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Abstract We extend the general framework of the Multilevel Monte Carlo method
to multilevel estimation of arbitrary order central statistical moments. In partic-
ular, we prove that under certain assumptions, the total cost of a MLMC central
moment estimator is asymptotically the same as the cost of the multilevel sample
mean estimator and thereby is asymptotically the same as the cost of a single
deterministic forward solve. The general convergence theory is applied to a class
of obstacle problems with rough random obstacle profiles. Numerical experiments
confirm theoretical findings.
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1 Introduction

Estimation of central statistical moments is important for many reasons. The vari-
ance (or the standard deviation) is one of the most important characteristics of
a random variable, along with the mean. Higher order moments, particularly the
third and the fourth moments (or the related skewness and kurtosis) are impor-
tant in statistical applications, e.g. for tests whether a random variable is normally
distributed [7]. Another example is [3], where skewness and kurtosis are utilized
in a stopping criteria for a Monte Carlo method. Higher order moments inherit
further characterization of a random variable; the problem of determining a prob-
ability distribution from its sequence of moments is widely known as the problem of

moments [1]. This paper is dedicated to estimation of arbitrary order central sta-
tistical moments by means of the Multilevel Monte Carlo method, a non-intrusive
sampling-based multiscale approach particularly suitable for uncertainty propaga-
tion in complex forward problems.
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Department of Mathematics and Statistics, University of Reading, Whiteknights Campus,
PO Box 220, Berkshire RG6 6AX, United Kingdom. E-mail: c.bierig@pgr.reading.ac.uk,
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2 CLAUDIO BIERIG AND ALEXEY CHERNOV

To facilitate the presentation, let us consider an abstract well posed forward
problem

u = S(α), (1)

where α are model parameters (model input), u is the unique solution of the
forward problem (model output) and S is the corresponding solution operator.
As an illustrative example, we consider a contact problem between deformable
bodies. The quantity of interest (observable) X might be either the solution itself,
or some general, possibly nonlinear, continuous functional of the solution X =
F (u). Therefore the observable X might be either a spatially varying function
(e.g. the displacement of a deformable body or the contact stress) or a scalar
quantity (e.g. the size of the actual contact area). Typically, a model description
contains probabilistic information about input parameters α and if it is possible
to generate samples of α, then samples of X may be generated via the forward
map X = F ◦ S(α).

However, the solution operator S is usually given implicitly as an inverse of
a certain differential or integral operator and the inverse can only be computed
approximately by means of a numerical method. In view of this, only approximate
samples of X are computable via

X` = F` ◦ S`(α) (2)

for a certain approximation F` of F . If the numerical method is convergent, we
have X` → X for `→∞ in a suitable sense. The numerical methods and computing
resources available nowadays are often capable of providing a good quality approx-
imation of the observable X` ≈ X. Given this, the mean of X can be approximated
by the plain averaging of approximate samples X`, which is known as the Monte
Carlo (MC) approximation. However, there is need to balance two sources of error,
the statistical error and the discretization error, significantly increases the total
computational cost, see e.g. [4, Section 3] for the rigorous discussion.

In this paper develop and analyze the approximation of the centered statistical
moments or arbitrary order in a Multilevel Monte Carlo (MLMC) framework. The
MLMC method was developed in the last few years as an improvement of the stan-
dard MC, see [10,6,2]. Instead of computing samples at a fixed resolution level `,
the MLMC uses a hierarchy of resolutions ` = 1, . . . , L and a level-dependent sam-
pling strategy. Particularly, within MLMC one computes many (cheap) samples
at the coarse resolution and only a few, e.g. several dozens, of (expensive) samples
at fine resolution, thereby uniformly distributing the computational work over the
level hierarchy. If built in a optimal way, MLMC allows to estimate the mean of the
observable at the same asymptotic computational cost as a single forward solution
of the deterministic problem, see e.g [6,2] for application to the random diffusion
equation. Of course, this analysis includes approximation of standard non-central
(monomial) moments of arbitrary order, see e.g. [5]. Moreover, central moments
can be computed as combinations of non-central moments in the post-processing
phase. In this paper we are interested in direct MLMC approximation of central
statistical moments for several reasons.

1. Frequently, central statistical moments are the final aim of the computation.
2. Evaluation of central moments via combination of non-centered moments com-

puted by MLMC may suffer from numerical instabilities, particularly in regions
where central moments are small.
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3. Direct evaluation of central moments is no more demanding in terms of the
overall computational cost than evaluation the non-centered moments. Partic-
ularly useful for stable and efficient numerical evaluation are one-pass update
formulae from [15].

In this work we analyze simple and general form MLMC estimators for r-th
order central statistical moments introduced in (25) and (29) below. The simple
form of the estimators allowing for a unified analysis comes at the expense of a
small systematic error which cannot be removed by a simple scaling when r ≥ 4,
cf. [13,8]. The rigorous control of this systematic error is presented below.

The paper is structured as follows. After preliminaries in Section 2, we give an
overview of the general MLMC framework and the analysis strategy in Section 3.
In Section 4 study in detail the MC estimator of arbitrary order central moments
and particularly prove convergence of its bias and variance. In Section 5 we apply
the developed theory to the MLMC estimator of arbitrary order central moments.
Under additional assumptions we prove the same asymptotic work-error relation of
the estimator for an arbitrary r-th moment as the same as for the estimation of the
expectation value by the multilevel sample mean. In Section 6 we apply the general
theory to a class of random obstacle problems (see also [9,14,4]). In Section 7 we
report on the results of numerical experiments supporting the abstract theory.

2 Function spaces and statistical moments

Let (Ω,Σ,P) be a complete probability space with Ω being the set of random
events, Σ ⊂ 2Ω the σ-algebra and P the probability measure. Furthermore let Z
be a complete metric space with Borel σ-algebra B(Z). A mapping α : Ω → Z is
called a random field, if it is Σ-B(Z) measurable. We denote with

L0(Ω,Z) := {α : Ω → Z : α is Σ-B(Z) measurable}

the set of all random fields α : Ω → Z. For a Banach space Z we define

‖α‖Lp(Ω,Z) :=


(∫

Ω

‖α(ω)‖kZ dP(ω)

)1/p

1 ≤ p <∞,

ess sup
ω∈Ω

‖α(ω)‖Z p =∞.
(3)

The Bochner-Lebesgue spaces are defined by

Lp(Ω,Z) :=
{
α ∈ L0(Ω,Z) : ‖α‖Lp(Ω,Z) <∞

}
/N , (4)

where N :=
{
α ∈ L0(Ω,Z) : α = 0 P-a.e.

}
and the norm of Lp(Ω,Z) is defined

by (3). Throughout the paper the (Banach space-valued) elements of Lp(Ω,Z) are
termed random fields. In this paper we investigate two particular cases particularly
important in applications: i) the real-valued random variables, i.e. Z = R, and ii)
the Sobolev space-valued random fields, i.e. Z = W s,p(D) where D is a bounded
Lipschitz domain, s ≥ 0 is an integer and 1 ≤ p ≤ ∞. The analysis for i) and ii)
will be carried out in parallel and to cover both cases we will work with the family
of Banach spaces Bp where

i) Bp = R or ii) Bp = W s,p(D), 1 ≤ p ≤ ∞ (5)



4 CLAUDIO BIERIG AND ALEXEY CHERNOV

and distinguish the special case H = B2, i.e.

i) H = R or ii) H = W s,2(D) ≡ Hs(D). (6)

The nonnegative integer s will be fixed throughout the paper therefore is omitted
in the notation (5) and (6) for brevity. In both cases, H is a Hilbert space with an
inner product 〈·, ·〉H and Bp is a Banach space with the a norm ‖ · ‖Bp specified
in Table 1 for definiteness.

H 〈f, g〉H Bp ‖f‖Bp

R fg R |f |

W s,2(D)
∑
|α|≤s

∫
D

(∂αf)(∂αg) dx W s,p(D)



 ∑
|α|≤s

∫
D
|∂αf |p dx

 1
p

, p <∞

max
|α|≤s

ess sup
D

|∂αf |, p =∞

Table 1 Overview of the short-hand notations for Sobolev and Bochner spaces and their
inner products and norms; D ⊂ Rd, α = (α1, . . . , αd) is a multiindex with nonnegative integer

components, |α| = α1 + · · ·+ αd and ∂α = ∂|α|

∂x
α1
1 ...∂x

αd
d

.

