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Abstract

A finite element numerical solution of the Lotka-Volterra competition-
diffusion model of theoretical ecology is presented which depends on
a conservation-based moving mesh. The model parameters are cho-
sen such that the competition is strong enough to spatially segregate
the two populations, leading to a two-phase problem with a coupling
condition at the moving interface. Incorporation of the moving inter-
face into the finite element solution preserves the identities of the two
species in space and time, enabling parameters to be referred to each
separate population as the interface moves.

1 Introduction

We consider the application of a conservation-based moving mesh finite el-
ement method [1, 3] to a model of population dynamics. A version of
the Lotka-Volterra competition model is taken that describes a two-phase
segregated reaction-diffusion system and the moving mesh method imple-
mented for this system. We examine a two-phase Lotka-Volterra competition-
diffusion system with a high competition limit, so that the species are com-
pletely spatially segregated and interact only though their interface using an
interface condition based on this high competition limit [4, 6].
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The model is implemented numerically with a variety of creative param-
eter combinations, and various behaviours are observed which dominate in
turn as the populations evolve through time.

It is shown in [4] that where competition is strong enough to spatially
segregate two populations the Lotka-Volterra PDE system can be reduced to
a form similar to a Stefan problem, The Stefan problem has been considered
numerically in [2] usiing a moving mesh finite element method based on con-
servation (MMFEM). The two major differences between the Stefan model
and the Lotka-Volterra model are, firstly, there are additional logistic growth
terms in the Lotka-Volterra model, and secondly, there is a parameter in the
Lotka-Volterra model of the interface (the equivalent of the latent heat coef-
ficient of the Stefan problem) which is set equal to zero. In biological terms,
one species does not transform into another, which means that unlike the
Stefan problem the competition system has an interface condition that does
not specify an interface velocity. This presents a challenge when attempting
to apply the same approach to the Lotka-Volterra model as to the Stefan
problem in [2] because that paper uses the interface velocity taken directly
from that condition.

However, the moving mesh finite element method approach in [2] is a
promising way to model the competition system because it not only directly
tracks the evolution of the interface between species, it provides a framework
for keeping particular mesh nodes attached to particular species. This means
that the internal dynamics of a species can be assigned to particular nodes
or elements rather than particular parts of space, and the dynamics for any
given location will automatically be those of the correct species.

In this paper we model, in one dimension, the system described by Hil-
horst et al. [4] using a moving mesh finite element method (MMFEM) de-
veloped from that in [2]. We demonstrate that the MMFEM method can
be extended to include logistic growth terms and also applied to problems
without an explicit formula for the interface velocity.

2 The Lotka-Volterra system

The Lotka-Volterra system studied is the two-component reaction-diffusion
system

∂u1
∂t

= δ1
∂2u1
∂x2

+ f(u1, u2)u1 x ∈ R1(t), t > 0 (1)
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∂u2
∂t

= δ2
∂2u2
∂x2

+ g(u1, u2)u2 x ∈ R2(t) t > 0 (2)

where δ1, δ2 are constant diffusion coefficients and with (in general)

f(u1, u2) = r1

(
1− u1 +K1u2

k1

)

g(u1, u2) = r2

(
1− u2 +K2u1

k2

)
.

Here u1(x, t) and u2(x, t) are the positive population densities of two compet-
ing species in adjacent regions R1(t) and R2(t), the k1, k2 are the respective
carrying capacities of the species, the K1, K2 are species-specific competition
rates, and r1, r2 are reproductive rate parameters.

In [4] it is demonstrated that for two species completely segregated the
reaction terms can be reduced to

f(u1, u2) = r1(1− u1/k1)

g(u1, u2) = r2(1− u2/k2).

so that (1) and (2) become

∂u1
∂t

= δ1
∂2u1
∂x2

+ {r1(1− u1/k1)}u1 x ∈ R1(t), t > 0 (3)

∂u2
∂t

= δ2
∂2u2
∂x2

+ {r2(1− u2/k2)}u2 x ∈ R2(t) t > 0 (4)

The resulting system represents the limit in which the K1, K2 values are
very large, i.e. the competition rate is high enough that the two species
cannot coexist in space. In the region populated by species 1, u2 = 0, and in
the region populated by species 2, u1 = 0.

