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A SHAPE CALCULUS BASED METHOD FOR A TRANSMISSION PROBLEM

WITH RANDOM INTERFACE∗

ALEXEY CHERNOV†‡ , DUONG PHAM† , AND THANH TRAN§

Abstract. The present work is devoted to approximation of the statistical moments of the unknown solution
of a class of elliptic transmission problems in R3 with uncertainly located transmission interfaces. Within this
model, the diffusion coefficient has a jump discontinuity across the random transmission interface which models
linear diffusion in two different media separated by an uncertain surface. We apply the shape calculus approach
to approximate solution’s perturbation by the so-called shape derivative, correspondingly statistical moments of the
solution are approximated by the moments of the shape derivative. We characterize the shape derivative as a solution
of a related homogeneous transmission problem with nonzero jump conditions which can be solved with the aid of
boundary integral equations. We develop a rigorous theoretical framework for this method, particularly i) extending
the method to the case of unbounded domains and ii) closing the gaps, clarifying and adapting results in the existing
literature. The theoretical findings are supported by and illustrated in two particular examples.

Key words. Shape derivative, transmission problem, random domain, uncertainty quantification, statistical
moments, pseudodifferential equations, asymptotic expansions
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1. Introduction. Elliptic transmission or interface problems arise in many fields in science
and engineering, such as tomography, deformation of an elastic body with inclusions, stationary
groundwater flow in heterogeneous medium, fluid-structure interaction, scattering of an elastic body
and many others. Combined with the state-of-the-art hardware, advanced numerical schemes are
capable of producing a highly accurate and efficient deterministic numerical simulation, provided
that the problem data are known exactly. However, in real applications, a complete knowledge
of the problem parameters is not realistic for many reasons. First, the simulation parameters are
often estimated from measurements which can be inexact e.g. due to imperfect measurement
devices. Second, the parameters are estimated based on a large but finite number of system
samples (snapshots); this information can be incomplete or stochastic. Finally, parameters of
the system originate from a mathematical model which is itself only an approximation of the actual
process. Under such circumstances, highly accurate results of a single deterministic simulation for
one particular set of problem parameters are of limited use. An important paradigm, becoming
rapidly popular over the last years, see e.g. [2, 3, 6, 7, 8, 9, 10, 11, 14, 18, 19] and references
therein, is to treat the lack of knowledge via modeling uncertain parameters as random fields.
If the forward solution operator is continuous, the solution of the forward problem with random
parameters becomes a well-defined random field. Efficient numerical approximation of the random
(or stochastic) solution and its probabilistic characteristics, e.g. statistical moments, is a highly
non-trivial task representing numerous new interdisciplinary challenges: from regularity analysis
and numerical analysis to modeling and efficient parallel large scale computing.
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In this article we develop a deterministic method for numerical solution for a class of transmis-
sion problems with randomly perturbed interfaces. The equation to be solved is of the form

−∇ · (α∇u) = f in D±,

where D− is a random bounded domain in R3 and D+ = R3 \D− is its complement. The domains
share a common random surface Γ, and the coefficient function α takes (in general) distinct constant
values in D− and D+, respectively. The solution u is subject to jump conditions across Γ. A precise
description of the model problem is deferred until Section 2.3, where a probabilistic perturbation
model for the surface Γ (and thus D±) will be rigorously introduced. Within this model, the
transmission interface depends on the “random event” ω and the parameter ǫ ≥ 0 controlling the
amplitude of the perturbation. Therefore, the solution u depends on ω and ǫ, and will be denoted
by uǫ(ω). The case ε = 0 corresponds to the zero perturbation. In the present paper we are aiming
at estimating probabilistic properties of the solution perturbation uǫ(ω)−u0 when the perturbation
parameter is small, ǫ ≪ 1.

More precisely, we exploit the ideas from the recent publications [4, 6, 12, 13, 14] and propose to
approximate the statistical moments of the solution perturbation by the moments of the linearized
solution, i.e. for a fixed (small) value of the perturbation parameter ǫ the k-th order statistical
moments of the solution perturbation are approximated by

(1.1) Mk[uǫ − u0] ≈ ǫkMk[u′]

and similarly

(1.2) Mk[uǫ − E[uǫ]] ≈ ǫkMk[u′].

Here u′ is the shape derivative of uǫ formally understood as the linear order term in the
asymptotic expansion

(1.3) uǫ(x, ω) = u0(x) + ǫu′(x, ω) + · · · , ǫ → 0,

for almost all random events ω ∈ Ω at a certain fixed point x in the Euclidean space R3. The notion
of the shape derivative has been introduced in the context of the shape optimization (see e.g. the
monograph [20] and the references therein) and allows to quantify sensitivity of the solution of a
PDE to small perturbation of the boundary.

Although very intuitive, (1.3) cannot be used as a rigorous definition of u′(x, ω). In particular,
convergence of the asymptotic expansion and herewith the existence of the shape derivative is
unclear. In the first part of this article (Section 3) we develop a rigorous mathematical theory of
existence of the shape derivative for the class of elliptic transmission problems under consideration.
Similarly to [13, Lemma 1], we obtain a characterization of the shape derivative u′(x, ω) as a solution
of a deterministic transmission problem on a fixed interface. Our contribution in this section is two-
fold: i) we extend the notion of shape derivatives to the case of unbounded domains, and ii) we fill
the gaps and unclarities in existing literature where no rigorous discussion on existence of shape
derivatives is presented.

As mentioned above, for almost all ω ∈ Ω the shape derivative u′(·, ω) is a solution of a
deterministic problem in R3 with (in general) nonhomogeneous jump conditions but with vanishing
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volume source term. The second contribution of this article is the derivation and analysis of
boundary integral equations [15, 17, 21] which are used to solve this transmission problem on
deterministic domains with deterministic interface. A tensorization argument is then used to obtain
the approximation (1.1) for the statistical moments.

Finally, we illustrate the accuracy of the linearization approach by considering two examples
setting on the unit sphere Γ := {|x| = 1} with uniform radial perturbation. The first example
involves a pre-determined solution with radial symmetry, so that the exact and the linearized
solutions as well as their second moments are available explicitly. We observe that in this particular
case the linearization error for the second order statistical moments is of the order O(ǫ4) rather
than o(ǫ2) as confirmed by the theory. The second example involves non-symmetric data so that the
linearized solution is not available explicitly. To solve this problem numerically we use the sparse
spectral tensor product BEM developed in [5]. This method exploits the underlying geometry of
the formulation and uses the basis of spherical harmonics being the eigenfunctions of the integral
operator governing the problem.

The paper is organized as follows. Section 2 contains the description of the random surface
perturbation model and the rigorous formulation of the model transmission problem, preceded by
the details on the function spaces involved in the analysis. Section 3 contains the generalization of
the shape calculus to the case of unbounded domains, definition and characterization of the material
and shape derivatives for the underlying model transmission problem and a rigorous proof and error
bounds for the approximation (1.1). Section 4 contains the details of the boundary reduction for
the linearized problem. Section 5 contains two examples, an analytic and a numerical, illustrating
the accuracy of the method.

2. Model elliptic transmission problem on a random interface. We start with some
preliminary definitions and notations in Section 2.1. Section 2.2 contains the description of a model
for the random surface perturbation. We introduce the randomized model problem in the strong
form in Section 2.3. The details on Sobolev spaces involved are summarized in Section 2.4.

2.1. Bochner spaces and statistical moments. Throughout this paper we denote by
(Ω,Σ,P) a generic complete probability space and let X be a Banach space. For any 1 ≤ k ≤ ∞,
the Bochner space Lk(Ω, X) is defined as usual by

(2.1) Lk(Ω, X) :=
{
v : Ω → X, measurable : ‖v‖Lk(Ω,X) < ∞

}

with the norm

(2.2) ‖v‖Lk(Ω,X) :=





(∫

Ω

‖v(ω)‖
k
X dP(ω)

)1/k

, 1 ≤ k < ∞,

esssup
ω∈Ω

‖v(ω)‖X , k = ∞.

The elements of Lk(Ω, X) are called random fields. We remark that for a part of the subsequent
analysis we may restrict to the special case when X is a Hilbert space. In particular, when X1

and X2 are two separable Hilbert spaces, their tensor product X1⊗X2 is a separable Hilbert space
with the natural inner product extended by linearity from 〈v ⊗ a, w ⊗ b〉X1⊗X2 = 〈v, w〉X1 〈a, b〉X2 ,
cf. e.g. [16, p. 20], [1, Definition 12.3.2, p.298]. In this paper we work with k-fold tensor products
of Hilbert spaces

(2.3) X(k) := X ⊗ · · · ⊗X.
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with the natural inner product satisfying 〈v1⊗· · ·⊗vk, w1⊗· · ·⊗wk〉X(k) = 〈v1, w1〉X . . . 〈vk, wk〉X .
Definition 2.1. For a random field v ∈ Lk(Ω, X), its k-order moment Mk[v] is an element

of X(k) defined by

(2.4) Mk[v] :=

∫

Ω

(
v(ω)⊗ · · · ⊗ v(ω)︸ ︷︷ ︸

k-times

)
dP(ω).

In the case k = 1, the statistical moment M1[v] coincides with the mean value of v and is
denoted by E[v]. If k ≥ 2, the statistical moment Mk[v] is the k-point autocorrelation function of
v. The quantity Mk[v−E[v]] is termed the k-th central moment of v. We distinguish in particular
second order moments: the correlation and covariance defined by

(2.5) Cor[v] := M2[v], Cov[v] := M2[v − E[v]].

In this paper we work with X being Sobolev spaces of real-valued functions defined on a domain
U ⊂ R3 yielding, in particular, the representation

(2.6) Cor[v](x,y) :=

∫

Ω

v(x, ω)v(y, ω) dP(ω), x,y ∈ U.

We observe that Cor[v] is defined on the Cartesian product U × U . Similarly, Mk[v] is defined on
the k-fold Cartesian product U × · · · × U . Here, the dimension of the underlying domain grows
rapidly with increasing moment order k.

