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A POINTWISE CHARACTERISATION OF THE PDE SYSTEM

OF VECTORIAL CALCULUS OF VARIATIONS IN L∞

BIRZHAN AYANBAYEV AND NIKOS KATZOURAKIS

Abstract. Let n,N ∈ N with Ω ⊆ Rn open. Given H ∈ C2(Ω×RN ×RNn),
we consider the functional

(1) E∞(u,O) := ess sup
O

H(·, u,Du), u ∈W 1,∞
loc (Ω,RN ), O b Ω.

The associated PDE system which plays the role of Euler-Lagrange equations

in L∞ is

(2)

 HP (·, u,Du) D
(
H(·, u,Du)

)
= 0,

H(·, u,Du) [[HP (·, u,Du)]]⊥
(

Div
(
HP (·, u,Du)

)
−Hη(·, u,Du)

)
= 0,

where [[A]]⊥ := ProjR(A)⊥ . Herein we establish that generalised solutions to

(2) can be characterised as local minimisers of (1) for appropriate classes of
affine variations of the energy. Generalised solutions to (2) are understood as

D-solutions, a general framework recently introduced by one of the authors.

1. Introduction

Given n,N ∈ N, let H ∈ C2(Ω×RN ×RNn) be a given function, where Ω ⊆ Rn
is an open set. In this paper we are interested in the variational characterisation of
the PDE system arising as the analogue of the Euler-Lagrange equations when one
considers vectorial minimisation problems for supremal functionals of the form

(1.1) E∞(u,O) := ess sup
x∈O

H
(
x, u(x),Du(x)

)
, O b Ω,

on maps u : Rn ⊇ Ω −→ RN in W 1,∞
loc (Ω,RN ). The associated PDE system is

(1.2) F∞(·, u,Du,D2u) = 0 in Ω,

where F∞ : Ω× RN × RNn × RNn2

s −→ RN is the Borel measurable map

F∞(x, η, P,X) := HP (x, η, P )
(

HP (x, η, P ) : X + Hη(x, η, P )>P + Hx(x, η, P )
)

+ H(x, η, P ) [[HP (x, η, P )]]⊥
(

HPP (x, η, P ) : X + HPη(x, η, P ) : P(1.3)

+ HPx(x, η, P ) : I − Hη(x, η, P )
)
.

In the above, RNn and RNn2

s denote respectively the space of matrices and the
space of symmetric tensors wherein the gradient matrix and the hessian tensor

Du(x) =
(
Diuα(x)

)α=1,...,N

i=1,...,n
, D2u(x) =

(
D2
ijuα(x)

)α=1,...,N

i,j=1,...,n
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of (regular) maps u : Rn ⊇ Ω −→ RN are valued, whilst subscripts of H denotes
derivatives with respect to the respective variables (x, η, P ). We use the symbolisa-
tions x = (x1, ..., xn)>, u = (u1, ..., uN )>, Di ≡ ∂/∂xi, whilst Latin indices i, j, k, ...
will run in {1, ..., n} and Greek indices α, β, γ, ... will run in {1, ..., N}. Further,
for any linear map A : Rn −→ RN , the notation [[A]]⊥ used above denotes the
orthogonal projection onto the orthogonal complement of its range R(A) ⊆ RN :

(1.4) [[A]]⊥ := ProjR(A)⊥ .

Also, “O b Ω” means that O is open and O ⊆ Ω. In index form, F∞ reads

F∞(x, η,P,X)α :=
∑
i

HPαi(x, η, P )

(∑
β,j

HPβj (x, η, P )Xβij +
∑
β

Hηβ (x, η, P )Pβi

+ Hxi(x, η, P )

)
+ H(x, η, P )

∑
β

[[HP (x, η, P )]]⊥αβ ·

·

(∑
i,j

HPαiPβj (x, η, P ) Xβij +
∑
i

HPαiηβ (x, η, P )Pβi

+
∑
i

HPαixi(x, η, P ) − Hηβ (x, η, P )

)
,

where α = 1, ..., N . Note that, although H is C2, the projection map [[HP (·, u,Du)]]⊥

is discontinuous when the rank of HP (·, u,Du) changes. Further, we remark that
because of the perpendicularity of HP and [[HP ]]⊥, the system can be decoupled
into two independent systems which we write in a contracted fashion: HP (·, u,Du) D

(
H(·, u,Du)

)
= 0,

H(·, u,Du) [[HP (·, u,Du)]]⊥
(

Div
(
HP (·, u,Du)

)
−Hη(·, u,Du)

)
= 0.

When H(x, η, P ) = |P |2 (the Euclidean norm on RNn squared), the system (1.2)-
(1.4) simplifies to the so-called ∞-Laplacian:

(1.5) ∆∞u :=
(

Du⊗Du+ |Du|2[[Du]]⊥⊗ I
)

: D2u = 0.