2.1 Boundary and initial conditions

At the interface between the two species there is a condition that gives the
relationship between their fluxes. In essence, the species both flow into the
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Figure 1: Initial conditions for the competition system, with population den-
sity U1 of species 1 (on the left) and U2 of species 2 (on the right). The
interface node has zero population and must always satisfy the interface con-
dition.

interface and annihilate each other in a ratio determined by the competition
coefficient µ. This condition is given in [4] as

µδ1
∂u1
∂x

= −δ2
∂u2
∂x

(5)

where µ = K2/K1. We call µ the interspecies competition rate. Because the
annihilation is complete we also have a zero Dirichlet condition,

u1 = u2 = 0,

at the interface. Zero Neumann boundary conditions ∂u1/∂x = 0 and
∂u2/∂x = 0 are applied at fixed external boundaries away from the interface.

Initial conditions on u1 and u2 are not given in [4], but we select suitable
initial conditions and physical parameters such that one species is in growth
and the other in decline. The initial conditions are shown in figure (1).
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3 The MMFEM conservation method

3.1 Weak forms

We begin by writing the governing Lotka-Volterra equations (3) and (4) in
the weak forms∫
Rp(t)

w(x, t)
∂up
∂t

dx = δp

∫
Rp(t)

w(x, t)
∂2up
∂x2

dx+rp

∫
Rp(t)

w(x, t)up

(
1− u1

k1

)
dx,

(6)
(p = 1, 2), where w(x, t) is a positive test function.

3.2 A relative conservation principle

The total population of each species is defined as θp, given by

θp(t) =

∫
Rp(t)

up(x, t) dx (7)

(p = 1, 2), where Rp(t) is the domain inhabited by that species.
We now introduce a relative conservation principle in each domain for

each species in terms of θp(t) as

1

θp(t)

∫
Rp(t)

w(x, t)up(x, t) dx = cp, (p = 1, 2), (8)

where the population fractions cp depend on the test function w but are
otherwise independent of time. The constants cp are determined from the
initial conditions at time t = 0, i.e.

cp =
1

θp(0)

∫
Rp(0)

w(x, 0)up(x, 0) dx.

We write the relative conservation principles (8) as∫
Rp(t)

w(x, t)up(x, t) dx = cpθp(t) = cp

∫
Rp(t)

up(x, t) dx, (p = 1, 2). (9)

Differentiating with respect to time and using Leibnitz Integral Rule, the left
hand side of (9) becomes

d

dt

[∫
Rp(t)

w(x, t)up(x, t)dx

]
=

∫
Rp(t)

(
∂(wup)

∂t
+

∂

∂x
(wupvp

)
dx, (10)
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where vp(x, t) is the domain velocity. We suppose that the test function
w(x, t) moves with the velocity vp(x, t) induced by (8), so that

∂w

∂t
+ vp

∂w

∂x
= 0

Hence (10) becomes

d

dt

[∫
Rp(t)

w(x, t)up(x, t)dx

]
=

∫
Rp(t)

w(x, t)
∂

∂x
(upvpdx−

∫
Rp(t)

w(x, t)
∂up
∂t

dx.

Therefore, by (9), the velocity vp and rate of change of the total mass θ̇p in
each region are given in terms of the constants cp by

cpθ̇p −
∫
Rp(t)

w(x, t)
∂

∂x
(upẋp)dx =

∫
Rp(t)

w(x, t)
∂up
∂t

dx, (p = 1, 2). (11)

The boundary conditions have yet to be applied.

