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SCHATTEN CLASS TOEPLITZ OPERATORS ON GENERALIZED

FOCK SPACES

JOSHUA ISRALOWITZ, JANI VIRTANEN, AND LAUREN WOLF

Abstract. In this paper we characterize the Schatten p class membership of

Toeplitz operators with positive measure symbols acting on generalized Fock
spaces for the full range 0 < p < ∞.

1. Introduction

Let dc = i
4 (∂ − ∂) and let d be the usual exterior derivative. Throughout the

paper, let φ ∈ C2(Cn) be a real valued function on Cn such that

(1.1) cω0 < ddcφ < Cω0

holds uniformly pointwise on Cn for some positive constants c and C (in the sense
of positive (1, 1) forms) where ω0 = ddc| · |2 is the standard Euclidean Kähler form.

Define F 2
φ to be the set of entire functions such that∫

Cn
|f(z)|2e−2φ(z)dv(z) <∞.

Denote by P the orthogonal projection of L2(e−2φdv) onto F 2
φ . For a positive

measure µ, define the Toeplitz operator Tµ : F 2
φ → F 2

φ with symbol µ by setting

Tµf(z) =

∫
Cn
K(z, w̄)f(w)e2φ(w)dµ(w),

where K stands for the reproducing (or Bergman) kernel of F 2
φ , that is,

K(z, w̄) =

∞∑
k=1

fk(z)fk(w),

where {fk} is any orthonormal basis for F 2
φ . In the next section we list some recent

results on the reproducing kernel (see [4]), which will be crucial to the proofs of our
main results on Schatten class properties of Toeplitz operators.

In [2] (see also a recent monograph of Zhu [6]), Toeplitz operators were considered
in the setting of the standard weighted Fock spaces, that is, when φ(z) = α

2 |z|
2 for

α > 0, and characterizations of bounded, compact and Schatten class Toeplitz
operators with positive measure symbols were provided (moreover, see [4] for a
similar characterization of bounded and compact Toeplitz operators with positive
measure symbols on F 2

φ). In particular, the Schatten class membership of these

Toeplitz operators was characterized in terms of the heat (Berezin) transform of
the symbol and in terms of the averaging function µ(B(·, r)).
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In this paper we will provide very similar characterizations of the Schatten class
membership of these Toeplitz operators. Note that unlike the classical Fock space
setting where one can utilize explicit formulas for the reproducing kernel, we instead
must rely on some known estimates on the behavior of the reproducing kernel (see
the first three lemmas in the next section). The proofs of our characterizations will
(as usual) be divided into the two cases 0 < p ≤ 1 (which will be dealt with in
Section 2) and p > 1 (which will be dealt with in Section 3.)

Let us note that one can easily write the so called “Fock-Sobolev spaces” from
[1] as a weighted Fock space F 2

φ with φ satisfying (1.1), so that in particular our
results immediately apply to these spaces.

Finally, note that we will often use the notation A . B for two nonnegative
quantities A and B if A ≤ CB for an unimportant constant C. Moreover, the
notation A & B and A ≈ B will have similar meanings.

2. The case 0 < p ≤ 1

In this section we will characterize Schatten p class Tµ for the case 0 < p ≤ 1.
We will often use the following three lemmas from [4].

Lemma 2.1. If K is the reproducing kernel of F 2
φ then there exists ε0 > 0 where

e−φ(w)|K(z, w)|e−φ(z) . e−ε0|z−w|

Lemma 2.2. There exists δ > 0 where

e−φ(w)|K(z, w)|e−φ(z) & 1

for all w ∈ B(z, δ). In particular, K(z, z)e−2φ(z) ≈ 1.

Lemma 2.3. If r > 0 then there exists Cr > 0 independent of f ∈ F 2
φ where

|f(z)e−φ(z)|2 . Cr
∫
B(z,r)

|f(w)e−φ(w)|2 dv(w).

The basic outline of our arguments will be similar to the proofs in [6] for the
classical Fock space. However, note that in the classical Fock space situation (when
φ(z) = α

2 |z|
2 for some α > 0), we have that

e−φ(w)|K(z, w)|e−φ(z) = e−
α
2 |z−w|

2

.

Because of this, we will often have to make modifications to the arguments in [6].
Now assume µ satisfies the condition that

(2.1)

∫
Cn
e−γ|z−w| dµ(w) <∞

for all γ > 0 and z ∈ Cn. Note that Lemma 2.1 immediately tells us that Tµ is well
defined on the span of {kz : z ∈ Cn} if µ satisfies condition (2.1), so in particular
Tµ is densely defined.

Let µ̃ be the Berezin transform of µ defined by µ̃(z) := 〈Tµkz, kz〉F 2
φ

where kz is

the normalized reproducing kernel of F 2
φ . Note that (as one would expect), (2.1) in

conjunction with Fubini’s theorem gives us that

µ̃(z) =

∫
Cn
|kz(w)|2e−2φ(w) dµ(w).

