

Department of Mathematics and Statistics

Preprint MPS-2015-22

05 October 2015

Generalised golden ratios

by

Simon Baker and Wolfgang Steiner

Generalised golden ratios

Simon Baker¹ and Wolfgang Steiner²

¹Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK

²LIAFA, CNRS UMR 7089, Université Paris Diderot - Paris 7, Case 7014, 75205 Paris Cedex 13, France

> *Email contacts*: simonbaker412@gmail.com steiner@liafa.univ-paris-diderot.fr

> > October 5, 2015

Abstract

Given a finite set of real numbers A, the generalised golden ratio is the unique number $\mathcal{G}(A) > 1$ for which we only have trivial unique expansions in smaller bases, and non-trivial unique expansions in larger bases. We show that $\mathcal{G}(A)$ varies continuously with the alphabet A (of fixed size), and we calculate $\mathcal{G}(A)$ for certain alphabets. As we vary a single parameter within A, the generalised golden ratio function may behave like a constant function, a linear function, and even a square root function.

We also build upon the work of Komornik, Lai, and Pedicini (2011) and study generalised golden ratios over ternary alphabets. We give a new proof of their main result, that is we explicitly calculate the function $\mathcal{G}(\{0, 1, m\})$. (For a ternary alphabet, it may be assumed without loss of generality that $A = \{0, 1, m\}$.) We also study the set of $m \in (1, 2]$ for which $\mathcal{G}(\{0, 1, m\}) = 1 + \sqrt{m}$ and prove that it is an uncountable set of Hausdorff dimension 0. Last of all we show that the function mapping mto $\mathcal{G}(\{0, 1, m\})$ is of bounded variation yet has unbounded derivative.

Mathematics Subject Classification 2010: 11A63, 28A80. Key words and phrases: Beta expansions, Generalised golden ratios, Combinatorics on words

1 Introduction and statement of results

Let $A := \{a_0, a_1, \ldots, a_d\}$ be a set of real numbers satisfying $a_0 < a_1 < \cdots < a_d$. We call A an alphabet. Given $\beta > 1$ and $x \in \mathbb{R}$, we say that a sequence $(u_k)_{k=1}^{\infty} \in A^{\mathbb{N}}$ is a β -expansion for x over the alphabet A if

$$x = \sum_{k=1}^{\infty} \frac{u_k}{\beta^k}.$$

When the underlying alphabet is obvious we may simply refer to (u_k) as a β -expansion. Expansions in non-integer bases were introduced by Rényi [8]. Perhaps the most well studied case is when $\beta \in (1, 2]$ and $A = \{0, 1\}$. For $\beta \in (1, 2]$ and this choice of alphabet, x has a β -expansion over A if and only if $x \in [0, \frac{1}{\beta-1}]$. Moreover, a result of Erdős, Joó, and Komornik [3] states that if $\beta \in (1, \frac{1+\sqrt{5}}{2})$ then every $x \in (0, \frac{1}{\beta-1})$ has a continuum of β -expansions. This result is complemented by a theorem of Daróczy and Katai [2] which states that if $\beta \in (\frac{1+\sqrt{5}}{2}, 2]$ then there exists $x \in (0, \frac{1}{\beta-1})$ with a unique β -expansion. Note that the end points of the interval $[0, \frac{1}{\beta-1}]$ trivially have a unique β -expansion. The above demonstrates that the golden ratio acts as a natural boundary between the possible cardinalities the set of expansions can take. It is natural to ask whether such a boundary exists for more general alphabets.

Before we state the definition of a generalised golden ratio it is necessary to define the univoque set. Given an alphabet A and $\beta > 1$ we set

$$\mathcal{U}_{\beta}(A) := \Big\{ (u_k)_{k=1}^{\infty} \in A^{\mathbb{N}} : \sum_{k=1}^{\infty} \frac{u_k}{\beta^k} \text{ has a unique expansion} \Big\}.$$

We call $\mathcal{U}_{\beta}(A)$ the univolue set. Note that for any alphabet A and $\beta > 1$ the points

$$\sum_{k=1}^{\infty} \frac{a_0}{\beta^k} \text{ and } \sum_{k=1}^{\infty} \frac{a_d}{\beta^k}$$

both have a unique expansion, so $\overline{a_0}$ and $\overline{a_d}$ are always contained in the univoque set. Here and throughout \overline{w} denotes the infinite periodic word with period w. We are now in a position to define a generalised golden ratio for an arbitrary alphabet. Given an alphabet A, we call $\mathcal{G}(A) \in (1, \infty)$ the generalised golden ratio for A if whenever $\beta \in (1, \mathcal{G}(A))$ we have $\mathcal{U}_{\beta}(A) = \{\overline{a_0}, \overline{a_d}\}$, and if $\beta > \mathcal{G}(A)$ then $\mathcal{U}_{\beta}(A)$ contains a non-trivial element.

Komornik, Lai, and Pedicini [4] were the first authors to make a thorough study of generalised golden ratios over arbitrary alphabets. Importantly they proved that for any alphabet A a generalised golden ratio exists. For ternary alphabets, they showed that the generalised golden ratio varies continously with the alphabet. We extend this result to alphabets of arbitrary size.

Theorem 1. Let $\Delta_d := \{(a_0, a_1, \dots, a_d) \in \mathbb{R}^{d+1} : a_0 < a_1 < \dots < a_d\}, d \ge 1$. The map $(a_0, a_1, \dots, a_d) \mapsto \mathcal{G}(\{a_0, a_1, \dots, a_d\})$ is continuous on Δ_d .

We prove this theorem in Section 2. In the rest of the paper, we restrict our attention to alphabets of the form $A = \{0, 1, ..., |m|, m\}, m > 1$. Throughout we let

$$\mathcal{G}(m) := \mathcal{G}(\{0, 1, \dots, \lfloor m \rfloor, m\})$$

and $\mathcal{U}_{\beta}(m) := \mathcal{U}_{\beta}(\{0, 1, \dots, \lfloor m \rfloor, m\})$. In particular for $m \in (1, 2]$ we have $A = \{0, 1, m\}$. Every ternary alphabet can be assumed to be of this form because shifting the alphabet and multiplying by a constant do not affect the generalised golden ratio, thus

$$\mathcal{G}(\{a_0, a_1, a_2\}) = \mathcal{G}\left(\left\{0, 1, \frac{a_2 - a_0}{a_1 - a_0}\right\}\right) = \mathcal{G}\left(\left\{0, 1, \frac{a_2 - a_0}{a_2 - a_1}\right\}\right),$$

with $\frac{a_2-a_0}{a_1-a_0} \in (1,2]$ or $\frac{a_2-a_0}{a_2-a_1} \in (1,2]$. The authors of [4] rather considered alphabets $\{0,1,m\}$ with $m \ge 2$. Since $\mathcal{G}(\{0,1,m\}) = \mathcal{G}(\{0,1,\frac{m}{m-1}\})$, their results read as follows in our setting.

Theorem KLP. The function $\mathcal{G}: (1,2] \to \mathbb{R}$ is continuous and satisfies

$$2 \le \mathcal{G}(m) \le 1 + \sqrt{m}$$

for all $m \in (1,2]$. Moreover, the following statements hold.

- $\mathcal{G}(m) = 2$ for $m \in (1,2]$ if and only if $m = \frac{2^k}{2^k 1}$ for some positive integer k.
- The set $\mathfrak{M} := \{m \in (1,2] : \mathcal{G}(m) = 1 + \sqrt{m}\}$ is a Cantor set, its largest element is $x^2 \approx 1.7548$ where $x \approx 1.3247$ is the smallest Pisot number.
- Each connected component (m₁, m₂) of (1, x²) \ M has a point μ such that G is strictly decreasing on [m₁, μ] and strictly increasing on [μ, m₂]; G is strictly increasing on [x², 2].

In Section 3, we reprove all these results, making some of the statements more explicit and simplifying several proofs. The function is given by implicit equations on subintervals of (1, 2], and it has the following unusual regularity properties of the function \mathcal{G} .

Theorem 2. The function $\mathcal{G} : (1,2] \to \mathbb{R}$ is differentiable except on the set \mathfrak{M} and on the countable set of points μ defined in Theorem KLP. Its derivative is unbounded, but its total variation is less than 8/3.

The set \mathfrak{M} is uncountable, but its Hausdorff dimension is 0.

Theorem 3. We have $\dim_H(\mathfrak{M}) = 0$.

On certain intervals, the function \mathcal{G} has the following simple form.