3.3 A velocity potentlal

At this point it is convenient to introduce a velocity potential φp, defined by

vp =
∂φp
∂x

(12)

so that equation (11) becomes

cpθ̇p −
∫
Rp(t)

w(x, t)
∂

∂x

(
up
∂φp
∂x

)
dx =

∫
Rp(t)

w(x, t)
∂up
∂t

dx,

for each species, or after integration by parts,

cpθ̇p−
[
wup

∂φp
∂x

]
∂Rp(t)

+

∫
Rp(t)

up(x, t)
∂w

∂x

∂φp
∂x

dx =

∫
Rp(t)

w(x, t)
∂up
∂t

dx. (13)

3.4 Substituting the Lotka-Volterra equations

We now substitute the weak form of the governing PDEs (6) into the right
hand side of (13), giving after a further integration by parts,

δp

[
w
∂up
∂x

]
∂Rp(t)

−δp
∫
Rp(t)

∂w

∂x

∂up
∂x

dx+rp

∫
Rp(t)

w(x, t)up(x, t)

(
1− up(x, t)

kp

)
dx.
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At the external boundaries ∂up/∂x = 0 and also vp = ∂φ/∂x = 0 because
the boundaries are fixed. Together with the condition that up = 0 on the
interface boundary, equation (13) for the velocity potential φp and the rate
of change of the total mass θ̇p for species p becomes

cpθ̇p +

∫
Rp(t)

up(x, t)
∂w

∂x

∂φp
∂x

dx = (−1)pδp

(
w
∂up
∂x

)∣∣∣∣
xm(t)

− δp
∫
Rp(t)

∂w

∂x

∂up
∂x

dx

+ rp

∫
Rp(t)

w(x, t)up(x, t)

(
1− up(x, t)

kp

)
dx

(14)

(p = 1, 2), where xm(t) is the interface.
Given the constants cp, equation (14) is solved for the velocity potential

φp and the rate of change of the total mass θ̇p for each species, and the
velocities derived from (12).

In particular, for a test function w equal to unity, so that cp = 1 from
(7), equation (14) reduces to

θ̇p = (−1)pδp

(
∂up
∂x

)∣∣∣∣
xm(t)

+ rp

∫
Rp(t)

up(x, t)

(
1− up(x, t)

kp

)
dx (15)

which determines θ̇p.
We now consider the interface motion.

3.5 The interface condition

If this problem were a standard Stefan problem we would, as in [2], use the
Stefan condition at the interface in the form

kS
∂u1
∂x
− kL

∂u2
∂x

= λvm

(where kS, kL, λ are given parameters and vm is the interface velocity) to
determine vm in terms of u1 and u2. In contrast, the interface condition (5)
for the competition system is

µδ1
∂u1
∂x

= −δ2
∂u2
∂x

,

equivalent to the Stefan condition with λ = 0, not containing the velocity
vm.
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Moreover, the Stefan condition refers to a situation where the gradients
of u either side of the interface are of the same sign in general. In contrast,
equation (5) refers to an interface where the gradients either side are of
opposite polarity, since u = 0 on the interface and the method requires
positive populations, i.e. we have interfaces with ’V’ shaped functions.

Whilst the interface velocity is not given explicitly by (5) the expression
does contain information about the location of the interface implicitly. Thus,
if we know ∂u/∂x in the interior of each region adjacent to the interface, we
may use the fact that u = 0 at the interface to infer an interface position.
We therefore seek an interface position such that the values of ∂u/∂x either
side of the interface are in the ratio −µ.

3.5.1 Approximating the interface condition

We shall adopt an explicit time-stepping approach which allows us to update
the species and the interface simultaneously, but only to first order in time
and subject to stability limitations on the time step. Should there be a
problem in this regard, a suitable alternative would be to use an implicit time
integration scheme, which would accord the ability to reassign the interface
position.