If r > 0 then for the remainder of this paper we will let {am} denote any fixed
arrangement of the lattice rZ2n (which is canonically treated as a subset of Cn.)
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Lemma 2.4. Suppose that µ ≥ 0, r > 0, and 0 < p ≤ 1. If µ satisfies condition
(2.1), then the following are equivalent:

(a) µ̃ ∈ Lp(Cn, dv)
(b) µ(B(·, r)) ∈ Lp(Cn, dv)
(c) {µ(B(am, r))} ∈ lp

Proof. The equivalence of (b) and (c) for any r > 0 was proved in [6], where it
was also proved that (b) and (c) are in fact independent of r > 0. Thus, we will
complete the proof by showing that (a)⇐⇒ (c) for some r > 0.

First assume that (c) is true. Then by Lemma 2.3 we have that

µ̃(z) =

∫
Cn
|kz(w)|2e−2φ(w) dµ(w)

.
∫
Cn

(∫
B(w,r)

|kz(u)|2e−2φ(u) dv(u)

)
dµ(w)

=

∫
Cn

(∫
Cn
χB(u,r)(w)|kz(u)|2e−2φ(u) dv(u)

)
dµ(w)

=

∫
Cn
µ(B(u, r))|kz(u)|2 e−2φ(u)dv(u)

.
∞∑
m=1

∫
B(am,r)

µ(B(u, r))e−ε0|z−u| dv(u)

where the last inequality and ε0 > 0 follow from Lemma 2.1. However, B(u, r) ⊂
B(am, 2r) if u ∈ B(am, r) so that

(2.2) µ̃(z) .
∞∑
m=1

µ(B(am, 2r))

∫
B(am,r)

e−ε0|z−u| dv(u).

Furthermore, since 0 < p ≤ 1, equation (2.2) gives us that
(2.3)∫

Cn
(µ̃(z))p dv(z) .

∞∑
m=1

(µ(B(am, 2r)))
p

∫
Cn

(∫
B(am,r)

e−ε0|z−u| dv(u)

)p
dv(z).

However, we can easily estimate the right hand side of (2.3) as follows. First, it
is obvious that

(2.4)

∫
B(am,2r)

(∫
B(am,r)

e−ε0|z−u| dv(u)

)p
dv(z) . r2n(p+1).

On the other hand, if |z − am| ≥ 2r and |u− am| ≤ r, then

|z − am| ≤ |z − u|+ |u− am| ≤ |z − u|+ r

so that

|z − u| ≥ |z − am| − r ≥
1

2
|z − am|.
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Thus, we have that

(2.5)

∫
Cn\B(am,2r)

(∫
B(am,r)

e−ε0|z−u| dv(u)

)p
dv(z)

. r2np
∫
Cn\B(am,2r)

e−
ε0p
2 |z−am| dv(z) . r2np.

Finally, combining (2.3) with (2.4) and (2.5) we have that

∫
Cn

(µ̃(z))p dv(z) ≤ Cr
∞∑
m=1

(µ(B(am, 2r)))
p <∞

for some Cr > 0 since (c) is independent of r > 0.
We now complete the proof by showing that (a)⇒ (c) for r = δ

2 where δ is from
Lemma 2.1. In particular,

∫
Cn

(µ̃(z))p dv(z) &
∞∑
m=1

∫
B(am,δ/2)

(µ̃(z))p dv(z).

Moreover, if z ∈ B(am, δ/2) then Lemma 2.2 gives us that

µ̃(z) ≥
∫
B(am,δ/2)

|kz(u)|2 e−2φ(u) dµ(u) & µ(B(am, δ/2))

which immediately implies that (c) is true with r = δ
2 . �

Lemma 2.5. Suppose that µ ≥ 0 and µ satisfies condition (2.1). Then

(a) Tµ ∈ Sp if µ̃ ∈ Lp(Cn, dv) and 0 < p ≤ 1,
(b) µ̃ ∈ Lp(Cn, dv) if Tµ ∈ Sp and 1 ≤ p <∞.

Proof. Since µ̃ ∈ Lp(Cn, dv) implies that {µ(B(am, r))} is bounded by Lemma 2.4,
we first of all have that Tµ is bounded on F 2

φ by Theorem 1 in [4]. Furthermore,

since
√
K(z, z) ≈ eφ(z), one can repeat virtually word for word the arguments on

pp. 96–97 in [6] to complete the proof. �

We will need one more lemma before we prove the main result of this section.
Note that this lemma is in fact a standard result in frame theory, though we will
include its simple proof for the sake of completion.