Theorem 4. Let h be a positive integer and $2^h \le m \le \left(1 + \sqrt{\frac{m}{m-1}}\right)^h$. Then we have

$$\mathcal{G}\Big(\frac{m}{m-1}\Big) = \mathcal{G}(\{0,1,m\}) = m^{1/h}$$

In [1] the first author studied $\mathcal{G}(m)$ for integer m. In this case the following results hold.

Theorem B. Let $m \in \mathbb{Z}$ with $m \geq 2$. The following statements hold:

٠

$$\mathcal{G}(m) = \begin{cases} \frac{m}{2} + 1 & \text{if } m \text{ is even,} \\ \frac{m+1 + \sqrt{m^2 + 10m + 9}}{4} & \text{if } m \text{ is odd.} \end{cases}$$

- If m is odd, then there exists $\delta(m) > 0$ such that for all $\beta \in (\mathcal{G}(m), \mathcal{G}(m) + \delta(m))$, the set $\mathcal{U}_{\beta}(m)$ consists of $\frac{\overline{m-1}}{2} \frac{m+1}{2}$ and a subset of the sequences that end with $\frac{\overline{m-1}}{2} \frac{m+1}{2}$.
- If m is even, then there exists $\delta(m) > 0$ such that for all $\beta \in (\mathcal{G}(m), \mathcal{G}(m) + \delta(m))$, the set $\mathcal{U}_{\beta}(m)$ consists of $\frac{\overline{m}}{2}$ and a subset of the sequences that end with $\overline{\frac{m}{2}}$.

For each positive integer k, we also calculate $\mathcal{G}(m)$ on a small interval to the right of k. These calculations demonstrate that the function \mathcal{G} can vary in different ways as we change a single parameter. For now we postpone the statement of these results.

2 Continuity of $\mathcal{G}(A)$

Before proving Theorem 1, we recall results of Pedicini [7, Proposition 2.1 and Theorem 3.1] on (unique) expansions in non-integer bases over arbitrary alphabets; see also [4, Theorem 2.2].

Theorem P. Let $\beta \in (1, q(A)]$, with

$$q(A) := 1 + \frac{a_d - a_0}{\max\{a_1 - a_0, a_2 - a_1, \dots, a_d - a_{d-1}\}}$$

Every $x \in \left[\frac{a_0}{\beta-1}, \frac{a_d}{\beta-1}\right]$ has a β -expansion over A. We have $u_0u_1 \cdots \in \mathcal{U}_{\beta}(A)$ if and only if, for all $i \geq 0$,

$$\sum_{k=0}^{\infty} \frac{u_{i+k}}{\beta^k} < a_{j+1} + \frac{a_0}{\beta - 1} \qquad when \ u_i = a_j \neq a_d,$$
(2.1)

and

$$\sum_{k=0}^{\infty} \frac{u_{i+k}}{\beta^k} > a_{j-1} + \frac{a_d}{\beta - 1} \qquad when \ u_i = a_j \neq a_0.$$
(2.2)

Remark 2.1. The conditions (2.1) and (2.2) can be restated in terms of uniqueness regions $U_a, a \in A$: We have $\sum_{k=0}^{\infty} \frac{u_{i+k}}{\beta^k} \in U_{u_i}$ for all $i \ge 0$, with $U_{a_0} = \left[\frac{a_0\beta}{\beta-1}, a_1 + \frac{a_0}{\beta-1}\right], U_{a_j} = \left(a_{j-1} + \frac{a_d}{\beta-1}, a_{j+1} + \frac{a_0}{\beta-1}\right)$ for $1 \le j < d$, and $U_{a_d} = \left(a_{d-1} + \frac{a_d}{\beta-1}, \frac{a_d\beta}{\beta-1}\right]$.

By the following lemma, it is sufficient to consider $\beta \leq q(A)$.

Lemma 2.2. We have $\mathcal{G}(A) \leq q(A)$.

Proof. If
$$\beta > 1 + \frac{a_d - a_0}{a_{j+1} - a_j}$$
 for some $0 \le j < d$, then $a_j + \frac{a_d}{\beta - 1} < a_{j+1} + \frac{a_0}{\beta - 1}$ and thus $a_j \overline{a_d} \in \mathcal{U}_\beta(A)$. \Box

Remark 2.3. This upper bound is attained for certain alphabets. For example, let $A = \{0, 1, 4, 5\}$. For $\beta = q(A) = 8/3$, the uniqueness regions are $U_0 = [0, 1)$, $U_1 = (3, 4)$, $U_4 = (4, 5)$ and $U_5 = (7, 8]$. For $\sum_{k=0}^{\infty} \frac{u_{i+k}}{\beta^k} \in U_{u_i}$, we have $\sum_{k=0}^{\infty} \frac{u_{i+1+k}}{\beta^k} \in (U_{u_i} - u_i)\beta$; the latter intervals are [0, 8/3), (16/3, 8), (0, 8/3) and (16/3, 8] respectively. Therefore, the only unique expansions are $\overline{0}$ and $\overline{5}$.

Proof of Theorem 1. As $\mathcal{G}(A) = \mathcal{G}\left(\frac{A-a_0}{a_d-a_0}\right)$, we have $\mathcal{G}(\{a_0, a_1, \dots, a_d\}) = \mathcal{G}(\iota \circ r(a_0, a_1, \dots, a_d))$, with

$$r: \Delta_d \to \Delta'_d, \quad (a_0, a_1, \dots, a_d) \mapsto \left(\frac{a_1 - a_0}{a_d - a_0}, \frac{a_2 - a_0}{a_d - a_0}, \dots, \frac{a_{d-1} - a_0}{a_d - a_0}\right), \\ \iota: \Delta'_d \to \mathcal{P}(\mathbb{R}), \quad (a_1, a_2, \dots, a_{d-1}) \mapsto \{0, a_1, a_2, \dots, a_{d-1}, 1\},$$

and $\Delta'_d = \{(a_1, a_2, \dots, a_{d-1}) \in \mathbb{R}^{d-1} : 0 < a_1 < a_2 < \dots < a_{d-1} < 1\}$. As r is continuous on Δ_d , it is sufficient to prove that $\mathcal{G} \circ \iota$ is continuous on Δ'_d .

Let $\mathbf{a} = (a_1, a_2, \dots, a_{d-1}) \in \Delta'_d$ and $\varepsilon > 0$ arbitrary but fixed. We will show that $|\mathcal{G}(\iota(\mathbf{b})) - \mathcal{G}(\iota(\mathbf{a}))| \leq 3\varepsilon$ for all \mathbf{b} in a neighbourhood of \mathbf{a} . Let first $X \subset \Delta'_d$ be a closed neighbourhood of \mathbf{a} such that $|q(\iota(\mathbf{b})) - q(\iota(\mathbf{a}))| \leq \varepsilon$ for all $\mathbf{b} \in X$. (Note that $q \circ \iota$ is continuous on Δ'_d .) Set

$$\alpha = \min_{\mathbf{b} \in X} q(\iota(\mathbf{b})) - \varepsilon, \qquad Y = \{\mathbf{b} \in X : \mathcal{G}(\iota(\mathbf{b})) < \alpha\}.$$

If $Y = \emptyset$, then X is a neighbourhood of **a** with $|\mathcal{G}(\iota(\mathbf{b})) - \mathcal{G}(\iota(\mathbf{a}))| \leq 2\varepsilon$ for all $\mathbf{b} \in X$. Otherwise, let $\ell \geq 2$ be such that $\sum_{k=1}^{\ell} \alpha^{-k} \geq (\alpha + \varepsilon - 1)^{-1}$. Then

$$b_{j+1} - b_j \le \frac{1}{q(\iota(\mathbf{b})) - 1} \le \frac{1}{\alpha + \varepsilon - 1} \le \sum_{k=1}^{\ell} \frac{1}{\alpha^k}$$

$$(2.3)$$

for all $(b_1, \ldots, b_{d-1}) \in Y$, $0 \le j < d$, with $b_0 = 0$, $b_d = 1$. Set

$$\delta(\mathbf{a}, \mathbf{b}) = \min_{0 \le j < d} \left((a_{j+1} - a_j) - (b_{j+1} - b_j) \right)$$