2.2. Random interfaces. Consider a fixed bounded domain D0
− ⊂ R3 and let D0

+ := R3\D0
−

be its complement. Then the interface Γ0 = D0
−∩D0

+ is a closed manifold in R3. For the subsequent
analysis we assume that Γ0 is at least of the class C1,1. This implies that the outward normal vector
n0 to Γ0 is Lipschitz continuous: n0 ∈ C0,1(Γ0). The partition R3 = D0

+∪D0
− and the interface Γ0

will be fixed throughout the paper and will be called the nominal partition and nominal interface,
respectively.

In the present paper we utilize the domain perturbation model based on the speed method
(see e.g. the monograph [20] and references therein) and random domain perturbation model from
[4, 6, 12, 13, 14]. Suppose κ ∈ Lk(Ω, C0,1(Γ0)) is a random field, i.e. for almost any realization
ω ∈ Ω, we have κ(·, ω) ∈ C0,1(Γ0). For some sufficiently small, nonnegative ǫ we consider a family
of random interfaces of the form

(2.7) Γǫ(ω) = {x+ ǫκ(x, ω)n0(x) : x ∈ Γ0}, ω ∈ Ω.

Here, the uncertainty of the surfaces Γǫ(ω) is represented by the uncertainty in κ(·, ω). Notice
that the interface Γǫ(ω)|ǫ=0 is identical with Γ0 and therefore is a deterministic closed manifold.
Moreover, the limit Γǫ(ω) → Γ0 as ǫ → 0 is well defined in Lk(Ω, C0,1). If we identify Γǫ and Γ0

with their graphs, then

‖Γǫ − Γ0‖Lk(Ω,C0,1) = ǫ

(∫

Ω

‖κ(·, ω)n0‖kC0,1(Γ0) dP(ω)

) 1
k

≤ 2ǫ‖κ‖Lk(Ω,C0,1(Γ0))‖n
0‖C0,1(Γ0).(2.8)

This implies that for almost all ω ∈ Ω and a sufficiently small ǫ ≥ 0 the surface Γǫ(ω) is a
Lipschitz continuous closed manifold separating the interior domain Dǫ

−(ω) and its complement
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Dǫ
+(ω) := R3 \ Dǫ

−. The shape calculus in Section 3 requires a somewhat stronger smoothness
assumption on κ, namely that the realizations of κ belong to C1(Γ0). From (2.7) we observe that
the mean random interface is represented by

E[Γǫ] =
{
x+ ǫE[κ(x, ·)]n0(x), x ∈ Γ0

}
.

Without loss of generality, we may assume that the random perturbation amplitude κ(x, ω) is
centered, i.e.,

(2.9) E[κ(x, ·)] = 0 ∀x ∈ Γ0.

In this case

E[Γǫ] = Γ0 and Cov[κ](x,y) = Cor[κ](x,y).

2.3. The model problem. As shown above, for a sufficiently small value ǫ ≥ 0 the surface
perturbation model (2.7) generates a well defined partition of R3 into a bounded Lipschitz domain
Dǫ

−(ω) and its complement Dǫ
+(ω) = R3 \Dǫ

− separated by the closed Lipschitz manifold Γǫ(ω) =

Dǫ
−(ω) ∩Dǫ

+(ω). We consider a piecewise constant diffusion function subjected to this partition:

(2.10) αǫ(x, ω) =

{
α−, x ∈ Dǫ

−(ω),

α+, x ∈ Dǫ
+(ω),

where α− and α+ are two positive constants independent of x, ǫ, and ω. Having this we introduce
the model elliptic transmission problem as a problem of finding uǫ satisfying

−∇ ·
(
αǫ(x, ω)∇uǫ(x, ω)

)
= f(x) in Dǫ

±(ω),(2.11a)

[uǫ(x, ω)] = 0 on Γǫ(ω),(2.11b)
[
αǫ(x, ω)

∂uǫ

∂n
(x, ω)

]
= 0 on Γǫ(ω),(2.11c)

uǫ(x, ω) = O(|x|−1) as |x| → +∞.(2.11d)

Here, ∂/∂n denotes the normal derivative on Γǫ(ω), i.e. ∂/∂n = nǫ(x, ω) · ∇, where nǫ(x, ω)
is the unit normal vector to the interface Γǫ(ω) pointing into the interior of Dǫ

+(ω). Let u
ǫ
−(ω) and

uǫ
+(ω) be the restrictions of uǫ(ω) on Dǫ

−(ω) and Dǫ
+(ω), respectively. Then the jump [uǫ(ω)] is

understood to be uǫ
−(ω)− uǫ

+(ω) on Γǫ(ω) in the sense of trace for each sample ω. Similarly
[
αǫ(x, ω)

∂uǫ

∂n
(x, ω)

]
= αǫ

−

∂uǫ
−

∂n
(x, ω)− αǫ

+

∂uǫ
+

∂n
(x, ω), x ∈ Γǫ(ω).

The function f ∈ H1(R3) is assumed to be independent of ω and thereby it represents a deterministic
source function in R3.

The model problem (2.11a)–(2.11d) represents a stationary diffusion in R3 with piecewise con-
stant diffusivity in the interior and exterior domain. The uncertainty in the random solution
uǫ(x, ω) is implied by the uncertain location of the transmission interface Γǫ(ω). The solution
depends nonlinearly on the interface and a linearization process will first be used to linearize the
initial problem. The tool in this process is shape calculus which will be presented in Section 3. In
what follows we address the problem of approximation of the statistical moments

(2.12) E[uǫ], Mk[uǫ − u0], and Mk[uǫ − E[uǫ]], k ≥ 2,

with this strategy as well as the rigorous control of the approximation error.
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2.4. Sobolev spaces. In this section we introduce function spaces needed for the forthcoming
analysis. These spaces will allow to identify the unique weak solution of the model problem (2.11a)–
(2.11d) and characterize the moments (2.12).

Let G be a sphere-like surface, i.e., there exists a diffeomorphism ρ : S → G such that

G = {ρ(x) : x ∈ S}.

Here, S is the unit sphere in R3. The surface G divides R3 into two subdomains, a bounded domain
D− and an unbounded domain D+. For any distribution v defined on G, and for any point ρ(x) on
G, we can write

(v ◦ ρ)(x) =v(ρ(x)) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

v̂ℓ,mYℓ,m(x),

where

(2.13) v̂ℓ,m =

∫

S

(v ◦ ρ)(x)Yℓ,m(x) dσx

are the Fourier coefficients of v. Here Yℓ,m are spherical harmonics, which are the restrictions on
the unit sphere S of homogeneous harmonics polynomials in R3. The Sobolev space Hs(G), for
s ∈ R, is defined by

(2.14) Hs(G) =

{
v ∈ D′(G) :

∞∑

ℓ=0

ℓ∑

m=−ℓ

(1 + ℓ)2s |v̂ℓ,m|
2
< +∞

}
,

where D′(G) is the set of distributions on G. The corresponding inner product and the norm are
given by

(2.15) 〈v, w〉Hs(G) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

(1 + ℓ)2sv̂ℓ,mŵℓ,m, v, w ∈ Hs(G),

and

(2.16) ‖v‖Hs(G) =

(
∞∑

ℓ=0

ℓ∑

m=−ℓ

(1 + ℓ)2s |v̂ℓ,m|
2

)1/2

, v ∈ Hs(G).

We note here that the inner product (2.15) and the norm (2.16) satisfy

(2.17) 〈v, w〉Hs(G) = 〈v ◦ ρ, w ◦ ρ〉Hs(S) and ‖v‖Hs(G) = ‖v ◦ ρ‖Hs(S)

for any v, w ∈ Hs(G). The set {Yℓ,m ◦ρ−1 : ℓ ∈ N, m = −ℓ, . . . , ℓ} is an orthogonal basis for Hs(G).
We also note that the space H0(G) can be understood as a weighted L2-space on the interface G.

We now introduce the tensor product of Sobolev spaces on the k-fold Cartesian product domains
Gk = G× · · ·×G. These spaces will be used later on for characterization of statistical moments. By
boldface symbols we denote multiindices with k integer components, e.g. ℓ = (ℓ1, . . . , ℓk). Given
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s ∈ R, the Sobolev space Hs
mix(G

k) is defined to be the space of all distributions v(y1, . . . ,yk) with
y1, . . . ,yk ∈ G satisfying

‖v‖Hs
mix(G

k) := 〈v, v〉
1/2

Hs
mix(G

k)
< ∞,

〈v, w〉Hs
mix(G

k) :=

∞∑

ℓ=0

ℓ∑

m=−ℓ

(
k∏

i=1

(1 + ℓi)
2s

)
v̂ℓ,mŵℓ,m

(2.18)

with the Fourier coefficients

(2.19) v̂ℓ,m :=

∫

x1∈S

. . .

∫

xk∈S

v(ρ(x1), . . . , ρ(xk))

(
k∏

i=1

Yℓi,mi(xi)

)
dσx1

. . . dσxk

Recalling definition (2.3) we observe that Hs
mix(G

k) is isometrically isomorphic to the tensor product
space Hs(G)(k). These spaces will be identified in what follows. We also use the notation Hs

mix(K
k)

for the tensor product Hs(K)(k) where K is a compact subset of R3.

Sobolev spaces on bounded domains in R3 are defined, as usual, as spaces of all distributions
whose partial derivatives are square integrable. Proper treatment of the transmission problem
(2.11a)–(2.11d) in unbounded domains in R3 requires a special care. Following [17], for an un-
bounded domain U ⊂ R3 we introduce the space

(2.20) H1
w(U) :=

{
v ∈ D′(U) : ‖v‖H1

w(U) =

(∫

U

(
|∇v|2 +

|v(x)|
2

1 + |x|2

)
dx

)1/2

< +∞

}
.

Specifically, for a given partition R3 = Dǫ
− ∪Dǫ

+ we define the space

(2.21) Wǫ :=
{
v = (v−, v+) ∈ H1(Dǫ

−)×H1
w(D

ǫ
+) : [v]Γǫ = 0

}

which is a weighted Sobolev space on Dǫ
− ∪Dǫ

+ with corresponding norm and seminorm
(2.22)

‖v‖Wǫ
:=
(
‖v−‖

2
H1(Dǫ

−) + ‖v+‖
2
H1

w(Dǫ
+)

)1/2
, |v|Wǫ

:=

(∫

Dǫ
−

|∇v−|
2
dx+

∫

Dǫ
+

|∇v+|
2
dx

)1/2

.