The scalar case N = 1 first arose in the work of G. Aronsson in the 1960s [A1, A2]
who initiated the area of Calculus of Variations in the space L∞. The field is
fairly well-developed today and the relevant bibliography is vast. For a pedagog-
ical introduction to the topic accessible to non-experts, we refer to [K8]. We just
mention that in the scalar case, generalised solutions to the respective PDE which
is commonly referred to as the Aronsson equation and simplifies to

HP (·, u,Du) ·
(

HP (·, u,Du)>D2u + Hη(·, u,Du)Du + Hx(x, η, P )
)

= 0

are understood in the viscosity sense (see [C, CIL, K8]). The study of the vectorial
case N ≥ 2 started much more recently and the full system (1.2)-(1.4) first appeared
in the work [K1] of one of the authors in the early 2010s and it is being studied quite
systematically ever since (see [K2]-[K7], [K9]-[K13], as well as the joint works of the
second author with Abugirda, Pryer, Croce and Pisante [AK], [CKP], [KP, KP2]).

In this paper we are interested in the characterisation of appropriately defined
generalised vectorial solutions u : Rn ⊇ Ω −→ RN to (1.2)-(1.4) in terms of the



CHARACTERISATION OF THE PDE SYSTEM OF CALCULUS OF VARIATION IN L∞ 3

functional (1.1). It is well known even from classical scalar considerations for N = 1
that the solutions to (1.2)-(1.4) in general cannot be expected to be smooth. Since
the viscosity theory does not appear to work for (1.2)-(1.4) when N ≥ 2, we will
interpret solutions in the so-called D-sense. This is a new notion of solution for fully
nonlinear systems of very general applicability recently introduced in [K9]-[K10].
Deferring temporarily the details of this new theory of D-solutions, we would like
to stress the next purely vectorial peculiar occurrence: the obvious adaptation of
Aronsson’s variational notion of Absolute Minimisers to N ≥ 2, i.e.

E∞(u,O) ≤ E∞(u+ φ,O), O b Ω, φ ∈W 1,∞
0 (O,RN )

is not yet known whether it is the appropriate one when min{n,N} ≥ 2. Accord-
ingly, in the model case of (1.5) and for C2 solutions, the relevant notion of so-called
∞-Minimal maps allowing to characterise variationally solutions to (1.5) in term
of u 7→ ‖Du‖L∞(·) was introduced in [K4] and in a sense its nature stems from
the emergence (when N ≥ 2) of the extra system which has discontinuous coeffi-
cients but vanishes identically when min{N,n} = 1. These findings are compatible
with the early vectorial observations made in [BJW1, BJW2], wherein the appro-
priate L∞ quasiconvexity notion in the vectorial case is essentially different from
its scalar counterpart and the existence of absolute minimisers was established only
for min{N,n} = 1. Notwithstanding, in the most recent paper [K13] a new charac-
terisation has been discovered that allows to connect D-solutions of (1.5) to local
minimisers of u 7→ ‖Du‖L∞(·) in terms of certain classes of local affine variations.

In this paper we characterise general D-solutions to (1.2)-(1.4) in terms of local
affine variations of (1.1). Our main result is Theorem 7 which follows and claims
that D-solutions u : Rn ⊇ Ω −→ RN to (1.2)-(1.4) in C1

pw(Ω,RN ) can be char-

acterised variationally in terms of (1.1). The a priori regularity of piecewise C1

assumed for our putative solutions is slightly higher than the generic membership
in the space W 1,∞

loc (Ω,RN ), but as a compensation we impose no convexity of any
kind for the hamiltonian H.

In special case of classical C2 solutions, our result reduces to the following corol-
lary which shows the geometric nature of our characterisation:

Corollary 1 (C2 ∞-Harmonic mappings). Let Ω ⊆ Rn be open, u ∈ C2(Ω,RN )
and H ∈ C2(Ω× Rn × RNn) a function satisfying{

HP (x, η, ·) = 0
}
⊆
{

H(x, η, ·) = 0
}
, (x, η) ∈ Ω× RN .

Then,

F∞(·, u,Du,D2u) = 0 in Ω ⇐⇒

{
E∞(u, O) ≤ E∞(u+A, O) ,

∀ O b Ω, ∀ A ∈
(
A‖,∞O ∪ A⊥,∞O

)
(u).

Here E∞ is given by (1.1), F∞ is given by (1.2)-(1.4) and A‖,∞O (u),A⊥,∞O (u) are
sets of affine maps given by

A‖,∞O (u) =

A : Rn → RN
∣∣∣∣∣∣

D2A ≡ 0, A(x) = 0 & exist ξ ∈ RN
& x ∈ O(u) s. th. A is parallel to
the tangent of ξH(·, u,Du) at x

 ,

A⊥,∞O (u) =

A : Rn → RN
∣∣∣∣∣∣

D2A ≡ 0 and there exists x ∈ O(u)
s. th. A is normal to HP (·, u,Du) at x
& A>HP (·, u,Du) is divergenceless at x
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and
O(u) := Argmax

{
H(·, u,Du) : O

}
.