Under these notations a (generalized) Hölder inequality holds: Suppose 1 ≤
n, p, q ≤ ∞ with 1

p + 1
q = 1, then for f ∈ Bnp and g ∈ Bnq

‖fg‖Bn ≤ cH‖f‖Bnp‖g‖Bnq . (7)

We observe that cH = 1 when Bn = R or Ln(D) since (7) is the standard Hölder in-
equality in the latter case. Moreover, cH depends only on the order of the derivative
s when Bn = W s,n(D). In particular, cH = 3 when s = 1. This estimate general-
izes to the r-fold products with r ≥ 2 as follows. For integers 1 ≤ n, p1, . . . , pr ≤ ∞
satisfying 1

p1
+ · · ·+ 1

pr
= 1 and functions fi ∈ Bnpi , i = 1, . . . , r it holds that∥∥∥∥ r∏

i=1

fi

∥∥∥∥
Bn
≤ cr−1

H

r∏
i=1

‖fi‖Bnpi . (8)

Moreover for random variables Xi ∈ Lnpi(Ω,Bnpi) there holds∥∥∥∥ r∏
i=1

Xi

∥∥∥∥
Ln(Ω,Bn)

≤ cr−1
H

r∏
i=1

‖Xi‖Lnpi (Ω,Bnpi ) . (9)

Bochner spaces of the type Lp(Ω,Bp), will be frequently used throughout the
paper and to simplify the notations we write

‖ · ‖p := ‖ · ‖Lp(Ω,Bp) (10)
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for the norm on these spaces. Notice that L2(Ω,H) is a Hilbert space with inner
product

〈X,Y 〉 :=

∫
Ω

〈X(ω), Y (ω)〉H dP(ω), X, Y ∈ L2(Ω,H).

For X ∈ L1(Ω,H) we define its mean

E[X] =

∫
Ω

X(ω) dP(ω)

and the M-sample mean Monte Carlo estimator

EM [X] =
1

M

M∑
i=1

Xi, (11)

where the Xi ∈ H are independent realizations of X. Notice that the sample mean
estimator EM [X] ∈ L1(Ω,H) is in fact a random field whereas E[X] ∈ H is a
deterministic quantity. We recall that a randomized estimator is called unbiased

if it is exact in the mean, otherwise it is termed biased. In particular, the sample
mean estimator (11) is unbiased, since E[EM [X]−X] = 0.

This paper is dedicated to approximation of central statistical moments

Mr[X] := E
[
(X − E[X])

r] (12)

where the order r ≥ 2 is an arbitrary fixed integer. We distinguish the second order
central moment, the variance V[X], and the related covariance C[X,Y ] defined by

V[X] := E
[
(X − E[X])

2
]
, C[X,Y ] := E [(X − E[X]) (Y − E[Y ])]

for two sufficiently regular random fields X,Y . From Jensen’s inequality [18, Corol-
lary V.5.1] and the Hölder inequality we obtain the upper bound

‖E[Xr]‖Bn ≤ E[‖Xr‖Bn ] ≤ E[‖X‖rBnr ] ≤ E[‖X‖nrBnr ]
1
n = ‖X‖rnr. (13)

for 1 ≤ n ≤ ∞ and an integer r. Estimate (13) implies that Mr[X] ∈ H when
X ∈ L2r(Ω,B2r). In particular, V[X] ∈ H and C[X,Y ] ∈ H when X,Y ∈ L4(Ω,B4).

3 Preliminary results on the single and multilevel randomized estimation

3.1 Abstract single and multilevel estimation

In the forthcoming error analysis we shall frequently use the quantities

V(S) := ‖S − E[S]‖2L2(Ω,H) (14)

and
C(S, T ) := E [〈S − E[S], T − E[T ]〉H ]

well defined for random fields S, T ∈ L2(Ω,H). Notice that V(S) coincides with
V[S] and C(S, T ) with C(S, T ) if S, T ∈ L2(Ω,R) are real-valued random variables,
which is not true for general random fields S, T ∈ L2(Ω,H), H 6= R. Nonetheless,
if S ∈ L2(Ω,H) is a randomized estimator of a deterministic quantity M ∈ H, we
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occasionally call V(S) the variance of the estimator S. The reason for this slight
abuse of terminology is that V(S) ∈ R+ is indeed a measure of variation of the
quantity S. Furthermore it is consistent with the existing literature on Monte
Carlo Methods and, in particular, the well-known splitting of the mean-square
error (MSE) of an estimator into the sum of its (squared) bias and the variance

‖M−S‖2L2(Ω,H) = ‖M− E[S] + E[S]− S‖2L2(Ω,H)

=‖M− E[S]‖2L2(Ω,H) + 2E 〈M− E[S],E[S]− S〉H + ‖E[S]− S‖2L2(Ω,H)

=‖M− E[S]‖2H + V(S).

(15)

Indeed, the inner product is zero since M−E[S] is deterministic and 〈M− E[S], ·〉H
is a linear functional on H. In order to facilitate the further discussion we introduce
the relative root mean-square error

Rel(M, S) :=
‖M− S‖L2(Ω,H)

‖M‖H
.

Frequently, in practical applications the approximate evaluation of the quantity
M involves some kind of deterministic approximation procedure. In this case the
method can be interpreted as a two-stage approximation: there exists a sequence
M` →M converging strongly in H as `→∞, and a family of single level randomized
estimators S` approximating M`. Then by the triangle inequality we have the upper
bound (notice that if ML = E[SL], the identity (15) provides a sharper result)

‖M− SL‖L2(Ω,H) ≤ ‖M−ML‖H + ‖ML − SL‖L2(Ω,H). (16)

This estimate suggests that SL should be chosen to balance the summands, namely

‖M−ML‖H ≈ ‖ML − SL‖L2(Ω,H) (17)

implying

‖M− SL‖L2(Ω,H) . E , E := ‖M−ML‖H . (18)

Typically, the evaluation cost of the estimator SL, while keeping the balance (17),
increases significantly with increasing L and might become unfeasibly large. As an
alternative, we consider an abstract multilevel estimator

SML :=
L∑
`=1

T`, (19)

built of a sequence of estimators T` each approximating the individual differences

∆M` :=

{
M` −M`−1, ` > 1,

M`, ` = 1.
(20)

These estimators may e.g. depend on the finest level T` = T`(L); we omit such
details for simplicity of the presentation in this section. We remark that the es-
timators T` are not required to be either unbiased or independent (in fact, inde-
pendence would imply sharper upper bounds for the MSE, see Theorem 1, The-
orem 2 and Remark 2 in Section 5). The approximation (19) is reasonable since



MLMC FOR HIGHER CENTRAL MOMENTS 7

ML =
∑L
`=1∆M`. Thus, similarly to (16) we obtain

‖M− SML‖L2(Ω,H) ≤ ‖M−ML‖H + ‖ML − SML‖L2(Ω,H)

≤ ‖M−ML‖H +
L∑
`=1

‖∆M` − T`‖L2(Ω,H).
(21)

This upper bound is balanced when T` are chosen to guarantee

E = ‖M−ML‖H ≈ L‖∆M` − T`‖L2(Ω,H)

for all ` = 1, . . . , L implying

‖M− SML‖L2(Ω,H) . E . (22)

Comparing this estimate with (18) we observe that both single and multilevel es-
timators admit the same upper bound for the mean-square error. However, the
multilevel estimator is (potentially) much faster to compute. Indeed, the compu-
tational cost of the estimators T` is typically determined by the magnitude of the
relative error Rel(∆M`, T`). Then the sum in the right-hand side of (21) takes the
form

E ≈
L∑
`=1

‖∆M` − T`‖L2(Ω,H) =
L∑
`=1

Rel(∆M`, T`)× ‖∆M`‖H . (23)

In view of this representation and the fact ∆M` → 0 in H we observe that in the
asymptotic regime the estimators T` are allowed to have larger relative errors for
higher levels ` than for lower levels, as long as they are balanced with the value
‖∆M`‖H . Whereas for the single level estimator we have

E ≈ ‖ML − SL‖L2(Ω,H) = Rel(ML, SL)× ‖ML‖H (24)

where ‖ML‖H is (asymptotically) bounded from below whenever M 6= 0. In other
words, the single level estimator have to achieve a small relative error to keep the
absolute mean-square error of the estimator small.

Comparing (23) and (24) we observe that the structure of the estimator SML

built of individual approximations of level corrections ∆M` has a significant ad-
vantage over the estimator SL since it allows to transfer the time consuming com-
putations on high levels ` ∼ L to significantly less demanding computations on
lower levels ` ∼ 1.