The following lemma which will be frequently used in the rest of the paper states the equivalence
between the norm ‖·‖Wǫ

and seminorm |·|Wǫ
. The proof of this result follows by the Friedrichs

inequality and the technique in the proof of [17, Theorem 2.10.10].

Lemma 2.2. The seminorm |·|Wǫ
is also a norm in Wǫ which is equivalent to ‖·‖Wǫ

.

3. Shape calculus. The aim of the present section is the systematic development of the lin-
earization theory for the solution uǫ of the model problem (2.11a)–(2.11d) with respect to the shape
of the perturbed interface Γǫ. This techniques is also known as shape calculus and originates from
shape optimization; see [20] and references therein. For this purpose, in the first three subsections
that follow, we temporarily stay away from randomness and consider only deterministic perturbed
interfaces.
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3.1. Perturbation of deterministic interfaces. In this subsection we collect several prop-
erties of perturbed interfaces which are important for the subsequent analysis. Assume that the
perturbation function κ is a fixed deterministic function in W 1,∞(Γ0), in particular κ is independent
of ω. Then Γǫ is defined by

(3.1) Γǫ := {x+ ǫκ(x)n0(x) : x ∈ Γ0}, ǫ > 0.

As already noticed in Section 2.2, Γǫ is a closed Lipschitz manifold in R3 provided 0 ≤ ǫ ≤ ǫ0 and ǫ0
is sufficiently small. In this case Γǫ introduces a decomposition of R3 into the interior and exterior
subdomains Dǫ

− and Dǫ
+, respectively.

Following [20], we define a mapping T ǫ : R3 → R3 which transforms Γ0 into Γǫ and D0
± into

Dǫ
±, respectively, by

(3.2) T ǫ(x) := x+ ǫκ̃(x)ñ0(x), x ∈ R
3,

where κ̃ and ñ0 are any smoothness-preserving extensions of κ and n0 into R3. We require in
particular that κ̃ ∈ W 1,∞(R3). Without loss of generality we assume that the extension κ̃ vanishes
outside a sufficiently large ball BR := {x ∈ R3 : |x| < R} containing Γǫ for any 0 ≤ ǫ ≤ ǫ0. This
implies that the perturbation mapping T ǫ(x) is an identity in the complement Bc

R := R3 \BR, i.e.

(3.3) T ǫ(x) = x ∀x ∈ Bc
R.

For the ease of notation we abbreviate

(3.4) V (x) := κ̃(x)ñ0(x), x ∈ R
3.

In [20], V is called the velocity field of the mapping T ǫ. The following result is straightforward.

Lemma 3.1. Assuming κ̃ ∈ W 1,∞(R3) and κ̃(x) = 0 for x ∈ Bc
R, there hold V ∈

(
H1(R3)

)3
and

∂mV (x)

∂xm
l

= 0 ∀x ∈ Bc
R, l = 1, 2, 3, m = 0, 1.

Recall the definition (2.21) of the weighted space Wǫ associated to the splitting R3 = Dǫ
−∪Dǫ

+.
It can be proved that a function v belongs to Wǫ if and only if the composition v ◦ T ǫ belongs to
W0, and there hold

(3.5)

‖(vǫ)−‖H1(Dǫ
−) ≃ ‖(vǫ ◦ T ǫ)−‖H1(D0

−)

‖(vǫ)+‖H1
w(Dǫ

+) ≃ ‖(vǫ ◦ T ǫ)+‖H1
w(D0

+)

‖vǫ‖Wǫ
≃ ‖vǫ ◦ T ǫ‖W0

.

In the subsequent analysis, for any 3 by 3 matrix A(x) whose entries are functionals of x ∈ U ⊂ R3,
we denote

‖A(·)‖Lp(U) := max
i,j=1,2,3

{‖Ai,j(·)‖Lp(U)}, 1 ≤ p ≤ ∞,

where Aij are components of A.
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The following three lemmas state some important properties of the mapping T ǫ which will be
used later in this section. Until the end of this section we assume that T ǫ is defined by (3.2)
and (3.3) with κ̃ ∈ C1(R3), and denote its Jacobian matrix and Jacobian determinant by JT ǫ and
γ(ǫ, ·), respectively.

Lemma 3.2. Consider A(ǫ, ·) := γ(ǫ, ·)J−1
T ǫ J

−⊤
T ǫ , where J⊤

T ǫ is the transpose of JT ǫ . Then there
hold

(3.6) lim
ǫ→0

‖A(ǫ, ·)− I‖L∞(R3) = 0

and

(3.7) lim
ǫ→0

∥∥∥∥
A(ǫ, ·)− I

ǫ
−A′(0, ·)

∥∥∥∥
L2(R3)

= 0.

Here, A′(0, ·) is the Gâteaux derivative of A (determined by T ǫ) at ǫ = 0, namely

A′(0,x) = lim
ǫ→0

A(ǫ,x)− I(x)

ǫ
, x ∈ R

3.

Proof. Denoting V (x) := (V1(x), V2(x), V3(x))
⊤, the Jacobian matrix and the Jacobian of T ǫ

are given by

(3.8) JT ǫ(x) =




1 + ǫ
∂V1(x)

∂x1
ǫ
∂V1(x)

∂x2
ǫ
∂V1(x)

∂x3

ǫ
∂V2(x)

∂x1
1 + ǫ

∂V2(x)

∂x2
ǫ
∂V2(x)

∂x3

ǫ
∂V3(x)

∂x1
ǫ
∂V3(x)

∂x2
1 + ǫ

∂V3(x)

∂x3




and

γ(ǫ,x) =
∣∣∣1 + ǫ

( 3∑

k=1

∂Vk(x)

∂xk

)
+ ǫ2

( 3∑

k,l=1
k 6=l

∂Vk(x)

∂xk

∂Vl(x)

∂xl
−

∂Vl(x)

∂xk

∂Vk(x)

∂xl

)

+ ǫ3
( 3∑

i,j,k=1

sign(i, j, k)
∂Vi(x)

∂x1

∂Vj(x)

∂x2

∂Vk(x)

∂x3

)∣∣∣

=:
∣∣1 + ǫγ1(x) + ǫ2γ2(x) + ǫ3γ3(x)

∣∣.(3.9)

Here sign(i, j, k) denotes the sign of the permutation (i, j, k). The entries Aij(ǫ,x), i, j = 1, 2, 3, of
the matrix A(ǫ,x) are given by

(3.10) Aij(ǫ,x) = γ(ǫ,x)−1

(
δij +

4∑

n=1

ǫnhijn(x)

)
,

where hijn is a polynomial of partial derivatives of V and δij is the Kronecker delta. Using
Lemma 3.1, we deduce

(3.11)
γn, hijn ∈ L∞(R3) ∩ L2(R3), i, j = 1, 2, 3 and n = 1, . . . , 4,

lim
ǫ→0

‖γ(ǫ, ·)‖L∞(R3) > 0,
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where γ1, γ2, γ3 are defined by (3.9) and γ4 := 0 for notational convenience later. In particular, for
sufficiently small ǫ > 0, there holds

(3.12) γ(ǫ,x) = 1 + ǫγ1(x) + ǫ2γ2(x) + ǫ3γ3(x) ≥ c > 0 ∀x ∈ R
3.

Consider from now on sufficiently small ǫ > 0. It follows from (3.10) and (3.12) that the ij-entry
of the matrix A(ǫ,x)− I is

Aij(ǫ, ·)− δij = ǫ γ(ǫ, ·)−1
4∑

n=1

ǫn−1
(
hijn − δijγn

)
.(3.13)

Hence, (3.11) yields

‖Aij(ǫ, ·)− δij‖L∞(R3) → 0 as ǫ → 0,

proving (3.6).
From (3.13), we have

Aij(ǫ, ·)− δij
ǫ

= γ(ǫ, ·)−1
4∑

n=1

ǫn−1
(
hijn − δijγn

)
.(3.14)

Taking the limit when ǫ goes to 0, noting that γ(ǫ, ·) → 1, we obtain

(3.15) A′
ij(0, ·) = hij1 − δijγ1, i, j = 1, 2, 3.

Subtracting (3.15) from (3.14) side by side, we obtain

Aij(ǫ, ·)− δij
ǫ

−A′
ij(0, ·) = γ(ǫ, ·)−1

( 4∑

n=2

ǫn−1(hijn − δijγn)− (hij1 − δijγ1)(γ(ǫ, ·)− 1)
)
.(3.16)

Noting (3.11), we infer

lim
ǫ→0

∥∥∥∥
Aij(ǫ, ·)− δij

ǫ
−A′

ij(0, ·)

∥∥∥∥
L2(R3)

= 0,

proving (3.7).
Lemma 3.3. For any function v ∈ L2(R3), there holds

lim
ǫ→0

∥∥∥∥
√
1 + | · |

2
(
γ(ǫ, ·) v ◦ T ǫ − v

)∥∥∥∥
L2(R3)

= 0.

Proof. Since T ǫ(x) = x for any x ∈ Bc
R, see (3.3), the Jacobian satisfies

(3.17) γ(ǫ,x) = 1 for any x ∈ Bc
R.

Therefore,

∥∥∥
√
1 + | · |

2(
γ(ǫ, ·)− 1

)
(v ◦ T ǫ)

∥∥∥
L2(R3)

=

∥∥∥∥
√
1 + | · |

2(
γ(ǫ, ·)− 1

)
(v ◦ T ǫ)

∥∥∥∥
L2(BR)

≤
√
1 +R2 ‖γ(ǫ, ·)− 1‖L∞(R3) ‖v ◦ T

ǫ‖L2(R3)

≤ Cǫ ‖v ◦ T ǫ‖L2(R3) .
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Using the change of variables y = T ǫ(x) and noting (3.11), we have

‖v ◦ T ǫ‖2L2(R3) =

∫

R3

|v(y)|2
(
γ(ǫ, (T ǫ)−1(y))

)−1
dy ≤ C ‖v‖L2(R3) .

Therefore,

(3.18) lim
ǫ→0

∥∥∥
√
1 + | · |

2(
γ(ǫ,x)− 1

)
(v ◦ T ǫ)

∥∥∥
L2(R3)

= 0.

