
 
 

 
 
 

Department of Mathematics and Statistics 
 

Preprint MPS-2014-14 
 
 

8 May 2014 
 
 

A finite difference moving mesh method 
based on conservation for moving 

boundary problems 
 

by 
 

T.E. Lee, M.J. Baines and S. Langdon 
 

 

 
 

School of Mathematical 
and Physical Sciences 
 



A finite difference moving mesh method based on conservation for
moving boundary problems

T. E. Leea,b,1, M. J. Bainesa, S. Langdona

aDepartment of Mathematics and Statistics, University of Reading, UK
bMathematical Institute, University of Oxford, UK

Abstract

We propose a velocity-based moving mesh method in which we move the nodes so as to preserve
local mass fractions. Consequently, the mesh evolves to be finer where the solution presents rapid
changes, naturally providing higher accuracy without the need to add nodes. We use an integral
approach which avoids altering the structure of the original equations when incorporating the
velocity and allows the solution to be recovered algebraically. We apply our method to a range of
one-dimensional moving boundary problems: the porous medium equation, Richards’ equation,
and the Crank-Gupta problem. We compare our results to exactsolutions where possible, or to
results obtained from other methods, and find that our approach can be very accurate (1% relative
error) with as few as ten or twenty nodes.
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Velocity-based moving meshes, Mass conservation
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1. Introduction

Time-dependent partial differential equations (PDEs) on moving domains, with known fluxes2

across the boundaries, occur regularly in physical and biological modelling, and must often be
solved numerically. The location of the moving boundary is often critical and may require special4

numerical resolution. In particular, the solution may exhibit singular behaviour at the boundary
that is challenging to capture numerically.6

Adaptive numerical schemes modify the mesh during the course of computation in response
to changes in the dependent variable (or its approximation)in order to achieve greater preci-8

sion and/or greater efficiency. Generally, an adaptive mesh scheme becomes preferable to a
fixed mesh scheme when areas of interest represent only a fraction of the domain being inves-10

tigated. Increasing the resolution in these areas may then be computationally less expensive
than refinement of the mesh over the entire grid. The most common form of mesh adaptivity12

is h-refinement adaptivity which involves repeated subdivision of the intervals of a fixed mesh.
Other strategies includep-refinement, in which the solution is represented locally byhigher or-14

der polynomials, andr-refinement in which the mesh points are relocated at each time step. The
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use ofr-refinement has been stimulated by interest in geometric integration, in particular scale16

invariance (see, e.g., [7]). For scale invariant differential equations, independent and dependent
variables are treated alike. Anr-refinement method varies the solution and the mesh simultane-18

ously, meaning that the scheme exhibits the same scale invariance as the underlying differential
equation. The article by Budd, Huang and Russell [7] and the book by Huang and Russell [14]20

describe many theoretical and practical aspects ofr-adaptivity.
In this paper a particularr-refinement adaptive scheme is described for the solution ofone-22

dimensional time-dependent PDEs on moving domains. The approach relocates a constant num-
ber of nodes by moving the mesh points, keeping a node locatedat each moving boundary. We24

show that a mesh with as few as ten or twenty nodes can offer a relative error of less than 1% (see
Tables 1–4 in§4). The work we present here preserves mass (or relative massas appropriate),26

causing the mesh to naturally refine where the solution has a high gradient. This is particularly
useful for solutions with blow-up, or (as demonstrated here) infinite slope. Attractive aspects of28

the approach are that no interpolation of the boundary is required, only the moving domain need
be discretised, and the continuous movement of the mesh points allows easier inclusion of time30

integrators.
Underr-refinement nodes may be relocated in many ways, according tothe choice of moni-32

tor functions, and the solution is often found from a modifiedform of the PDE. A mesh equation
is often solved simultaneously with the modified PDE so as to generate the node positions in34

tandem with the solution, as in the Moving Mesh PDE approach [4, 13], the Moving Finite El-
ement method of Miller [18, 19, 21], or the parabolic Monge-Ampere approach of Budd and36

Williams [5, 6]. By contrast, in the method described in thispaper a single time-dependent equa-
tion is solved, that of the mesh, the solution being determined algebraically from a conservation38

principle. The approach is a finite difference version of the velocity-based moving mesh finite
element scheme described by Baines, Hubbard and Jimack in [1], in which the mesh equation40

is based upon conserving a proportion of the total integral (mass) of the dependent variable in
the domain. The method in [1] differs from methods depending on the technique of equidistribu-42

tion [4, 13, 5, 6] since equidistribution is not an integral part of the strategy, but is related to the
Deformation method of Liao and co-workers [16, 17] and to theGeometric Conservation Law44

(GCL) method of Cao, Huang and Russell [8]. The scheme described herein has been applied
to a specific tumour growth problem in [15]. Here we generalise the approach to a wider class46

of problems, provide key implementation details, and show numerical results for three different
nonlinear diffusion problems, each example demonstrating a key feature absent from the problem48

in [15]. Moreover, we validate our results via comparison with known exact solutions and with
results from other (unrelated) approaches.50

The layout of the paper is as follows. In§2 we describe the conservation approach, and its
finite difference implementation. First, in§2.1, we consider mass conserving problems. Then52

in §2.2 these ideas are extended to non mass-conserving problems using a normalisation tech-
nique. In§3 the schemes are applied to three moving boundary problems,beginning in§3.1 with54

a mass-conserving problem governed by the porous medium equation (PME) (see, e.g., [24]), for
which we consider a symmetrical test problem, treated with just one moving boundary. In§3.256

the method is applied to a test problem governed by Richards’equation (see [23]). This prob-
lem also conserves global mass but the test problem considered is unsymmetrical, so there are58

two moving boundaries. The third problem, detailed in§3.3, is known as the Crank-Gupta or
diffusion-absorption problem [9], for which global mass is not conserved. We solve the Crank-60

Gupta problem for two sets of boundary data, one corresponding to that of the original problem
(see [9]), and the other chosen so that we can easily verify our results against a known exact62
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solution. Numerical results for all our examples are provided in§4, and some conclusions are
presented in§5.64

We remark finally that our investigation is confined to initial-boundary-value problems for
which the solutionu(x, t) is one-signed in the interior of the domain, which is sufficient for the66

validity of the method.