3.2 Single and Multilevel Monte Carlo estimators for central statistical moments

In this section we introduce Single and Multilevel Monte Carlo estimators for a
central statistical moment Mr[X] of order r ≥ 2, cf. (12), that will be studied in
detail in the forthcoming sections. Recalling the definition (11) of the sample mean
EM [X] we introduce a single level estimator

SrM [X] :=
1

M

M∑
i=1

(Xi − EM [X])r, (25)
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where the Xi are independent and identically distributed (iid) samples of X. The
estimator (25) is possibly the most natural and intuitive computable sample ap-
proximation for Mr[X] with r ≥ 2. However, as we will prove in Lemma 3 below,
the estimator (25) is biased in general. In particular but important cases r = 2 and
3, the estimator (25) can be made unbiased with a minor modification. Indeed,
the rescaled estimators

S̃2
M [X] :=

M

M − 1
S2
M [X], S̃3

M [X] :=
M2

(M − 1)(M − 2)
S3
M [X], (26)

are unbiased, i.e. satisfy E[S̃rM [X]] = Mr[X], for r = 2, 3. One might expect that
a multiple of SrM [X] is an unbiased estimator for higher order central moments as
well, but already for r = 4 it holds that

E[S4
M [X]] =

M − 1

M3

(
(M2 − 3M + 3)M4[X] + 3(2M − 3)M2[X]2

)
(27)

see e.g. [13,8] (in Lemma 3 below we derive a general representation for E[SrM [X]]
with an arbitrary r). In this case the unbiased estimate for M4[X] takes the form

S̃4
M [X] :=

M2

(M − 2)(M − 3)

(
M + 1

M − 1
S4
M [X]− 3S2

M [X]2
)
. (28)

A similar result holds for any r: an unbiased estimator S̃rM [X] can be built as a
weighted sum of SrM [X] with a nonlinear combination of S2

M [X], . . . , Sr−2
M [X]. Such

representations for S̃rM [X] can be obtained for an arbitrary r and used for a single
level Monte Carlo estimation of Mr[X]. However, an unbiased estimation for r ≥ 4
may cause some technical difficulties, as we explain below.

Notice that the above description fits into the abstract framework of Sec-
tion 3.1. Indeed, suppose that X` is an approximation to X at level `, then (16)
holds with

M := Mr[X], ML := Mr[XL], SL := SrM [XL].

We introduce a multilevel estimator

SrML[X] =
L∑
`=1

SrM`
[X`]− SrM`

[X`−1], (29)

where in the summands SrM`
[X`]− SrM`

[X`−1] are built from M` pairs of samples
(X`, X`−1)i, both computed for the same realization of input parameters (the same
random event ωi ∈ Ω). This fits into the abstract framework of Section 3.1 with

SML := SrML[X], T` := SrM`
[X`]− SrM`

[X`−1].

Evidently, since the estimator (25) is biased the multilevel estimator (29) is (in
general) biased as well, whereas an unbiased estimator can be defined as

S̃rML[X] =
L∑
`=1

S̃rM`
[X`]− S̃rM`

[X`−1]. (30)

The unbiasedness is an important property in the framework of Monte Carlo esti-
mation. In particular, unbiased estimators i) have no systematic statistical error
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(i.e. are exact in the mean, by definition) and ii) allow for a sharper and more ele-
gant upper bound for the mean-square error (since unbiasedness enables the usage
of orthogonality instead of the triangle inequality). Nonetheless, we consider the
estimator (30) as inconvenient for Multilevel Monte Carlo estimation when r ≥ 4
in view of the following difficulties with its numerical evaluation:

1. The multilevel estimator (29) allows for a general convergence theory for an
arbitrary moment order r developed and presented in the this paper. The
treatment of unbiased estimators (30) will require a separate analysis for every
particular r. We refer to [4] for the analysis of the unbiased multilevel sample
variance estimators, cf. (30) with r = 2.

2. Though the unbiased estimator (30) has no systematic statistical error, whereas
the estimator (29) does not enjoy this property, it remains unclear which of
the terms yields the smaller mean-square error.

3. A straight forward evaluation of S̃rM`
[X`] requires evaluation of SrM`

[X`] as
an intermediate step. Possibly, no further post-processing is needed when the
approximation SrM`

[X`] is good enough.

As we will see in Section 5, the estimate for the MSE of SrML[X] requires
estimates for

‖Mr[X]−Mr[Y ]− E[SrM [X]− SrM [Y ]]‖H (31)

and
V(SrM [X]− SrM [Y ]), (32)

as an intermediate step, which is similar to the multilevel sample mean estimators,
analyzed e.g. in [2,6]. The situation we face in the present work is more complicated
in two ways. Firstly, as discussed above, the estimator (29) is biased and thus a
special care should be paid to the control of the bias. Secondly, the summands in
the sample mean estimator EM [X] = 1

M

∑M
i=1Xi are uncorrelated by construction,

implying C[Xi, Xj ] = 0 whenever i 6= j. This is no longer true for the estimator
(25), i.e. in general

C

[(
Xi −

1

M

M∑
k=1

Xk

)r
,

(
Xj −

1

M

M∑
k=1

Xk

)r]
6= 0, i 6= j.

This leads to a more complicated estimation of the variance for the higher order
moment case compared to sample mean estimation, see [4] for the estimation of
the sample variance.

We remark that, as a by-product of our error analysis, by choosing Y = 0
in (31) and (32) we immediately obtain upper bounds for the Single Level MC
estimator SrM [X], cf. [13, p. 348-349] for a related estimate in the special case
when X : Ω → H is a real-valued random variable, i.e. H = R. We refer to
Corollary 1 below for the rigorous formulation of this result.

4 Single Level Monte Carlo Approximation

Throughout this section we work with random fields X,XL, Y : Ω → H with
H the Hilbert space R or W s,2(D) and Bp be the Banach space R or W s,p(D)
respectively. Throughout this section we assume that for a fixed integer r ≥ 2
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there holds X,XL, Y ∈ L2r(Ω,B2r). This condition guarantees that the first r

central moments are well defined in H. We derive upper bounds for (31) and (32),
and thereby, as indicated in Section 3, an upper bound for the MSE of the Single
and the Multilevel Monte Carlo estimators.

4.1 Preliminary results

Let us denote by Λ̂rM := {1, . . . ,M}r the set of multiindices with r integer com-
ponents ranging (independently from each other) from 1 to M and consider its
subset ΛrM ⊂ Λ̂

r
M containing all multiindices with no unique components, i.e.

ΛrM :=
{
j ∈ Λ̂rM | ∀k ∃` 6= k : jk = j`

}
. (33)

This abstract index set will allow for an easy representation and further handling
of correlations of multiple centered iid random fields. In particular, suppose X is
a sufficiently smooth random field and let {Xi}Mi=1 be iid samples of X. Denote
X̄ := X − E[X]. For j = (j1, . . . , jr) ∈ Λ̂rM we introduce the product

X̄j :=
r∏

k=1

X̄jk . (34)

Evidently, for the multiindex j ∈ Λ̂rM \ Λ
r
M whose ν-th component has a unique

value it holds that

E[X̄j ] = E[X̄ν ]E
[ r∏
k=1,k 6=ν

X̄jk

]
= 0 (35)

since {X̄i}Mi=1 are iid realizations of the centered random field X̄. Moreover, any
two r-multiindices j, j′ ∈ Λ̂rM and their concatenation (j, j′) ∈ Λ̂2r

M it necessarily
holds that

C
(
X̄j , X̄j′

)
= 0, (36)

once (j, j′) ∈ Λ̂2r
M \ Λ

2r
M . This can be seen easily for H = R, H = L2(D) and

H = H1(D), and actually any other Hilbertian Sobolev space W k,2(D). Equation
(36) also holds true if there exist no ν, µ such that j

ν
= j′

µ
, since in this case X̄j

and X̄j′ are independent random fields.

Lemma 1 The cardinality of the set ΛrM defined in (33) admits the upper bound

|ΛrM | ≤ (r − 1)r−1Mb
r
2 c. (37)

Proof We claim that for integer M and r ≥ 2 there holds the representation

|ΛrM | = M

(
1 +

r−3∑
k=1

(
r − 1

k

)
|Λr−k−1
M−1 |

)
. (38)

To show this, we count the number of multiindices i = (i1, . . . , ir) ∈ ΛrM involving
combinatorial arguments. Assume that the first component i1 is fixed (the multi-
plier M appears in (38) since i1 may take M distinct values). Considering the sum
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in the parenthesis we observe that its k-th term represents the number of indices
in ΛrM , for which there exist 2 ≤ j1 < . . . < jk ≤ r with i1 = ij1 = . . . = ijk and
all other indices are different from i1. To see this, we notice that there are (r−1

k )
different possibilities to choose j1, . . . , jk. Moreover, there are r−k remaining com-
ponents distinct from i1, containing no unique values (otherwise there would be a
contradiction to the definition of ΛrM ). Therefore there are precisely |Λr−k−1

M−1 | ad-
missible combinations for the remaining components. The summands with k = 0
and k = r − 2 have no contribution to the sum since they both correspond to
multiindices with at least one unique component value. The case k = r− 1 implies
that all components of i coincide with the fixed i1 and there is only one such
multiindex. Thus, (38) is proved.