(with $b_0 = a_0 = 0$, $b_d = a_d = 1$), and let $Z \subset X$ be a neighbourhood of **a** such that

$$\frac{a_j}{(\alpha+\varepsilon)^k} - \frac{b_j}{\alpha^k} \le \delta(\mathbf{a}, \mathbf{b}), \quad \frac{b_j}{(\alpha+\varepsilon)^k} - \frac{a_j}{\alpha^k} \le \delta(\mathbf{a}, \mathbf{b}) \quad \text{for all } 1 \le j \le d, \ 1 \le k \le \ell,$$
(2.4)

$$\frac{1-a_j}{(\alpha+\varepsilon)^k} - \frac{1-b_j}{\alpha^k} \le \delta(\mathbf{a}, \mathbf{b}), \quad \frac{1-b_j}{(\alpha+\varepsilon)^k} - \frac{1-a_j}{\alpha^k} \le \delta(\mathbf{a}, \mathbf{b}) \quad \text{for all } 0 \le j < d, \ 1 \le k \le \ell,$$
(2.5)

for all $\mathbf{b} = (b_1, \ldots, b_{d-1}) \in \mathbb{Z}$. Note that $\delta(\mathbf{a}, \mathbf{b}) \leq 0$, thus we also have

$$\frac{a_j}{\alpha + \varepsilon} \le \frac{b_j}{\alpha}, \quad \frac{1 - a_j}{\alpha + \varepsilon} \le \frac{1 - b_j}{\alpha}, \quad \frac{b_j}{\alpha + \varepsilon} \le \frac{a_j}{\alpha}, \quad \frac{1 - b_j}{\alpha + \varepsilon} \le \frac{1 - a_j}{\alpha} \quad \text{for all } 0 \le j \le d.$$
(2.6)

For $\mathbf{b} \in Y \cap Z$ and $\mathcal{G}(\iota(\mathbf{b})) < \beta \leq \alpha$, choose $\mathbf{u} = u_0 u_1 \cdots \in \mathcal{U}_{\beta}(\iota(\mathbf{b}))$. Assume, w.l.o.g., that $u_0 u_1 \notin \{00, 11\}$. We show first that \mathbf{u} does not contain ℓ consecutive zeros or ones. Indeed, suppose that $u_{i+1} = u_{i+2} = \cdots = u_{i+\ell} = 1$ for some $i \geq 0$; then we had

$$\sum_{k=1}^{\infty} \frac{u_{i+k}}{\beta^k} \ge \sum_{k=1}^{\ell} \frac{1}{\beta^k} \ge \sum_{k=1}^{\ell} \frac{1}{\alpha^k} \ge b_{j+1} - b_j$$

for all $0 \leq j < d$, hence $u_i = 1$ because of (2.1); recursively we would obtain that $u_{i-1} = \cdots = u_0 = 1$, contradicting that $u_0 u_1 \neq 11$. Similarly, $u_{i+1} = u_{i+2} = \cdots = u_{i+\ell} = 0$ implies that $\sum_{k=1}^{\infty} (1 - u_{i+k})\beta^{-k} \geq b_j - b_{j-1}$ for all $1 \leq j \leq d$, hence $u_i = 0$ because of (2.2), eventually contradicting that $u_0 u_1 \neq 00$.

Let now $i \ge 0$. We have $\tilde{u}_{i+k}(\beta + \varepsilon)^{-k} \le u_{i+k}\beta^{-k}$ for all $k \ge 1$ because (2.6) implies that $a_j(\beta + \varepsilon)^{-k} \le b_j\beta^{-k}$ for all $0 \le j \le d$. Moreover, (2.4) and (2.6) give that

$$\frac{a_j}{(\beta+\varepsilon)^k} - \frac{b_j}{\beta^k} \le \frac{a_j}{(\alpha+\varepsilon)^k} - \frac{b_j}{\alpha^k} \le \delta(\mathbf{a}, \mathbf{b})$$

for all $1 \le k \le \ell$, $1 \le j \le d$. Since $u_{i+k} \ne 0$ for some $1 \le k \le \ell$, we have $\tilde{u}_{i+k}(\beta + \varepsilon)^{-k} \le u_{i+k}\beta^{-k} + \delta(\mathbf{a}, \mathbf{b})$ for some $k \ge 1$. Using (2.1), we get

$$\sum_{k=1}^{\infty} \frac{\tilde{u}_{i+k}}{(\beta+\varepsilon)^k} \leq \sum_{k=1}^{\infty} \frac{u_{i+k}}{\beta^k} + \delta(\mathbf{a}, \mathbf{b}) < b_{j+1} - b_j + \delta(\mathbf{a}, \mathbf{b}) \leq a_{j+1} - a_j \quad \text{when } u_i = b_j \neq 1$$

Similarly, we obtain from (2.2), (2.5) and (2.6) that

$$\sum_{k=1}^{\infty} \frac{1 - \tilde{u}_{i+k}}{(\beta + \varepsilon)^k} \le \sum_{k=1}^{\infty} \frac{1 - u_{i+k}}{\beta^k} + \delta(\mathbf{a}, \mathbf{b}) < b_j - b_{j-1} + \delta(\mathbf{a}, \mathbf{b}) \le a_j - a_{j-1} \quad \text{when } u_i = b_j \neq 0$$

Therefore, we have $\tilde{\mathbf{u}} \in \mathcal{U}_{\beta+\varepsilon}(\iota(\mathbf{a}))$, thus $\mathcal{G}(\iota(\mathbf{a})) \leq \mathcal{G}(\iota(\mathbf{b})) + \varepsilon$ for all $\mathbf{b} \in Y \cap Z$.

For $\mathbf{b} \in X \setminus Y$, recall that $\mathcal{G}(\iota(\mathbf{a})) \leq q(\iota(\mathbf{a})) \leq \alpha + 2\varepsilon \leq \mathcal{G}(\iota(\mathbf{b})) + 2\varepsilon$. Similarly, we obtain for all $\mathbf{b} \in Z$ that $\mathcal{G}(\iota(\mathbf{b})) \leq \mathcal{G}(\iota(\mathbf{a})) + \varepsilon$ when $\mathbf{a} \in Y$, $\mathcal{G}(\iota(\mathbf{b})) \leq \mathcal{G}(\iota(\mathbf{a})) + 3\varepsilon$ when $\mathbf{a} \notin Y$. This gives that $|\mathcal{G}(\iota(\mathbf{b})) - \mathcal{G}(\iota(\mathbf{a}))| \leq 3\varepsilon$ for all $\mathbf{b} \in Z$, thus $\mathcal{G} \circ \iota$ is continuous at \mathbf{a} .

3 Generalised golden ratios over ternary alphabets

3.1 Statements

Komornik, Lai and Pedicini [4] described the function $m \mapsto \mathcal{G}(m)$ on the interval (1, 2]. We provide more details for this function, in particular for the set

$$\mathfrak{M} := \{ m \in (1,2] : \mathcal{G}(m) = 1 + \sqrt{m} \}.$$

For $h \ge 0$, let τ_h be the substitution on the alphabet $\{0, 1\}$ defined by

$$\tau_h(0) = 0^{h+1}1, \qquad \tau_h(1) = 0^h 1,$$

and set $S = \{\tau_h : h \ge 0\}$. A (right) infinite word **u** is a *limit word* of a sequence of substitutions $(\sigma_n)_{n\ge 0}$ if there exist words $\mathbf{u}^{(n)}$ with $\mathbf{u}^{(0)} = \mathbf{u}$ and $\mathbf{u}^{(n)} = \sigma_n(\mathbf{u}^{(n+1)})$ for all $n \ge 0$. A sequence $(\sigma_n)_{n\ge 0} \in S^{\mathbb{N}}$ is *primitive* if $\sigma_n \ne \tau_0$ for infinitely many $n \ge 0$. Primitive sequences of substitutions have a unique limit word. If $\sigma_n = \tau_0$ for all $n \ge 0$, then $0\overline{1}$ and $\overline{1}$ are limit words of $(\sigma_n)_{n\ge 0}$. We use the following sets of limit words (or *S*-adic words), where $S^* = \bigcup_{n\ge 0} S^n$ denotes the set of finite products of substitutions in *S*:

$$\mathcal{S} = \mathcal{S}_{\infty} \cup \mathcal{S}_{0\overline{1}} \cup \mathcal{S}_{\overline{1}} \quad \text{with} \quad \mathcal{S}_{0\overline{1}} = \{\sigma(0\overline{1}): \, \sigma \in S^*\}, \quad \mathcal{S}_{\overline{1}} = \{\sigma(\overline{1}): \, \sigma \in S^*\},$$

 $S_{\infty} = \{ \mathbf{u} : \mathbf{u} \text{ is the limit word of a primitive sequence of substitutions in } S^{\mathbb{N}} \}.$

Remark 3.1. Note that each element of \mathcal{S} is a Sturmian sequence.