2. Conservation-based moving mesh methods68

Let u(x, t) be a positive solution of the generic time-dependent scalar PDE

∂u(x, t)
∂t

= Lu(x, t), t > t0, x ∈ (a(t),b(t)), (1)

whereL is a purely spatial differential operator. In all of our examples we have a moving70

boundary atx = b(t) at which we impose the following boundary conditions

u(b(t), t) = 0, (2)

u(b(t), t)
db
dt

= 0. (3)

The initial condition is72

u(x, t0) = u0(x), x ∈ (a(t0),b(t0)).

We introduce a time-dependent space coordinate ˜x(x, t) which coincides instantaneously with the
fixed coordinatex. Consider two such coordinates, ˜x(x1, t) andx̃(x2, t), in (a(t),b(t)), abbreviated74

to x̃1(t) and x̃2(t). The rate of change of the mass in the subinterval ( ˜x1(t), x̃2(t)) is given by
Leibnitz’ Integral Rule in the form76

d
dt

∫ x̃2(t)

x̃1(t)
u(s, t) ds =

∫ x̃2(t)

x̃1(t)

(

∂u(s, t)
∂t

+
∂

∂s
(u(s, t)v(s, t))

)

ds, (4)

where

v(x, t) =
dx̃
dt

∣

∣

∣

∣

∣

x̃=x
(5)

is a local velocity. We denote the total mass by78

θ(t) :=
∫ b(t)

a(t)
u(x, t) dx. (6)

2.1. A method based on preservation of partial masses

We begin by describing a solution method for problems that conserve the total integral (global80

mass) of the solution, i.e. for whichθ(t) remains constant for allt ≥ t0. Sincex̃1(t) and x̃2(t) are
arbitrary, equation (4) demonstrates the equivalence of the Lagrangian conservation law,82

d
dt

∫ x̃2(t)

x̃1(t)
u(s, t) ds= 0, (7)
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and the Eulerian conservation law,

∂u(x, t)
∂t

+
∂

∂x
(u(x, t)v(x, t)) = 0. (8)

From (8) and the PDE (1) we have84

Lu(x, t) +
∂

∂x
(u(x, t)v(x, t)) = 0, (9)

which, givenu(x, t), may be regarded as an equation for the velocityv(x, t). For a unique solution
of (9), u(x, t)v(x, t) must be imposed at one point which may be thought of as an ‘anchor’ point.86

Integrating (9) froma(t) to x,
∫ x

a(t)
Lu(s, t) ds+ u(x, t)v(x, t) = u(a(t), t)v(a(t), t),

whereu(x, t)v(x, t) is imposed at the anchor pointx = a(t). The velocityv(x, t) is then given by88

v(x, t) =
u(a(t), t) v(a(t), t) −

∫ x

a(t)
Lu(s, t) ds

u(x, t)
, (10)

at all interior points, sinceu(x, t) > 0 in the interior of the domain.
Our numerical method is based on the idea that points ˜x(x, t) of the domain can be moved90

with this velocity in a Lagrangian manner using

x̃(x, t + ∆t) = x̃(x, t) + ∆t v(x, t) + O(∆t)2. (11)

To recover the solutionu(x̃(t), t), given x̃1(t) and x̃2(t), we use the conservation law (7) in the92

integrated form

∫ x̃2(t)

x̃1(t)
u(s, t) ds= c(x̃1(t), x̃2(t)), (12)

wherea(t) < x̃1(t) < x̃2(t) < b(t), and94

c(x̃1(t), x̃2(t)) = c(x̃1(t0), x̃2(t0)) =
∫ x̃2(t0)

x̃1(t0)
u0(s) ds.

A one point quadrature approximation to (12) leads to

u(x̃, t) =
c(x̃1(t0), x̃2(t0))

x̃2(t) − x̃1(t)
+ O (∆x̃) , (13)

where∆x̃ = x̃2(t) − x̃1(t), for all x̃ ∈ (x̃1, x̃2). Boundary conditions may be imposed onu(x̃, t) at96

this stage. Examples are described in§3 below.
We now define our notation. Given a time step∆t > 0 and a fixed numberN + 1 of spatial98

nodes, choose discrete timestm = m∆t, m = 0,1, . . ., and discretise the interval at each discrete
time tm using the nodal pointsXm

j = x̃ j(tm), j = 0,1, . . . ,N, for whicha(tm) = Xm
0 < Xm

1 < . . . <100

Xm
N = b(tm). Also define approximationsUm

j ≈ u(x̃ j , tm) andVm
j ≈ v(x̃ j , tm).
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Our finite difference moving mesh algorithm for mass-conserving problemsis then as fol-102

lows. Choose initial node positionsX0
j , j = 0,1, . . . ,N, with corresponding approximate solution

valuesU0
j > 0, and use them to determine the approximate masses104

C j =
(

X0
j+1 − X0

j−1

)

U0
j , j = 1, . . . ,N − 1.

