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AN L∞ REGULARISATION STRATEGY TO THE INVERSE

SOURCE IDENTIFICATION PROBLEM FOR ELLIPTIC

EQUATIONS

NIKOS KATZOURAKIS

Abstract. In this paper we utilise new methods of Calculus of Variations in
L∞ to provide a regularisation strategy to the ill-posed inverse problem of

identifying the source of a non-homogeneous linear elliptic equation, satisfying

Dirichlet data on a domain. One of the advantages over the classical Tykhonov
regularisation in L2 is that the approximated solution of the PDE is uniformly

close to the noisy measurements taken on a compact subset of the domain.

1. Introduction

Let n ∈ N and Ω ⊆ Rn be a bounded domain with C1,1 regular boundary ∂Ω.
Let also L be the linear non-divergence differential operator

(1.1) L[u] := A : D2u + b ·Du + cu

which is assumed to be uniformly elliptic with bounded continuous coefficients:

(1.2)

{
A ∈ (C0 ∩ L∞)(Ω;Rn×ns ), b ∈ (C0 ∩ L∞)(Ω;Rn), c ∈ (C0 ∩ L∞)(Ω),

and exists a0 > 0 : A : ξ ⊗ ξ ≥ a0|ξ|2, for all ξ ∈ Rn.

In the above, the notations “:” and “·” symbolise the Euclidean inner products in the
space of symmetric matrices Rn×ns and in Rn respectively, whilst Du = (Diu)i=1...n,
D2u = (D2

iju)i,j=1...n and Di ≡ ∂/∂xi. The direct (or forward) Dirichlet problem
for the above operator has the form

(1.3)

{
L[u] = f, in Ω,
u = g, on ∂Ω,

and asks to determine u, given a source f and boundary data g. This is a classical
problem which is essentially textbook material, see e.g. [19, Ch. 9]. In particular, it
is well-posed (in the sense of Hadamard) and, given f ∈ L∞(Ω) and g ∈W 2,∞(Ω),
there exists a unique solution u in the locally convex (Fréchet) space

(1.4) W2,∞
g (Ω) :=

⋂
1<p<∞

{
u ∈

(
W 2,p ∩W 1,p

g

)
(Ω) : L[u] ∈ L∞(Ω)

}
.

Note that due to the failure of the Lp elliptic estimates when p =∞ (see e.g. [18]),
in general u 6∈W 2,∞(Ω). Let us also note with the assumptions (1.2) on L, the case
of divergence operators with C1 matrix coefficient A is included as a special case:

L′[u] = div(ADu) + b ·Du + cu.

Key words and phrases. Regularisation strategy; Inverse source identification; Elliptic equa-
tion; ∞-Bilaplacian; Absolute minimisers; Calculus of Variations in L∞.
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The inverse problem associated to (1.3) consists of the question of finding f , given
the boundary data g and some partial information on the solution u, typically
obtained through noisy (i.e. approximate) experimental measurements known only
up to some error. This problem is severely ill-posed, as the noisy data measured on
a subset of the domain might either not be compatible with any exact solution, or
even if they do, they may not suffice to determine a unique source f from it.

The above inverse problem is particularly important for several applications, es-
pecially in the model case of the Laplace operator L = ∆ and the Poisson equation,
see e.g. [1, 8, 14, 20, 28, 29, 31, 33, 34, 35, 36, 37]. Herein we will assume that the
noisy measurements on the solution take the form

(1.5) Q[u] = qδ on Γ,

where Q is the (nonlinear differential) observation operator

(1.6) Q[u] := K(·, u,Du)

with K satisfying

(1.7) K ∈ C0(Γ× R× Rn) and K(x, ·, ·) ∈ C1(R× Rn) for any x ∈ Γ.

Here Γ is the set on which we take measurements. It will be assumed it satisfies

(1.8) Γ ⊆ Ω is compact and Hγ(Γ) <∞, for some γ ∈ [0, n].

In the above, Hγ denotes the Hausdorff measure of dimension γ. Our general mea-
sure theory and function space notation will be either self-explanatory or otherwise
standard, as e.g. in [13, 15, 26]. Finally, qδ ∈ L∞(Γ,Hγ) is the function of noisy
(deterministic) measurements taken on Γ, at noise level at most δ > 0, that is

(1.9) ‖qδ − q0‖L∞(Γ,Hγ) ≤ δ,

where q0 = Q[u0] corresponds to ideal noise-free measurements of an exact solution
to (1.3) with source L[u0].

Recapitulating, in this paper we study the next ill-posed inverse source identifi-
cation problem:

(1.10)

 L[u] = f , in Ω,
u = g , on ∂Ω,

Q[u] = qδ, on Γ.