At any given time t we approximate the interface condition (5) in the
finite difference form

µδ1
u1,m − u1,m−1

xm − xm−1

= −δ2
u2,m+1 − u2,m
xm+1 − xm

,

where the subscript m denotes the interface node and the xi, up,i, (i = m −
1,m,m+1), (p = 1, 2), are adjacent node positions and solution values. Since
um = 0 we obtain an expression for the position of the interface node xm in
terms of adjacent nodal values at m± 1 as

xm =

(
µδ1u1,m−1xm+1 + δ2u2,m+1xm−1

µδ1u1,m−1 + δ2u2,m+1

)
. (16)

In order to align the interface movement with the velocity-based descrip-
tion in (14) it is appropriate to calculate a velocity which can be used along-
side the nodal velocities. This grants more flexibility in the chosen time
integration scheme. We therefore construct from (16) an approximate veloc-
ity

ẋm =
xm − xnm

∆t
=

(
(µδ1un1,m−1x

n
m+1+δ2u

n
2,m+1x

n
m−1)

(µδ1un1,m−1+δ2u
n
2,m+1)

− xnm
)

∆t
. (17)
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where ∆t is the time step.

3.6 Finite elements and modified basis functions

We now consider spatial approximation of the velocities of the species in the
two phases. Let the regions R1(t) = [0, xm(t)] and R2(t) = [xm(t), 1], where
xm(t) is the position of the interface. Define the mesh

0 = X0 < X1(t) < . . . < Xm(t) < . . . < XN(t) < XN+1 = 1

and choose the test function w(x, t) to be a member of the set {W} of stan-
dard piecewise-linear positive basis functions Wi (0 < i < N + 1) appropri-
ate to Neumann boundary conditions, except for Wm−1,Wm,Wm+1. With the
known value of the population at the interface node Xm(t) in mind we discard
the test function Wm and augment the adjacent test functions Wm−1,Wm+1

by those parts of Wm lying in the relevant phase. The resulting set of test
functions, {W̃i} say, called modified test functions in [5, 6], form a partition
of unity in each phase.

The population densities up in each phase are now approximated by
piecewise-linear functions Up, (p = 1, 2), projections of up into the spaces
spanned by the {W̃i}.

The total populations in the two phases are then

Θ1(t) =

∫ Xm(t)

0

U(x, t) dx, Θ2(t) =

∫ 1

Xm(t)

U(x, t) dx (18)

and the relative conservation principles in the two phases are

1

Θ1(t)

∫ Xm(t)

0

Wi U1(x, t) dx = c1,i,
1

Θ2(t)

∫ 1

Xm(t)

Wi U2(x, t) dx = c2,i.

where the constant-in-time partial populations c1,i and c2,i are obtained from
(8) and the initial conditions at t = 0, giving

c1,i =
1

Θ1(0)

∫ Xm(0)

0

W̃i(x, 0)U1(x, 0)dx, c2,i =
1

Θ2(0)

∫ 1

Xm(0)

W̃i(x, 0)U2(x, 0)dx.

Note that due to the construction of the W̃i both
∑m−1

i=0 c1,i and
∑N+1

i=m+1 c2,i
are equal to unity.
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3.6.1 The finite element velocity potentials

We now substitute piecewise-linear finite element functions Φ1,Φ2 for φ1, φ2

into (14) to obtain, in phase 1,∫ Xm(t)

0

U1(x, t)
∂W̃i

∂x

∂Φ1

∂x
dx = −c1,iΘ̇1 − δ1

∫ Xm(t)

0

∂W̃i

∂x

∂U1

∂x
dx+ δ1

(
Wi

∂U1

∂x

)∣∣∣∣
m(t)

+ r1

∫ Xm(t)

0

W̃i(x, t)U1(x, t)

(
1− U1(x, t)

k1

)
dx, (i = 0, . . . ,m) (19)

and, in phase 2,∫ 1

Xm(t)

U2(x, t)
∂W̃i

∂x

∂Φ2

∂x
dx = −c2,iΘ̇2 − δ2

∫ 1

Xm(t)

∂W̃i

∂x

∂U2

∂x
dx− δ2

(
Wi

∂U2

∂x

)∣∣∣∣
m(t)

+ r2

∫ 1

Xm(t)

W̃i(x, t)U2(x, t)

(
1− U2(x, t)

k2

)
dx, (i = m, . . . , N + 1).