We conclude the introduction with some rudimentary facts about generalised
solutions which are required for the results in the present paper. The notion of
D-solutions is based on the probabilistic interpretation of limits of difference quo-
tients by using Young measures. Unlike standard PDE approaches which utilise
Young measures valued in Euclidean spaces (see e.g. [E, P, FL, CFV, FG, V, KR]),
D-solutions are based on Young measures valued in the 1-point compactification

RNn2

s := RNn2

s ∪ {∞} (which is isometric to the sphere of the same dimension).

The motivation of the notion in the special case of W 1,∞
loc (Ω,RN ) to 2nd order fully

nonlinear systems is the following: let u ∈W 2,p
loc (Ω,RN ) be a strong solution to

(1.6) F
(
x, u(x),Du(x),D2u(x)

)
= 0, a.e. x ∈ Ω,

where F : Ω × RN × RNn × RNn2

s −→ RN is a Borel measurable map which is
continuous with respect to the hessian variable. Let D1,h be the usual difference

quotient operator, i.e. D1,h :=
(
D1,h

1 , ...,D1,h
n

)
and D1,h

i v := 1
h

[
v(·+hei)−v

]
, h 6= 0.

By the well known equivalence between weak and strong derivatives, (1.6) gives

(1.7) F
(
x, u(x),Du(x), lim

h→0
D1,hu(x)

)
= 0, a.e. x ∈ Ω.

Further, by the assumed continuity of X 7→ F(x, η, P,X), this is equivalent to

(1.8) lim
h→0
F
(
x, u(x),Du(x),D1,hu(x)

)
= 0, a.e. x ∈ Ω.

The crucial observation is that the limit in (1.8) may exist even if that of (1.7) does
not, whilst (1.8) makes sense for merely once weakly differentiable maps. In order
to represent the limit in a convenient fashion, we need to view the hessian D2u
and the difference quotients of the gradient D1,hDu as probability-valued mappings
from Ω to P

(
RNn2

s

)
, given by the respective Dirac masses: x 7−→ δD2u(x) and

x 7−→ δD1,hDu(x). The exact definition is as follows:

Definition 2 (Diffuse Hessians). Let u : Rn ⊇ Ω −→ RN be in W 1,∞
loc (Ω,RN ).

The diffuse hessians D2u of u are the subsequential weak* limits of the differ-
ence quotients of the gradient in the set of sphere-valued Young measures along
infinitesimal sequences (hν)∞ν=1:

δ
D

1,hνkDu
∗−−⇀D2u in Y

(
Ω,RNn

2

s

)
, as k →∞.

The set Y
(
Ω,RNn2

s

)
is defined as

Y
(
Ω,RNn

2

s

)
:=
{
ν : Ω→P

(
RNn

2

s

) ∣∣∣ [ν(·)](U) ∈ L∞(Ω) for any open U ⊆ RNn
2

s

}
.

Some elementary properties of the set of Young measures Y
(
Ω,RNn2

s

)
utilised

herein are recalled in the next section. The main fact that we need to record here
is that it is sequentially weakly* compact with respect to a certain dual topology
and hence every map as above possesses diffuse 2nd derivatives.

Definition 3 (D-solutions to 2nd order systems). Let Ω ⊆ Rn be an open set and

F : Ω × RN × RNn × RNn2

s −→ RN a Borel measurable map which is continuous
with respect to the last argument. Consider the PDE system

(1.9) F
(
·, u,Du,D2u

)
= 0 on Ω.
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We say that the locally Lipschitz continuous map u : u : Rn ⊇ Ω −→ RN is a
D-solution of (1.9) when for any diffuse hessian D2u of u, we have

(1.10) sup
Xx∈ supp∗(D2u(x))

∣∣F(x, u(x),Du(x),Xx

)∣∣ = 0, a.e. x ∈ Ω.

Here “supp∗” symbolises the reduced support of a probability measure excluding

infinity, namely supp∗(ϑ) := supp(ϑ) \ {∞} when ϑ ∈P
(
RNn2

s

)
.

We note that D-solutions are readily compatible with strong/classical solutions:
indeed, by Remark 4iii) that follows, if u happens to be twice weakly differentiable
then we have D2u(x) = δD2u(x) for a.e. x ∈ Ω and the notion reduces to

sup
Xx∈ supp(δD2u(x))

∣∣F(x, u(x),Du(x),Xx

)∣∣ = 0, a.e. x ∈ Ω,

thus recovering strong/classical solutions.