For $\mathbf{u} = u_0 u_1 \cdots \in \{0, 1\}^{\mathbb{N}}$, we define $\mathfrak{m}_{\mathbf{u}} > 1$ by

$$\mathfrak{m}_{\mathbf{u}} = 1 + \sum_{k=0}^{\infty} \frac{u_k}{(1 + \sqrt{\mathfrak{m}_{\mathbf{u}}})^k}.$$
(3.1)

Remark 3.2. We can rewrite (3.1) as

$$1 = \frac{2}{1 + \sqrt{\mathfrak{m}_{\mathbf{u}}}} + \sum_{k=0}^{\infty} \frac{u_k}{(1 + \sqrt{\mathfrak{m}_{\mathbf{u}}})^{k+2}},$$

i.e., the quasi-greedy $(1+\sqrt{\mathfrak{m}_{\mathbf{u}}})$ -expansion of 1 is 2**u**. This shows that $\mathfrak{m}_{\mathbf{u}}$ is well defined.

For $\sigma \in S^*$, we define the interval $I_{\sigma} = \left[\mathfrak{m}_{\sigma(0\overline{1})}, \mathfrak{m}_{\sigma(\overline{1})}\right] \subset \left(1, \frac{3+\sqrt{5}}{2}\right]$. We define $\beta_{\sigma} \geq 2$ implicitly via the equation

$$1 + \sum_{k=1}^{\infty} \frac{\tilde{u}_k^{(\sigma)}}{\beta_{\sigma}^k} = (\beta_{\sigma} - 1) \left(1 + \sum_{k=0}^{\infty} \frac{u_k^{(\sigma)}}{\beta_{\sigma}^{k+1}} \right),$$

where

$$\tilde{u}_0^{(\sigma)} \tilde{u}_1^{(\sigma)} \tilde{u}_2^{(\sigma)} \dots = \sigma(0\bar{1}), \qquad u_0^{(\sigma)} u_1^{(\sigma)} u_2^{(\sigma)} \dots = \sigma(\bar{1}).$$

Moreover, we let μ_{σ} denote the coinciding value, i.e.

$$\mu_{\sigma} := 1 + \sum_{k=1}^{\infty} \frac{\tilde{u}_k^{(\sigma)}}{\beta_{\sigma}^k}.$$

Note that all the numbers and sequences do not change if we replace σ by $\sigma\tau_0$ since $\tau_0(0\overline{1}) = 0\overline{1}$ and $\tau_0(\overline{1}) = \overline{1}$. Therefore, we can assume that $\sigma \in S^* \setminus S^*\tau_0$.

The following proposition recovers the main part of Theorem KLP, adding explicit equations giving for generalised golden ratios.

Proposition 3.3. The interval $\left(1, \frac{3+\sqrt{5}}{2}\right)$ admits the partition

$$\{I_{\sigma}: \sigma \in S^* \setminus S^*\tau_0\} \cup \{\{\mathfrak{m}_{\mathbf{u}}\}: \mathbf{u} \in \mathcal{S}_{\infty}\}.$$
(3.2)

For $\sigma \in S^*$ and $m \in [\mathfrak{m}_{\sigma(0\overline{1})}, \mu_{\sigma}]$, $\mathcal{G}(m)$ is given by

$$m = 1 + \sum_{k=1}^{\infty} \frac{\tilde{u}_k^{(\sigma)}}{\mathcal{G}(m)^k}.$$

For $\sigma \in S^*$ with $\sigma(1) \neq 1$ and $m \in [\mu_{\sigma}, \mathfrak{m}_{\sigma(\overline{1})}], \mathcal{G}(m)$ is given by

$$\frac{m}{\mathcal{G}(m)-1} = 1 + \sum_{k=1}^{\infty} \frac{u_k^{(\sigma)}}{\mathcal{G}(m)^{k+1}}.$$

We have

$$\mathfrak{M} = \{\mathfrak{m}_{\mathbf{u}} : \mathbf{u} \in \mathcal{S} \setminus \{\overline{1}\}\}.$$

3.2 Partition of $(1, \frac{3+\sqrt{5}}{2}]$

We first prove that (3.2) forms a partition of $(1, \frac{3+\sqrt{5}}{2}]$. We use the notation $\sigma_{[0,n]} = \sigma_0 \sigma_1 \cdots \sigma_n$.

Lemma 3.4. Let $\sigma \in S^*$. Then σ preserves the lexicographic order on infinite words.

Proof. The lexicographic order on infinite words is preserved by the identity and by $\sigma \in S$. By induction on n, this holds for all $\sigma \in S^n$, $n \ge 0$.

Lemma 3.5. Let $\sigma \in S^*$ with $\sigma(1) \neq 1$, and write $\sigma(1) = 0w1$. Then

$$\sigma(0\overline{1}) = 0 \,\overline{w01}.$$

In particular, 1w0 is a circular shift of $\sigma(1)$.

Proof. Since $\sigma(1) = \sigma\tau_0(1)$ and $\sigma(0\overline{1}) = \sigma\tau_0(0\overline{1})$, we assume w.l.o.g. that $\sigma = \tau_{h_0}\tau_{h_1}\cdots\tau_{h_n}$ with $n \ge 0$, $h_n \ne 0$. Let $\sigma_k = \tau_{h_k}$. Then $\sigma_{[0,n]}(1) = 0w1$ with

$$w = \sigma_0(1) \sigma_{[0,1]}(1) \cdots \sigma_{[0,n-1]}(1) \sigma_{[0,n-1]}(0^{h_n-1}) \sigma_{[0,n-2]}(0^{h_{n-1}}) \cdots \sigma_0(0^{h_1}) 0^{h_0}.$$

Let $v = \sigma_0(1) \sigma_{[0,1]}(1) \cdots \sigma_{[0,n-1]}(1)$. Then we have $\sigma_{[0,n]}(0) = 0w01v$ and $v\sigma_{[0,n]}(1) = w01v$. Therefore, 1w0 is a circular shift of $\sigma(1)$ and $\sigma(0\overline{1}) = 0 \overline{w01}$.

Lemma 3.6. Let $\mathbf{u} = u_0 u_1 \cdots \in \{0, 1\}^{\mathbb{N}} \setminus \{\overline{0}\}$. We have $\mathbf{u} \in S$ if and only if

$$u_0 u_1 u_2 \dots \le u_i u_{i+1} u_{i+2} \dots \le 1 u_1 u_2 \dots$$
 for all $i \ge 0.$ (3.3)

Proof. Assume that (3.3) holds. Then $u_0 = 0$ or $\mathbf{u} = \overline{1} = \tau_0(\overline{1})$. If $u_0 = 0$, let $h \ge 0$ be minimal such that $u_{h+1} = 1$. Then each 1 is followed by $0^{h+1}1$ or 0^h1 , i.e., $\mathbf{u} = \tau_h(\mathbf{u}')$ for some word $\mathbf{u}' = u'_0u'_1\cdots$. Moreover, we have $\mathbf{u}' \le u'_iu'_{i+1}\cdots \le 1u'_1u'_2\cdots$ for all $i \ge 0$. In case $\mathbf{u}' = \overline{0}$, we have $\mathbf{u} = \tau_{h+1}(\overline{1})$. Therefore, we can repeat the arguments and obtain recursively that \mathbf{u} is the limit word of a sequence $(\sigma_n)_{n\ge 0} \in S^{\mathbb{N}}$. More precisely, we have $\mathbf{u} \in S_{0\overline{1}}$ or \mathbf{u} starts with $\sigma_{[0,n]}(0)$ for all $n \ge 0$, i.e., $\mathbf{u} \in S_{\infty} \cup S_{\overline{1}}$.

Consider now $\mathbf{u} \in \mathcal{S}_{\infty} \cup \mathcal{S}_{0\overline{1}}$, limit word of $(\sigma_n)_{n\geq 0} \in S^{\mathbb{N}}$. Then \mathbf{u} starts with $\sigma_{[0,n]}(0)$ for all $n\geq 0$. Denote the preimage of \mathbf{u} by σ_0 by $\mathbf{u}' = u'_0 u'_1 \cdots$, i.e., $\sigma_0(\mathbf{u}') = \mathbf{u}$. Suppose that $u_i u_{i+1} \cdots \leq \mathbf{u}$. Then $u_i u_{i+1} \cdots$ starts with $\sigma_0(0)$, and $u_i u_{i+1} \cdots = \sigma_0(u'_i u'_{i'+1} \cdots)$ for some $i' \geq 0$. This implies that $u'_i u'_{i'+1} \cdots \leq \mathbf{u}'$, thus $u'_{i'} u'_{i'+1} \cdots$ starts with $\sigma_1(0)$. Inductively, we obtain that $u_i u_{i+1} \cdots$ starts with $\sigma_{[0,n]}(0)$ for all $n \ge 0$, i.e., $u_i u_{i+1} \cdots = \mathbf{u}$. Suppose now that $u_i u_{i+1} \cdots \ge 1u_1 u_2 \cdots$. Then $u_i = 1$ and $u_{i+1} u_{i+2} \cdots = \sigma_0(u'_{i'} u'_{i'+1} \cdots)$ for some $i' \ge 0$, with $u'_{i'} u'_{i'+1} \cdots \ge 1u'_1 u'_2 \cdots$. We get that

$$u_i u_{i+1} \cdots = 1 \sigma_0(1) \sigma_{[0,1]}(1) \sigma_{[0,2]}(1) \cdots = 1 u_1 u_2 \cdots$$

Therefore, (3.3) holds.