(20)

The final integrals in (19) and (20) may be evaluated exactly using Simpson’s
rule.

Since the W̃i form a partition of unity in each phase, the rates of change
θ̇1 and θ̇2 of the populations are obtained by summing (19) and (20) over the
relevant i to obtain

Θ̇1 = δ1
∂U1

∂x

∣∣∣∣
Xm(t)

+ r1

∫ Xm(t)

0

U1(x, t)

(
1− U1(x, t)

k1

)
dx (21)

and

Θ̇2 = − δ2
∂U2

∂x

∣∣∣∣
Xm(t)

+ r2

∫ 1

Xm(t)

U2(x, t)

(
1− U2(x, t)

k2

)
dx. (22)

We solve equations (21) and (22) for Θ̇1 and Θ̇2, followed by (19) and
(20) for Φ1,Φ2, respectively, with a zero Dirichlet condition on Φ1 or Φ2 at
the interface (which is no restriction since only the derivatives of Φ1,Φ2 are
required for the velocities).

3.6.2 The finite element velocities

In order to derive the finite element nodal velocities V1(x, t), V2(x, t) from
Φ1,Φ2 we return to the definition (12) of v in terms of φ, now written in the
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weak forms ∫ Xm(t)

0

W̃i(x, t)V1(x, t) dx =

∫ Xm(t)

0

W̃i
∂Φ1

∂x
dx (23)

in phase 1, or ∫ 1

Xm(t)

W̃i(x, t)V2(x, t) dx =

∫ 1

Xm(t)

W̃i
∂Φ2

∂x
dx (24)

in phase 2, and solve for V1 and V2, except at the interface where (17) is
applied.

3.6.3 The finite element mesh

Having obtained the velocities V1(x, t) and V2(x, t), we derive piecewise-linear
nodal functionsX1(x, t), X2(x, t) at the new time level using the explicit Euler
time-stepping scheme with a stable time step ∆t chosen to ensure stability.
We also update Θ1 and Θ2 from (21) and (22) using the same scheme.

For the interface itself we apply the explicit Euler scheme to the interface
velocity (17), resulting in

Xn+1
m =

(
µ δ1 U

n
1,m−1X

n
m+1 + δ2 U

n
2,m+1X

n
m−1

µ δ1 Un
1,m−1 + δ2 Un

2,m+1

)
(25)

3.6.4 The finite element population densities

We now use (9) to determine the finite element population densities U1(x, t)
and U2(x, t) at the new time step t = tn+1. For species 1 we have∫ Xm(t)

0

W̃i(x, t)U1(x, t) dx = c1,iΘ1(t) (26)

and for species 2, ∫ 1

Xm(t)

W̃i(x, t)U2(x, t) dx = c2,iΘ2(t). (27)

We solve (26) and (27) for the positive densities U1(x, t
n+1) and U2(x, t

n+1)
with the zero Dirichlet condition at the interface imposed strongly.
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3.7 Matrix forms

3.7.1 The velocity potentials

We expand Φ1(x, t),Φ2(x, t) in terms of standard piecewise-linear basis func-
tions Wj(x, t) as

Φ1(x, t) =
m−1∑
j=0

Φ1,jWj(x, t), Φ2(x, t) =
N+1∑
j=m+1

Φ2,jWj(x, t)

These forms may be substituted into (19) and (20), where Θ̇1 is given by
(21) and Θ̇2 by (22), and the resulting systems written in matrix form.