2. Young Measures and Auxiliary Results

Young Measures. Let Ω ⊆ Rn be open. The set of Young measures Y
(
Ω,RNn2

s

)
defined above forms a subset of the unit sphere of a certain L∞ space of measure-
valued maps and this provides its useful properties, including sequential weak*
compactness. Consider the separable space L1

(
Ω, C0

(
RNn2

s

))
of Bochner inte-

grable maps. The elements of this space are those Carathéodory functions Φ :

Ω × RNn2

s −→ R which satisfy ‖Φ‖L1(Ω,C0(RNn2
s )) :=

∫
Ω

∥∥Φ(x, ·)
∥∥
C0(RNn2

s )
dx <

∞. We refer e.g. to [FL, Ed, V] and to [K9]-[K13] for background material on

these spaces. The dual space of this space is L∞w∗
(
Ω,M

(
RNn2

s

))
. This dual Ba-

nach space consists of Radon measure-valued maps Ω 3 x 7−→ ν(x) ∈M
(
RNn2

s

)
which are weakly* measurable, in the sense that for any open set U ⊆ RNn2

s ,
the function x 7−→ [ν(x)](U) is in L∞(Ω). The norm of the space is given by
‖ν‖L∞

w∗ (Ω,M(RNn2
s )) := ess supx∈Ω ‖ν(x)‖, where “‖ · ‖” denotes the total variation.

It thus follows that

Y
(
Ω,RNn

2

s

)
=
{
ν ∈ L∞w∗

(
Ω,M

(
RNn

2

s

))
: ν(x) ∈P

(
RNn

2

s

)
, for a.e. x ∈ Ω

}
.

Remark 4 (Properties of Young Measures). We note the following facts about the

set Y
(
Ω,RNn2

s

)
(proofs can be found e.g. in [FG]):

i) It is convex and sequentially compact in the weak* topology induced from L∞w∗ .

ii) The set of measurable maps V : Rn ⊇ Ω −→ RNn2

s can be identified with a subset
of it via the embedding V 7−→ δV , δV (x) := δV (x).

iii) Let V i, V∞ : Rn ⊇ Ω −→ RNn2

s be measurable maps, i ∈ N. Then, up the
passage to subsequences, the following equivalence holds true as i → ∞: we have

V i −→ V∞ a.e. on Ω if and only if δV i
∗−−⇀δV∞ in Y

(
Ω,RNn2

s

)
.

Two Auxiliary Lemmas. We now identify two simple technical results which are
needed for our main result.

Lemma 5. Suppose Ω ⊆ Rn is open, u ∈ C1(Ω,RN ) and H ∈ C2(Rn×RN×RNn).
Fix O b Ω and an affine map A : Rn −→ RN . We set

O(u) :=
{
x ∈ O : H

(
x, u(x),Du(x)

)
= E∞(u, O)

}
.
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a) If we have E∞(u, O) ≤ E∞(u+ tA, O) for all t > 0, it follows that

max
z∈O

{
HP

(
z, u(z),Du(z)

)
: DA(z) + Hη

(
z, u(z),Du(z)

)
·A(z)

}
≥ 0.

In the above “:” and “·” denote the inner products in RNn and RN respectively.

b) Let x ∈ O and 0 < ε < dist(x, ∂O). The set

Oε(x) :=
{
y ∈ O

∣∣ H(y, u(y),Du(y)) < H
(
x, u(x),Du(x)

)}
∩ Bε(x)

is open and compactly contained in O whilst x ∈
(
Oε(x)

)
(u), that is

E∞
(
u, Oε(x)

)
= H

(
x, u(x),Du(x)

)
.

Proof of Lemma 5. a) Since E∞(u, O) ≤ E∞(u + tA, O), by Taylor-expanding
H we have

0 ≤ max
O

H(·, u,Du) − max
O

H
(
·, u+ tA,Du + tDA

)
= max

O
H(·, u,Du) − max

O

{
H(·, u,Du) + tHη(·, u,Du) ·A

+ tHP (·, u,Du) : DA + O
(
t2|A|2 + t2|DA|2

)}
≤ t max

O

{
Hη(·, u,Du) ·A + HP (·, u,Du) : DA

}
+ O(t2).

Consequently, by letting t → 0, we discover the desired inequality. Item b) is a
direct consequence of the definitions. �

Next, we have the following simple consequence of Danskin’s theorem [D]:

Lemma 6. Given an open set Ω ⊆ Rn, consider maps u ∈ C1(Ω,RN ) and H ∈
C2(Rn × RN × RNn), an affine map A : Rn −→ RN and O b Ω. We define

r(λ) := E∞(u+ λA, O) − E∞(u, O), λ ≥ 0.

Let also O(u) be as in Lemma 5. Then, r is convex, r(0) = 0 and also it satisfies

Dr(0+) ≥ max
O(u)

{
HP (·, u,Du) : DA + Hη(·, u,Du) ·A

}
,

where Dr(0+) := lim inf
λ→0+

r(λ)−r(0)
λ is the lower right Dini derivative of r at zero.