Furthermore, (3.3) also gives
∥∥∥∥
√
1 + | · |

2(
v ◦ T ǫ − v

)∥∥∥∥
L2(R3)

=

∥∥∥∥
√
1 + | · |

2(
v ◦ T ǫ − v

)∥∥∥∥
L2(BR)

≤
√
1 +R2 ‖v ◦ T ǫ − v‖L2(BR) .

Note that limǫ→0 ‖v ◦ T
ǫ − v‖L2(BR) = 0 if v is continuous. By using a density argument we deduce

that limǫ→0 ‖v ◦ T
ǫ − v‖L2(BR) = 0 for v ∈ L2(BR). Hence,

lim
ǫ→0

∥∥∥∥
√
1 + | · |

2(
v ◦ T ǫ − v

)∥∥∥∥
L2(R3)

= 0.

The above identity and (3.18) together with the triangle inequality give the required result.
Lemma 3.4. For any function v ∈ H1(R3), there holds

lim
ǫ→0

∥∥∥∥
√
1 + | · |

2

(
γ(ǫ, ·)(v ◦ T ǫ)− v

ǫ
− div

(
vV
))∥∥∥∥

L2(R3)

= 0.

Proof. Noting (3.3), Lemma 3.1, (3.17) and the triangle inequality, we obtain
∥∥∥
√
1 + | · |

2
(γ(ǫ, ·)(v ◦ T ǫ)− v

ǫ
− div(vV )

)∥∥∥
L2(R3)

=

∥∥∥∥
√
1 + | · |

2
(γ(ǫ, ·)(v ◦ T ǫ)− v

ǫ
− div

(
vV
))∥∥∥∥

L2(BR)

.

∥∥∥∥
γ(ǫ, ·)(v ◦ T ǫ)− v

ǫ
− div

(
vV
)∥∥∥∥

L2(BR)

≤

∥∥∥∥
γ(ǫ, ·)− 1

ǫ
(v ◦ T ǫ)− v div V

∥∥∥∥
L2(BR)

+

∥∥∥∥
v ◦ T ǫ − v

ǫ
− V · ∇v

∥∥∥∥
L2(BR)

.(3.19)

Recall from (3.9) that γ1 = div V . It follows from (3.12) that

γ(ǫ, ·)− 1

ǫ
(v ◦ T ǫ)− v div V = γ1(v ◦ T

ǫ − v) + ǫ(γ2 + ǫγ3)(v ◦ T
ǫ).

Employing the density argument as in proof of Lemma 3.3, we obtain

lim
ǫ→0

‖γ1(v ◦ T
ǫ − v)‖L2(BR) = 0 and lim

ǫ→0
‖ǫ(γ2 + ǫγ3)(v ◦ T

ǫ)‖L2(BR) = 0,

so that

lim
ǫ→0

∥∥∥∥
γ(ǫ, ·)− 1

ǫ
(v ◦ T ǫ)− v div V

∥∥∥∥
L2(BR)

= 0.

The second term on the right hand side of (3.19) also tends to zero by a density argument, noting
that V = ∂T ǫ/∂ǫ at ǫ = 0. This completes the proof of the lemma.
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3.2. Material and shape derivatives. In this subsection, for notational convenience we use
the notation Dǫ for Dǫ

− or Dǫ
+, and H1(Dǫ) for H1(Dǫ

−) or H
1
w(D

ǫ
+).

Definition 3.5. For any sufficiently small ǫ, let vǫ be an element in H1(Dǫ) or H1/2(Γǫ).
The material derivative of vǫ, denoted by v̇, is defined by

(3.20) v̇ := lim
ǫ→0

vǫ ◦ T ǫ − v0

ǫ
,

if the limit exists in the corresponding space H1(D0) or H1/2(Γ0). The shape derivative of vǫ is
defined by

(3.21) v′ =

{
v̇ −∇v0 · V if vǫ ∈ H1(Dǫ),

v̇ −∇Γ0v0 · V if vǫ ∈ H1/2(Γǫ),

where ∇Γ0 denotes the surface gradient.
Lemma 3.6. If v′ is a shape derivative of vǫ ∈ H1(Dǫ), then for any compact set K ⊂⊂ D0

we have

(3.22) v′ = lim
ǫ→0

vǫ − v0

ǫ
in H1(K).

Proof. Given K ⊂⊂ D0, there exists an ǫ0 > 0 such that K ⊂⊂ Dǫ for all 0 ≤ ǫ ≤ ǫ0. We
denote by T : [0, ǫ0]× R3 → R3 the mapping given by

T (ǫ,x) := T ǫ(x), ∀(ǫ,x) ∈ [0, ǫ0]× R
3.

We also denote by ṽ(ǫ,x) := vǫ(x) for any 0 ≤ ǫ ≤ ǫ0 and x ∈ Dǫ. By the definition of material
derivative, we have

v̇ =
∂

∂ǫ
ṽ(ǫ, T (ǫ, ·))

∣∣∣
ǫ=0

, in H1(K).

Applying the chain rule, we obtain

v̇ =
∂ṽ

∂ǫ
(0, T (0, ·)) +∇ṽ(0, T (0, ·)) ·

∂T (0, ·)

∂ǫ

=
∂ṽ(0, ·)

∂ǫ
+∇v0 · V, in H1(K).

This implies

v′ =
∂ṽ(0, ·)

∂ǫ
= lim

ǫ→0

vǫ − v0

ǫ
in H1(K).

Remark 3.7. The limit in the above lemma does not hold in H1(D0) since in general, vǫ does
not belong to H1(D0).

Similar definitions can be introduced for vector functions v. The following lemmas state some
useful properties of material and shape derivatives which will be used frequently in the remainder
of the paper.

Lemma 3.8. Let v̇, ẇ be material derivatives, and v′, w′ be shape derivatives of vǫ, wǫ in
H1(Dǫ), ǫ ≥ 0, respectively. Then the following statements are true.
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(i) The material and shape derivatives of the product vǫwǫ are v̇w0 + v0ẇ and v′w0 + v0w′,
respectively.

(ii) The material and shape derivatives of the quotient vǫ/wǫ are (v̇w0 − v0ẇ)/(w0)2 and (v′w0 −
v0w′)/(w0)2, respectively, provided that all the fractions are well-defined.

(iii) If vǫ = v for all ǫ ≥ 0, then v̇ = ∇v0 · V = ∇v · V and v′ = 0.
(iv) If

J1(D
ǫ) :=

∫

Dǫ

vǫ dx, J2(D
ǫ) :=

∫

Γǫ

vǫ dσ, and dJi(D
ǫ)|ǫ=0 := lim

ǫ→0

Ji(D
ǫ)− Ji(D

0)

ǫ
, i = 1, 2,

then

dJ1(D
ǫ)|ǫ=0 =

∫

D0

v′ dx+

∫

Γ0

v0
〈
V,n0

〉
dσ

and

dJ2(D
ǫ)|ǫ=0 =

∫

Γ0

v′ dσ +

∫

Γ0

(
∂v0

∂n
+ divΓ0(n0) v0

)〈
V,n0

〉
dσ.

Proof. Statements (i)–(iii) can be obtained by using elementary calculations. Statement (iv) is
proved in [20, pages 113, 116].

Lemma 3.9. The material and shape derivatives of the normal field nǫ are given by

ṅ = n′ = −∇Γ0κ.

Proof. We start by recalling that the material and the shape derivative of surface fields are
identical in the case of normal surface perturbation (3.4). Particularly, from (3.4) and (3.21) we
find

ṅ− n′ = ∇Γ0n0 · κn0 = 0.

Recall that the unit normal vector field nǫ of the perturbed interface Γǫ is related to that of the
reference interface Γ0 by

nǫ◦T ǫ(x) =
J−⊤
T ǫ (T ǫ(x))n0(x)∣∣J−⊤
T ǫ (T ǫ(x))n0(x)

∣∣ .

Therefore,

ṅ = lim
ǫ→0

nǫ◦T ǫ(x)− n0(x)

ǫ

=

(
lim
ǫ→0

J−⊤
T ǫ (T ǫ(x))− I

ǫ
− lim

ǫ→0

∣∣J−⊤
T ǫ (T ǫ(x))n0(x)

∣∣ − 1

ǫ

)
lim
ǫ→0

n0(x)∣∣J−⊤
T ǫ (T ǫ(x))n0(x)

∣∣

=

(
dJ−⊤

T ǫ (T ǫ(x))

dǫ

∣∣∣
ǫ=0

−
d
∣∣J−⊤

T ǫ (T ǫ(x))n0(x)
∣∣

dǫ

∣∣∣
ǫ=0

)
n0(x),(3.23)
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noting from (3.8) that

lim
ǫ→0

J−⊤
T ǫ = lim

ǫ→0
JT ǫ = I.

Since I = J−1
T ǫ (T ǫ(x))JT ǫ(x) for all x ∈ R3, we have 0 = d

dǫ

(
J−1
T ǫ JT ǫ

)
|ǫ=0, which together with the

product rule and (3.8) yields

(3.24)
d

dǫ

(
J−⊤
T ǫ (T ǫ(x))

)∣∣∣
ǫ=0

= −(JT 0)−⊤
( d

dǫ
(J⊤

T ǫ)
∣∣∣
ǫ=0

)
(JT 0)−1 = −

d

dǫ
(JT ǫ)

∣∣∣
ǫ=0

= −J⊤
V ,

We also have, using the fact that
∣∣J−⊤

T 0 n0
∣∣ = 1,

d

dǫ

∣∣J−⊤
T ǫ n0

∣∣
∣∣∣
ǫ=0

=
∣∣J−⊤

T 0 n0
∣∣ d

dǫ

∣∣J−⊤
T ǫ n0

∣∣
∣∣∣
ǫ=0

=
1

2

d

dǫ

( ∣∣J−⊤
T ǫ n0

∣∣2
)∣∣∣

ǫ=0

=
1

2

〈
d

dǫ

(
J−1
T ǫ J

−⊤
T ǫ

)
n0,n0

〉
= −

1

2

〈
(J⊤

V + JV )n
0,n0

〉
.(3.25)

Simple calculation reveals that

(3.26) J⊤
V = ∇κ (n0)⊤ and (J⊤

V + JV )n
0 = ∇κ+

〈
∇κ,n0

〉
n0.