Namely, we seek to specify with some selection process a suitable approximation for
f from measured data qδ on the compact set Γ through some observation Q[u] of
the solution u. Our analysis does not exclude the extreme cases Γ = Ω (full a priori
information) and Γ = ∅ (no a priori information), although if Γ = ∅ certain trivial
modifications in the proofs are required which we do not discuss explicitly. The goal
is a strategy to determine an “optimal” best fitting solution uδ (and corresponding
source fδ := L[uδ]) to the ill-posed problem (1.10). In general, an exact solution
may well not exist as (1.5) is a possibly incompatible pointwise constraint on Γ to
the solution of (1.3) (due to the errors in measurements). On the other hand, it
is not possible to have a uniquely determined source on the constraint-free region
Ω \ Γ, see e.g. [8]. In particular, if

L = ∆, Q[u] = n ·Du =
∂u

∂n
, n the outer normal vector on ∂Ω,Γ = ∂Ω,

then any f of the form f0 + ∆f1 with ∆f0 = 0 solves the inverse problem (1.10).
This happens because the boundary data u = g on ∂Ω and ∂u/∂n = qδ on ∂Ω
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can only determine a unique biharmonic function u in Ω with ∆2u = 0. Another
popular choice in the literature for the observation operator Q consist of one of the
terms in the separation of variables formula (when L = ∆ on rectangular domains),
as e.g. in [36]. To the best of our knowledge, (1.10) has not been studied before in
this generality.

Herein we follow an approach based on recent advances in Calculus of Variations
in the space L∞ (see [22, 23, 24, 25]) developed recently for functionals involving
higher order derivatives. The field has been initiated in the 1960s by Gunnar
Aronsson (see e.g. [3, 4, 5, 6, 7]) and is still a very active area of research; for a
review of the by-now classical theory involving scalar first order functionals we refer
to [21]. To this end, we provide a regularisation strategy inspired by the classical
Tykhonov regularisation strategy in L2 (see e.g. [27, 30]), but for the next L∞

“error” functional:

(1.11) E∞(u) :=
∥∥Q[u]− qδ

∥∥
L∞(Γ,Hγ)

+ α
∥∥L[u]

∥∥
L∞(Ω)

, u ∈ W2,∞
g (Ω),

where α > 0 is a fixed regularisation parameter for the penalisation term |L[u]|.
In the variational language, it serves to make the functional coercive in the space.
The benefit of finding a best fitting solution in L∞ is apparent: we can keep the
error term |Q[u] − qδ| due to the noise effects uniformly small, not merely small
on average, which would happen if one chose to minimise the integral of the error
instead of the supremum.

As it is well known to the experts of Calculus of Variations in L∞, mere (global)
minimisers of supremal functionals, albeit typically easy to obtain with standard
direct minimisation methods ([13, 16]), they are not truly optimal and they do
not share the nice “local” minimality properties of minimisers of their integral
counterparts ([10, 32]). A popular method is to use minimisers of Lp approximating
functionals as p→∞ and prove appropriate convergence of such Lp minimisers to
a limiting L∞ minimiser. This method is fairly standard nowadays and provides
a selection principle of L∞ minimisers with additional favourable properties (see
e.g. [9, 11, 12, 17, 22, 23]). This idea is inspired by the simple measure-theoretic
fact that the Lp norm (of a fixed L1 ∩ L∞ function) converges to the L∞ norm
as p → ∞. Accordingly, we will obtain special minimisers of (1.11) as limits of
minimisers of
(1.12)

Ep(u) :=
∥∥|Q[u]− qδ|(p)

∥∥
Lp(Γ,Hγ)

+ α
∥∥|L[u]|(p)

∥∥
Lp(Ω)

, u ∈
(
W 2,p ∩W 1,p

g

)
(Ω),

where in the above we use the normalised Lp norms∥∥f∥∥
Lp(Γ,Hγ)

:=

(
−
ˆ

Γ

|f |p dHγ
)1/p

,
∥∥f∥∥

Lp(Ω)
:=

(
−
ˆ

Ω

|f |p dLn
)1/p

,

where the slashed integral denoting average with respect to the Hausdorff measure
Hγ and the Lebesgue measure Ln respectively. Further, in (1.12) | · |(p) symbolises
the next p-regularisation of the absolute value away from zero:

|a|(p) :=
√
|a|2 + p−2.

We note also that, due to our Lp-approximation method, as an auxiliary result we
also provide an Lp regularisation strategy for finite p as well, which has its own
merits and could be useful in itself.