Then at timetm for m= 1,2, . . ., givenXm
j andUm

j we computeXm+1
j andUm+1

j as follows:

1. Evaluate the interior velocities (c f. (10))106

Vm
j =

Um
0 Vm

0 −
∫ Xm

j

Xm
0
Lu(s, tm) ds

Um
j

, j = 1, ...,N − 1,

where the integral is discretised, for example, by a trapezium rule. At the boundaries
extrapolate the velocity from interior values.108

2. Evolve the nodal positionsXm
j , j = 1, . . . ,N − 1, in time fromtm to tm+1 by the explicit

Euler timestepping scheme (c f . (11))110

Xm+1
j = Xm

j + ∆t Vm
j . (14)

3. Recover the solutionUm+1
j at interior points as (c f. (13))

Um+1
j =

C j

Xm+1
j+1 − Xm+1

j−1

, j = 1, ...,N − 1, (15)

with Um+1
N = 0 from (2) andUm+1

0 being updated either from given boundary conditions or112

by extrapolation, depending on the nature of the problem (see§3).

2.2. A method based on preservation of relative partial masses114

For more general problems that do not conserve mass,θ(t) (defined by (6)) varies with time.
Hence (7) and (8) no longer hold. We may however make use of Leibnitz’ Integral Rule applied116

to thenormalisedfunctionu(x, t)/θ(t), giving

d
dt

{

1
θ(t)

∫ x̃2(t)

x̃1(t)
u(s, t) ds

}

=
1
θ(t)

∫ x̃2(t)

x̃1(t)

(

∂u(s, t)
∂t

+
∂

∂s
(u(s, t)v(s, t)) − θ̇(t)

θ(t)
u(s, t)

)

ds, (16)

for all a(t) < x̃1(t) < x̃2(t) < b(t), wherev(x, t) is the local velocity (5) anḋθ(t) = dθ/dt. Since118

x̃1(t) and x̃2(t) are arbitrary, equation (16) shows that the Lagrangian conservation equation,

d
dt

{

1
θ(t)

∫ x̃2(t)

x̃1(t)
u(s, t) ds

}

= 0, (17)

is equivalent to the generalised Eulerian conservation equation ,120

∂u(x, t)
∂t

+
∂

∂x
(u(x, t)v(x, t)) =

θ̇(t)
θ(t)

u(x, t). (18)
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We derive the velocity from this generalised form in the samemanner that we used in (8). That
is, from (18) and the PDE (1) we derive122

Lu(x, t) +
∂(u(x, t)v(x, t))

∂x
=
θ̇(t)
θ(t)

u(x, t), (19)

which, givenu(x, t), can be regarded as an equation forv(x, t) in terms ofθ(t) andθ̇(t). As before,
for a unique solutionu(x, t)v(x, t) must be imposed at the anchor pointx = a(t), so that the124

integral of (19) froma(t) to x gives

u(x, t)v(x, t) = u(a(t), t) v(a(t), t) −
∫ x

a(t)
Lu(s, t) ds+

θ̇(t)
θ(t)

∫ x

a(t)
u(s, t) ds.

Hence the velocity is given by126

v(x, t) =
u(a(t), t) v(a(t), t) −

∫ x

a(t)
Lu(s, t) ds+ θ̇(t)

θ(t)

∫ x

a(t)
u(s, t) ds

u(x, t)
(20)

at all interior points, sinceu(x, t) > 0 in the interior of the domain.
To evaluatėθ we integrate (19) froma(t) to b(t), assuming thatu(x, t) andv(x, t) are continu-128

ous up to the boundary, yielding

∫ b(t)

a(t)
Lu(s, t) ds+

[

u(x, t)v(x, t)
]b(t)

a(t)
= θ̇(t), (21)

which determineṡθ explicitly (using (3)).130

The points ˜x(x, t) of the domain are now moved with the velocity (20) in a Lagrangian man-
ner, again using (11), and we can also updateθ using132

θ(t + ∆t) = θ(t) + ∆t θ̇(t) + O(∆t)2.

To recover the solutionu(x̃(t), t) we choose ˜x1, x̃2, such that (17) holds, in which case

1
θ(t)

∫ x̃2(t)

x̃1(t)
u(s, t) ds= c(x̃1(t), x̃2(t)), (22)

for a(t) < x̃1(t) < x̃2(t) < b(t), where134

c(x̃1(t), x̃2(t)) = c(x̃1(t0), x̃2(t0)) =
1
θ(t0)

∫ x̃1(t0)

x̃1(t0)
u0(s) ds,

and thus

u(x̃, t) = θ(t)
c(x̃1(t), x̃2(t))
x̃2(t) − x̃1(t)

+ O (∆x̃) (23)

for all x̃ ∈ (x̃1, x̃2), as in (13). Again, the boundary conditions may be imposed on u(x̃, t) at this136

stage.
The discretisations given in§2.1 are augmented by the additional approximationsΘm ≈ θ(tm)138

andΘ̇m ≈ θ̇(tm), and then our finite difference moving mesh algorithm for non mass-conserving
6



problems is as follows. Choose initial node positionsX0
j with corresponding approximate solu-140

tion valuesU0
j > 0, j = 1, . . . ,N − 1, and use them to calculate the approximate relative masses

C j =
1
Θ0

(

X0
j+1 − X0

j−1

)