Inserting (3.24)–(3.26) into (3.23), we obtain

ṅ = −J⊤
V n0 +

1

2

〈
(J⊤

V + JV )n
0,n0

〉
n0 = −∇κ+

〈
∇κ,n0

〉
n0 = −∇Γ0κ,

finishing the proof of the lemma.

3.3. Shape derivative of solutions of transmission problem. In this subsection, we shall
discuss the existence of material and shape derivatives of the solutions of transmission problems on
perturbed interfaces. Consider a deterministic problem with respect to the reference interface Γ0:

−α△u0 = f in D0
− ∪D0

+,(3.27a)
[
u0
]
= 0 on Γ0,(3.27b)

[
α
∂u0

∂n

]
= 0 on Γ0,(3.27c)

u0(x) = O(|x|
−1

) when |x| → ∞.(3.27d)

The perturbed problem corresponding to the perturbed interface Γǫ is given by

−αǫ△uǫ = f in Dǫ
− ∪Dǫ

+,(3.28a)

[uǫ] = 0 on Γǫ,(3.28b)
[
αǫ ∂u

ǫ

∂n

]
= 0 on Γǫ,(3.28c)

uǫ(x) = O(|x|
−1

) when |x| → ∞,(3.28d)
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where (cf. (2.10))

αǫ(x) =

{
α−, x ∈ Dǫ

−

α+, x ∈ Dǫ
+.

Lemma 3.10. Suppose f ∈ L2(R3) ∩W ∗
0 and κ ∈ C1(Γ0), then

(3.29) lim
ǫ→0

∥∥uǫ ◦ T ǫ − u0
∥∥
W0

= 0.

Here, W ∗
0 denotes the dual space of W0 with respect to the L2-inner product.

Proof. By multiplying both sides of (3.28a) with an arbitrary function v ∈ C∞
0 (R3) and

integrating over Dǫ
− ∪Dǫ

+, we obtain
∫

R3

fv dx = −α−

∫

Dǫ
−

△uǫ(x) v(x) dx− α+

∫

Dǫ
+

△uǫ(x) v(x) dx.(3.30)

Applying Green’s identity and noting (3.28c), we obtain

(3.31)

∫

Dǫ
+∪Dǫ

−

αǫ(x)∇uǫ(x) · ∇v(x) = 〈f, v〉L2(R3) ∀v ∈ C∞
0 (R3).

Since the space C∞
0 (R3) is dense in Wǫ (see [17, Remark 2.9.3]), there holds

(3.32)

∫

Dǫ
+∪Dǫ

−

αǫ(x)∇uǫ(x) · ∇vǫ(x) = 〈f, vǫ〉L2(R3) ∀vǫ ∈ Wǫ.

Choosing vǫ = uǫ gives

|uǫ|
2
Wǫ

≃ 〈f, uǫ〉L2(R3) ≤ ‖f‖W∗
ǫ
‖uǫ‖Wǫ

.

It follows from Lemma 2.2 that

(3.33) ‖uǫ‖Wǫ
. ‖f‖W∗

ǫ
≃ ‖f‖W∗

0
.

On the other hand, using the change of variables x = T ǫ(y) in (3.32), we have (noting that
αǫ(T ǫ(y)) = α(y))

(3.34)

∫

D0
+∪D0

−

α(y) (∇w(y))⊤ A(ǫ,y)∇(uǫ ◦ T ǫ)(y) dy =

∫

D0
+∪D0

−

f(T ǫ(y))w(y)γ(ǫ,y) dy,

for any w ∈ W0. We also obtain from problem (3.27a)–(3.27d)

(3.35)

∫

D0
+∪D0

−

α(y) (∇w(y))⊤ ∇u0(y) dy =

∫

D0
+∪D0

−

f(y)w(y) dy,

for any w ∈ W0. Subtracting (3.35) from (3.34) we deduce
∫

D0
+∪D0

−

α(y)∇w(y)⊤ ∇
(
(uǫ ◦ T ǫ)(y)− u0(y)

)
dy

= −

∫

D0
+∪D0

−

α(y)
(
∇w(y)

)⊤ (
A(ǫ,y)− I

)
∇(uǫ ◦ T ǫ)(y) dy

+

∫

D0
+∪D0

−

(
γ(ǫ,y)f(T ǫ(y))− f(y)

)
w(y) dy ∀w ∈ W0.(3.36)
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Choosing in (3.36) w = uǫ ◦ T ǫ − u0 gives

∫

D0
+∪D0

−

α(y)
∣∣∣∇
(
(uǫ ◦ T ǫ)(y)− u0(y)

)∣∣∣
2

dy

= −

∫

D0
+∪D0

−

α(y)
(
∇
(
(uǫ ◦ T ǫ)(y)− u0(y)

))⊤ (
A(ǫ,y)− I

)
∇(uǫ ◦ T ǫ)(y) dy

+

∫

D0
+∪D0

−

√
1 + |y|

2
(
γ(ǫ,y)f(T ǫ(y))− f(y)

) (uǫ ◦ T ǫ)(y)− u0(y)√
1 + |y|

2
dy

.
∥∥(A(ǫ, ·)− I

)∥∥
L∞(R3)

‖∇(uǫ ◦ T ǫ)‖L2(R3)

∥∥∇
(
uǫ ◦ T ǫ − u0

)∥∥
L2(R3)

+

∥∥∥∥
√
1 + |·|

2(
γ(ǫ, ·)f ◦ T ǫ − f

)∥∥∥∥
L2(R3)

∥∥∥u
ǫ ◦ T ǫ − u0

√
1 + |·|

2

∥∥∥
L2(R3)

implying

∥∥uǫ ◦ T ǫ − u0
∥∥
W0

. ‖A(ǫ, ·)− I‖L∞(R3) ‖∇(uǫ ◦ T ǫ)‖L2(R3)

+

∥∥∥∥
√
1 + |·|

2(
γ(ǫ, ·)f ◦ T ǫ − f

)∥∥∥∥
L2(R3)

.

Hence, applying Lemma 3.2, noting (3.33) and Lemma 3.3, we obtain

lim
ǫ→0

∥∥uǫ ◦ T ǫ − u0
∥∥
W0

= 0,

finishing the proof of this lemma.

Lemma 3.11. Assume that f ∈ H1(R3) ∩ W ∗
0 and κ ∈ C1(Γ0). Then, uǫ has a material

derivative belonging to W0 which is the solution to the following equation with unknown z:

∫

D0
+∪D0

−

α(y)∇z(y) · ∇w(y) dy = −

∫

D0
+∪D0

−

α(y)∇u0(y)A′(0,y)
(
∇w(y)

)⊤
dy

+

∫

D0
+∪D0

−

div (V (y)f)w(y) dy ∀w ∈ W0.(3.37)

Proof. The uniqueness and existence of the solution z ∈ W0 to the above equation is confirmed
by [17, Theorem 2.10.14]. Let zǫ := (uǫ ◦T ǫ− u0)/ǫ. Our task is to prove that lim

ǫ→0
‖zǫ − z‖W0

= 0.

Dividing (3.36) by ǫ we obtain

∫

D0
+∪D0

−

α(y)∇zǫ(y) · ∇w(y) dy = −

∫

D0
+∪D0

−

α(y)∇(uǫ ◦ T ǫ)(y)
A(ǫ,y)− I

ǫ

(
∇w(y)

)⊤
dy

+

∫

D0
+∪D0

−

γ(ǫ,y)f(T ǫ(y))− f(y)

ǫ
w(y) dy ∀w ∈ W0.(3.38)
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Subtracting (3.37) from (3.38) yields
∫

D0
+∪D0

−

α(y)∇ (zǫ(y)− z(y)) · ∇w(y) dy

= −

∫

D0
+∪D0

−

α(y)

(
∇(uǫ ◦ T ǫ)(y)

A(ǫ,y)− I

ǫ
−∇u0(y)A′(0,y)

)
· ∇w(y) dy

+

∫

D0
+∪D0

−

(
γ(ǫ,y)f(T ǫ(y))− f(y)

ǫ
− div

(
V (y)f(y)

))
w(y) dy

=: I1(w) + I2(w).(3.39)

The first integral in the right hand side of (3.39) can be written as

I1(w) =

∫

D0
+∪D0

−

α(y)∇(uǫ ◦ T ǫ)(y)

(
A(ǫ,y)− I

ǫ
−A′(0,y)

)
· ∇w(y) dy

+

∫

D0
+∪D0

−

α(y)∇
(
(uǫ ◦ T ǫ)(y)− u0(y)

)
A′(0,y) · ∇w(y) dy,

which converges to 0 due to (3.29) and Lemma 3.2. The second integral in the right hand side
of (3.39) also converges to 0 due to Lemma 3.4. Therefore, we have

(3.40) lim
ǫ→0

∫

D0
+∪D0

−

α(y)∇ (zǫ(y)− z(y)) · ∇w(y) dy = 0 ∀w ∈ W0.

We choose in (3.39) w = zǫ − z. Then the absolute value of the first integral on the right hand side
of (3.39) can be estimated as

|I1(z
ǫ − z)| =

∣∣∣
∫

D0
+∪D0

−

α(y)∇uǫ(y)

(
A(ǫ,y)− I

ǫ
−A′(0,y)

)
· ∇
(
zǫ(y)− z(y)

)
dy

+

∫

D0
+∪D0

−

α(y)∇
(
uǫ(y)− u0(y)

)
A′(0,y) · ∇

(
zǫ(y)− z(y)

)
dy
∣∣∣,

. ‖∇uǫ‖L2(R3)

∥∥∥∥
A(ǫ, ·)− I

ǫ
−A′(0, ·)

∥∥∥∥
L∞(R3)

‖∇(zǫ − z)‖L2(R3)

+
∥∥∇
(
uǫ − u0

)∥∥
L2(R3)

‖A′(0, ·)‖L∞(R3) ‖∇(zǫ − z)‖L2(R3) .(3.41)

The absolute value of the second integral in (3.39) when w = zǫ − z is bounded by
(3.42)

|I2(z
ǫ − z)| ≤

∥∥∥∥
√
1 + | · |

2

(
γ(ǫ,y)f(T ǫ(y))− f(y)

ǫ
− div

(
V (y)f(y)

))∥∥∥∥
L2(R3)

‖zǫ − z‖W0
.