We have |Λ1
M | = 0 and |Λr1| = 1 for r > 1. Let the statement of the lemma hold

true for any M − 1 and 1 ≤ s < r. Then we have

|ΛrM | =M

(
1 +

r−3∑
k=1

(
r − 1

k

)
|Λr−k−1
M−1 |

)

≤M

(
1 +

r−3∑
k=1

(
r − 1

k

)
(r − k − 2)r−k−2(M − 1)b

r−k−1
2 c

)
.

The statement of the lemma follows by the estimate (rk) ≤ r
k and

|ΛrM | ≤M

(
1 +

r−3∑
k=1

(r − 1)r−2Mb
r−k−1

2 c
)
≤ (r − 1)r−1Mb

r
2 c.

Lemma 2 Let X,Y : Ω → H be two random variables with H the Hilbert space R or

W s,2(D) and Bp be the Banach space R or W s,p(D) respectively. Furthermore let r ≥ 2
and 1 ≤ p ≤ q(r− 1) ≤ ∞ be such that 1

p + 1
q = 1 and X,Y ∈ L2q(r−1)(Ω,B2q(r−1)).

Let j ∈ Nr and Xj , Yj as defined in (34). Then it holds that

‖E[Xj − Yj ]‖H ≤ ‖Xj − Yj‖2 ≤ K(X,Y, r) (39)

where

K(X,Y, r) := ‖X − Y ‖2p × cr−1
H min

(
rmax

{
‖X‖r−1

2q(r−1), ‖Y ‖
r−1
2q(r−1),

}
,

(‖X‖2q(r−1) + ‖Y ‖2q(r−1))
r−1

)
,

with cH the Hölder constant from inequality (7).

Proof The first inequality in (39) follows by Jensen’s inequality. For the second
inequality we need the following identity

r∏
i=1

ai −
r∏
i=1

bi =
r∑
i=1

(ai − bi)
i−1∏
k=1

ak

r∏
k=i+1

bk. (40)
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Applying (40) and the Hölder inequality (9) gives us

‖Xj − Yj‖2 =

∥∥∥∥∥∥
r∑
i=1

(Xji − Yji)
i−1∏
k=1

Xjk

r∏
k=i+1

Yjk

∥∥∥∥∥∥
2

≤
r∑
i=1

cr−1
H ‖X − Y ‖2p‖X‖i−1

2q(r−1)‖Y ‖
r−i
2q(r−1).

(41)

Estimating the sum with

r∑
i=1

‖X‖i−1
2q(r−1)‖Y ‖

r−i
2q(r−1) ≤ min

(
rmax

{
‖X‖r−1

2q(r−1), ‖Y ‖
r−1
2q(r−1)

}
,

(‖X‖2q(r−1) + ‖Y ‖2q(r−1))
r−1

)
completes the proof.

4.2 Estimation of the building blocks (31) and (32)

In this section we obtain upper bounds for (31) and (32) required later on in
convergence theorem for the multilevel estimator in the forthcoming Section 5.
The following notation will be essential in the forthcoming analysis. Let r ≥ 2
be an integer and 1 ≤ k ≤ r. Denote m := min(k + 1, r). For an m-multiindex
j = (j1, . . . , jm) ∈ ΛmM we define its extension to an r-multiindex by

E(j) =


(j1, . . . , jk, jk+1, . . . , jk+1︸ ︷︷ ︸

r−k times

), k < r,

(j1, . . . , jr), k = r,

(42)

Notice the alternative expression: m = k + 1 − δk,r where δkr is the Dirac delta.
These definitions and notation (34) allow for a compact representation of the
sample estimator (25) as a sum products. Indeed, opening the brackets in (25) we
observe

SrM [X] =
r∑

k=0

(−1)k

Mk+1−δk,r

(
r

k

) ∑
j∈Λ̂

k+1−δk,r
M

XE(j). (43)

The following lemma provides the quantitative structure for the bias of the esti-
mator SrM [X].

Lemma 3 Suppose X is a sufficiently smooth random field so that its statistical mo-

ments of any order up to r ≥ 2 exist. Then it holds that

E [SrM [X]] = Mr[X] +M−1

(
r(r − 1)

2
Mr−2[X]M2[X]− rMr[X]

)
+R

R =



0, r = 2,

2M−2M3[X], r = 3,∑
j∈ΛrM

c(j,M, r)E[X̄j ], r ≥ 4,

(44)
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where the constants c(j,M, r) are independent of X. This set of constants is non-

unique, however, there exist c(j,M, r) such that for r ≥ 4

∑
j∈ΛrM

|c(j,M, r)| ≤ 2
r−2∑
k=3

M−d
k
2
e
(
r

k

)
(k − 1)k−1 + (r − 1)rM−d

r
2
e. (45)

Proof We assume w.l.o.g. that E[X] ≡ M1[X] = 0, since estimator SrM [X] and
central moments are independent of the value E[X]. Notice that (44) is satisfied
when r = 2. Indeed, (45) implies that the sum over j ∈ Λ2

M vanish and therefore,

since M0[X] ≡ 1, the identity (44) is equivalent to

E
[
S2
M [X]

]
= M2[X] +M−1

(
M0[X]M2[X]− 2M2[X]

)
=
M − 1

M
M2[X] (46)

Analogously, for r = 3 the estimate (44) is equivalent to

E
[
S3
M [X]

]
= M3[X]− 3

M
M3[X] +

2

M2
M3[X]. (47)

and for r = 4 we have

E
[
S4
M [X]

]
=M4[X] +

1

M
(6M2[X]2 − 4M4[X]) +

1

M2
(6M4[X]− 15M2[X]2)

+
1

M3
(9M2[X]2 − 3M4[X]).

(48)

Representations (46), (47) and (48) hold true in view of (26),(27) and the assertion
of the lemma follows for 2 ≤ r ≤ 4. It remains to prove (44) and (45) for the case
r ≥ 5. Taking the expectation value of (43) we obtain

E[SrM [X]] =
r∑

k=0

Ak, (49)

where for m := k + 1− δk,r

Ak :=
(−1)k

Mm

(
r

k

)
M∑

j∈Λ̂mM

E[XE(j)], (50)

By virtue of (35) we observe E[XE(j)] = 0 for E(j) /∈ ΛrM and thus

A0 =
1

M

M∑
j1=1

E[Xr
j1 ] = Mr[X],

A1 =
−1

M2

M∑
j1,j2=1

(
r

1

)
E[Xj1X

r−1
j2

] = − r

M
Mr[X],

A2 = · · · = 1

M2

(
r

2

)(
Mr[X] + (M − 1)Mr−2[X]M2[X]

)
.

(51)
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This yields

E [SrM [X]] = Mr[X] +M−1

(
r(r − 1)

2
Mr−2[X]M2[X]− rMr[X]

)
+R,

R =
1

M2

r(r − 1)

2

(
Mr[X]−Mr−2[X]M2[X]

)
+

r∑
k=3

Ak,

(52)

where the remainder can be written as

R = R =
∑
j∈ΛrM

c(j,M, r)E[Xj ]

for some c(j,M, r) ∈ O(M−2) independent of X. This implies the representation
(44). It remains to prove (45). For this we observe

Ar =

(
−1

M

)r ∑
j∈ΛrM

E[Xj ],

Ar−1 =
(−1)r−1

Mr
r
∑
j∈ΛrM

E[Xj ],

A3 =
−1

M4

(
r

3

)
M∑

j1,...,j4=1

E[Xj1Xj2Xj3X
r−3
j4

]

=
−1

M3

(
r

3

)(
Mr[X] + (M − 1)Mr−3[X]M3[X] + 3(M − 1)Mr−2[X]M2[X]

)
(53)

Defining c(j,M, r) naturally as given by the definition of Ak (50), neglecting the
sign and using (53) we derive the upper bound

∑
j∈ΛrM

|c(j,M, r)| ≤ 2

M2

(
r

2

)
+

4

M2

(
r

3

)

+
r−2∑
k=4

M−k−1

(
r

k

) ∑
j∈Λ̂k+1

M : E(j)∈ΛrM

1

+ (r − 1)M−r|ΛrM |.