Proof of Lemma 6. The result is deducible from Danskin’s theorem (see [D]) but
we prove it directly since the 1-sided version above is not given explicitly in the
paper. By setting

R(λ, y) := H
(
y , u(y) + λA(y) , Du(y) + λDA(y)

)
we have r(λ) = maxy∈O R(λ, y)−maxy∈O R(0, y), whilst for any λ ≥ 0 the maxi-

mum maxy∈O R(λ, y) is realised at (at least one) point yλ ∈ O. Hence

1

λ

(
r(λ)− r(0)

)
=

1

λ

[
max
y∈O

R(λ, y) − max
y∈O

R(0, y)
]

=
1

λ

[
R(λ, yλ) − R(0, y0)

]
=

1

λ

[(
R(λ, yλ)−R(λ, y0)

)
+
(
R(λ, y0)−R(0, y0)

)]
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and hence

1

λ

(
r(λ)− r(0)

)
≥ 1

λ

(
R(λ, y0) − R(0, y0)

)
,

where y0 ∈ O is any point such that R(0, y0) = maxO R(0, ·). Hence, we have

Dr(0+) = lim inf
λ→0+

1

λ

(
r(λ)− r(0)

)
≥ max

y0∈O

{
lim inf
λ→0+

1

λ

(
R(λ, y0)−R(0, y0)

)}
= max

y∈O(u)

{
lim inf
λ→0+

1

λ

(
R(λ, y)−R(0, y)

)}
= max
O(u)

{
lim inf
λ→0+

1

λ

(
H
(
· , u+ λA,Du+ λDA

)
−H

(
·, u,Du)

)}
= max
O(u)

{
lim inf
λ→0+

1

λ

(
H(·, u,Du) + λHη

(
·, u,Du

)
·A + λHP (·, u,Du) : DA

+ O
(
|λDA|2 + |λA|2

)
− H(·, u,Du)

)}
and the desired inequality has been established. �

Let us record the next simple inequality which follows from the definitions of
lower right Dini derivative and convexity:

(2.1) r(λ) − r(0) ≥ Dr(0+)λ,

for all λ ≥ 0.

3. Main result and Proofs

Now we proceed to the main theme of the paper, the variational characterisation
of D-solutions to the PDE system (1.2) in terms of appropriate variations of the
energy functional (1.1). We recall that the Borel mapping F∞ : Ω× RN × RNn ×
RNn2

s −→ RN is given by (1.3)-(1.4) and Ω ⊆ Rn is a fixed open set.

Notational simplifications and perpendicularity considerations. We begin
by rewriting F∞(·, u,Du,D2u) = 0 in a more malleable fashion. We define the
maps

F⊥∞(x, η, P,X) := HPP (x, η, P ) : X + HPη(x, η, P ) : P + HPx(x, η, P ) : I ,(3.1)

F‖∞(x, η, P,X) := HP (x, η, P ) : X + Hη(x, η, P )>P + Hx(x, η, P )(3.2)

and these are abbreviations of

F⊥∞(x, η, P,X)α =
∑
β,i,j

HPαiPβj (x, η, P ) Xβij +
∑
β,i

HPαiηβ (x, η, P )Pβi

+
∑
i

HPαixi(x, η, P ) ,

F‖∞(x, η, P,X)i =
∑
β,j

HPβj (x, η, P )Xβij +
∑
β

Hηβ (x, η, P )Pβi + Hxi(x, η, P ).
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Note that F⊥∞(x, η, P,X) ∈ RN , whilst F‖∞(x, η, P,X) ∈ Rn. By utilising (3.1)-
(3.2), we can now express (1.3) as

F∞(x, η, P,X) := HP (x, η, P )F‖∞(x, η, P,X) + H(x, η, P ) ·

· [[HP (x, η, P )]]⊥
(
F⊥∞(x, η, P,X) − Hη(x, η, P )

)
.

Further, recall that in view of (1.4), [[HP (x, η, P )]]⊥ is the projection on the orthog-
onal complement of R(HP (x, η, P )). Hence, by the orthogonality of [[HP (x, η,P )]]⊥·
·
(
F⊥∞(x, η,P,X)−Hη(x, η,P )

)
and HP (x, η, P )F‖∞(x, η,P,X), we have

F∞(x, η, P,X) = 0, for some (x, η, P,X) ∈ Ω× RN× RNn× RNn
2

s ,

if and only if HP (x, η, P )F‖∞(x, η, P,X) = 0,

H(x, η, P ) [[HP (x, η, P )]]⊥
(
F⊥∞(x, η, P,X)−Hη(x, η, P )

)
= 0.

Finally, we note that for the sake of clarity we state and prove our characterisation
below only in the case of C1 solutions, but due to its pointwise nature, the result
holds true for piecewise C1 solutions with obvious adaptations which we refrain
from providing. Therefore, our main result is as follows:

Theorem 7 (Variational characterisation of the PDE system arising in L∞). Let
Ω ⊆ Rn be open, u ∈ C1(Ω,RN ) and H ∈ C2(Ω× Rn × RNn) a function satisfying{

HP (x, η, ·) = 0
}
⊆
{

H(x, η, ·) = 0
}
, (x, η) ∈ Ω× RN .