Finally, let $\mathbf{u} \in S_{\overline{1}}$. If $\mathbf{u} = \overline{1}$, then (3.3) holds trivially. Otherwise, we have $\mathbf{u} = \sigma \tau_h(\overline{1})$ with $\sigma \in S^*$, $h \ge 1$. Then $\sigma \tau_{h-1}\tau_j(0\overline{1}) \in S_{0\overline{1}}$ converges to \mathbf{u} for $j \to \infty$ (in the usual topology of infinite words). By the previous paragraph, (3.3) holds for these words. Hence, it also holds for the limit word \mathbf{u} .

Proposition 3.7. The interval $\left(1, \frac{3+\sqrt{5}}{2}\right)$ admits the partition (3.2).

Proof. For $m \in \left(1, \frac{3+\sqrt{5}}{2}\right]$, the quasi-greedy $(1+\sqrt{m})$ -expansion of 1 is of the form $2\mathbf{u} \in \{0, 1, 2\}^{\mathbb{N}}$ with $\overline{0} < \mathbf{u} \leq \overline{1}$. We show that the interval $(\overline{0}, \overline{1}] \subset \{0, 1, 2\}^{\mathbb{N}}$ admits the partition

$$\{[\sigma(0\overline{1}), \sigma(\overline{1})] : \sigma \in S^* \setminus S^*\tau_0\} \cup \{\{\mathbf{u}\} : \mathbf{u} \in \mathcal{S}_{\infty}\}.$$

Assume that $\mathbf{u} = u_0 u_1 \cdots \notin S$, i.e., (3.3) does not hold. Let $i \ge 1$ be minimal such that one of the equalities is not satisfied. Suppose first that $u_i u_{i+1} \cdots < \mathbf{u}$; then $u_{i-1} = 1$. Similarly to the proof of Lemma 3.6, let $\sigma_0 \in S$ be such that $u_0 \cdots u_{i-1} = \sigma_0(u'_0 \cdots u'_{i'-1})$ with $u'_0 \cdots u'_{i'-1} \neq 0 \cdots 0$. By minimality of i, we have $u'_{i'-1} = 1$, and $u'_0 \cdots u'_{i'-1} = 1 \cdots 1$ implies i' = 1. Define recursively substitutions $\sigma_j \in S$ until

$$\sigma_{[0,n]}(1) = u_0 u_1 \cdots u_{i-1}$$

Then we have $\mathbf{u} < \sigma_{[0,n]}(1) \mathbf{u} < \cdots < \sigma_{[0,n]}(\overline{1})$. By Lemma 3.4, we have $\sigma_{[0,n]}(0\overline{1}) < \mathbf{u}$.

Suppose now that $u_i u_{i+1} \cdots > 1 u_1 u_2 \cdots$. Then we have substitutions $\sigma_k = \tau_{h_k}$ such that

$$\sigma_{[0,n]}(0) = u_0 u_1 \cdots u_{i-1} \, 1 \, \sigma_0(1) \, \sigma_{[0,1]}(1) \cdots \sigma_{[0,n-1]}(1),$$

with $h_n \neq 0$. We have $\mathbf{u} > u_0 \overline{u_1 \cdots u_{i-1} \mathbf{1}}$, and the latter word is equal to $\sigma_{[0,n]}(0\overline{1})$ by Lemma 3.5 and its proof. Since $u_0 \cdots u_{i-1} < \sigma_{[0,n]}(1)$, we also have $\mathbf{u} < \sigma_{[0,n]}(\overline{1})$.

We have seen that each \mathbf{u} is the limit word of a primitive sequence of substitutions $\boldsymbol{\sigma} \in S^{\mathbb{N}}$ or between the extremal limit words of a non-primitive sequence $\boldsymbol{\sigma} \in S^{\mathbb{N}}$. To see that $\boldsymbol{\sigma}$ is unique, let \mathbf{u} and $\tilde{\mathbf{u}}$ be limit words of two different sequences $(\sigma_n)_{n\geq 0}$ and $(\tilde{\sigma}_n)_{n\geq 0}$. Let $n\geq 0$ be minimal such that $\sigma_n\neq \tilde{\sigma}_n$. Let $\sigma_n = \tau_h$, $\tilde{\sigma}_n = \tau_j$, and assume w.l.o.g. that h < j. Then we have $\tilde{\mathbf{u}} \leq \tilde{\sigma}_{[0,n]}(\bar{1}) \leq \sigma_{[0,n]}(\bar{0}) < \mathbf{u}$. Therefore, the intervals are disjoint.

3.3 Calculating the generalised golden ratio

We now prove that $\mathcal{G}(m)$ is as in Theorem KLP and Proposition 3.3.

Lemma 3.8. Let $m \in (1,2]$, $\beta \in [m, m+1]$, and $\mathbf{u} = u_0 u_1 \cdots \in \{0,1\}^{\mathbb{N}} \setminus \{\overline{0}\}$. Then $\mathbf{u} \in \mathcal{U}_{\beta}(m)$ if and only if

$$\frac{m}{\beta - 1} < 1 + \sum_{k=1}^{\infty} \frac{u_{i+k}}{\beta^k} < m$$

for all $i \geq 0$ such that $u_i = 1$.

Proof. As $q(\{0, 1, m\}) = 1 + m$, we have $\mathbf{u} \in \mathcal{U}_{\beta}(m)$ if and only if (2.1) and (2.2) hold for all $i \ge 0$, i.e., $\sum_{k=0}^{\infty} \frac{u_{i+k}}{\beta^k}$ must be in $U_0 = [0, 1)$ when $u_i = 0$ and in $U_1 = (\frac{m}{\beta-1}, m)$ when $u_i = 1$. Since $\beta \ge m$, we have $U_1\beta^{-k} \subset U_0$ for all $k \ge 1$, thus the conditions for $u_i = 0$ are automatically satisfied when those for $u_i = 1$ are satisfied.

Lemma 3.9. Let $\mathbf{u} \in S_{\infty}$, $m \in (1, 2]$. Then we have $\mathbf{u} \in \mathcal{U}_{1+\sqrt{m}}(m)$ if and only if $m = \mathfrak{m}_{\mathbf{u}}$. In particular, we have $\mathcal{G}(\mathfrak{m}_{\mathbf{u}}) \leq 1 + \sqrt{\mathfrak{m}_{\mathbf{u}}}$.

Proof. By Lemma 3.8, we have $\mathbf{u} = u_0 u_1 \cdots \in \mathcal{U}_{1+\sqrt{m}}(m)$ if and only if

$$\sqrt{m} < 1 + \sum_{k=1}^{\infty} \frac{u_{i+k}}{(1+\sqrt{m})^k} < m$$

for all $i \ge 0$ such that $u_i = 1$. By Lemma 3.6 and since **u** is aperiodic, $u_i = 1$ implies that $\mathbf{u} < u_{i+1}u_{i+2}\cdots < u_1u_2\cdots$. These bounds cannot be improved because, for all $n \ge 0$, $1\sigma_{[0,n]}(0)$ and $1\sigma_0(1)\cdots\sigma_{[0,n-1]}(1)$ (which is a suffix of $\sigma_{[0,n]}(0)$) are factors of **u**. Therefore, we have $\mathbf{u} \in \mathcal{U}_{1+\sqrt{m}}(m)$ if and only if

$$\sqrt{m} \le 1 + \sum_{k=1}^{\infty} \frac{u_k}{(1+\sqrt{m})^{k+1}}$$
 and $1 + \sum_{k=1}^{\infty} \frac{u_k}{(1+\sqrt{m})^k} \le m.$

This means that $1 + \sum_{k=1}^{\infty} u_k (1 + \sqrt{m})^{-k} = m$, i.e., $m = \mathfrak{m}_{\mathbf{u}}$.