The main result in this paper is therefore the following.
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Theorem 1 (L∞ and Lp regularisations of the inverse source identification prob-
lem). Let Ω ⊆ Rn be a bounded C1,1 domain and let also g be in W 2,∞(Ω). Suppose
also the operators (1.1) and (1.6) are given, satisfying the assumptions (1.2), (1.7),
(1.8). Suppose further a function qδ ∈ L∞(Γ,Hγ) is given which satisfies (1.9) for
δ > 0. Let finally α > 0 be fixed. Then, we have the next results in relation to the
problem (1.10):

(i) [Existence] There exist a global minimiser u∞ ≡ uα,δ∞ ∈ W2,∞
g (Ω) of the

functional E∞ defined in (1.11). In particular, we have E∞(u∞) ≤ E∞(v) for all
v ∈ W2,∞

g (Ω) and

f∞ ≡ fα,δ∞ := L[uα,δ∞ ] ∈ L∞(Ω).

In addition, there exist signed Radon measures

µ∞ ≡ µα,δ∞ ∈ M(Ω), ν∞ ≡ να,δ∞ ∈ M(Γ)

such that the divergence PDE

(1.13) Kr(·, u∞,Du∞)ν∞ − div
(
Kp(·, u∞,Du∞)ν∞

)
+ αL∗[µ∞] = 0,

is satisfied by the triplet (u∞, µ∞, ν∞) in the distributional sense. In (1.13), the
operator L∗ is the formal adjoint of L, defined through duality, i.e.

L∗[v] := div(div(Av)) − div(bv) + cv

and Kr,Kp denote the partial derivatives of K(x, r, p) with respect to (r, p) ∈ R×Rn.
Additionally, the error measure ν∞ is supported in the closure of the subset of Γ of
maximum noise, that is

(1.14) supp(ν∞) ⊆
{∣∣Q[u∞]− qδ

∣∣F =
∥∥Q[u∞]− qδ

∥∥
L∞(Γ,Hγ)

}
,

where “ ( · )F ” symbolises the “essential limsup” with respect to the Radon measure
HγxΓ on Γ, see Proposition 6 that follows. If additionally the measurement function
qδ is continuous on Γ, (1.14) improves to

(1.15) supp(ν∞) ⊆
{∣∣Q[u∞]− qδ

∣∣ =
∥∥Q[u∞]− qδ

∥∥
L∞(Γ,Hγ)

}
.

(ii) [Convergence] For any α, δ > 0, the minimiser u∞ can be approximated
by a family of minimisers (up)p>n ≡ (uα,δp )p>n of the respective Lp functionals
(1.12) and the pair of measures (µ∞, ν∞) ∈M(Ω)×M(Γ) can be approximated by
respective absolutely continuous signed measures (µp, νp)p>n ≡ (µα,δp , να,δp )p>n, as
follows:

For any p > n, the functional (1.12) has a global minimiser up ≡ uα,δp in the

space (W 2,p ∩W 1,p
g )(Ω) and there exists a sequence pj −→∞ as j →∞, such that

(1.16)

{
up −→ u∞, in C1,κ(Ω), for any κ ∈ (0, 1),

D2up −−⇀ D2u∞, in Lq(Ω,Rn×ns ), for any q ∈ (1,∞),

as p→∞ along the sequence. Additionally, we have

(1.17)


νp :=

∣∣Q[up]− qδ
∣∣p−2

(p)

(
Q[up]− qδ

)
Hγ(Γ)

∥∥|Q[up]− qδ|(p)
∥∥p−1

Lp(Γ,Hγ)

HγxΓ
∗−−⇀ ν∞, in M(Γ),

µp :=
|L[up]|p−2

(p) L[up]

Ln(Ω)
∥∥|L[up]|(p)

∥∥p−1

Lp(Ω)

LnxΩ
∗−−⇀ µ∞, in M(Ω),
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as p→∞ along the sequence. Further, for each p > n, the triplet (up, µp, νp) solves
the equation

(1.18) Kr(·, up,Dup)νp − div
(
Kp(·, up,Dup)νp

)
+ αL∗[µp] = 0,

in the distributional sense.

(iii) [L∞ error estimates] For any exact solution u0 ∈ W2,∞
g (Ω) of (1.10) (with

f = L[u0] and Q[u0] = q0) corresponding to measurements with zero noise, we have
the estimate:

(1.19)
∥∥∥Q[uα,δ∞ ]−Q[u0]

∥∥∥
L∞(Γ,Hγ)

≤ 2δ + α ‖L[u0]‖L∞(Ω),

for any α, δ > 0.