Lemma 2.6. Let r > 0 and let {em} be any orthonormal basis for F 2
φ . If {ξm} ⊂

rZ2n and A is the operator on F 2
φ defined by Aem := kξm then A extends to a

bounded operator on all of F 2
φ whose operator norm is bounded above by a constant

that only depends on r.
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Proof. If f, g ∈ F 2
φ , then the Cauchy-Schwarz inequality, Lemma 2.3, and the re-

producing property gives us that

|〈Af, g〉| ≤
∞∑
m=1

|〈f, em〉φ〈kξm , g〉φ|

≤ ‖f‖F 2
φ

( ∞∑
m=1

|〈kξm , g〉φ|2
) 1

2

≈ ‖f‖F 2
φ

( ∞∑
m=1

|g(ξm)e−φ(ξm)|2
) 1

2

. ‖f‖F 2
φ

( ∞∑
m=1

∫
B(ξm,r)

|g(u)e−φ(u)|2 dv(u)

) 1
2

. ‖f‖F 2
φ
‖g‖F 2

φ

�

Note that ‖ · ‖Sp is not a norm when p < 1. However, it is well known that if A
and B are compact, then

sm+n−1(A+B) ≤ sm(A) + sn(B)

where sk(T ) is the kth singular value of a compact operator T . Thus, it is easy to
see that for all 0 < p ≤ 1 we have

(2.6) ‖A+B‖pSp ≤ 2(‖A‖pSp + ‖B‖pSp)

for any A,B ∈ Sp.

Theorem 2.7. Suppose µ ≥ 0, 0 < p ≤ 1, and µ satisfies condition (2.1). Then
the following are equivalent:

(a) Tµ ∈ Sp
(b) µ̃ ∈ Lp(Cn, dv)
(c) µ(B(·, r)) ∈ Lp(Cn, dv)
(d) {µ(B(am, r))} ∈ lp

Proof. By Lemmas 2.4 and 2.5, it is enough to show that (a) ⇒ (d) for r = δ
where again δ is from Lemma 2.2. For that matter, pick some large R > 2δ (to
be determined later) and partition {am} into N sublattices {ξm} where m 6= k ⇒
|ξm − ξk| > R. Furthermore, let

ν :=

∞∑
m=1

µχB(ξm,δ).

Clearly Tν ≤ Tµ so that ‖Tν‖Sp ≤ ‖Tµ‖Sp .

Now fix any orthonormal basis {em} of F 2
φ and let A be the operator on F 2

φ

defined by Aem := kξm (which by Lemma 2.6 has operator norm that is bounded
above by a constant that is independent of {ξm}). Now let T := A∗TµA so that
‖T‖Sp . ‖Tµ‖Sp . Furthermore, define

Df :=

∞∑
m=1

〈Tem, em〉φ〈f, em〉φem
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and E := T −D so that by (2.6) we have

‖Tµ‖pSp & ‖T‖
p
Sp
≥ 1

2
‖D‖pSp − ‖E‖

p
Sp
.

Then since D is diagonal, we have from Lemma 2.2 that

‖Df‖pSp =

∞∑
m=1

〈Tem, em〉pφ(2.7)

=

∞∑
m=1

〈Tνkξm , kξm〉
p
φ

=

∞∑
m=1

(∫
Cn
|kξm(u)|2 e−2φ(u)dν(u)

)p

≥
∞∑
m=1

(∫
B(am,δ)

|kξm(u)|2 e−2φ(u)dµ(u)

)p

≥ C1

∞∑
m=1

µ(B(ξm, δ))
p

for some C1 > 0 independent of N .
We will now get an upper bound for ‖E‖pSp . By Proposition 1.29 in [5] and

Lemma 2.1, we have that

‖E‖pSp ≤
∞∑
m=1

∞∑
k=1

|〈Tem, ek〉φ|p

=
∑
m6=k

|〈Tνkξm , kξk〉φ|p

≤
∑
m6=k

(∫
Cn
|kξm(u)kξk(u)|e−2φ(u) dν(u)

)p
.
∑
m6=k

(∫
Cn
e−ε0|u−ξm|e−ε0|u−ξk| dν(u)

)p
.(2.8)

Now if m 6= k then |ξm − ξk| ≥ R. Thus, if |u − ξm| ≤ R
2 , then the triangle

inequality gives us that |u− ξk| ≥ R
2 . Plugging this into (2.8) gives us that

(2.9) ‖E‖pSp . e
− ε0pR2

∑
m 6=k

(∫
Cn
e−

ε0
2 |u−ξm|e−

ε0
2 |u−ξk| dν(u)

)p
.

Since ν is supported on
⋃∞
j=1B(ξj , δ), we have that

(2.10)

∫
Cn
e−

ε0
2 |u−ξm|e−

ε0
2 |u−ξk| dν(u) =

∞∑
j=1

∫
B(ξj ,δ)

e−
ε0
2 |u−ξm|e−

ε0
2 |u−ξk| dµ(u).