We claim that for 4 ≤ k ≤ r− 2 the cardinality of the index set {j ∈ Λ̂k+1
M : E(j) ∈

ΛrM} admits the representation

∑
j∈Λ̂k+1

M : E(j)∈ΛrM

1 = M

(
|ΛkM |+ k|Λk−1

M−1|
)
. (54)

To prove this we denote by j′ the first k components of j = (j′, jk+1). If j′ ∈ ΛkM ,

then also E(j) ∈ ΛrM . In the case j′ /∈ ΛkM and E(j) ∈ ΛrM there exists exactly one
component j`, 1 ≤ ` ≤ k, such that j` 6= ji for 1 ≤ i ≤ k, i 6= ` and j` = jk+1. Thus
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the identity (54) follows by the counting argument similar to the proof of Lemma
1. Utilizing the estimate (37) we get the upper bound

r−2∑
k=4

1

Mk

(
r

k

)(
|ΛkM |+ k|Λk−1

M−1|
)

≤
r−2∑
k=4

1

Mk

(
r

k

)(
(k − 1)k−1Mb

k
2
c + k(k − 2)k−2(M − 1)b

k−1
2
c
)

≤
r−2∑
k=4

2M−d
k
2
e
(
r

k

)
(k − 1)k−1.

Moreover, it holds that

2

M2

(
r

2

)
+

4

M2

(
r

3

)
≤ 2M−2

(
r

3

)
22, (r − 1)M−r|ΛrM | ≤M

−d r
2
e(r − 1)r

and thereby the proof is complete.

Lemma 4 Let X,Y : Ω → H be two sufficiently smooth random variables with H the

Hilbert space R or W s,2(D). For r ≥ 2 the estimate

‖Mr[X]−Mr[Y ]− E[SrM [X]− SrM [Y ]]‖H ≤
r(r + 1)

2M
(1 + εb(M, r))K(X̄, Ȳ , r) (55)

holds, where K(X̄, Ȳ , r) is the upper bound in Lemma 2. We have εb(M, r) ∈ O(M−1)
and for r > 3 the estimate holds for

εb(M, r) =
2

r(r + 1)

(
2
r−2∑
k=3

M−d
k
2
e+1

(
r

k

)
(k − 1)k−1 + (r − 1)rM−d

r
2
e
)

(56)

and εb(M, r) = 0 for r = 2, 3.

Proof Assume w.l.o.g. that E[X] = E[Y ] = 0. Then by Lemma 3 and the triangle
inequality, we obtain

‖Mr[X]−Mr[Y ]− E[SrM [X]− SrM [Y ]]‖H

≤M−1 r(r − 1)

2
‖Mr−2[X]M2[X]−Mr−2[Y ]M2[Y ]‖H

+M−1r‖Mr[X]−Mr[Y ]‖H +
∑
j∈ΛrM

|c(j,M, r)|‖E[Xj − Yj ]‖H .

We first apply Lemma 2 to estimate the norms in H and then Lemma 3 to bound
the sum over ΛrM and gain εb for r > 3. For r = 2, 3 we have εb(r) = 0 due to (46)
and (47). Thus the Lemma is proved.

Lemma 5 Let X,Y : Ω → H be two sufficiently smooth random variables with H the

Hilbert space R or W s,2(D). For r ≥ 2 the estimate

V(SrM [X]− SrM [Y ]) ≤M−1(r + 1)2(1 + εv(M, r))K(X̄, Ȳ , r)2 (57)
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holds, where K(X̄, Ȳ , r) is the upper bound in Lemma 2. We have εv(M, r) ∈ O(M−1)
and for r > 3 the estimate holds for

εv(M, r) =
3

(r + 1)2

r∑
k, k′ = 0,

k + k′ > 2

(k + k′ − 1)k+k
′−1

(
r

k

)(
r

k′

)
M
−
⌈
k+k′

2

⌉
+1

+
5r2 − 4r

(r + 1)2
M−1.

(58)

Furthermore we have εv(M, 2) = 0 and

εv(M, 3) =
1

16

(
57

M
+

55

M2
+
−120

M3
+

28

M4

)
.

Proof Let us assume w.l.o.g. E[X] = E[Y ] = 0 and consider the case r > 3. First,
using (43) we obtain

V(SrM [X]− SrM [Y ]) = C(SrM [X]− SrM [Y ], SrM [X]− SrM [Y ]) =
r∑

k,k′=0

sk,k′

where

sk,k′ =
r∑

k,k′=0

(−1)k+k
′

Mm+m′

(
r

k

)(
r

k′

)
×
∑
j∈ΛmM

∑
j′∈Λm′M

C(XE(j) − YE(j), XE(j′) − YE(j′))

and m = k+ 1− δkr and m′ = k′+ 1− δk′r. We start by considering the summands
of the order O(M−2), i.e. sk,k′ with k + k′ > 2. Estimating the absolute value of
each summand with equation (36), the Cauchy-Schwartz inequality and Lemma 2
leads to

|sk,k′ | ≤
1

Mm+m′

(
r

k

)(
r

k′

)
K(X,Y, r)2S(m,m′), (59)

with
S(m,m′) :=

∑
j∈Λ̂mM,j′∈Λ̂m

′
M :

(E(j),E(j′))∈Λ2r
M

1. (60)

We have
S(r, r) = |Λ2r

M | ≤ (2r − 1)2r−1Mr (61)

and for k < r − 1

S(r, k + 1) = S(k + 1, r) = M(|Λr+kM |+ k|Λr+k−1
M−1 |) ≤ 2(r + k − 1)r+k−1Mb

r+k
2 c+1,

which can be proved similarly to (54). Finally, in the case k, k′ < r − 1 we have

S(k + 1, k′ + 1) =M2|Λk+k
′

M |+M(k + k′)|Λk+k
′−1

M−1 |+ 2M(M − 1)(k + k′)|Λk+k
′−1

M−1 |

+ 2M(M − 1)

(
k + k′

2

)
|Λk+k

′−2
M−2 |.
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Again we use a similar argumentation to prove this identity. Let us consider j =

(̂, jk+1) and j′ = (̂′, j′k′+1).

– When (̂, ̂′) ∈ Λk+k
′

M , the components jk+1 and j′k′+1 may take any value be-

tween 1 and M , resulting in M2|Λk+k
′

M | possible combinations.

– If there exists exactly one component in the concatenated multiindex (̂, ̂′)
occurring only ones, it has to coincide with jk+1 or j′k′+1. If jk+1 = j′k′+1 there

exist M(k + k′)|Λk+k
′−1

M−1 | admissible combinations, in the case jk+1 6= j′k′+1

there exist 2M(M − 1)(k + k′)|Λk+k
′−1

M−1 | combinations.

– For two indices occurring just once, one has to be equal to jk+1 and the other

to j′k′+1. Thus there are 2M(M − 1)(k+k
′

2 )|Λk+k
′−2

M−2 | admissible combinations.

Thus the identity for S(k + 1, k′ + 1) is proved and by (37) we get the estimate

S(k + 1, k′ + 1) ≤(1 +M−1 + 2(1−M−1) +M−1)(k + k′ − 1)k+k
′−1M

⌊
k+k′

2

⌋
+2

=3(k + k′ − 1)k+k
′−1M

⌊
k+k′

2

⌋
+2
.

This leads for all m,m′ to the estimate

M−m−m
′
S(m,m′) ≤ 3(k + k′ − 1)k+k

′−1M

⌈
− k+k

′
2

⌉
.

Thus we have

r∑
k, k′ = 0
k + k′ > 2

sk,k′ ≤
r∑

k, k′ = 0
k + k′ > 2

3(k + k′ − 1)k+k
′−1

×

(
r

k

)(
r

k′

)
M
−
⌈
k+k′

2

⌉
K(X,Y, r)2.

(62)

It remains to estimate the summands with k + k′ ≤ 2. For k = k′ = 0 we have

s0,0 =
1

M2

M∑
j,j′=1

C(Xr
j − Y

r
j , X

r
j′ − Y

r
j′) =

1

M
V(Xr − Y r) ≤ 1

M
K(X,Y, r)2,

since C(Xr
j − Y

r
j , X

r
j′ − Y

r
j′) = 0 for j 6= j′. In the case k = 1, k′ = 0 we gain

s1,0 =
−r
M3

M∑
j1,j2,j′=1

C(Xj1X
r−1
j2
− Yj1Y

r−1
j2

, Xr
j′ − Y

r
j′)

The summands vanish for j1 6= j′. Thus we have

|s1,0 + s0,1| ≤
2r

M
K(X,Y, r)2.