Equations (19) and (20) can then be expressed in the form

K̃(U1) Φ1 = f̃
1

K̃(U2) Φ2 = f̃
2

(28)

where K̃(U1), K̃(U2) are weighted stiffness matrices constructed with the
modified basis functions W̃i, having entries∫ Xm(t)

0

U1(x, t)(W̃i)x (Wj)x dx, (i, j = 0, . . . ,m− 1),

and ∫ 1

Xm(t)

U2(x, t)(W̃i)x (Wj)x dx, (i, j = m+ 1, . . . , N + 1).

The vector Φp contains the coefficients Φp,j, (p = 1, 2), and f̃
p
, f̃

p
, are vectors

whose entries are the right hand sides of (19),(20), respectively.
Since the matrices K̃(U1) and K̃(U2) are both singular (the rows of the

left hand sides of both (19) and (20) sum to zero), each of the systems (28)
have an infinity of solutions. We set Φp,m = 0 at the interface node to obtain
unique solutions for Φ1(x, t) and Φ2(x, t). (The rates of change Θ̇1 and Θ̇2

can be found in a straightforward manner by simply summing the rows of
equations (28).)

3.7.2 The velocities

In order to derive the velocities we use the expansions

V1(x, t) =
m−1∑
j=0

V1,j(t)Wj(x, t), V2(x, t) =
N+1∑
j=m+1

V2,j(t)Wj(x, t)

12



substituted into equation (23) and (24) to obtain

m−1∑
j=0

[∫ Xm(t)

0

W̃iWjdx

]
V1,j =

m−1∑
j=0

[∫ Xm(t)

0

W̃i
∂Wj

∂x
dx

]
Φ1,j (29)

and

N+1∑
j=m+1

[∫ 1

Xm(t)

W̃iWjdx

]
V2,j =

N+1∑
j=m+1

[∫ 1

Xm(t)

W̃i
∂Wj

∂x
dx

]
Φ2,j (30)

In matrix form equations (29) and (30) can be written

M̃1V 1 = B̃1Φ1 M̃2V 2 = B̃2Φ2. (31)

where M̃1, B̃1 are matrices with entries∫ Xm(t)

0

W̃iWj dx,

∫ Xm(t)

0

W̃i (Wx)j dx, (i, j = 1, . . . ,m− 1) (32)

and the vectors V 1, Φ1 contain the values of V1,j, Φ1,j, (j = 1, . . . ,m − 1).
Similarly, M̃2, B̃2 have entries∫ 1

Xm(t)

W̃iWj dx,

∫ 1

Xm(t)

W̃i (Wx)j dx, (i, j = m+ 1, . . . , N + 1), (33)

and V 2,j, Φ2 contain the values of V2,j, Φ2,j, (j = m+ 1, . . . , N + 1).

The explicit Euler scheme is applied to Vp,j(t), Θ̇p(t), (p = 1, 2), as well
as Xm (using (17)) to give all the Xp,j and the Θp.

3.7.3 The population densities

Once the nodes Xp,j and the Θp have been found at the new time level,
U1(x, t) and U2(x, t) are determined on the updated grid from (8).

Expanding U1(x, t), U2(x, t) in terms of standard piecewise-linear basis
functions Wj(x, t) (as are appropriate to Neumann conditions at external
boundaries),

U1(x, t) =
m−1∑
j=0

U1,j(t)Wj(x, t), U2(x, t) =
N+1∑
j=m+1

U2,j(t)Wj(x, t)

13



equations (8) become

1

Θ1(t)

∫ Xm(t)

0

W̃i

m−1∑
j=0

U1,j(t)Wj(x, t) dx = C̃1,i,

and
1

Θ2(t)

∫ 1

Xm(t)

W̃i

N+1∑
j=m+1

U2,j(t)Wj(x, t) dx = C̃2,i,

say. In matrix form these are

M̃1U1 = C̃1Θ1(t) and M̃2U2 = C̃2Θ2(t), (34)

where M̃1, M̃2 are matrices with entries given by the first of (32) and the first
of (33), Up, (p = 1, 2), are vectors containing the Up,j, and C̃1, C̃2 are vectors

with entries C̃1,i, (i = 0, . . . ,m− 1), C̃2,i, (i = m+ 1, . . . , 1), respectively.
To find the constants C̃1,i and C̃2,i we set t = 0 and use the initial

conditions in (34). For each subsequent time step we calculate the mass
matrices M̃1 and M̃2 on the updated grid. We can then obtain the updated
U1 and U2 from (34).