Inequalities (3.41) and (3.42) give

‖zǫ − z‖W0
≤ ‖∇uǫ‖L2(R3)

∥∥∥∥
A(ǫ, ·)− I

ǫ
−A′(0, ·)

∥∥∥∥
L∞(R3)

+
∥∥∇
(
uǫ − u0

)∥∥
L2(R3)

‖A′(0, ·)‖L∞(R3)

+

∥∥∥∥
√
1 + | · |2

(
γ(ǫ,y)f(T ǫ(y))− f(y)

ǫ
− div

(
V (y)f(y)

))∥∥∥∥
L2(R3)

.(3.43)
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Using this together with (3.29) and Lemma 3.2, we can deduce from (3.43)

(3.44) lim
ǫ→0

‖zǫ − z‖W0
= 0.

Hence, we have shown that the solution of the transmission problem (3.28) has a material
derivative, and thus a shape derivative. The latter turns out to be the solution of a transmission
problem on the nominal interface Γ0.

Lemma 3.12. Under the assumption of Lemma 3.11, the shape derivative u′ of uǫ exists and
is the solution of the transmission problem

(3.45)





∆u′ = 0 in D0
− ∪D0

+

[u′] = gD on Γ0
[
α
∂u′

∂n

]
= gN on Γ0

|u′(x)| = O
(
|x|

−1
)

as |x| → ∞,

where

gD := −

[
∂u0

∂n

]
κ and gN := ∇Γ0 ·

(
κ
[
α∇Γ0u0

] )
.

Proof. Existence of u′ is confirmed by Lemma 3.11. In this proof only, for notational conve-
nience, we use nǫ

± to indicate the normal vector to Γǫ pointing outwards Dǫ
±, respectively. Note

here that nǫ = nǫ
− = −nǫ

+. From (3.32) we deduce

(3.46) α−

∫

Dǫ
−

∇uǫ
− · ∇v dx+ α+

∫

Dǫ
+

∇uǫ
+ · ∇v dx = 〈f, v〉L2(R3) ∀v ∈ C∞

0 (R3).

Denoting

J(Dǫ
±) := α±

∫

Dǫ
±

∇uǫ
±(x) · ∇v(x) dx

and using Green’s formula, we obtain

J(Dǫ
±) = −α±

∫

Dǫ
±

uǫ
±(x)△v(x) dx+ α±

∫

Γǫ

uǫ
±(x)

∂v

∂n±

dσ =: J1(D
ǫ
±) + J2(D

ǫ
±).

By Lemma 3.8, u′△v is the shape derivative of uǫ△v. On the other hand, by Lemmas 3.8–3.9, the

shape derivative of
∂v

∂n

∣∣∣∣
Γǫ

= ∇v ·nǫ is −∇Γ0v ·∇Γ0

〈
V,n0

〉
, so that the shape derivative of uǫ ∂v

∂n

∣∣∣∣
Γǫ

is u′ ∂v

∂n

∣∣∣∣
Γ0

− u0
(
∇Γ0v · ∇Γ0

〈
V,n0

〉 )
. Using Lemma 3.8, we deduce

dJ1(D
ǫ
±)|ǫ=0 = −α±

∫

D0
±

u′
±(x)△v dx− α±

∫

Γ0

u0△v
〈
V,n0

±

〉
dσ
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and

dJ2(D
ǫ
±)|ǫ=0 = α±

∫

Γ0

(
u′
±

∂v

∂n±

− u0
(
∇Γ0v · ∇Γ0

〈
V,n0

〉 ))
dσ + α±

∫

Γ0

∂

∂n±

(
u0 ∂v

∂n±

) 〈
V,n0

±

〉
dσ

+ α±

∫

Γ0

divΓ0(n0
±)u

0 ∂v

∂n±

〈
V,n0

±

〉
dσ,

since u0
− = u0

+ on the interface Γ0 by (3.27b). Therefore, differentiating by ǫ both sides of (3.46), us-
ing Green’s formula, the jump condition (3.27c) and noting that△v = △Γ0v+divΓ0(n0)∂v/∂n+ ∂2v/∂n2,
we obtain

0 =α−

∫

D0
−

∇u′ · ∇v dx+ α+

∫

D0
+

∇u′ · ∇v dx(3.47)

− α−

∫

Γ0

u
〈
V,n0

−

〉
△Γ0v dσ − α+

∫

Γ0

u
〈
V,n0

+

〉
△Γ0v dσ

− α−

∫

Γ0

u∇Γ0v · ∇Γ0

〈
V,n0

−

〉
− α+

∫

Γ0

u∇Γ0v · ∇Γ0

〈
V,n0

+

〉
.

Applying the tangential Green formula on the third and the fourth integrals on the right hand side
of the above identity and the product rule, the above identity can be written as

0 = α−

∫

D0
−

∇u′ · ∇v dx+ α+

∫

D0
+

∇u′ · ∇v dx+

∫

Γ0

(α−∇Γ0u0
− − α+∇Γ0u0

+) · ∇Γ0v
〈
V,n0

−

〉
dσ.

(3.48)

We choose in (3.48) v ∈ C∞
0 (D±) to obtain

(3.49) α△u′(x) = 0, x ∈ D0
±.

We now choose v ∈ C∞
0 (R3) and applying the Green’s identity to the first two integrals on the right

hand side of (3.48), noting (3.49), to obtain

0 = α−

∫

Γ0

v
∂u′

−

∂n−

dσ + α+

∫

Γ0

v
∂u′

+

∂n+
+

∫

Γ0

(α−∇Γ0u0
− − α+∇Γ0u0

+) · ∇Γ0v
〈
V,n0

−

〉
dσ.(3.50)

Applying the tangential Green formula on the surface Γ0 to the last term on the right hand side of
the above identity, we deduce

∫

Γ0

v

[
α
∂u′

∂n

]
dσ =

∫

Γ0

v∇Γ0 ·
( 〈

V,n0
−

〉 [
α∇Γ0u0

] )
dσ,

yielding

(3.51)

[
α
∂u′

∂n

]
= ∇Γ0 ·

( 〈
V,n0

−

〉 [
α∇Γ0u0

] )
on Γ0.

Recalling the transmission conditions (3.28b), we have for any smooth function v

∫

Γǫ

[uǫ] v dσ = 0.
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Differentiating by ǫ both sides, applying Lemma 3.8 we have

0 = d

(∫

Γǫ

[uǫ] v dσ

)
= d

(∫

Γǫ
−

uǫ
−v dσ −

∫

Γǫ
+

uǫ
+v dσ

)

=

∫

Γ0

(u0
−v)

′ +

∫

Γ0

(
∂(u0

−v)

∂n−

+ divΓ0(n0
−)(u

0
−v)

)〈
V,n0

−

〉
dσ

−

∫

Γ0

(u0
+v)

′ −

∫

Γ0

(
∂(u0

+v)

∂n+
+ divΓ0(n0

+)(u
0
+v)

)〈
V,n0

+

〉
dσ

=

∫

Γ0

[u′] v dσ +

∫

Γ0

[
∂u0

∂n

]
v
〈
V,n0

−

〉
dσ

+

∫

Γ0

[
u0
]( ∂v

∂n−

+ divΓ0(n0
−) v

)〈
V,n0

−

〉
dσ

=

∫

Γ0

[u′] v dσ +

∫

Γ0

[
∂u0

∂n−

]
v
〈
V,n0

−

〉
dσ,

noting that
[
u0
]
= 0. Hence, there holds

(3.52) [u′] = −

[
∂u0

∂n

] 〈
V,n0

−

〉
=: gD.

Hence, from (3.49), (3.51) and (3.52), the shape derivative u′ ∈ H1(D0
−) × H1

w(D
0
+) is the weak

solution of the transmission problem (3.45).

3.4. Random interfaces. In Subsection 3.2, we have defined material and shape derivatives
in which the quantity κ(x) does not contain uncertainty. Since the transmission problem (2.11) is
posed on a domain with a random interface (see (2.7)), the shape derivative also depends on ω,
and it is necessary to approximate the mean and the covariance fields of the random solutions. The
result is given in the following lemma, where we recall the notation H1(D0

±) indicating H1(D0
−) or

H1
w(D

0
+).

Lemma 3.13. Let uǫ(ω) be the solution of the transmission problem (2.11a)–(2.11d) with the
random interface Γǫ(ω) given by (2.7), and let u0 denote the solution of the transmission problem
with the reference interface Γ0. Assume that the perturbation function κ belongs to Lk(Ω, C1(Γ0))
for an integer k and f ∈ H1(R3) ∩W ∗

0 . Then, for any compact subset K ⊂⊂ D0
±, the expectation

and the k-th order central moments of the solution uǫ(ω) can be approximated, respectively, by

(3.53) E[uǫ] = u0 + o(ǫ) in H1(K)

and

(3.54) Mk[uǫ − E[uǫ]] = ǫkMk[u′] + o(ǫk) in H1
mix(K

k).

Moreover

(3.55) Mk[uǫ − u0] = ǫkMk[u′] + o(ǫk) in H1
mix(K

k).
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Proof. It follows from Lemmas 3.6 and 3.12 that

(3.56) uǫ(x, ω) = u0(x) + ǫu′(x, ω) + ǫh(ǫ,x, ω) in H1(K),

where h satisfies lim
ǫ→0

‖h(ǫ, ·, ·)‖Lk(Ω,H1(K)) = 0. This implies

E[uǫ(x, ·)] = u0(x) + ǫE[u′(x, ·)] + ǫE[h(ǫ,x, ·)] in H1(K).

Here, u′ is the solution of (3.45) in which the function κ defining gD and gN depends on ω and
satisfies E[κ] = 0; see (2.9). Since u′ depends linearly on κ, there also holds E[u′] = 0, yielding (3.53).

By the definition of the statistical moments (2.4) we have

Mk[uǫ − u0]− ǫkMk[u′] = ǫk
(
Mk[u′ + h]−Mk[u′]

)

and by [23, Corollary V.5.1]

‖Mk[u′ + h]−Mk[u′]‖H1
mix(K

k) ≤ E

[
‖(u′ + h)⊗ · · · ⊗ (u′ + h)− u′ ⊗ · · · ⊗ u′‖H1

mix(K
k)

]
=: E .