For k = 2, k′ = 0 we have

s2,0 =
1

M4

(
r

2

)
M∑

j1,j2,j3,j′=1

C(Xj1Xj2X
r−2
j3
− Yj1Yj2Y

r−2
j3

, Xr
j′ − Y

r
j′).
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The summands are only nonzero when i) j3 = j′ implying j1 = j2 or ii) j3 6= j′

falling apart in three sub-cases:

(j1 = j2 = j′ 6= j3) or (j1 = j3 6= j2 = j′) or (j2 = j3 6= j1 = j′).

Case i) results in M2 admissible combinations, whereas the sub-cases of case ii)

result in M(M − 1) admissible combinations each. Thus we have

|s2,0 + s0,2| ≤
r(r − 1)(4M − 3)

M3
K(X,Y, r)2.

The remaining term is

s1,1 =
r2

M4

M∑
j1,j2,j′1,j

′
2=1

C(Xj1X
r−1
j2
− Yj1Y

r−1
j2

, Xj′1X
r−1
j′2
− Yj′1Y

r−1
j′2

).

Counting nontrivial summands we find the following admissible combinations.
There are M terms, where all the components take the same value. The case
of three identical components different from the fourth results in 2M(M − 1) ad-
missible combinations (the cases when either j1 or j2 are different from the others
are not admissible). Furthermore, there are 2M(M − 1) admissible combinations
of two distinct pairs (j1 = j′1 6= j2 = j′2 or j1 = j′2 6= j2 = j′1). Finally there are
M(M − 1)(M − 2) terms where the components take 3 different values. The case
of four distinct values is always an inadmissible combination. Thus we have the
upper bound

|s1,1| ≤
r2(M3 +M2 −M)

M4
K(X,Y, r)2.

Combining the obtained estimates we get∑
k+k′≤2

sk,k′ ≤
(
M−1(r + 1)2 +M−2(5r2 − 4r) +M−3(−4r2 + 3r)

)
K(X,Y, r)2,

(63)
where we can neglect the last term, since it is negative. A combination of (62)
and (63) completes the proof for r > 3. The cases r = 2 and r = 3 are computed
explicitly. For r = 2 we observe that εv(2) = 0 since

V(S2
M [X]− S2

M [Y ]) =V(X2 − Y 2)
(M − 1)2

M3
+ V(X1X2 − Y1Y2)

M − 1

M3

≤K(X,Y, 2)2M−1.

For r = 3 we obtain the estimate

V(S3
M [X]− S3

M [Y ]) ≤ K(X,Y, 3)2
(

16

M
+

57

M2
+

55

M3
− 120

M4
+

28

M5

)
.

The proof is complete.

Remark 1 The estimates (55) and (57) are exact in the leading order terms but
might be too pessimistic in the higher order terms, due to the use of the trian-
gle inequality and the estimation of the sign-alternating sum by the sum of the
absolute values. Moreover, sometimes (e.g. in (60)) we count some inadmissible
combinations.
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Fig. 1 The maximum number of samples up to which pre-asymptotic behavior can appear for
the bias (left) and the variance (right). The black dashed lines are the upper bounds proposed
in (66) for small r.

The high order terms decay quickly with increasing M when the moment order
r is fixed. To better understand this behavior we consider two quantities

Mb(r) := min
{
M ∈ N | ∀M ′ ≥M : εb(M

′, r) ≤ 1
}

(64)

and
Mv(r) := min

{
M ∈ N | ∀M ′ ≥M : εv(M ′, r) ≤ 1

}
. (65)

In particular, there holds Mb(2) = Mv(2) = 1 and Mb(3) = 1, Mv(3) = 7. For
higher values 4 ≤ r ≤ 50 we solved equations εb(M, r) = 1 and εv(M, r) = 1
numerically and observe that the preasymptotic bounds

Mb(r) ≤
2

5
r3, Mv(r) ≤ 5r3 (66)

hold in this range, cf. Fig. 1. The slope r3 in the above upper bounds appears
pessimistic and is chosen to be a good fit for low r.

Corollary 1 Let X,XL : Ω → H be two random fields where H is the Hilbert space R
or W s,2(D) and Bp is the Banach space R or W s,p(D) respectively. Furthermore let

r ≥ 2 and X,XL ∈ L2r(Ω,B2r). Then it holds that

‖Mr[X]− SrM [XL]‖22 ≤ 2‖Mr[X]−Mr[XL]‖2H + c(X̄L, r)M
−1, (67)

with

c(X̄L, r) = (r + 1)2c
2(r−1)
H ‖X̄L‖2r2r(1 + εe(M, r)),

where cH is the Hölder constant from inequality (7) and

εe(M, r) = M−1 r
2

2
(1 + εb(M, r))2 + εv(M, r)

with εe(M, r) ∈ O(M−1). Furthermore we define

Me(r) := min
{
M ∈ N | ∀M ′ ≥M : εe(M

′, r) ≤ 2
}
,
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where we have the estimate

Me(r) ≤ max(Mb(r),Mv(r), 2r2). (68)

Proof Due to (15) we have

‖Mr[X]−SrM [XL]‖22 = ‖Mr[X]− E[SrM [XL]]‖2H + V(SrM [XL])

≤ 2‖Mr[X]−Mr[XL]‖2H + 2‖Mr[XL]− E[SrM [XL]]‖2H + V(SrM [XL]).

by applying the triangle inequality in the second step. Using Lemma 4 and Lemma
5 we gain

‖Mr[X]− SrM [XL]‖22 ≤2‖Mr[X]−Mr[XL]‖2H

+M−2 r
2(r + 1)2

2
c
2(r−1)
H ‖X̄L‖2r2r(1 + εb(M, r))2

+M−1(r + 1)2c
2(r−1)
H ‖X̄L‖2r2r(1 + εv(M, r)).

It remains to prove the estimate for Me(r). However the upper bound in (68)
is chosen in such a way, that it follows directly by estimating εb, εv ≤ 1 and
M−12r2 ≤ 1. The proof is complete.

5 Multilevel Monte Carlo Approximation

Let X and {X`}`≥0 be random variables with values in the Hilbert space H being
R or W s,2(D), and let Bp be the Banach space R or W s,p(D) respectively. For
` → ∞ we assume X` → X in some sense specified later. Again we assume for
some r ≥ 2 X,X` ∈ L2r(Ω,B2r) to assure existence of the first r moments in H.
We can write

Mr[XL] =
L∑
`=1

∆M`, ∆M` := Mr[X`]−Mr[X`−1] (69)

assuming X0 := 0. To approximate the r-th central moment we define the Multi-
level Monte Carlo estimator

SrML[X] =
L∑
`=1

T`, T` := SrM`
[X`]− SrM`

[X`−1]. (70)

for some sequence {M`}L`=1. As mentioned in Section 3.2, the summands T` are
built from M` pairs of samples (X`, X`−1)i, i = 1, . . . ,M`, both computed for the
same realization of input parameters (the same random event ωi ∈ Ω). Moreover,
we assume that the level corrections on different levels Tj and T`, j 6= ` are built of
independent realizations and therefore are statistically independent (this condition
can be relaxed, see Remark 2 below).

Theorem 1 Let X and X` : Ω → H be random fields with values in a Hilbert space

H being either R or W s,2(D) and let the Banach space Bp be either R or W s,p(D)
respectively. Furthermore let r ≥ 2 and 1 ≤ p ≤ q(r − 1) ≤ ∞ be such that 1

p + 1
q = 1
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and X ∈ L2r(Ω,B2r), X` ∈ L2q(r−1)(Ω,B2q(r−1)) with uniformly bounded norms.

Then it holds that

‖Mr[X]− SrML[X]‖22 ≤
(∥∥Mr[X]−Mr[XL]

∥∥
H

+ rQr

L∑
`=1

‖X̄` − X̄`−1‖2p
M`

)2

+2Q2
r

L∑
`=1

‖X̄` − X̄`−1‖22p
M`

,

(71)

where Qr = r(r + 1)cr−1
H max

`
(‖X̄`‖r−1

2q(r−1)
) with cH defined in (7), and it holds that

M` ≥ max(Mb(r),Mv(r)) for all 1 ≤ ` ≤ L.

Proof By (15) and the independence of the level corrections we have

‖Mr[X]− SrML[X]‖22 =‖Mr[X]− E[SrML[X]]‖2H + V(SrML[X])

=‖Mr[X]− E[SrML[X]]‖2H +
L∑
`=1

V(SrM`
[X`]− SrM`

[X`−1]).