Then:
(A) We have

F∞(·, u,Du,D2u) = 0 in Ω,

in the D-sense, if and only if

E∞(u, O) ≤ E∞(u+A, O), ∀ O b Ω, ∀ A ∈ A‖,∞O (u)
⋃
A⊥,∞O (u).

In the above, the sets A‖,∞O (u),A⊥,∞O (u) consist, for any O b Ω, by affine mappings
as follows:

A‖,∞O (u) :=

A : Rn → RN
∣∣∣∣∣∣

D2A ≡ 0, A(x) = 0 & exist ξ ∈ RN, x ∈ O(u),

D2u ∈ Y
(
Ω,RNn2

s

)
& Xx ∈ supp∗

(
D2u(x)

)
s. th. : DA ≡ ξ ⊗F‖∞

(
x, u(x),Du(x),Xx

)
⋃ RN

and

A⊥,∞O (u) :=

A : Rn → RN

∣∣∣∣∣∣∣∣
D2A ≡ 0 & there exist x ∈ O(u), D2u

∈ Y
(
Ω,RNn2

s

)
&Xx ∈ supp∗

(
D2u(x)

)
s. th. : A(x) ∈ R

(
HP

(
x, u(x),Du(x)

)⊥
& DA ∈ L

(
x,A(x),Xx

)

⋃

RN

where L
(
x, η,X

)
is an affine space of N × n matrices, defined as

L
(
x, η,X

)
:=


{
Q ∈ RNn

∣∣∣ HP

(
x, u(x),Du(x)

)
: Q

= −η · F⊥∞
(
x, u(x),Du(x),Xx

)}
, if HP

(
x, u(x),Du(x)

)
6= 0,

{0}, if HP

(
x, u(x),Du(x)

)
= 0,
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for any (x, η,X) ∈ Ω× RN × RNn2

s .

(B) In view of the mutual perpendicularity of the two components of F∞ (see (3.1)-
(3.2)), (A) is a consequence of the following particular results:

HP (·, u,Du)F‖∞(·, u,Du,D2u) = 0 in Ω,

in the D-sense, if and only if

E∞(u, O) ≤ E∞(u+A, O), ∀ O b Ω, ∀ A ∈ A‖,∞O (u)

and also

H(·, u,Du)
[
HP (·, u,Du)

]⊥(F⊥∞(·, u,Du,D2u)−Hη(·, u,Du)
)

= 0 in Ω,

in the D-sense, if and only if

E∞(u, O) ≤ E∞(u+A, O), ∀ O b Ω, ∀ A ∈ A⊥,∞O (u).

We note that in the special case of C2 solutions, Corollary 1 describes the way
that classical solutions u : Rn ⊇ Ω −→ RN to (1.2)-(1.4) are characterised.

Remark 8 (About pointwise properties of C1 D-solutions). Let u : Rn ⊇ Ω −→ RN
be a D-solution to (1.2)-(1.4) in C1(Ω,RN ). By Definition 3, this means that for
any D2u ∈ Y

(
Ω,RNn2

s

)
,

F∞
(
x, u(x),Du(x),Xx

)
= 0, a.e. x ∈ Ω and all Xx ∈ supp∗

(
D2u(x)

)
.

By Definition 2, every diffuse hessian of a putative solution is defined a.e. on Ω as

a weakly* measurable probability valued map Rn ⊇ Ω −→ P
(
RNn2

s ∪ {∞}
)
. Let

Ω 3 x 7−→ Ox ∈ RNn2

s be any selection of elements of the zero level sets{
X ∈ RNn

2

s : F∞
(
x, u(x),Du(x),X

)
= 0

}
.

By modifying each diffuse hessian on a Lebesgue nullset and choosing the represen-
tative which is redefined D2u(x) = δOx

for a negligible set of x’s, we may assume
that D2u(x) exists for all x ∈ Ω. Further, given that Du(x) exists for all x ∈ Ω, by
perhaps a further re-definition on a Lebesgue nullset, it follows that u is D-solution
to (1.2)-(1.4) if and only if for (any such representative of) any diffuse hessian

F∞
(
x, u(x),Du(x),Xx

)
= 0, for all x ∈ Ω and Xx ∈ supp∗

(
D2u(x)

)
.

Note that at points x ∈ Ω for which D2u(x) = δ{∞} and hence supp∗
(
D2u(x)

)
= ∅,

the solution criterion is understood as being trivially satisfied.