U0
j ,

whereΘ0 is given by (c f. (6))142

Θ0 =
1
2

∑

j

(

X0
j+1 − X0

j

)(

U0
j + U0

j+1

)

,

using a trapezium rule. Then at timetm for m = 1,2, . . ., givenΘm, Xm
j andUm

j we compute

Θm+1, Xm+1
j andUm+1

j as follows:144

1. Evaluate the rate of changeΘ̇m of the approximate total massΘm in the form (c f. (21))

Θ̇m =

∫ Xm
N

Xm
0

Lu(s, tm) ds+ Um
NVm

N − Um
0 Vm

0 ,

where the integral is discretised using a trapezium rule;146

2. Evaluate the discrete velocity at interior points as (c f. (20)),

Vm
j =

Um
0 Vm

0 −
∫ Xm

j

Xm
0
Lu(s, tm) ds,+C jΘ̇

m

Um
j

, j = 1, . . . ,N − 1,

where the integral is discretised using, for example, a trapezium rule. At the boundaries148

extrapolate the velocity from interior values.

3. Evolve both the nodal positionsXm
j , j = 1, . . . ,N − 1, and the total massΘm from tm to150

time tm+1 by the explicit Euler time-stepping scheme (14) andΘm+1 = Θm + ∆tΘ̇m.

4. Recover the solutionUm
j at interior points as (c f. (23))152

Um
j = Θ

m C j

Xm
j+1 − Xm

j−1

, j = 1, . . . ,N − 1,

and atj = 0, j = N as in Step 3 of the algorithm of§2.1.

3. Examples154

In this section we apply the methods outlined in§2 to some specific moving boundary prob-
lems in one-dimension.156
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3.1. The Porous Medium Equation

The PME is the simplest nonlinear diffusion problem which arises in a physically natural158

way, describing processes involving fluid flow, heat transfer or diffusion. It also occurs in math-
ematical biology and other fields [24]. We assume the initialdata is symmetrical about its centre160

of mass, taken to be the origin, in which case the PME takes theform

∂u
∂t
=
∂

∂x

(

un∂u
∂x

)

, t > t0, x ∈ (−b(t),b(t)),

with u(−b(t), t) = u(b(t), t) = 0 andu(±b(t), t)db/dt = 0. For this problem the total mass (6) is162

conserved and the centre of mass is fixed in time [24], from which it follows that the solution
retains the symmetry of the initial data for all time. We therefore model only half of the region,164

i.e. x(t) ∈ [0,b(t)], with a(t) = 0 as the anchor point for allt. For the half problem we have

∂u
∂x
= 0 at x = 0, (24)

by symmetry. From (10) the velocity is given by166

v(x, t) = − 1
u(x, t)

∫ x

0

∂

∂s

(

u(s, t)n∂u
∂s

)

ds = −un−1∂u
∂x
= −1

n
∂(un)
∂x
, t > t0, x ∈ [0,b(t)). (25)

Given Xm
j andUm

j , j = 0,1, . . . ,N, m = 0,1,2, . . ., the finite difference algorithm of§ 2.1 is
used to calculate the velocityVm

j at each nodej, j = 0,1, . . . ,N, then the new nodal positions168

Xm+1
j , and finally the approximate solutionUm+1

j . A standard discretisation of the velocity (25)
at interior nodes is170

Vm
j = −

1
n















(Um
j+1)n − (Um

j−1)n

Xm
j+1 − Xm

j−1















, j = 1,2, ...,N − 1,

which, although of second order on a uniform mesh, is only a first order discretisation on a non-
uniform mesh. An approximation which is second order on a non-uniform mesh (i.e. exact for172

quadratics) uses all three valuesUm
j−1, Um

j andUm
j+1, and is

Vm
j = −

1
n

























1
∆+Xm

j

(

∆+(U jm)n

∆+Xm
j

)

+ 1
∆−Xm

j

(

∆−(U jm)n

∆−Xm
j

)

1
∆+Xm

j
+ 1
∆−Xm

j

























, j = 1,2, ...,N − 1, (26)

where174

∆+(·) j = (·) j+1 − (·) j and ∆−(·) j = (·) j − (·) j−1

(see [21]). We note that equation (26) is an inversely weighted sum, or linear interpolation, of
the gradients∆±(Um

j )n/∆±Xm
j . The velocity atx = 0 is zero and at the moving boundaryx = Xm

N176

the velocityVm
N is extrapolated by a polynomial approximation using three adjacent points. The

new mesh is obtained at timetm+1 = tm + ∆t by the explicit Euler time-stepping scheme (14).178

The updated approximate solutionUm+1
j is given by (15), j = 1, . . . ,N − 1. At j = 0 the

approximate solutionUm+1
0 is calculated using (26) withX−1 = −X1, approximating the boundary180

condition (24). At the outer boundary,Um+1
N = 0 from (2). Results are presented in§4.

8



3.2. Richards’ Equation182

Richards’ equation is a nonlinear PDE which models the movement of moisture in an un-
saturated porous medium [23]. In the present paper we model aparticular form of Richards’184

equation, where the solution describes liquid flowing downwards through an unsaturated porous
medium, making it applicable to the tracking of a contaminated liquid. The equation is of the186

form

∂u
∂t
=
∂

∂x

(

un−2∂u
∂x

)

+
∂un

∂x
, t > t0, x ∈ (a(t),b(t)), (27)

for some integern > 2, with u(a(t), t) = u(b(t), t) = 0 andu(∂a/∂t) = u(∂b/∂t) = 0 at the188

boundaries. The total mass is again conserved in time [23]. The velocity is given by (10) with
Lu defined as the right-hand side of (27),190

v(x, t) = −un−3∂u
∂x
− un−1 = − 1

n− 2
∂(un−2)
∂x

− un−1. (28)

In a similar way to (26) we discretise (28) as

Vm
j = −

1
n− 2

























1
∆+Xm

j

(

∆+(U jm)n−2

∆+Xm
j

)

+ 1
∆−Xm

j

(

∆−(U jm)n−2

∆−Xm
j

)

1
∆+Xm

j
+ 1
∆−Xm

j

























− (Um
j )n−1, j = 1, . . . ,N − 1.