Lemma 5 yields an upped bound for the variance being the last sum in (71). The
triangle inequality implies

‖Mr[X]− E[SrML[X]]‖2 ≤ ‖Mr[X]−Mr[XL]‖22 + ‖Mr[XL]− E[SrML[X]]‖2H .

We claim that the last term admits the upper bound

‖Mr[XL]− E[SrML[X]]‖H ≤ rQr
L∑
`=1

‖X` −X`−1‖2p
M`

.

Indeed, this estimate follows directly from (69), the triangle inequality and Lemma 4.
The proof is complete.

Notice that the first sum in (71) is caused by the statistical bias of the esti-
mator (69) (cf. [4, (5.16)] where an unbiased estimator for the variance has been
analyzed). It is dominated by the last sum (i.e. the variance of the estimator) when
M` decays exponentially. Recall that for positive α` and b > 1 it holds that(

L∑
`=1

α`

)2

≤
L∑

j`=1

1

2

(
b`−jα2

j +
1

b`−j
α2
`

)
<

b

b− 1

L∑
`=1

bL−`α2
` .

Thus, the condition M` & bL−` is sufficient for(
L∑
`=1

‖X̄` − X̄`−1‖2p
M`

)2

.
L∑
`=1

bL−`
‖X̄` − X̄`−1‖22p

M2
`

.
L∑
`=1

‖X̄` − X̄`−1‖22p
M`

which together with (71) implies

‖Mr[X]− SrML[X]‖22 ≤ 2
∥∥Mr[X]−Mr[XL]

∥∥2
H

+ C

L∑
`=1

‖X̄` − X̄`−1‖22p
M`

, (72)

cf. [4, (5.16)]. This estimate implies in particular the following result.
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Theorem 2 Suppose that assumptions of Theorem 1 hold true. Let C` = Work(Xi
`)

be the cost of evaluation for a single sample of X` and {N`}∞`=1 be an exponentially

increasing sequence of positive integers satisfying N`/N`−1 ≥ a for some fixed a > 1.

Moreover, suppose there are positive constants α, β, γ > 0 such that

1) ‖Mr[X]−Mr[XL]‖H . N−α` , 2) ‖X̄` − X̄`−1‖22p . N−β` , 3) C` . Nγ
` . (73)

Then for any ε > 0 there exists an integer L and a sequence {M`}L`=1 such that

‖Mr[X]− SrML[X]‖2 < ε (74)

and

Work(SrML[X]) . ε−
γ
α +


ε−2, if β > γ,

ε−2 log(ε)2, if β = γ,

ε−2− γ−βα , if β < γ.

(75)

Proof The proof is an adapted version of the proof in [6] for the expectation value,
see also [4, Theorem 3.2, Theorem 5.2]. We choose M`

M` ∼

N
− β+γ

2

`


N2α
L , if β > γ,

LN2α
L , if β = γ,

N
2α+ γ−β

2

L , if β < γ

 (76)

and L such that N−αL ∼ ε, i.e. L ∼ log(ε). This implies in particularly

M`−1

M`
∼
(

N`
N`−1

) β+γ
2

≥ a
β+γ

2 =: b > 1.

This implies M` & bL−` and herewith (72). The estimate (72) and assumptions
1)–3) have a similar structure as in [6], see also [4, Theorem 3.2, Theorem 5.2].
Therefore, the estimates (74) and (75) follow with similar arguments.

Remark 2 An important part of the construction of the multilevel estimate (70)
was the assumption that the level corrections Tj and T` on different levels j 6= `

are statistically independent. This assumption can be removed so that even the
same samples can be used within T` and T`+1. In this case, the orthogonality of
the level corrections cannot be used anymore (cf. (15)). But the estimation still
can be realized by means of the triangle inequality, see Section 3 and in particular
(21). The main convergence result in Theorem 2, namely (74) and (75), still holds
true for β 6= γ. The estimate

Work(SrML[X]) . ε−
γ
α + ε−2 log(ε)3, if β = γ (77)

holds true instead. To show it, we choose M` ∼ N
− β+γ

2

` L2N2α
L for β = γ. The proof

is straight forward and is left to the reader.
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6 A random obstacle problem

We apply the abstract framework developed above to a class of obstacle problems
with rough random obstacles. In this section we briefly introduce the mathematical
framework (see [4, Sect. 6, 8] for further details) and present results of numerical
experiments in Section 7.

Let D ⊂ Rd be a bounded convex domain, ψ ∈ C(D), ψ ≤ 0 on ∂D a continuous
function and f ∈ L2(D). The deterministic obstacle problem can be formulated as
finding u : D → R such that

−∆u ≥ f in D,

u ≥ ψ in D,

(−∆u− f)(u− ψ) = 0 in D,

u = 0 on ∂D,

(78)

where ψ is called obstacle and f volume force. Formulation (78) has a unique
solution u ∈ H1

0 (D), which can be written as u = S(ψ, f) in the framework of
(1). For simplicity we consider the case d = 2 in what follows. If ψ and/or f are
random, i.e. ψ(ω) and f(ω), we gain due to (1) also a random solution u(ω)

u(ω) = S(ψ(ω), f(ω)). (79)

Indeed for almost all ω ∈ Ω (79) is fulfilled by the unique weak solution u [11] of

∀v ∈ K : E[a(u, v − u)] ≥ E[L(v − u)], (80)

where

a(u, v) =

∫
D

∇xu · ∇xv dx, L(v) =

∫
D

fv dx, (81)

∇x the gradient operator (in spatial coordinates only) and

K = {v ∈ L2(Ω,H1
0 (D)) : v ≥ ψ for almost all (x, ω) ∈ D ×Ω}. (82)

To approximate a sample of u(ω) numerically, we use a standard piecewise affine
globally continuous finite element spaces

V` :=
{
v ∈ H1

0 (D) : v|T ∈ P1(T ), ∀T ∈ T`
}
, (83)

where T` is a family of quasiuniform conforming triangulation with T` a refinement
of T`−1 and T1 is some start triangulation on D. We denote with N` the set of
interior notes of T` and with N` := |N`| = dim(V`) the number of interior nodes.
The discrete obstacle problem for a fixed sample ω can now be formulated as: Find
u`(ω) ∈ K`(ω), s.t.

∀v` ∈ K`(ω) : a(u`(ω), v` − u`(ω)) ≥ Lω(v` − u`(ω)),

where

K`(ω) := {v` ∈ V` | ∀n ∈ N` : v`(n) ≥ ψ(n, ω)}

and

Lω(v) =

∫
D

f(ω)v dx.
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The solution u`(ω) is unique, cf. [11]. Moreover, according to [4] it holds that

‖u− u`‖L2p(Ω,W 1,2p(D)) . h
1
p

`

(
‖f‖L2p(Ω,L2(D)) + ‖ψ‖L2p(Ω,H2(D))

)
(84)

for 1 ≤ p ≤ ∞ provided f ∈ L2p(Ω,L2(D)) and ψ ∈ L2p(Ω,H2(D)), see [4] for
details.

Instead of only having a random obstacle and a random volume force, one
might also have to model random material parameters. For such formulations and
related convergence results see [9,14].

In this paper we are particularly interested in the case of rough random ob-
stacles representing e.g. the uneven structure of asphalt read surfaces. We utilize
a rough obstacle model from [16], representing of the obstacle ψ(x) as a Fourier
series

ψ(x) =
∑
q

Bq(H) cos(q · x+ φq), (85)

where x ∈ [0, L]2 for simplicity. The sum is over all q ∈ 2π
L Z2, the amplitudes Bq(H)

depend on the frequency q and the so called Hurst coefficient H ∈ [0, 1]. The φq are
independent random variables, uniformly distributed in [0, 2π). Isotropic self-affine
obstacles obey the law

Bq(H) ∼

{
|q|−(H+1), q` ≤ |q| ≤ qs

0, otherwise.
(86)

As obstacle for the numerical experiments in the following section we use the
surface (85) with particular parameters

Bq(H) =
π

25
(2πmax(|q|, ql))−(H+1), q0 ≤ |q| ≤ qs,

q0 = 1, ql = 10, qs = 26,
(87)
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Fig. 2 Self affine surfaces ψ(x) in 1d with
H = 1, 0.5 and 0 (left column, from top
to bottom). The right column shows the
magnification of the box on the left.
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where the sum in (85) now runs over Z2 (see Figure 3). To gain a randomly rough
obstacle we model H as a random variable as well as all phase shifts ϕq:

H ∼ U(0, 1), ϕq ∼ U(0, 2π), q0 ≤ |q| ≤ qs. (88)

Those random variables are assumed to be mutually independent. Two realizations
of this obstacle are plotted in the next section (Figures 4 and 5). We refer to [16]
and our previous work [4] for further details on this model.