In summary, the conservation-based moving mesh finite element solution
of the competition problem given by equations (3) and (4) with an interface
condition given by (5) consists of the following steps.

3.8 Algorithm

From the initial data and the initial mesh compute

1. the projections Up of up, (p = 1, 2),

2. the values of the relative masses C̃1i and C̃2i from (34), and

3. the initial values of the total populations Θ1(0) and Θ2(0) from (18).

Then at each time step:

1. Find the velocity potentials Φ1(t) and Φ2(t)by solving equations (28),

2. Find the interior nodal velocities V 1(t) and V 2(t) by solving equations
(31),
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3. Find the position of the interface node Xm at the next time step from
(25) and estimate the interface velocity,

4. Generate the nodal positions Xi,j, X2,j at the next time-step from V1,j,
V2,j and the interface velocity, using the explicit Euler scheme,

5. Update the values of Θ1 and Θ2 from Θ̇1 and Θ̇2 using the same Euler
scheme,

6. Find the population densities U1 and U2 at the next time level by
solving equations (34).

4 Results

There is a vast range of parameter values in use because there are so many
varied but suitable examples of the type of competition. We select a conser-
vatively representative set of parameters, chosen to demonstrate some of the
behaviours that this model is able to describe.

4.1 A parameter choice

Firstly we choose a set of parameters that favour species 1, as shown in figure
2. In this case we see an increasing interface velocity in the initial stages,
followed by a long steady phase where the interface velocity is approximately
constant (figure 3). As we approach the annihilation of species 2, the interface
velocity increases again (figure 4). This is due to the low population of species
2 affecting its ability to grow. The movement of the interface is shown in
figure 5.

4.2 Alternative parameter choices

4.2.1 Carrying capacities

We now investigate other parameter choices. We restrict the growth of species
1 by lowering its carrying capacity k1. We observe that in this scenario
neither species is dominant, even though all the competition and diffusion
characteristics are unchanged. This scenario is shown in figure 6.
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Figure 2: Result of competition model at t = 1.7. Here we use δ1 = δ2 = 0.01,
k1 = k2 = 100, r1 = r2 = 1 and µ3. We run the model with a time step
of 0.0001 for 17000 steps and plot the results every 0.1. We see the internal
dynamics of the species driving the population densities and interface fluxes,
and the position of the interface responding to those fluxes. The initial
conditions are shown in red, with species 1 in blue and species 2 in green.

Figure 3: Result of competition model at t = 6.0. Here we use δ1 = δ2 = 0.01,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step of
0.0001 for 60000 steps and plot the results every 0.1. The interface continues
to evolve and the populations of the species are now limited by the respective
carrying capacities. The initial conditions are shown in red, with species 1
in blue and species 2 in green
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Figure 4: Result of competition model at t = 8.8. Here we use δ1 = δ2 = 0.01,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step
of 0.0001 for 88000 steps and plot the results every 0.1. We observe that
whilst the population of species 2 initially grew, it will now be wiped out by
competition with species 1.

Figure 5: Movement of interface position xm for competition model with
parameters δ1 = δ2 = 0.01, k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We
run the model with a time step of 0.0001. We see the interface increase
in velocity after a slower initial phase where both species are experiencing
population growth. We see the interface velocity accelerate as we approach
an annihilation event.