Again, the outer boundary velocitiesVm
0 ,V

m
N are extrapolated from interior points, using three192

adjacent nodes. The new meshXm+1
j is obtained fromVm

j by an explicit Euler time-stepping

scheme, as in (14). The updated approximate solutionUm+1
j , j = 1, . . . ,N − 1, is given by (15),194

and at the boundariesUm+1
0 = Um+1

n = 0. Results for this example are shown in§4.

3.3. The Crank-Gupta problem196

The Crank-Gupta problem was derived to model the diffusion of oxygen through an absorb-
ing tissue [9], but also applies within the Black-Scholes framework of financial modelling due to198

the valuation of an American option being a similar free boundary problem [11].
The differential equation is200

∂u
∂t
=
∂2u
∂x2
− 1, 0 < x < b(t), (29)

with boundary conditions

∂u
∂x
= 0 at x = 0, for t > 0, (30)

u = 0,
∂u
∂x
= 0 at x = b(t), for t > 0. (31)

For this problem the total massθ(t) decreases with time due to the negative source term in (29).202

The initial condition att0 = 0 is taken as

u(x,0) =
1
2

(1− x)2

9



for x ∈ [0,1], as in [9], giving initial total massθ(0) = 1/6. Similarly, we can determine the204

normalised partial integralsc(x) from (22) as

c(x) =
1
θ(0)

∫ x

0

1
2

(1− s)2 ds= x3 − 3x2 + 3x. (32)

The rate of changėθ of the total massθ is given by substituting the PDE (29) and the boundary206

conditions (30)–(31) into (21), yielding

θ̇(t) =
∫ b(t)

0

(

∂2u
∂x2
− 1

)

dx =

[

∂u
∂x
− x

]b(t)

0

= −b(t). (33)

The velocityv(x, t) is obtained by substituting the PDE (29) and the boundary conditions (30)–208

(31) into (20) and evaluating the integral, giving forx ∈ (0,b(t))

v(x, t) =
1

u(x, t)

(

θ̇(t)c(x) −
∫ x

0

{

∂2u
∂s2
− 1

}

ds

)

=
1

u(x, t)

(

−c(x) b(t) − ∂u
∂x
+ x

)

(34)

(substituting foṙθ(t) from (33) and using the boundary condition atx = 0).210

We use the algorithm of§2.2. The discrete formC j of c(x) at interior points is (c f. (32))

C j = X3
j − 3X2

j + 3X j , j = 1, . . . ,N,

while the discrete formΘ(tm) of θ(tm) is (c f. (33))212

Θ̇ = −Xm
N .

Also the discrete formVm
j of the velocityv(x, t) at interior points is (c f. (34))

Vm
j =

1
Um

j



























−C jX
m
N −

























1
∆+Xm

j

(

∆+Um
j

∆+Xm
j

)

+ 1
∆−Xm

j

(

∆−Um
j

∆−Xm
j

)

1
∆+X jm +

1
∆−Xm

j

























+ X j(t)



























, j = 1, . . . ,N.

At the outer boundary we would normally extrapolate the boundary velocityVm
N from veloc-214

ities at internal points and update the position of the outernode along with the internal nodes.
However in this case extrapolation can produce a positive boundary velocity whereas the bound-216

ary velocity should be negative [9]. An alternative is to exploit the asymptotic behaviour of the
solution at the outer boundary with218

u(x, t) ∼ 1
2

(x− b(t))2 asx→ b(t),

following from (29) and (31). Therefore, in the discrete case we make the approximation

Um+1
N−1 ≈

1
2

(Xm+1
N−1 − Xm+1

N )2,

which leads to220

Xm+1
N = Xm+1

N−1 +

√

2Um+1
N−1 (35)

(taking the positive square root).
The new node positionsXm+1

j , j = 0, . . . ,N at timetm+1 as well as the new total massΘm+1
222

are obtained by the explicit Euler time-stepping scheme.
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3.4. The Crank-Gupta problem with a modified boundary conditions224

There is no known analytical solution for the Crank-Gupta problem although approximate
solutions have been given in [10]. Hence, in order to compareour results to an exact solution226

we have modelled the Crank-Gupta PDE with a modified boundarycondition for which an exact
solution is known, which can then be used for comparison [1].The one-dimensional Crank-228

Gupta problem with a modified boundary condition

∂u
∂x
= et−1 − 1 at x = 0, t > t0, (36)

replacing (30), and initial conditions230

u(x,0) = ex−1 − x, t0 = 0, x ∈ [0,1], (37)

has solution

u(x, t) =

{

ex+t−1 − x− t x ≤ 1− t,
0 x > 1− t

(38)

(see, e.g., [1]). By applying the conservation based movingmesh method to this modified prob-232

lem we can investigate the accuracy of the scheme for a non mass-conserving problem. The
normalised partial integralsc(x) (see (22)) are234

c(x) =
1
θ(0)