Moreover, if j 6= m and |u− ξj | < δ then

|ξj − ξm| ≤ |ξj − u|+ |u− ξm| ≤ δ + |u− ξm|.
Thus, as |ξj − ξm| > R ≥ 2δ we have that

|u− ξm| ≥ |ξj − ξm| − δ ≥
1

2
|ξj − ξm|
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and clearly we have a similar estimate for |u− ξk|.
Plugging this into (2.10) gives us that

(2.11)

∫
Cn
e−

ε0
2 |u−ξm|e−

ε0
2 |u−ξk| dν(u) ≤

∞∑
j=1

µ(B(ξj , δ))e
− ε04 |ξj−ξm|e−

ε0
4 |ξj−ξk|.

Thus, since 0 < p ≤ 1, we can plug (2.11) into (2.9) to get that

‖E‖pSp . e
− ε0pR2

∞∑
j=1

µ(B(ξj , δ))
p
∑
m 6=k

e−
ε0p
4 |ξj−ξm|e−

ε0p
4 |ξj−ξk|

≤ e−
ε0pR

2

∞∑
j=1

µ(B(ξj , δ))
p

( ∞∑
m=1

e−
ε0p
4 |ξj−ξm|

)2

. e−
ε0pR

2

∞∑
j=1

µ(B(ξj , δ))
p

which means that there exists C2 > 0 independent of N where

(2.12) ‖E‖pSp ≤ C2e
− ε0pR2

∞∑
j=1

µ(B(ξj , δ))
p.

Combining (2.7) and (2.12) we have that

‖Tµ‖pSp ≥
(

1

2
C1 − C2e

− ε0pR2

) ∞∑
j=1

µ(B(ξj , δ))
p

so setting R large enough gives us that

(2.13)

∞∑
j=1

µ(B(ξj , δ))
p . ‖Tµ‖pSp

for all µ where {µ(B(ξj , δ))} ∈ lp. However, an easy approximation argument gives
us that (2.13) holds for all positive Borel measures µ with Tµ ∈ Sp.

Finally, since (2.13) holds for each of the N sublattices of {am} and since N
obviously only depends on R, we get that

∞∑
m=1

µ(B(am, δ))
p . ‖Tµ‖pSp

which completes the proof. �

3. The case p ≥ 1

In this section we will consider the simpler case of p ≥ 1. As with the case
0 < p ≤ 1, the approach is quite similar to the standard Fock space situation. We
will need one preliminary result before we prove our main result.

Lemma 3.1. If p ≥ 1 and f ∈ Lp(Cn, dv), then Tf ∈ Sp.

Proof. Clearly without loss of generality we can assume that f ≥ 0. If µ = f dv then
clearly we have that {µ(B(am, r))} ∈ `p if f ∈ Lp(Cn, dv) so that Tf is bounded
on F 2

φ . The proof now follows immediately by Lemma 2.2 in conjunction with the

arguments on p. 245 in [6] that are used to prove this result in the classical Fock
space setting. �
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Theorem 3.2. Suppose µ ≥ 0, p ≥ 1, and µ satisfies condition (2.1). Then the
following are equivalent:

(a) Tµ is in the Schatten class Sp;
(b) µ̃ ∈ Lp(Cn, dv);
(c) µ(B(·, r)) ∈ Lp(Cn, dv);
(d) {µ(B(am, r))} ∈ lp.

Proof. That (c) and (d) are equivalent and that both conditions are independent
of r > 0 was proved in [6] when n = 1, though the case n > 1 is analogous. Note
that (a) implies (b) follows from Lemma 2.5 and the easy proof that (b) implies
(d) is analogous to the case 0 < p ≤ 1.

We will finish the proof by showing that (c)⇒(a), so suppose that µ̂r = µ(B(·, r)) ∈
Lp(Cn, dv). Then by Fubini’s theorem and the reproducing property

〈Tµ̂rf, f〉F 2
φ

=

∫
Cn

∫
Cn
χB(w,r)(z)|f(w)|2e−2φ(w) dµ(z) dv(w)

=

∫
Cn

(∫
B(z,r)

|f(w)|2e−2φ(w)dv(w)

)
dµ(z)

which by Lemma 2.3 implies that

〈Tµf, f〉F 2
φ

=

∫
Cn
|f(z)|2e−2φ(z)dµ(z)

≤ Cr
∫
Cn

(∫
B(z,r)

|f(w)e−φ(w)|2dv(w)

)
dµ(z) . 〈Tµ̂rf, f〉F 2

φ

or Tµ . Tµ̂r . The proof is now completed by an application of Lemma 3.1. �
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