7 Numerical Experiments

In this section we report on results of numerical experiments for the model obstacle
problem described above with D = [−1, 1]2, f = −5, u|∂D = 1

2 and random obstacle
parametrized by ψ(x) as described in Section 6. In Fig. 4 and 5 we show two
realizations of the obstacle profile and the corresponding solutions for the case of
high and low roughness respectively. The computations involve the hierarchy of the
finite element spaces V` defined in (83) with meshes T`. The coarsest triangulation
T−1 consists of four congruent triangles sharing (0, 0) as a vertex. Finer meshes
T`+1 are defined recursively as the uniform red refinement of coarser meshes T` by

halving the edge of each element so that h` ∼ N
− 1

2

` .
As a solver we implemented different variants of the Monotone Multigrid

Method described in [12]; the Multilevel Subset Decomposition Algorithm appeared
to be the best for our model problem. For this algorithm a log-linear cost has been
proved, cf. [17], [14, Section 4.5]. In our experiments we observe almost linear
complexity, see Fig. 8 indicating that γ ≈ 1 in (73).

We mention that efficient updating of a single level estimator of higher moments
is no trivial task. In our experiments approximation of higher order moments we
use stable one-pass update formulae from [15], which are suitable for paralleliza-
tion. Another technical difficulty emerges if the quantity of interest is a spatially
varying function, for example X` = u`. Clearly, u` ∈ V` implies

SrML[u] ∈ V r` , where V r` :=
{
v ∈ H1

0 (D) : v|T ∈ Pr(T ), ∀T ∈ T`
}

Fig. 4 A realization of the obstacle
obstacle (red) and the corresponding
solution (yellow) with H = 0.

Fig. 5 A realization of the obstacle
obstacle (red) and the corresponding
solution (yellow) with H = 1.
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is a space of polynomials of degree r. Notice, however, that V r` is not required for
solving the discrete formulation, but only for evaluating the estimator SrML[u] (cf.
[4] for estimation of the variance). Therefore the computational cost associated
with the use of the high order space V r` is negligible.

Obviously, this issue does not appear when estimating higher order statistical
moments of scalar quantities. In this paper we report on convergence results for
the r-th central statistical moments of the size of the coincidence set

Λ(ω) = {x : u(x, ω) = ψ(x, ω)},

which is a real number. Let X(ω) = |Λ(ω)| and consider its approximation

X`(ω) := |D| × number of nodes n of T` s.t. u`(n, ω) = ψ(n, ω)

number of nodes of T`
.

The authors are not aware of any analytical estimates for the parameters α and
β from (73) for this quantity of interest. Therefore, to verify the convergence
result from Theorem 2 we estimate α and β numerically. Observe, however, that
0 ≤ X(ω) ≤ |D| and therefore Theorem 1 and Theorem 2 hold with q = ∞ and
p = 1 for moments of arbitrary order r ≥ 1. Since an analytic expression for the
true contact area is not known, we approximate it by the fine grid estimate X ≈ X9

at the 9th refinement level.
In Fig. 6 we show convergence of the quantities |E[X] − E[XL]| and |Mr[X] −

Mr[XL]| for r = 2, . . . , 6, which are parts of the bias of the corresponding MLMC
estimators, that can’t be bounded by their variance, cf. (71). The dashed line has
the slope of the least square fit to the curve for the first moment |E[X] − E[X`]|.
The convergence curves for higher order moments appear to achieve the same
slope after a pre-asymptotic plateau. This indicates that the parameter α can be
roughly estimated by the slope of the dashed line, i.e. α ≈ 2

3 . In Figure 7 we show
the variance of the level corrections Y` := X` − X`−1. The slope of the dashed
line comes from the least square fit in (the asymptotic regime) and indicates that
β ≈ 1.1. As mentioned before, γ ≈ 1, as seen from Fig. 8. For such values of
parameters α, β and γ Theorem 2 implies

MSE := ‖Mr[X]− SrML[X]‖2L2(Ω) < ε2 whereas Work(SrML[X]) . ε−2. (89)

In order to check this result numerically we plot an approximate MSE with re-
spect to the runtime t in Figure 9. For the first moment the figure shows the
MSE of the approximation of the mean E[X] by the multilevel sample mean

EML[X] =
∑L
`=1EM`

[X` − X`−1]. Since t ∼ Work(SrML[X]), this is an ultimate
test of performance for the method. To approximate the L2(Ω)-norm we averaged
the error over 30 runs. We observe that MSE curves for the first six moments
achieve the same slope as the curve MSE = Ct−1, thereby confirming (89).

While the expectation value in Fig. 9 seems to enter the asymptotic regime
nearly from the beginning, the higher order moments again converge slowly at low
levels, but achieve the asymptotic rate later on. This effect can be explained by the
orthogonal decomposition (15) of MSE into the (squared) bias and the variance

MSE = |Mr[X]− E[SML[X]]|2 + V(SML[X]]). (90)

The ratio of the (squared) bias and the variance is plotted on Fig. 10 for the first
six statistical moments. We observe that the bias part dominates over the variance
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Fig. 6 Convergence of the bias part of the
estimator for the first six moments.

101 102 103 104 105 106 107
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

N` =DOF

V(X` −X`−1)
C ∗ N`ˆ{−1.1289}

Fig. 7 Convergence of the variance of the
level corrections (the variance part of the es-
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Fig. 9 Mean square error of the Multilevel
Monte Carlo approximation of the first six
moments versus the runtime.

at low levels. As the refinement progresses, the magnitudes of bias and variance
come closer and achieve comparable values when 4 ≤ L ≤ 6. For L ≥ 7 the variance
part is dominant. This transition phenomenon is quite natural due to the relation
2α > β in our example and the choice ML = O(1) in our computations. A better
balancing of the bias and variance parts can be achieved by increasing ML in
accordance with (76).

In our computations we have utilized the adaptive choice of M` as proposed

in [10] for estimation of the mean, namely M` ∼
√
V(X`−X`−1)

C` , but using a fixed

number of samples on the finest grid ML = O(1), see also [4]. Using a fixed number
of samples on the finest grid would not change the work-error relation in the case
β > γ. This is also a reasonable choice for higher order moments, since we can
choose the smallest possible Hölder parameter p = 1 in (72) and thus this upper
bound leads to the same optimal choice of M`. This fact is observed in Figure 11,
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Fig. 10 Relation between the variance and
the squared bias of the Multilevel Monte
Carlo Estimators for the first six moments.
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Fig. 11 The variance of the Multilevel
Monte Carlo estimators for the first six mo-
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Fig. 12 Time (in ms) spent per discretiza-
tion level and number of samples per dis-
cretization level.
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Fig. 13 Absolute value of the first, third and
sixth moment and the absolute value of the
level corrections.

where we see that the variance of the estimators for moments of the different order
behave similar in the asymptotic regime.

Notice, however, that the value V(X`−X`−1) is not a priori known and therefore
should be estimated, as suggested in [10,6,4]. This estimation might suffer from
a hidden difficulty: If the original algorithm accidentally estimates V(X` −X`−1)
by 0, it will never compute additional samples on this level. If in this case the
true variance is nonzero V(X` −X`−1) 6= 0 (this typically happens in our example
at low levels), it would lead to an O(1) error, which would never be reduced by
the original algorithm. We avoid this difficulty by demanding M` ≥ M`+1 which
leads to an additional computational cost. However, this cost is asymptotically
negligible. In Fig. 12 we present the runtime and the number of samples per level.
Observe that the same number of samples is used at the three coarsest levels,
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which is a consequence of the above mentioned condition. Starting from the third
level we observe an almost uniform distribution of the runtime over the refinement
levels whereas the number of samples M` decays exponentially with increasing
level index.

Finally we show the convergence of two consecutive approximation of the first,
third and sixth moment in Fig. 13 (other moments behave similarly and therefore
are nor presented here). Again one observes a clear pre-asymptotic behavior for
higher order moments. The preasymptotic region is larger for higher than for the
lower order moments.
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12. C. Gräser and R. Kornhuber. Multigrid methods for obstacle problems. J. Comput. Math.,

27(1):1–44, 2009.
13. M. G. Kendall and A. Stuart. The advanced theory of statistics. Vol. 6. Distribution

theory. Halsted Press, New York, 1994.
14. R. Kornhuber, C. Schwab, and M.-W. Wolf. Multi-Level Monte-Carlo Finite Element

Methods for stochastic elliptic variational inequalities. Technical Report 2013-12, SAM,
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