∫ x

0

(

es−1 − s
)

ds=
e−1(ex − 1)− x

2
1
2 − e−1

, (39)

whereθ(0) = 1/2 − e−1 from (6) and (37). The rate of changeθ̇ of the approximate total mass
θ (21), and the velocity of the interior nodes (20), are236

θ̇(t) = 1− et−1 − b(t). (40)

v(x, t) =
1

u(x, t)

(

θ̇(t)c(x) − ∂u
∂x
+ x− 1+ et−1

)

, (41)

from (29), (31) and (36). Equations (40)–(41) are equivalent to (33)–(34), but with an additional
±(1 − et−1) term from the modified boundary condition. We again apply the algorithm of§2.2238

using discrete forms of (39)–(41). At the fixed boundary,Vm
0 = 0. At the moving boundary,

equation (35) is again employed since the moving boundary conditions are the same as for the240

original problem. The new node positionsXm+1
j , as well as the new total massΘm+1, are obtained

from Vm
j by the explicit Euler time-stepping scheme. The solution isrecovered in the same242

manner as for the original Crank-Gupta problem in§3.3.

4. Numerical results244

In this section we present results from applying the moving mesh method to the four prob-
lems described above: the PME, Richards’ equation, the original Crank-Gupta problem, and246

the Crank-Gupta problem with modified boundary conditions.In each case the initial mesh is
equally spaced. For each problem we examine the convergenceof the finite difference moving248

mesh method as the number of nodesN increases and as∆t decreases. We solve fort ∈ [t0,T]
and compute results forN = 10× 2N̂−1, N̂ = 1,2, . . .. In order to compare results for different250
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values ofN̂, we denote the points of the mesh for a particular value ofN̂ by x j,N̂(t), j = 0, . . . ,N.
We then compute bothx2N̂−1i,N̂(t) and u2N̂−1i,N̂(t) ≈ u(x2N̂−1i,N̂(t), t) for eachi = 0, . . . ,10; this252

new notation allows comparison ofx j,N̂(t) andu j,N̂(t) at eleven different points, determined by

j = 2N̂−1i, i = 0, . . . ,10, for variousN. Where possible we compare the numerical outcomes254

with the exact solution and boundary position. When such a solution is not known, we compare
with numerical results determined using other methods. In each case we denote our reference256

solution byū(x, t), and our reference boundary position by ¯x(t).
Recalling that we have used explicit Euler time-stepping, in order to balance the spatial and258

temporal errors, we take∆t = O
(

1/N2
)

, anticipating that the pointwise errors|x̄(t) − xN,N̂(t)| and

|ū(x2N̂−1i,N̂(t), t) − u2N̂−1i,N̂(t)| will decrease aŝN increases, for eachi = 0, . . . ,10.260

As a measure of the errors, we calculate theℓ2 norm of the error in our solution, and the
relative error of our boundary position, as defined by262

Eu
N :=

√

√

∑10
i=0 |ū(x2N̂−1i,N̂(T),T) − u2N̂−1i,N̂(T)|2

∑10
i=0 |ū(x2N̂−1i,N̂(T),T)|2

, Ex
N :=

|x̄(T) − xN,N̂(T)|
|x̄(T)| ,

for N̂ = 1,2,3,4, . . . (i.e. N = 10,20,40,80, . . .). We investigate the hypothesis that

Eu
N ∼

1
Np

and Ex
N ∼

1
Nq
, (42)

for largeN, wherep andq are the estimated orders of convergence. If (42) holds then we expect264

that p2N andq2N defined by

p2N = − log2

(

Eu
2N

Eu
N

)

, q2N = − log2

(

Ex
2N

Ex
N

)

, (43)

will approach the constant valuesp andq asN increases. Since each step of our scheme is second266

order in space and first order in time, and recalling that∆t = O
(

1/N2
)

, we might expect to see
p,q ≈ 2.268

4.1. Porous Medium Equation

We solve fort ∈ [1,5] and compute results forN = 10× 2N̂−1, N̂ = 1, . . . ,6. We use the270

self-similar initial conditions forn = 1,2,3,

n = 1 : u(x,1) = 1− x2

6
, b(1) =

√
6, (44)

n = 2 : u(x,1) =

(

1− x2

4

)
1
2

, b(1) = 2, (45)

n = 3 : u(x,1) =

(

1− 3x2

10

)
1
3

, b(1) =

√

10
3
, (46)

see [3, 22]. The exact solution at the calculated mesh pointsis272

ū(x, t) =
1

t1/(2+n)

(

1− x2

b(t)2

)1/n

, (47)
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and the exact boundary position, is

x̄(t) = b(t) = t1/(n+2)

√

2(n+ 2)
n
.

As stated above, to balance the spatial and temporal errors we use∆t = O
(

1/N2
)

, precisely274

∆t = 0.4
(

4−N̂
)

. Convergence results forn = 1 are shown in Table 1. We see thatEu
N andEx

N
decrease asN increases. This suggests that as the number of nodes increases our approximations276

to both the solution and the boundary position are converging. The p andq values presented
strongly indicate second-order convergence of both the numerical solution and numerical bound-278

ary position.

N Eu
N pN Ex

N qN

10 7.715× 10−3 - 1.451× 10−3 -
20 1.941× 10−3 2.0 3.066× 10−4 2.2
40 4.976× 10−4 2.0 7.138× 10−5 2.1
80 1.259× 10−4 2.0 1.730× 10−5 2.0
160 3.166× 10−5 2.0 4.262× 10−6 2.0
320 7.937× 10−6 2.0 1.058× 10−6 2.0

Table 1: Relative errorsEu
N andEx

N, for the porous medium equation withn = 1.