Then by the triangle inequality, binomial formula and Hölder’s inequality with p =
k

j
and q =

k

k − j

E = E

[
‖

∑

vi = u′ or h,

(v1, . . . , vk) 6= (u′, . . . , u′)

v1 ⊗ · · · ⊗ vk‖H1
mix(K

k)

]

≤
∑

vi = u′ or h,

(v1, . . . , vk) 6= (u′, . . . , u′)

E

[
‖v1 ⊗ · · · ⊗ vk‖H1

mix(K
k)

]

=
∑

vi = u′ or h,

(v1, . . . , vk) 6= (u′, . . . , u′)

E

[
‖v1‖H1(K) . . . ‖vk‖H1(K)

]

=

k∑

j=1

(
k

j

)
E

[
‖h‖jH1(K)‖u

′‖k−j
H1(K)

]

≤

k∑

j=1

(
k

j

)
E

[
‖h‖jpH1(K)

] 1
p

E

[
‖u′‖

(k−j)q
H1(K)

] 1
q

=

k∑

j=1

(
k

j

)
E

[
‖h‖kH1(K)

] j
k

E

[
‖u′‖kH1(K)

] k−j
k

=

k∑

j=1

(
k

j

)
‖h‖j

Lk(Ω,H1(K))
‖u′‖k−j

Lk(Ω,H1(K))

= o(1)
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and (3.55) follows. An analogous estimate holds for

Mk[uǫ − E[uǫ]]− ǫkMk[u′] = ǫk
(
Mk[u′ + (h− E[h])]−Mk[u′]

)
.

The above lemma states in particular that Mk[uǫ −u0], Mk[uǫ−E[uǫ]] and ǫkMk[u′] coincide
in the limit ǫ → 0, indicating that ǫkMk[u′] may be a good approximation for Mk[uǫ − u0] and
Mk[uǫ−E[uǫ]] if ǫ is small. On the other hand, the task of approximation of ǫkMk[u′] is significantly
simpler than approximation ofMk[uǫ−u0] orMk[uǫ−E[uǫ]] and reduces to solving the homogeneous
transmission problem (3.45).

4. Boundary reduction. In this section we briefly recall boundary integral equation methods
to solve (3.45). We rewrite here this problem for convenience.

Find u′ ∈ H1(D0
−)×H1

w(D
0
+) satisfying

(4.1)





△u′ = 0 in D0
±

[u′] = gD(ω) on Γ0
[
α
∂u′

∂n

]
= gN (ω) on Γ0

|u′(x)| = O
(
|x|

−1
)

as |x| → ∞.

The single and double layer potentials are given by

(4.2) Ṽw(x) =

∫

Γ0

1

|x− y|
w(y) dσy , Wv(x) =

∫

Γ0

∂

∂ny

1

|x− y|
v(y) dσy , x ∈ D0

±

for w ∈ H−1/2(Γ0) and v ∈ H1/2(Γ0). The limits of these potentials for x approaching Γ0 are given
by (see [15, page 14])

Vu(x) := lim
y→x

y∈D0
±

Ṽu(y) for x ∈ Γ0,(4.3)

Ku(x) := lim
y→x

y∈D0
±

Wu(y)∓
1

2
u(x) for x ∈ Γ0,(4.4)

K′u(x) := lim
y→x

y∈D0
±

nx · ∇yṼu(y)±
1

2
u(x) for x ∈ Γ0,(4.5)

Du(x) := − lim
y→x

y∈D0
±

nx · ∇yWu(y) for x ∈ Γ0.(4.6)

The solution of (4.1) is given by

(4.7) u′(x) =

{
Ṽ(

∂u′
−

∂n )(x)−Wu′
−(x), x ∈ D0

−,

Wu′
+(x)− Ṽ(

∂u′
+

∂n )(x), x ∈ D0
+;

see e.g. [15]. The Dirichlet-to-Neumann operators are

S−u
′
− :=

∂u′
−

∂n
= V−1(

1

2
I +K)u′

−,(4.8)

S+u
′
+ =

∂u′
+

∂n
= V−1(K −

1

2
I)u′

+.(4.9)
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These equalities together with (4.7) imply

(4.10) u′(x) =

{
(ṼS− −W)(u′

−)(x) =: E−(u
′
−)(x), x ∈ D0

−

(W − ṼS+)(u
′
+)(x) =: E+(u

′
+)(x), x ∈ D0

+.

The randomness of the interface Γ(ω) which is given via the randomness of the vector field V (ǫ,x, ω)
implies the randomness in the solution u. From (4.10), we have

u′(x, ω) =

{
E−(u

′
−(ω)|Γ0)(x), x ∈ D0

−,

E+(u
′
+(ω)|Γ0)(x), x ∈ D0

+.

Tensorizing and integrating both sides of the above equation, we deduce

(4.11) Cov[u′](x1,x2) =

{
(E−,x1 ⊗ E−,x2)Cor[u

′
−|Γ0 ](x1,x2), x1,x2 ∈ D0

−,

(E+,x1 ⊗ E+,x2)Cor[u
′
+|Γ0 ](x1,x2), x1,x2 ∈ D0

+,

and in general

(4.12) Mk[u′](x1, . . . ,xk) =

{
(E−,x1 ⊗ · · · ⊗ E−,xk

)Mk[u′
−|Γ0 ](x1, . . . ,xk), x1, . . . ,xk ∈ D0

−,

(E+,x1 ⊗ · · · ⊗ E+,xk
)Mk[u′

+|Γ0 ](x1, . . . ,xk), x1, . . . ,xk ∈ D0
+.

Equation (4.11) suggests that the covariance of the solution u′ in D0
± can be computed from the

correlation function of the Dirichlet data u′
±|Γ0 on the transmission interface.

The jump conditions in (4.1) gives

(4.13) u′
−(ω) = u′

+(ω) + gD(ω) on Γ0,

and

(4.14) (α−S− − α+S+)︸ ︷︷ ︸
=:[αS]

u′
+(ω) = gN(ω)− (α−S−)gD(ω) on Γ0.

We note that for a fixed ω ∈ Ω, the right hand side gN (ω)−(α−S−)gD(ω) ∈ H−1/2(Γ0). The solution
u′
+(ω) of (4.14) belongs to H1/2(Γ0). The variational form for (4.14) is: Find u′

+(ω) ∈ H1/2(Γ0)
satisfying

(4.15) B(u′
+(ω), v) = 〈gN (ω)− (α−S−)gD(ω), v〉 ∀v ∈ H1/2(Γ0),

with the bilinear form B(·, ·) and the duality pairing 〈·, ·〉 given by
(4.16)

B(v, w) :=

∫

Γ0

([αS] v)w dσ and 〈g, v〉 :=

∫

Γ0

gv dσ ∀v, w ∈ H1/2(Γ0), g ∈ H−1/2(Γ0).

We next show the continuity and ellipticity of the operator [αS] which confirms existence of
the unique solution of equation (4.14) for a fixed arbitrary ω.

Lemma 4.1. The bilinear form B(·, ·) : H1/2(Γ0)×H1/2(Γ0) → R is bounded, i.e.

(4.17) |B(v, w)| ≤ C1 ‖v‖H1/2(Γ0) ‖w‖H1/2(Γ0) ∀v, w ∈ H1/2(Γ0),
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and H1/2(Γ)-elliptic, i.e.

(4.18) B(v, v) ≥ C2 ‖v‖
2
H1/2(Γ0) ∀v ∈ H1/2(Γ0),

where the positive constants C1 and C2 are independent of v.
Proof. The boundedness of the bilinear form B is derived directly from the boundedness of V−1

and K. To prove ellipticity we first note that the hypersingular operator D is H1/2(Γ0)-semi-elliptic
for all closed interface Γ0, i.e.,

(4.19) 〈Dv, v〉L2(Γ0) ≥ C |v|H1/2(Γ0) ∀v ∈ H1/2(Γ0);

see e.g. [21, Corollary 6.25]. The Cauchy data (u−,
∂u−

∂n
) on Γ0 satisfy

(4.20)




u−

∂u−

∂n


 =



1

2
I −K V

D
1

2
I +K′







u−

∂u−

∂n


 .

Substituting (4.8) into the second equation of (4.20) gives

∂u−

∂n
= D u− + (

1

2
I +K′)V−1(

1

2
I +K)u− on Γ0.

This equation and (4.8) yield

S− = D + (
1

2
I +K′)V−1(

1

2
I +K).

Noting that K′ is the adjoint operator of K, we have

(4.21) 〈S−v, v〉 = 〈Dv, v〉+

〈
V−1(

1

2
I +K)v, (

1

2
I +K)v

〉
∀v ∈ H1/2(Γ0).

Similarly, the exterior Dirichlet-to-Neumann operator S+ satisfies

S+ = −D − (
1

2
I −K′)V−1(

1

2
I − K)

and

(4.22) 〈S+v, v〉 = −〈Dv, v〉 −

〈
V−1(

1

2
I −K)v, (

1

2
I −K)v

〉
∀v ∈ H1/2(Γ0).

From (4.21), (4.22), (4.19) and noting the H1/2-ellipticity of the inverse operator of V , we derive

〈[αS] v, v〉 = (α− + α+) 〈Dv, v〉+ α−

〈
V−1(

1

2
I +K)v, (

1

2
I +K)v

〉

Γ0

+ α+

〈
V−1(

1

2
I −K)v, (

1

2
I −K)v

〉

Γ0

& (α− + α+) |v|
2
H1/2(Γ0) + α−

∥∥∥∥(
1

2
I +K)v

∥∥∥∥
2

H1/2(Γ0)

+ α+

∥∥∥∥(
1

2
I −K)v

∥∥∥∥
2

H1/2(Γ0)

& |v|2H1/2(Γ0) +

∥∥∥∥(
1

2
I +K)v

∥∥∥∥
2

H1/2(Γ0)

+

∥∥∥∥(
1

2
I −K)v

∥∥∥∥
2

H1/2(Γ0)

.(4.23)
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Applying the triangle inequality to the last two terms on the right hand side of the inequality above,
we obtain

〈[αS] v, v〉 & |v|
2
H1/2(Γ0) + ‖v‖

2
H1/2(Γ0) & ‖v‖

2
H1/2(Γ0) ∀v ∈ H1/2(Γ0),

completing the proof of the lemma. We consider the tensor product operator [αS]
(k)

:= [αS] ⊗
· · · ⊗ [αS] which is a linear mapping

[αS]
(k)

: H
1/2
mix(Γ

0 × · · · × Γ0) → H
−1/2
mix (Γ0 × · · · × Γ0),

see [22, Proposition 2.4] for more details. Tensorization of equation (4.14) yields for almost all
ω ∈ Ω
(4.24)

[αS]
(k) (

u′
+(ω)⊗ · · · ⊗ u′

+(ω)
)
= ⊗k

i=1

(
gN (ω)− (α−S−)gD(ω)

)
in H

−1/2
mix (Γ0 × · · · × Γ0).

