zk(x+2b) (onk)t 2iako /o - 2ickon /oR - 2ibko s /oR ~ M
op+or+e (O’M UL) (e (UM UR)+€ (UM+JR))UO (k)dk-i-
8D§ QAM(]C>

ik:c—(aMk:)zt ) ) ]
_/ 67(O_M_O_L_|_62mkch/oL(o_M+o_L)> (GZleUM/UR(O'M—O'R)—|—€21kaM/UR(O’M—f—O'R))ﬂ(])M(—k)dk-i-
ap; 28 (k)

- 2
+/ —etk(z+bon /op+2con /oR)—(o0k) th<
oD+

o 2iakon /oL ~R
A (F) om—or+e (UL+GM)> Uy (kop/or) dk+

. / _eik(x+b01v1/UR)—(UMk)thM

for 0 < x < b, with

(aM — op, + eHakon /oL (g, oM)) Wl (—kon Jor) dk,

Ayk) = = (eik(“"M/ULJ“bJFC"M/UR)(UL —oum)(oar — or) + e2HFOMIR (g — 1) (o0 — oR)+
+621koM(b/aR+a/aL)(JL + UM)(UM _ UR) + e2ik(caM/aR+b)(UL +0'M)(O'R _ O'M) +
+62ik(aUM/UL+bUM/UR+b)(O-L o UM)(UM +O'R) +62ick0M/oR(o_M o UL)(UM +O'R) +

—eZibklom/ort) (51 4 gpp)(oar + o) + 2ROMC/TRYYTL) (6 4 ) (o + GR)) ;

and

1 .
uf(z,t) = 2/ em_(aRk)Qtﬂé%(k:) dk+
™ —00
_9pik(z+b+bor/on)—(ork)?t
Ap(k)
_9¢tk(z+btbor/on+2a0k /oL )~ (o Rk)*t
Dy Ar(k)
eik($+b+b0R/0’]\/])7(O’Rk)2t

/
L Al
/,
/,

+ (O’MUR) kUR/O'L d]{?-i-

S—
=

(omor) U (—kor/or) dk+

(o1 + oar + €29RORITL (01 — oV )ad (kog /o) dk+

etk(z+b) —(ork)?t

(oar — o, + €2HRORITL gy 4 o1 ) )ad! (—kop/on) dk+

p;  Ar(k)
eik(erQb)f(aRk)zt
g
b 20g(k) (R

_2RTRITM (1 4 o) (o 4 oag + €HRTRITL (g UL))) al (k) dk-+

Mm)(op —on — eiakor/oL (o +onm))+

31



eik:pf(o'Rk)zt viakon)
+ —————F—— |(or+om)(op —op — e ORI (o, + opr) )+
/az)o— N (( r+om)(oL —oum (oL +om))

_62ibkaR/oM (UR B O'M)(O'L o+ e2iakUR/UL (UM _ UL))) ﬂ(l]%(—k) dk+

/ 2€ik(x+b+baR/aM)—(O'Rk)Qt

+ onor) il (kor/or) dk+
- A (orror) i (kor/o1)
2€ik(w+b+boR/oM+2aaR/gL)—(ng)Qt "
i /aDg Ag(k) (omor) iy (—kor/or) dk+
_ ik(:t+b+2bo‘R/0'M)—(o'Rk)2t
€ IR 2iakopr /o ~ M
+ oL +on+e RI9U(gpr — o) ) Uy (kor/oy) dk+
/8DO+ Ar(k) ( LoMm (oar L)) o (kor/om)
eik(m+b)—(aRk)2tUR ik
+ ov — o7 + e2ikor/on o1 o VY aM (—kop /o) dk+
/aD; Ag(k) ( M= 9L (onm L)> o (—kor/on)
6ik(ac+2c)—(aRk)2t - ‘
+ e2OkTR/OM (51 — g1 V(o7 + opy + e21RIR/TLY
/aDg 9AR(k) ( (or —om)(oL +oun )

+(om + or)(on — or + R (g + JM))) ag (k) dk-+

eik:c—(aRk)Zt sibkon) diakon/
+ (ez TRITM (g5 — oap) (o + opp & e2iOkIR/TLY 1
ooy T8 on = >

(oar + 0r) (00 — o, + €HRIRITL (6 4 aM))) aB (k) dk,

for b <z < c with

AR(k) - (GQibk(O_L - UM)(UM - UR) + e2ik(aJR/UL+bch/ch+c)(O_M - UL)(UM - UR)+

+ €2ik(baR/UM+C)( aO'R/aLer)(

UL+UM)(JR—UM)+

+ 62ick(0_L . UM)(UM +0R) + 62ik(a/oL+b+b0R/UM)(o_M N O'L)(O'M + UR)+

or, +UM)(O'M — O'R) +62ik(

+62ibk(1+aR/UM)(aL +0'M)(0'M + O'R) . eQik(aoR/oLJrc)(O_L + UM)(UM +UR)> )
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