The results from the self-similar solutions forn = 1,2,3 andN = 20 are given in Figures 1–3.280

In each case we see that with only twenty nodes in our mesh, theboundary position (Figures 1(b)–
3(b)) is computed very accurately (better than 1% relative error att = 5 in each case). From (47)282

we note that the exact solution forn = 2,3 has a steep gradient at the boundaries, as can be seen
in Figures 2(a) and 3(a). Figures 1(c)–3(c) show exactly howthe mesh moves. We observe a284

smooth even spread of the nodes, without mesh tangling, in all three cases.

4.2. Richards’ Equation286

In this section we present results from applying the moving mesh method to Richards’ equa-
tion, as described in§3.2. To test that the numerical solution from the moving meshmethod288

converges we compare the solution with that from a very fine fixed mesh. All numerical results
presented here are forn = 3. In the absence of an exact reference solution we do not compare290

the position of the boundary.
We solve fort ∈ [0,0.5] and compute results forN = 10× 2N̂−1, N̂ = 1, . . . ,4. We compare292

the numerical solutions with a numerical solution calculated by solving Richards’ equation on
the fixed mesh ¯x j̄ ∈ [−4,4], j̄ = 0,1, . . . ,10000, which is given by294

ū j̄+ 1
2
(t + ∆t) − ū j̄+ 1

2
(t)

∆t
= (ūn−2) j̄+ 1

2
(t)

ū j̄+1(t) − ū j(t)

h
+ (ūn) j̄+ 1

2
(t)

−(ūn−2) j̄− 1
2
(t)

ū j̄(t) − ū j̄−1(t)

h
− (ūn) j̄− 1

2
(t),

whereh = 8× 10−4 is the uniform spacing between two mesh points,

(ūn) j̄+ 1
2
(t) ≈ 1

2

(

(ūn) j̄+1(t) + (ūn) j̄(t)
)

and (ūn) j̄− 1
2
(t) ≈ 1

2

(

(ūn) j̄(t) + (ūn) j̄−1(t)
)

.
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Figure 1: The PME with self-similar initial conditions forn = 1 (44),N = 20 (N̂ = 2),∆t = 0.04.
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Figure 2: The PME with self-similar initial conditions forn = 2 (45),N = 20 (N̂ = 2),∆t = 0.04.
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Figure 3: The PME with self-similar initial conditions forn = 3 (46),N = 20 (N̂ = 2),∆t = 0.04.
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We take the initial conditions to be296

u(x,0) = 1− x2, x ∈ [−1,1].

To balance the spatial and temporal errors we use∆t = O(1/N2), precisely∆t = 0.4
(

4−N̂
)

(as
with the PME). To compare solutions, we find the closest matchto x2N̂−1i,N̂(t), i = 0, . . . ,10,298

from the fixed mesh ¯x j̄ (where the points match to four decimal places), then the corresponding
solution on the fixed mesh ¯u j̄(t) is compared tou2N̂−1i,N̂(t).300

Computed values ofEu
N for N̂ = 1, . . . ,4 (i.e. N = 10,20,40,80) are shown in Table 2. The

relative error is less than 5% forN = 10 and less than 1% forN = 20. The values ofpN suggest302

second-order convergence.

N Eu
N pN

10 4.47× 10−2 -
20 7.97× 10−3 2.5
40 1.90× 10−3 2.1
80 4.75× 10−4 2.0

Table 2: Relative errorsEu
N for Richards’ equation,n = 3.

The numerical solution as computed withN = 40 is plotted in Figure 4. We see from304

Figure 4(b) that the mesh moves smoothly and does not tangle.

4.3. The Original Crank-Gupta problem306

In this section we present results from applying the moving mesh method to the Crank-Gupta
problem as described in§3.3. The boundary position was calculated using (35). Figure 5(a)308

shows the numerical solution at various times fort ∈ [0,0.19]. We note that the solution is
behaving as expected; the outer boundary is moving in, whilst the inner boundary is levelling out310

to satisfy the boundary condition.
There is no known analytical solution to the Crank-Gupta problem but, as a comparison, we312

may use the results of Dahmardah and Mayers [10] who derived aFourier Series solution (also
see [20]). By comparing their results with earlier work in [12] they concluded that their method314

is very accurate. To check whether our method converges asN increases and∆t decreases, we
compareu0,N̂(0.1) andxN,N̂(0.1) to the results given in [10] fort = 0.1, which are316

ū(0,0.1) = 0.143177,

x̄(0.1) = 0.935018.

We solve fort ∈ [0,0.1] and compute results forN = 10× 2N̂−1, N̂ = 1, . . . ,6. To balance the
spatial and temporal errors we use∆t = O

(

1/N2
)

= 1/[1600(4N̂)]. As a measure of the relative318

pointwise errors, we calculate

Êu
N =
|ū(0,0.1)− u0,N̂(0.1)|

|ū(0,0.1)| , Êx
N =
|x̄(0.1)− xN,N̂(0.1)|

|x̄(0.1)| ,

for N̂ = 1, . . . ,6 (i.e. N = 10,20,40,80,160,320). We investigate the same hypothesis (42) as320

in the two previous sections (though note that our measure oferror is slightly different here). We
again computep2N andq2N via (43), but withEu

N andEx
N replaced byÊu

N andÊx
N, respectively.322
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Figure 4: Richards’ equation withn = 3, N = 40 (N̂ = 3),∆t = 0.01.