Lemma 3.10. Let $\sigma \in S^*$ and m > 1. There is a unique number $f_{\sigma}(m) > 1$ such that

$$m = 1 + \sum_{k=1}^{\infty} \frac{\tilde{u}_k^{(\sigma)}}{f_{\sigma}(m)^k}.$$
(3.4)

We have $f'_{\sigma}(m) < 0$, $f_{\sigma}(\mathfrak{m}_{\sigma(0\overline{1})}) = 1 + \sqrt{\mathfrak{m}_{\sigma(0\overline{1})}}$, $f_{\sigma}(m) < 1 + \sqrt{m}$ if and only if $m > \mathfrak{m}_{\sigma(0\overline{1})}$, and $\sigma(\overline{1}) \notin \mathcal{U}_{f_{\sigma}(m)}(m)$ if $m \leq 2$.

Proof. Let $h_m(x) = 1 + \sum_{k=1}^{\infty} \tilde{u}_k^{(\sigma)} x^{-k} - m$. Then $\lim_{x \to 1} h_m(x) = \infty$, $\lim_{x \to \infty} h_m(x) = 1 - m < 0$, $h_m(x)$ is continuous and strictly monotonically decreasing, thus $f_{\sigma}(m)$ is the unique solution of $h_m(x) = 0$. We have

$$\frac{1}{f'_{\sigma}(m)} = -\sum_{k=1}^{\infty} \frac{k \tilde{u}_k^{(\sigma)}}{f_{\sigma}(m)^{k+1}} < 0,$$

 $\text{in particular } f_{\sigma}(m) < f_{\sigma}(\mathfrak{m}_{\sigma(0\overline{1})}) = 1 + \sqrt{\mathfrak{m}_{\sigma(0\overline{1})}} < 1 + \sqrt{m} \text{ for } m > \mathfrak{m}_{\sigma(0\overline{1})}.$

By Lemma 3.5, $1\tilde{u}_1^{(\sigma)}\tilde{u}_2^{(\sigma)}\cdots$ is a periodic word with the same period as $\sigma(\overline{1})$. Therefore, (3.4) and Lemma 3.8 imply that $\sigma(\overline{1}) \notin \mathcal{U}_{f_{\sigma}(m)}(m)$.

Lemma 3.11. Let $\sigma \in S^*$ and m > 1. There is a unique number $g_{\sigma}(m) > 1$ such that

$$\frac{m}{g_{\sigma}(m) - 1} = 1 + \sum_{k=0}^{\infty} \frac{u_k^{(\sigma)}}{g_{\sigma}(m)^{k+1}}.$$
(3.5)

We have $g'_{\sigma}(m) > 0$, $g_{\sigma}(\mathfrak{m}_{\sigma(\overline{1})}) = 1 + \sqrt{\mathfrak{m}_{\sigma(\overline{1})}}$, $g_{\sigma}(m) < 1 + \sqrt{m}$ if and only if $m < \mathfrak{m}_{\sigma(\overline{1})}$, and $\sigma(\overline{1}) \notin \mathcal{U}_{g_{\sigma}(m)}(m)$ if $m \leq 2$.

Proof. Setting $h_m(x) = \frac{m}{x-1} - 1 - \sum_{k=0}^{\infty} \frac{u_k^{(\sigma)}}{x^{k+1}}$, we have

$$h'_{m}(x) = \sum_{k=0}^{\infty} \frac{(k+1)u_{k}^{(\sigma)}}{x^{k+2}} - \frac{m}{(x-1)^{2}} \le \sum_{k=0}^{\infty} \frac{k+1}{x^{k+2}} - \frac{m}{(x-1)^{2}} = \frac{1-m}{(x-1)^{2}} < 0$$
(3.6)

for x > 1. Similarly the proof of Lemma 3.10, $g_{\sigma}(m)$ is the unique solution of $h_m(x) = 0$. (Note that $g_{\sigma}(m) = m$ if $\sigma(\overline{1}) = \overline{1}$.) We have

$$\frac{1}{g'_{\sigma}(m)} = \left(1 - g_{\sigma}(m)\right) h'_m(g_{\sigma}(m)) > 0.$$

Now, $g_{\sigma}(m) < 1 + \sqrt{m}$ is equivalent to $h_m(1 + \sqrt{m}) < 0$, i.e., $1 + \sum_{k=0}^{\infty} u_k^{(\sigma)} (1 + \sqrt{m})^{-k-1} > \sqrt{m}$. Similarly to Remark 3.2, this means that the quasi-greedy expansion of 1 is less than $2\sigma(\overline{1})$, i.e., $m < \mathfrak{m}_{\sigma(\overline{1})}$.

Since $1\sigma(\overline{1})$ is a suffix of $\sigma(\overline{1})$, (3.5) and Lemma 3.8 give that $\sigma(\overline{1}) \notin \mathcal{U}_{g_{\sigma}(m)}(m)$.

Lemma 3.12. Let $\sigma \in S^*$. There is a unique $\mu_{\sigma} \in \left(\mathfrak{m}_{\sigma(0\overline{1})}, \mathfrak{m}_{\sigma(\overline{1})}\right)$ with $f_{\sigma}(\mu_{\sigma}) = g_{\sigma}(\mu_{\sigma})$. We have $f_{\sigma}(\mu_{\sigma}) = g_{\sigma}(\mu_{\sigma}) \ge 2$, with equality if and only if $\sigma(\overline{1}) = \overline{0^{n}1}$ for some $n \ge 0$. If $m \in [\mathfrak{m}_{\sigma(0\overline{1})}, \mu_{\sigma}]$, then $\sigma(\overline{1}) \in \mathcal{U}_{\beta}(m)$ for all $\beta > f_{\sigma}(m)$, in particular $\mathcal{G}(m) \le f_{\sigma}(m)$. If $m \in [\mu_{\sigma}, \mathfrak{m}_{\sigma(\overline{1})}]$, then $\sigma(\overline{1}) \in \mathcal{U}_{\beta}(m)$ for all $\beta > g_{\sigma}(m)$, in particular $\mathcal{G}(m) \le g_{\sigma}(m)$.

Proof. The number μ_{σ} is well defined since f'(m) < 0, g'(m) > 0 on I_{σ} ,

$$f_{\sigma}(\mathfrak{m}_{\sigma(0\overline{1})}) = 1 + \sqrt{\mathfrak{m}_{\sigma(0\overline{1})}} > g_{\sigma}(\mathfrak{m}_{\sigma(0\overline{1})}) \text{ and } f_{\sigma}(\mathfrak{m}_{\sigma(\overline{1})}) < 1 + \sqrt{\mathfrak{m}_{\sigma(\overline{1})}} = g_{\sigma}(\mathfrak{m}_{\sigma(\overline{1})}).$$

If $\sigma(\overline{1}) = \overline{1}$, then $\mu_{\sigma} = \beta_{\sigma} = 2$. Assume in the following that $\sigma(\overline{1}) \neq \overline{1}$ and let $m = 1 + \sum_{k=0}^{\infty} u_k^{(\sigma)} 2^{-k-1}$, i.e., $g_{\sigma}(m) = 2$. By Lemma 3.5, we have $\sigma(\overline{1}) = \overline{0w1} \leq \overline{w01} = \widetilde{u}_1^{(\sigma)} \widetilde{u}_2^{(\sigma)} \cdots$ for some finite word w, thus

$$1 + \sum_{k=1}^{\infty} \frac{\tilde{u}_k^{(\sigma)}}{2^k} \ge 1 + \sum_{k=0}^{\infty} \frac{u_k^{(\sigma)}}{2^{k+1}} = m,$$

hence $f_{\sigma}(m) \geq 2 = g_{\sigma}(m)$. This implies that $\beta_{\sigma} \geq 2$. If $\beta_{\sigma} = 2$, then we must have 0w = w0, i.e., $w = 0 \cdots 0$. Therefore, $\beta_{\sigma} = 2$ is equivalent to $\sigma(\overline{1}) = \overline{0^n 1}$ for some $n \geq 0$.