Proof of Theorem 7. It suffices to establish only (B), since (A) is a conse-
quence of it. Suppose that for any O b Ω and any A ∈ A⊥,∞O (u) we have

E∞(u,O) ≤ E∞(u + A,O). Fix a diffuse hessian D2u ∈ Y
(
Ω,RNn2

s

)
, a point

x ∈ O such that supp∗
(
D2u(x)

)
6= ∅ and an Xx ∈ supp∗

(
D2u(x)

)
. In view of (3.1),

if HP

(
x, u(x),Du(x)

)
= 0, then, by our assumption on the level sets of H, we have

H
(
x, u(x),Du(x)

)
= 0 as well and as a consequence we readily obtain

H
(
x, u(x),Du(x)

)
[[HP

(
x, u(x),Du(x)

)
]]⊥·

·
(
F⊥∞
(
x, u(x),Du(x),Xx

)
−Hη

(
x, u(x),Du(x)

))
= 0

(3.3)
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is clearly satisfied at x. If HP

(
x, u(x),Du(x)

)
6= 0, then we select any direction

normal to the range of HP

(
x, u(x),Du(x)

)
∈ RNn, that is

nx ∈ R
(
HP

(
x, u(x),Du(x)

)⊥ ⊆ RN

which means n>x HP

(
x, u(x),Du(x)

)
= 0. Of course it may happen that the lin-

ear map HP

(
x, u(x),Du(x)

)
: Rn −→ RNn is surjective and then only the trivial

nx = 0 exists. In such an event, the equality (3.3) above is satisfied at x because
[[HP

(
x, u(x),Du(x)

)
]]⊥ = 0. Hence, we may assume nx 6= 0. Further, fix any matrix

Nx in the affine space L (x, nx,Xx) ⊆ RNn. By the definition of L (x, nx,Xx), we
have

HP

(
x, u(x),Du(x)

)
: Nx = −nx · F⊥∞

(
x, u(x),Du(x),Xx

)
.

Consider the affine map defined by

A(z) := nx + Nx(z − x), z ∈ Rn.

We remark that tA ∈ A⊥,∞O (u) for any t ∈ R. Indeed, this is a consequence of our
choices and the next homogeneity property of the space L (x, η,X):

L (x, tη,X) = tL (x, η,X), t ∈ R.

Let ε > 0 be small and let also Oε(x) be as in Lemma 5b). We therefore have

E∞
(
u,Oε(x)

)
≤ E∞

(
u+ tA,Oε(x)

)
.

By applying Lemma 5a), we have

0 ≤ max
z∈Oε(x)

{
HP

(
z, u(z),Du(z)

)
: DA(z) + Hη

(
z, u(z),Du(z)

)
·A(z)

}
ε→0
−−−→ HP

(
x, u(x),Du(x)

)
: Nx + Hη

(
x, u(x),Du(x)

)
· nx

= −nx ·
(
F⊥∞
(
x, u(x),Du(x),Xx

)
−Hη

(
x, u(x),Du(x)

))
.

As a result, we have

nx ·
(
F⊥∞
(
x, u(x),Du(x),Xx

)
−Hη

(
x, u(x),Du(x)

))
≤ 0

for any direction nx⊥R
(
HP

(
x, u(x),Du(x)

)
and by the arbitrariness of nx, we

deduce that

[[HP

(
x, u(x),Du(x)

)
]]⊥
(
F⊥∞
(
x, u(x),Du(x),Xx

)
− Hη

(
x, u(x),Du(x)

))
= 0,

for any D2u ∈ Y
(
Ω,RNn2

s

)
, x ∈ Ω and Xx ∈ supp∗

(
D2u(x)

)
, as desired.

For the tangential component of the system we argue similarly. Suppose that
for any O b Ω and any A ∈ A‖,∞O (u) we have E∞(u, O) ≤ E∞(u + A, O). Fix

x ∈ O, a diffuse hessian D2u ∈ Y
(
Ω,RNn2

s

)
such that supp∗

(
D2u(x)

)
6= ∅, a point

Xx ∈ supp∗
(
D2u(x)

)
and ξ ∈ RN . Recalling (3.2), we define the affine map

A(z) := ξ ⊗F‖∞
(
x, u(x),Du(x),Xx

)
· (z − x), z ∈ Rn.

Fix ε > 0 small and let Oε(x) be as in Lemma 5b). Then, tA ∈ A‖,∞Oε(x)(u) for any

t ∈ R. Thus,

E∞
(
u,Oε(x)

)
≤ E∞

(
u+ tA,Oε(x)

)
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and by applying Lemma 5a), we have

0 ≤ max
z∈Oε(x)

{
HP

(
z, u(z),Du(z)

)
: DA(z) + Hη

(
z, u(z),Du(z)

)
·A(z)

}
ε→0
−−−→ HP

(
x, u(x),Du(x)

)
:
(
ξ ⊗F‖∞

(
x, u(x),Du(x),Xx

))
and hence

ξ ·
(

HP

(
x, u(x),Du(x)

)
F‖∞
(
x, u(x),Du(x),Xx

))
≥ 0,

for any ξ ∈ RN . By the arbitrariness of ξ we deduce that

HP

(
x, u(x),Du(x)

)
F‖∞
(
x, u(x),Du(x),Xx

)
= 0

for any D2u ∈ Y
(
Ω,RNn2

s

)
, x ∈ Ω and Xx ∈ supp∗

(
D2u(x)

)
, as desired.