N u0,N̂(0.1) Êu
N pN xN,N̂(0.1) Êx

N qN

10 0.142791 2.696× 10−3 - 0.935761 7.946× 10−4 -
20 0.142721 3.185× 10−3 -0.2 0.935385 3.925× 10−4 1.0
40 0.143040 9.569× 10−4 1.7 0.935120 1.091× 10−4 1.8
80 0.143141 2.514× 10−4 1.9 0.935043 2.674× 10−5 2.0
160 0.143168 6.286× 10−5 2.0 0.935024 6.417× 10−6 2.0
320 0.143175 1.397× 10−5 2.2 0.935019 1.069× 10−6 2.6

Table 3: Relative errorŝEu
N andÊx

N, for the original Crank-Gupta problem.
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Figure 5: The Crank-Gupta problem solved using relative partial mass conservation,N = 20 (N̂ = 2),∆t = 2× 10−4.

There are some irregularities in Table 3, as we might expect since we are comparing relative
pointwise errors. Nonetheless, it would be reasonable to suggest that the non mass-conserving324

moving mesh method with explicit Euler time-stepping has second-order convergence. The
movement of the nodes forN = 20, t ∈ [0,0.19], is shown in Figure 5(b). The nodes are326

moving smoothly and not tangling, with the ratio between thenodes remaining roughly constant.
We observe that despite the boundary moving in, the nodes still cluster towards the boundary,328

where higher resolution allows greater accuracy to track the boundary movement.

4.4. The Crank-Gupta problem with modified boundary conditions330

As mentioned before, we were unable to compare the original Crank-Gupta problem to an
analytical solution. However, by imposing an alternative boundary condition (36) we can exam-332

ine convergence asN increases and∆t decreases over the whole region. We solve fort ∈ [0,0.1]
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and compute results forN = 10× 2N̂−1, N̂ = 1, . . . ,6. We compare the numerical outcomes with334

the exact solution (38), att = 0.1,

ū(x j,N̂(0.1),0.1) = ex j,N̂(0.1)−0.9 − x j,N̂(0.1)− 0.1.

To balance the spatial and temporal errors we use∆t = O
(

1/N2
)

= 0.02
(

4−N̂
)

.336

Numerical results are shown in Table 4. We see thatEu
N decreases asN increases, and the

N Eu
N pN

10 7.581× 10−3 -
20 2.502× 10−3 1.6
40 6.796× 10−4 1.9
80 1.825× 10−4 1.9
160 4.879× 10−5 1.9
320 1.235× 10−5 2.0

Table 4: Relative errorsEu
N for the Crank-Gupta problem with modified boundary conditions.

values ofpN suggest second-order convergence.338

Figures 6(a)–6(b) show the results from imposing the modified boundary condition, as com-
puted withN = 20. The solution to the original problem is very small fort = 0.19, see Fig-340

ure 5(a), whereas the modified problem decays more slowly. This is partly because the outer
boundary moves in at a slower rate for the modified problem, which can be seen by comparing342

the movement of the last node in Figures 5(b) and 6(b) (where we observe that the boundary
moves in linearly). Lastly, from Figure 6(b) we note that thenodes move in a fairly uniform344

manner, without tangling.

5. Conclusions346

Work on moving meshes has evolved considerably over recent years, becoming a versatile
tool to accurately simulate a wide range of problems. The keyadvantage of a moving mesh is its348

ability to adjust its distribution to focus on areas of interest, such as a moving boundary or blow-
up. In this paper we have discussed one such method, a finite difference moving mesh method350

which is well-adapted to solving one-dimensional nonlinear initial boundary value problems.
The velocity was determined by keeping the relative partialintegrals of the solution,352

∫ x̃ j (t)

a(t)
u(x, t) dx

∫ b(t)

a(t)
u(x, t) dx

,

constant. This strategy is related to the GCL method and is similar to that used by Baines,
Hubbard and Jimack for their moving mesh finite element algorithm [1].354

We applied these methods to a number of moving boundary problems to investigate the ef-
fectiveness of this moving mesh approach. The problems we solved numerically increased in356

complexity, initially problems which conserve mass: the PME and Richards’ equation (both of
which are fluid flow problems). Then we looked at a problem witha variable total mass: the358
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Figure 6: The Crank-Gupta problem with modified boundary conditions,N = 20 (N̂ = 2),∆t = 2× 10−4.
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Crank-Gupta problem, which models oxygen-diffusion through tissue. We examined the accu-
racy in all cases and found that the numerical solution converged with roughly second-order360

accuracy. Furthermore, for the Crank-Gupta problem, we found that preservation of mass frac-
tions can lead to higher resolution at the boundary, which isdesirable.362

Throughout this paper we have used an explicit Euler time-stepping scheme. Other explicit
time-stepping schemes we experimented with are the higher order methods built into Matlab364

(ODE23, ODE45, ODE15s); see [15] for details. There was little difference in the results from
all the Matlab solvers, indicating that none of the problemslead to a stiff system of ODEs for the366

x̃ j(t). We found that all the time-stepping schemes produced accurate and stable results, with no
mesh tangling, provided that sufficiently small time-steps were taken. It has been shown in [2]368

that the PME can also be solved by this moving mesh method witha semi-implicit time-stepping
scheme using larger time steps.370

We conclude that this moving mesh approach with an explicit time-stepping scheme is accu-
rate for a range of problems. In particular, only twenty nodes (and in most cases only ten nodes)372

were sufficient to achieve better than 1% accuracy for every example presented here.
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