Let now $m \in [\mathfrak{m}_{\sigma(0\overline{1})}, \mu_{\sigma}]$ and $\beta > f_{\sigma}(m)$, or $m \in [\mu_{\sigma}, \mathfrak{m}_{\sigma(\overline{1})}]$ and $\beta > g_{\sigma}(m)$. Then we also have $\beta > g_{\sigma}(m)$ and $\beta > f_{\sigma}(m)$ respectively. For $i \ge 0$ with $u_i^{(\sigma)} = 1$, we get

$$\frac{m}{\beta - 1} < 1 + \sum_{k=0}^{\infty} \frac{u_k^{(\sigma)}}{\beta^{k+1}} \le 1 + \sum_{k=1}^{\infty} \frac{u_{i+k}^{(\sigma)}}{\beta^k} \le 1 + \sum_{k=1}^{\infty} \frac{\tilde{u}_k^{(\sigma)}}{\beta^k} < m,$$

where the first inequality follows from $\beta > g_{\sigma}(m)$ and (3.6), the last inequality from $\beta > f_{\sigma}(m)$, and the middle inequalities are direct consequences of $\beta \ge 2$ and $\sigma(\overline{1}) \le u_{i+1}^{(\sigma)} u_{i+2}^{(\sigma)} \cdots \le \tilde{u}_1^{(\sigma)} \tilde{u}_2^{(\sigma)} \cdots$, which holds by Lemmas 3.6 and 3.5. Thus $\sigma(\overline{1}) \in \mathcal{U}_{\beta}(m)$.

The preceding lemmas show that $\mathcal{G}(m) \leq 1 + \sqrt{m}$ for all $m \in (1, 2]$. The next lemma justifies why we have restricted our attention to sequences in $\{0, 1\}^{\mathbb{N}}$.

Lemma 3.13. Let $m \in (1,2]$, $\beta \leq 1 + \sqrt{m}$, $u_0 u_1 \cdots \in \mathcal{U}_{\beta}(m)$. Then $u_i = m$ implies $u_0 \cdots u_i = m \cdots m$.

Proof. By Theorem P, $u_i = m$ implies that $\sum_{k=0}^{\infty} \frac{u_{i+k}}{\beta^k} > 1 + \frac{m}{\beta-1}$. If $i \ge 1$, we have thus $\sum_{k=0}^{\infty} \frac{u_{i-1+k}}{\beta^k} > u_{i-1} + \frac{1}{\beta} + \frac{m}{\beta(\beta-1)}$. As $\frac{1}{\beta} + \frac{m}{\beta(\beta-1)} \ge 1 \ge m-1$ by $\beta \le 1 + \sqrt{m}$ and $m \le 2$, condition (2.1) excludes that $u_{i-1} = 0$ or $u_{i-1} = 1$. Recursively, we obtain that $u_k = m$ for all $0 \le k \le m$.

Lemma 3.14. Let $m \in (1, 2]$, $\beta < 2$. Then $\mathcal{U}_{\beta}(m)$ is trivial.

Proof. Let $u_0 u_1 \dots \in \mathcal{U}_{\beta}(m)$. By Theorem P, we have $u_i \neq 1$ for all $i \geq 0$. Since $m \leq 1 + \frac{m}{\beta - 1}$, we have $m\overline{0} \notin \mathcal{U}_{\beta}(m)$, thus Lemma 3.13 implies that $\mathcal{U}_{\beta}(m) = \{\overline{0}, \overline{m}\}$.

Lemma 3.15. Let $m \in (1,2]$, $\beta \leq 1 + \sqrt{m}$, and $u_0 u_1 \dots \in \mathcal{U}_{\beta}(m) \cap \{0,1\}^{\mathbb{N}}$. Then we have $\inf\{u_{i+1}u_{i+2}\dots : i \geq 0, u_i = 1\} \in \mathcal{S}_{\infty} \cup \mathcal{S}_{\overline{1}}$.

Proof. Let $\tilde{\mathbf{u}} = \tilde{u}_0 \tilde{u}_1 \cdots = \inf\{u_{i+1} u_{i+2} \cdots : i \ge 0, u_i = 1\}$. Since $\tilde{\mathbf{u}} = \overline{1} \in S_{\overline{1}}$ when $\tilde{u}_0 = 1$, we assume in the following that $\tilde{u}_0 = 0$. For all $i \ge 0$ with $\tilde{u}_i = 1$, we have

$$\sum_{k=1}^{\infty} \frac{\tilde{u}_{i+k}}{\beta^k} < m-1 \le \beta \left(\frac{m}{\beta-1} - 1\right) \le \beta \sum_{k=0}^{\infty} \frac{\tilde{u}_k}{\beta^{k+1}} = \sum_{k=1}^{\infty} \frac{\tilde{u}_k}{\beta^k},$$

since $\beta U_1 - 1 = \left(\frac{m}{\beta-1} - 1, m - 1\right)$ and $\beta \leq 1 + \sqrt{m}$. As $\beta \geq 2$ by Lemma 3.14, we obtain that $\tilde{u}_i \tilde{u}_{i+1} \cdots < 1 \tilde{u}_1 \tilde{u}_2 \cdots$ for all $i \geq 0$. By the definition of $\tilde{\mathbf{u}}$, we also have $\tilde{u}_i \tilde{u}_{i+1} \cdots \geq \tilde{\mathbf{u}}$, thus $\tilde{\mathbf{u}} \in \mathcal{S}$ by Lemma 3.6. Moreover, we have $\tilde{\mathbf{u}} \notin \mathcal{S}_{0\bar{1}}$ by Lemma 3.5 and the strict inequalities $\tilde{u}_i \tilde{u}_{i+1} \cdots < 1 \tilde{u}_1 \tilde{u}_2 \cdots$ for all $i \geq 0$.

Remark 3.16. One obtains similarly that $\sup\{0u_{i+1}u_{i+2}\cdots:i\geq 0, u_i=1\}\in \mathcal{S}_{\infty}\cup \mathcal{S}_{0\overline{1}}$.

Proposition 3.17. We have

$$\mathcal{G}(m) = \begin{cases} 1 + \sqrt{m} & \text{if } m \in \{\mathbf{m}_{\mathbf{u}} : \mathbf{u} \in \mathcal{S}_{\infty}\}, \\ f_{\sigma}(m) & \text{if } m \in [\mathbf{m}_{\sigma(0\overline{1})}, \mu_{\sigma}], \sigma \in S^*, \\ g_{\sigma}(m) & \text{if } m \in [\mu_{\sigma}, \mathbf{m}_{\sigma(\overline{1})}], \sigma \in S^*. \end{cases}$$

Proof. Let $\beta \geq 2$, $\mathbf{u} \in \mathcal{U}_{\beta}(m) \cap \{0,1\}^{\mathbb{N}}$ and $\tilde{\mathbf{u}}$ as in Lemma 3.15. Then $\tilde{\mathbf{u}} \in \mathcal{U}_{\tilde{\beta}}(m)$ for all $\tilde{\beta} > \beta$. If $\tilde{\mathbf{u}} \in \mathcal{S}_{\infty}$, then Lemma 3.9 gives that $\beta \geq 1 + \sqrt{m}$. If $\tilde{\mathbf{u}} = \sigma(\bar{1}), \sigma \in S^*$, then $\beta \geq \max\{f_{\sigma}(m), g_{\sigma}(m)\}$ by Lemmas 3.10 and 3.11. This implies that $\beta \geq f_{\sigma}(m)$ if $m \in [\mathfrak{m}_{\sigma(0\bar{1})}, \mu_{\sigma}], \beta \geq g_{\sigma}(m)$ if $m \in [\mu_{\sigma}, \mathfrak{m}_{\sigma(\bar{1})}]$, and $\beta \geq 1 + \sqrt{m}$ otherwise. The opposite inequalities are also proved in Lemmas 3.9, 3.10 and 3.11. \Box

The previous lemmas prove Theorem KLP and Proposition 3.3.

Proof of Theorem 2. Lemmas 3.10 and 3.11 show that $\mathcal{G}(m)$ is differentiable on $(1,2]\setminus (\mathfrak{M}\cup\{\mu_{\sigma}:\sigma\in S^*\})$. By Proposition 3.17, Lemmas 3.10 and 3.11, and the continuity of \mathcal{G} on (1,2], the total variation is

$$\sum_{\sigma \in S^* \setminus S^* \tau_0} \left(\mathcal{G}(\mathfrak{m}_{\sigma(0\overline{1})}) - \mathcal{G}(\mu_{\sigma}) \right) + \sum_{\sigma \in S^* \setminus S^* \tau_0: \, \sigma(1) \neq 1} \left(\mathcal{G}(\mathfrak{m}_{\sigma(\overline{1})}) - \mathcal{G}(\mu_{\sigma}) \right)$$

As $\lim_{m\to 1^+} \mathcal{G}(m) = 2 = \mathcal{G}(2)$, the two sums are equal. For $\sigma \in S^*$ with $\sigma(1) \neq 1$, we have

$$\frac{1}{\mathcal{G}'(m)} = \frac{m}{\mathcal{G}(m) - 1} - \left(\mathcal{G}(m) - 1\right) \sum_{k=1}^{\infty} \frac{(k+1)u_k^{(\sigma)}}{\mathcal{G}(m)^{k+2}} = 1 - \sum_{k=1}^{\infty} \left(k - \frac{k+1}{\mathcal{G}(m)}\right) \frac{u_k^{(\sigma)}}{\mathcal{G}(m)^{k+1}} \\ > 1 - \sum_{k=2}^{\infty} \left(k - \frac{k+1}{\mathcal{G}(m)}\right) \frac{1}{\mathcal{G}(m)^{k+1}} = 1 - \frac{2}{\mathcal{G}(m)^3} \ge \frac{3}{4}$$

for all $m \in (\mu_{\sigma}, \mathfrak{m}_{\sigma(\overline{1})})$. As the length of the intervals is less than 1, the total variation is less than 8/3.