Conversely, we fix O b Ω, x ∈ O(u), D2u ∈ Y
(
Ω,RNn2

s

)
, Xx ∈ supp∗(D2u(x))

and ξ ∈ RN corresponding to an A ∈ A‖,∞O (u). Let r be the function of Lemma 6.
By applying Lemma 6 to the above setting, we have

Dr(0+) ≥ max
y∈O(u)

{
HP (y, u(y),Du(y)) : DA(y) + Hη(y, u(y),Du(y)) ·A(y)

}
≥ HP

(
x, u(x),Du(x)

)
: DA(x) + Hη

(
x, u(x),Du(x)

)
·A(x)

= HP

(
x, u(x),Du(x)

)
:
(
ξ ⊗F‖∞

(
x, u(x),Du(x),Xx

))
= ξ ·

(
HP

(
x, u(x),Du(x)

)
F‖∞
(
x, u(x),Du(x),Xx

))
and hence Dr(0+) ≥ 0 because u is a D-solution. Due to the fact that r(0) = 0 and
r is convex, by inequality (2.1) we have r(t) ≥ 0 for all t ≥ 0. Therefore,

E∞(u, O) ≤ E∞(u+A, O), ∀ O b Ω, ∀ A ∈ A‖,∞O (u).

The case of A ∈ A⊥,∞O is completely analogous. Fix D2u ∈ Y
(
Ω,RNn2

s

)
, O b Ω,

x ∈ O(u), Xx ∈ supp∗(D2u(x)) and an A with A(x)⊥R(HP

(
x, u(x),Du(x)

)
and

DA ∈ L
(
x,A(x),Xx

)
. By applying Lemma 6 again, we have

Dr(0+) ≥ max
y∈O(u)

{
HP (y, u(y),Du(y)) : DA(y) + Hη(y, u(y),Du(y)) ·A(y)

}
≥ HP

(
x, u(x),Du(x)

)
: DA(x) + Hη

(
x, u(x),Du(x)

)
·A(x).

If HP

(
x, u(x),Du(x)

)
6= 0, then by the definition of L

(
x,A(x),Xx

)
we have

Dr(0+) ≥ HP

(
x, u(x),Du(x)

)
: DA(x) + Hη

(
x, u(x),Du(x)

)
·A(x)

= −A(x) ·
(
F⊥∞
(
x, u(x),Du(x),Xx

)
− Hη

(
x, u(x),Du(x)

))
= −A(x)>[[HP (x, u(x),Du(x))]]⊥

(
F⊥∞
(
x, u(x),Du(x),Xx

)
− Hη

(
x,u(x),Du(x)

))
and hence Dr(0+) ≥ 0 because u is a D-solution on Ω. If HP

(
x, u(x),Du(x)

)
= 0,

then again Dr(0+) ≥ 0 because A(x) = 0. In either cases, by inequality (2.1) we
obtain r(t) ≥ 0 for all t ≥ 0 and hence

E∞(u, O) ≤ E∞(u+A, O), ∀ O b Ω, ∀ A ∈ A⊥,∞O (u).

The theorem has been established. �
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Proof of Corollary 1. If u ∈ C2(Ω,RN ), then by Lemma 4 any diffuse hessian
of u satisfies D2u(x) = δD2u(x) for a.e. x ∈ Ω. By Remark 8, we may assume this

happens for all x ∈ Ω. Therefore, the reduced support of D2u(x) is the singleton
set {δD2u(x)}. Hence, for A‖,∞O (u), we have that any possible affine map A satisfies

DA ≡ D
(
ξH
(
x, u(x),Du(x)

)
) and A(x) = 0. In the case of A⊥,∞O (u), we have that

any possible affine map A satisfies

A(x)>HP

(
x, u(x),Du(x)

)
= 0 , DA ∈ L

(
x,A(x),D2u(x)

)
,

which gives

DA(x) : HP

(
x, u(x),Du(x)

)
= −A(x) ·

(
HPP

(
x, u(x),Du(x)

)
: D2u(x) +

+ HPη

(
x, u(x),Du(x)

)
: Du(x) + HPx

(
x, u(x),Du(x)

)
: I
)

= −A(x) ·Div
(
HP

(
·, u,Du)

)
(x).

As a consequence, the divergence Div
(
A>HP

(
·, u,Du

))
(x) vanishes because

DA(x) : HP

(
x, u(x),Du(x)

)
+ A(x) ·Div

(
HP

(
·, u,Du)

)
(x) = 0.

The corollary has been established. �
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