Taking the mean of (4.24) yields a deterministic k-th moment problem. In particular, for k = 2 it

reads: Find Cov[u′
+](x,y) ∈ H

1/2
mix(Γ

0 × Γ0) satisfying

([αS]⊗ [αS]) Cov[u′
+](x,y) = (∇Γ,x ⊗∇Γ,y) ·

(
Cov[κ](x,y)

[
α∇Γ,xu

0(x)
] [
α∇Γ,yu

0(y)
] )

+
(
(α−S−)⊗ (α−S−)

)(
Cov[κ](x,y)

[
∂u0(x)

∂nx

] [
∂u0(y)

∂ny

])

−
(
∇Γ,x · ⊗(α−S−)

)(
Cov[κ](x,y)

[
α∇Γ,xu

0(x)
] [∂u0(y)

∂ny

] )

−
(
(α−S−)⊗∇Γ,y ·

)(
Cov[κ](x,y)

[
α∇Γ,yu

0(y)
] [∂u0(x)

∂nx

] )
.(4.25)

Similarly, we have

([αS]⊗ [αS]) Cov[u′
−](x,y) = (∇Γ,x ⊗∇Γ,y) ·

(
Cov[κ](x,y)

[
α∇Γ,xu

0(x)
] [
α∇Γ,yu

0(y)
] )

+
(
(α+S+)⊗ (α+S+)

)(
Cov[κ](x,y)

[
∂u0(x)

∂nx

] [
∂u0(y)

∂ny

] )

−
(
∇Γ,x · ⊗(α+S+)

)(
Cov[κ](x,y)

[
α∇Γ,xu

0(x)
] [∂u0(y)

∂ny

])

−
(
(α+S+)⊗∇Γ,y ·

)(
Cov[κ](x,y)

[
α∇Γ,yu

0(y)
] [∂u0(x)

∂nx

])
.(4.26)

Denote gκ+ := E[⊗k
i=1

(
gN(ω) − (α−S−)gD(ω)

)
]. Recalling (4.15), the variational formulation for

finding Mk[u′
+] reads: Given gκ+ ∈ H

−1/2
mix (Γ0 × · · · × Γ0), find Mk[u′

+] ∈ H
1/2
mix(Γ

0 × · · · × Γ0)
satisfying

(4.27) B(Mk[u′
+], v) =

〈〈
gκ+, v

〉〉
∀v ∈ H

1/2
mix(Γ

0 × · · · × Γ0),

where B(·, ·) =
〈〈

[αS](k)·, ·
〉〉

is a bilinear form and 〈〈·, ·〉〉 is theH
−1/2
mix (Γ0 × · · · × Γ0) –H

1/2
mix(Γ

0 × · · · × Γ0)

duality pairing obtained by tensorization of B(·, ·) and 〈·, ·〉 from (4.16). Proposition 2.4 in [22]
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implies

Lemma 4.2. The bilinear form B(·, ·) : H
1/2
mix(Γ

0 × · · · × Γ0) × H
1/2
mix(Γ

0 × · · · × Γ0) → R is

bounded and H
1/2
mix(Γ

0 × · · · × Γ0)-elliptic, i.e.,

(4.28) B(v, w) ≤ C1 ‖v‖H1/2
mix(Γ

0×···×Γ0)
‖w‖

H
1/2
mix(Γ

0×···×Γ0)
,

and

(4.29) C2 ‖v‖
2

H
1/2
mix(Γ

0×···×Γ0)
≤ B(v, v)

for all v, w ∈ H
1/2
mix(Γ

0 × · · · × Γ0). By Lemma 4.2 there exists a unique solution of (4.27).

5. Examples. In this section, we consider the transmission problem (2.11a)–(2.11d) where
the random interface Γ(ω) is given by

Γ(ω) = {x+ ǫκ(x, ω)n(x) : x ∈ S}.

Here, the reference interface Γ0 is the unit sphere S. The perturbation parameter κ(x, ω) = a(ω),
where a(ω) is uniformly distributed in [−1, 1]. The mean value E[κ] = 0 and the covariance
Cov[κ](x,y) = Cor[κ](x,y) = 1/3. The interface Γ(ω) is a sphere of radius R(ω) = 1 + ǫa(ω).

5.1. Analytic example. Firstly, we choose the right hand side f to be

f(x) =

{
(4r2x − 1)2 if 0 ≤ rx ≤ 1/2,

0 if 1/2 ≤ rx,

where rx = |x|. Then solution of the transmission problem with respect to the random interface
Γ(ω) can be analytically computed as follows:

(5.1) u(x, ω) =





1
α−

( 8
21r

6
x − 2

5r
4
x +

r2
x

6 )− 3
105α−

rx − 23
840α−

+ α+−α−

105α−α+R(ω) if 0 ≤ rx ≤ 1
2 ,

− 1
105α−rx

+ α+−α−

105α−α+R(ω) if 1
2 ≤ rx ≤ R(ω),

− 1
105α+rx

if R(ω) ≤ rx.

In particular, the exact solution u0 of the transmission problem on the reference interface Γ0 is
given by (5.1) where R(ω) = 1, i.e.,

(5.2) u0(x) =





1
α−

( 8
21r

6
x − 2

5r
4
x +

r2
x

6 )− 3
105α−

rx − 23
840α−

+ α+−α−

105α−α+
if 0 ≤ rx ≤ 1

2 ,

− 1
105α−rx

+ α+−α−

105α−α+
if 1

2 ≤ rx ≤ 1,

− 1
105α+rx

if 1 ≤ rx.

Noting (5.1) and using simple calculation, we obtain

(5.3) E[u(x, ·)] =

{
u0(x) + α+−α−

105α−α+

ln(1+ǫ)−ln(1−ǫ)
2ǫ if 0 ≤ rx < 1,

u0(x) if 1 < rx.

Elementary calculus reveals that ln(1+ǫ)−ln(1−ǫ)
2ǫ =

∑∞
n=1

ǫ2n

2n+1 . Therefore, the mean value E[u]
in (5.3) agrees with our result (3.53) in Lemma 3.13. The linearized error appears in this example
to be O(ǫ2).
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We then compute the covariance of the solution u by elementary calculations, noting (5.1), to
obtain

(5.4) Covu(x,y) =

{
1
3

[α]2

(105α−α+)2 ǫ
2 +O(ǫ4) if rx < 1 and ry < 1,

0 if rx > 1 or ry > 1.

We test accuracy of our shape calculus method by computing the covariance of u via covariance
of the shape derivative. Noting (5.2), we first solve equations (4.25) and (4.26) to obtain Cov[u′

+]
and Coru′

−
. In this example, these equations can be solved exactly and

Cov[u′
−] =

1

3

[α]
2

(105α−α+)2
and Cov[u′

+] = 0.

Applying (4.11), we obtain

Cov[u′](x,y) =

{
1
3

[α]2

(105α−α+)2 if rx < 1 and ry < 1

0 if rx > 1 or ry > 1.

This and (5.4) agree with our theoretical result (3.54) and the linearized error in this example is
O(ǫ4).

5.2. Numerical example. Secondly, we solve the problem (2.11a)–(2.11d) where the right
hand side f is given by

f(x) = 2 [x2
1 + x2

2 + (x3 − 1)2]−1/2 (1− |x|2)

− 4 [x2
1 + x2

2 + (x3 − 1)2]−1/2 (|x|
2
− x3)− 6[x2

1 + x2
2 + (x3 − 1)2]1/2.(5.5)

The deterministic solution of the transmission problem with the reference interface Γ0 = S is then

(5.6)

u−(x) =
1

α−

[x2
1 + x2

2 + (x3 − 1)2]1/2 (1 − |x|
2
), x ∈ D0

−

u+(x) =
1

α+
[x2

1 + x2
2 + (x3 − 1)2]1/2 (1 − |x|2), x ∈ D0

+.

Following the method discussed in Section 3, covariance of the solution is approximated by covari-
ance of the shape derivative (see Lemma 3.13), which can be obtained by solving the equations (4.25)
and (4.26). Note here that these equations are given on the reference interface Γ0 = S. The right
hand sides and the solutions of these equations belong to the tensor space H2−σ

mix (Γ0 × Γ0) for any
σ > 0. To solve these equations numerically we use the hyperbolic cross tensor approximation
spaces of spherical harmonics which are defined by

(5.7) Sδ
p := span

{
Yℓ,m : ℓ ∈ δp, mi = −ℓi, . . . , ℓi for i = 1, 2

}
,

where

(5.8) δp :=

{
ℓ = (ℓ1, ℓ1) ∈ N

2 :

2∏

i=1

(1 + ℓi) ≤ 1 + p

}
.
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Figure 1. Convergence of the absolute error |Var[u′](x) − Var[u′
p
](x)| for three points x inside and outside

the unit sphere with respect to the order of the hyperbolic cross p.

The Galerkin method was used to find the approximate solutions u′
p ∈ Sδ

p of (4.25) and (4.26). It

has been shown in [5] that the use of the space Sδ
p yields the convergence rate of p−(2−σ−t) and

demands only O
(
p2 log p

)
unknowns, where t is the order of the Sobolev norm in which the errors

are computed. The same convergence rate p−(2−σ−t) is achieved when using the standard full
tensor product approximation of degree p which meanwhile requires O

(
p4
)
unknowns. We then

compute the variance of u′(x) at three points x = (0, 0, 0.2), (0, 0, 0.5) and (0, 0, 5) inside and
outside the unit sphere. The convergence curves for the absolute error

|Var[u′](x)−Var[u′
p](x)|

with respect to the order of the hyperbolic cross p are presented in Fig 1.
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