The derivative is unbounded because we have

$$\left|\frac{1}{\mathcal{G}'(m)}\right| = \sum_{k=1}^{\infty} \frac{k\tilde{u}_k^{(\sigma)}}{\mathcal{G}(m)^{k+1}} \le \sum_{k=h+1}^{\infty} \frac{k}{2^{k+1}} = \frac{h+2}{2^{h+1}}$$

for all $m \in \left(\mathfrak{m}_{\sigma(0\overline{1})}, \mu_{\sigma}\right)$ with $\sigma \in \tau_h S^*$.

Proof of Theorem 4. Let $2^h \leq m \leq \left(1 + \sqrt{\frac{m}{m-1}}\right)^h$ and $m' = \frac{m}{m-1}$. Since $\tau^h(\overline{1}) = \overline{0^h 1}$ and $\tau^h(0\overline{1}) = 0 \overline{0^h 1}$, we have $\beta_{\tau_h} = 2$, $\mu_{\tau_h} = \frac{2^h}{2^{h-1}}$, $\mathfrak{m}_{\tau^h(\overline{1})}/(\mathfrak{m}_{\tau^h(\overline{1})} - 1) = (1 + \sqrt{\mathfrak{m}_{\tau^h(\overline{1})}})^h$, thus $m' \in [\mathfrak{m}_{\tau^h(\overline{1})}, \mu_{\tau_h}]$ and $m' - 1 = \frac{1}{\mathcal{G}(m')^{h-1}}$.

3.4 Hausdorff dimension of \mathfrak{M}

In this section we show that the Hausdorff dimension of \mathfrak{M} is 0.

Proof of Theorem 3. It suffices to show that $\dim_H(\mathcal{G}(\mathfrak{M})) = 0$ because $\mathcal{G} : \mathfrak{M} \to \mathbb{R}$ is given by $\mathcal{G}(m) = 1 + \sqrt{m}$, and $1 + \sqrt{m}$ is a bilipschitz on the interval (1, 2].

Given $m \in \mathfrak{M}$, we know by Proposition 3.3 that $m = \mathfrak{m}_{\mathbf{u}}$ for some $\mathbf{u} \in \mathcal{S} \setminus \{\overline{1}\}$. Remark 3.2 states that $2\mathbf{u}$ is also the quasi-greedy expansion of 1 in base $1 + \sqrt{\mathfrak{m}_{\mathbf{u}}}$. Therefore, for each $n \in \mathbb{N}$ we have

 $1 + \sqrt{\mathfrak{m}_{\mathbf{u}}} \in C_{2u_1 \cdots u_n} := \{\beta > 1 : \text{the quasi-greedy expansion of 1 in base } \beta \text{ starts with } 2u_1 \cdots u_n \}.$ We have $C_{2u_1 \cdots u_n} \subset [2, \infty)$ and, hence, the diameter of $C_{2u_1 \cdots u_n}$ is at most 2^{-n} , e.g., by a lemma of Schmeling [10, Lemma 4.1].

We now prove $\dim_H(\mathcal{G}(\mathfrak{M})) = 0$ by explicitly constructing a cover. We introduce the set

 $L_n := \{ u_1 \cdots u_n \in \{0, 1\}^n : 0u_1 \cdots u_n \text{ is a prefix of an element of } \mathcal{S} \}.$

For each $n \in \mathbb{N}$ we have

$$\mathcal{G}(\mathfrak{M}) \subset \bigcup_{u_1 \cdots u_n \in L_n} C_{2u_1 \cdots u_n}$$

So the set $\{C_{2u_1\cdots u_n}: u_1\cdots u_n \in L_n\}$ is a cover of $\mathcal{G}(\mathfrak{M})$. Let s > 0 be arbitrary and $\mathcal{H}^s(\cdot)$ denote the *s*-dimensional Hausdorff measure. We observe

$$\mathcal{H}^{s}(\mathcal{G}(\mathfrak{M})) \leq \lim_{n \to \infty} \sum_{u_{1} \cdots u_{n} \in L_{n}} \operatorname{Diam}(C_{2u_{1} \cdots u_{n}})^{s} \leq \lim_{n \to \infty} \frac{\#L_{n}}{2^{ns}}$$

As was pointed out in Remark 3.1, every element of S is a Sturmian sequence. Thus it is a consequence of Theorem 2.2.36 from [5] that $\#L_n$ grows at most polynomially in n. Therefore $\lim_{n\to\infty} \#L_n 2^{-ns} = 0$ and $\dim_H(\mathfrak{M}) \leq s$. Since s is arbitrary we are done.

4 Behaviour at the generalised golden ratio

In this section we discuss the behaviour of the univoque set at the generalised golden ratio. It was observed in [1] that when $\beta = \mathcal{G}(L)$ for some $L \in \mathbb{N}$, then every $x \in (0, \frac{L}{\beta-1})$ either has a countable infinite of expansions or a continuum of expansions. In other words $U_{\mathcal{G}(L)}(L)$ is still trivial. However, Lemma 3.9 demonstrates that this is not always the case. Indeed the following result is an immediate consequence of this lemma.

Proposition 4.1. There exists A for which $U_{\mathcal{G}(A)}(A)$ is non-trivial.

In [9] it was shown that the smallest $\beta \in (1, 2)$ for which an x has precisely two expansions over the alphabet $\{0, 1\}$ was $\beta_2 \approx 1.71064$. In other words, there is a small gap between the golden ratio for the alphabet $\{0, 1\}$, and the smallest β for which an x has precisely two expansion. As we show below, for certain alphabets it is possible that an x has precisely two expansions at the golden ratio.

Proposition 4.2. For every $m \in \mathfrak{M}$, the number $m/\mathcal{G}(m)$ has precisely two expansions in base $\mathcal{G}(m)$ over the alphabet $\{0, 1, m\}$.

Proof. Let $\mathbf{u} \in \mathcal{S}$ be such that $m = \mathfrak{m}_{\mathbf{u}}$, let $\beta = \mathcal{G}(m) = 1 + \sqrt{m}$ and let $m/\beta = \sum_{k=1}^{\infty} v_k \beta^{-k}$ be an expansion of m/β over the alphabet $\{0, 1, m\}$. Since $m > \frac{m}{\beta-1}$, we have $v_1 \in \{1, m\}$, thus $\sum_{k=1}^{\infty} v_{k+1}\beta^{-k}$ equals m-1 and 0 respectively. Clearly, 0 has a unique expansion, and m-1 has the expansion $u_1u_2\cdots$ by (3.1), which is also unique.

Acknowledgements The authors are grateful to Vilmos Komornik for posing the questions that lead to this research.

References

- [1] S. Baker, Generalized golden ratios over integer alphabets, Integers 14 (2014), Paper No. A15, 28 pp.
- [2] Z. Daróczy, I. Katai, Univoque sequences, Publ. Math. Debrecen 42 (1993), 397–407.
- [3] P. Erdős, I. Joó, V. Komornik, Characterization of the unique expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ and related problems, Bull. Soc. Math. Fr. **118** (1990), 377–390.
- [4] V. Komornik, A.C. Lai, M. Pedicini, Generalized golden ratios of ternary alphabets, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 4, 1113–1146.
- [5] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, 90. Cambridge University Press, Cambridge, 2002. xiv+504 pp. ISBN: 0-521-81220-8
- [6] W. Parry, On the β -expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960) 401–416.
- [7] M. Pedicini, Greedy expansions and sets with deleted digits, Theoret. Comput. Sci. 332 (2005), no. 1-3, 313–336.
- [8] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957) 477–493.
- [9] N. Sidorov, Expansions in non-integer bases: lower, middle and top orders, J. Number Th. 129 (2009), 741–754.
- [10] J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 675–694.