4.2.2 Diffusion characteristics

Alternatively, we may adjust the diffusion characteristics of the system. By
allowing species 2 to diffuse at a higher rate, we observe that species 2 is able
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Figure 6: Result of competition model at t = 8, considering the effect of
altered carrying capacities. Here we use δ1 = δ2 = 0.01, k1 = 50, k2 = 150,
r1 = r2 = 1 and λ = 3. We run the model with a time step of 0.0001 for
80000 steps and plot the results every 0.1. We see that with differently chosen
carrying capacities we find the interface position is approximately steady and
these two species are in balance.

to make territorial gains due to this property alone (figure 7). However, as
time goes on, the growth and competition characteristics become increasingly
important. We see species 1 becoming more dominant over time, so that the
interface velocity actually reverses direction. Figure 8 shows the evolution
of the system at t = 12.3, and figure 9 shows the movement of the interface
with the direction reversal.

These results give confidence that this model is likely to be able to satisfy
the requirements of modelling a wide variety of competition systems. It is
stable to a large choice of set-up parameters and is able to produce complex
behaviours without problems.
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Figure 7: Result of competition model at t = 3.5, considering the effect of
an increased diffusion rate for species 2. Here we use δ1 = 0.01, δ2 = 0.05,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step
of 0.0001 for 35000 steps, and plot the results every 0.1. We observe that
species 2 is able to make initial territorial gains due to its high diffusion rate,
even though the competition rate is unaltered.

Figure 8: Result of competition model at t = 12.3, considering the effect of
an increased diffusion rate for species 2. Here we use δ1 = 0.01, δ2 = 0.05,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step of
0.0001 for 123000 iterations, and plot the results every 0.1. We see that the
initial diffusion-driven gains by species 2 are reversed, and that the overall
growth characteristics are dominating so that species 1 is gaining territory.
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Figure 9: Position of interface, xm, showing interface movement for the com-
petition model at up to t = 12.3, considering the effect of an increased
diffusion rate for species 2 (cf. figure 5). Here we use δ1 = 0.01, δ2 = 0.05,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time
step of 0.0001 for 123000 iterations, and plot the results every 0.1. Due to
the growth characteristics we can see interesting temporal effects. Here the
interface velocity has actually reversed direction as the system changes from
diffusion-dominated to growth-dominated.

5 Summary

In this paper we have applied a moving mesh finite element method based
on the relative conservation principle (MMFEM) of [2] to a two-phase Lotka-
Volterra competition system with a high competition limit [4], so that the
species are completely spatially segregated and interact solely through an
interface condition based on this limit.

The model and the MMFEM method are described in detail and the
approach implemented for a variety of parameter combinations, observing
the various behaviours that dominate as the species evolve through time.

For a set of parameters that favour species 1 we see an increasing interface
velocity in the initial stages followed by a long steady phase where the inter-
face velocity is approximately constant. Although the population of species
2 initially grows it is eventually wiped out by the competition with species 1.
As the annihilation of species 2 is approached, the interface velocity increases
again. The interface continues to evolve and the populations of the species
are then limited by the respective carrying capacities. This is due to the low
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population of species 2 affecting its ability to grow.
If the growth of species 1 is restricted by lowering its carrying capacity

we observe that neither species is dominant, even though all the competition
and diffusion characteristics are unchanged. Increasing the diffusion rate for
species 2, this species is able to make initial territorial gains, even though
the competition rate is unaltered. However, as time goes on, growth and
competition characteristics become increasingly important so that species 1
becomes more dominant and the interface velocity reverses direction.

A natural extension is to two dimensions along the lines described in [2]: a
first attempt appears in reference [6] which foundered only on stability issues.
In further work it would be interesting to compare the behaviour of the model
against an empirical data set. The model easily lends itself to alterations to
the logistic terms and of course changes to parameters without the need for
any further development. This research would focus on collaboration in order
to understand the particular modelling requirements of real-world systems
which can be described in a similar manner to this model. The aim should be
to understand the requirements from both a mathematical and quantitative
perspective.
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