(iv) [Lp error estimates] For any exact solution u0 ∈ (W 2,p∩W 1,p
g )(Ω) of (1.10)

(with f = L[u0] and Q[u0] = q0) corresponding to measurements with zero noise
and for p > n, we have the estimate:

(1.20)
∥∥∥Q[uα,δp ]−Q[u0]

∥∥∥
Lp(Γ,Hγ)

≤ 2δ + α ‖L[u0]‖Lp(Ω),

for any α, δ > 0.

The estimate in part (iv) above is useful if we have merely that L[u0] ∈ Lp(Ω)
for p <∞ (namely when perhaps L[u0] 6∈ L∞(Ω)).

The next two results are consequences of our main theorem.

Corollary 2 (Rates of convergence). In the setting of Theorem 1, in the case that
Q[u] := u, the estimates (1.19)-(1.20) for the L∞ and the Lp minimisers can be
improved to the linear rates of convergence

(1.21)
∥∥uα,δ∞ − u0

∥∥
L∞(Γ,Hγ)

≤ 2δ + α ‖L[u0]‖L∞(Ω) as α, δ → 0,

if L[u0] ∈ L∞(Ω), and

(1.22)
∥∥uα,δp − u0

∥∥
Lp(Γ,Hγ)

≤ 2δ + α ‖L[u0]‖Lp(Ω) as α, δ → 0,

if L[u0] ∈ Lp(Ω) for p <∞.

Corollary 3. In the setting of Theorem 1, we have

L∗[µp] = 0 in Ω \ Γ

in the distributional sense, for any p ∈ (1,∞]. In particular, for p <∞ we have

L∗
(∣∣L[up]

∣∣p−2

(p)
L[up]

)
= 0 in Ω \ Γ,

in the distributional sense.

Corollary 3 expresses the fact that on the subset where we have no a priori
information on the solution generating the source (and hence no constraint on the
PDE), then one can select a solution whose’s source is associated to a solution of
the dual homogeneous problem L∗[µ∞] = 0.

Remark 4. Other possible choices for the observation operator Q which are pop-
ular in the literature, are the following:
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• Q[u] := u(x, c), for n = 2 and Ω = (a, b)×(c, d) being a rectangular domain
(i.e., one of the products in the separation of variables when L = ∆). This
implies that (1.19) simplifies to∥∥uα,δ∞ (·, c)− u0(·, c)

∥∥
L∞((a,b),H1)

≤ 2δ + α ‖L[u0]‖L∞((a,b)×(c,d)) as α, δ → 0,

and similarly for its Lp-counterpart.

• Q[u] := Du · n, where n is the outer normal vector on ∂Ω. In this case,
(1.21) simplifies to∥∥n · (Duα,δ∞ −Du0

)∥∥
L∞(∂Ω,Hn−1)

≤ 2δ + α ‖L[u0]‖L∞(Ω) as α, δ → 0,

and similarly for its Lp-counterpart.

We would like to note again that, due to the ill-posed nature of the problem, in
general it is not possible to obtain an estimate on Ω \ Γ.

We now provide some clarifications regarding Theorem 1.

Remark 5. (i) We note that in (1.13) the distributional meaning of this PDE isˆ
Γ

Kr(·, u∞,Du∞)φ dν∞ +

ˆ
Γ

Kp(·, u∞,Du∞) ·Dφdν∞ + α

ˆ
Ω

L[φ] dµ∞ = 0,

for all test functions φ ∈ C2
c (Ω). Therefore, in fact the equation (1.13) is valid in

the smaller space of second order distributions:

D−2(Ω) :=
(
C2
c (Ω)

)∗
.

Additionally, since the measure ν∞ is supported in the compact set Γ, by extending
ν∞ on Ω \ Γ by zero (i.e. by identifying ν∞ with the restriction ν∞xΓ), we may
rewrite (1.13) asˆ

Ω

(
Kr(·, u∞,Du∞)φ + Kp(·, u∞,Du∞) ·Dφ

)
dν∞ + α

ˆ
Ω

L[φ] dµ∞ = 0,

for all φ ∈ C2
c (Ω).

(ii) In index form, the definition of the formal adjoint can be written as

L∗[v] =

n∑
i,j=1

D2
ij(Aijv) −

n∑
k=1

Dk(bk v) + cv

and the distributional interpretation of L∗ through duality is

〈L∗[v], φ〉 =

ˆ
Ω

( n∑
i,j=1

(D2
ijφ)(Aijv) +

n∑
k=1

(Dkφ)(bkv) + φcv

)
dLn,

for all φ ∈ C2
c (Ω). In a similar vein, the distributional interpretation of (1.18) isˆ

Γ

Kr(·, up,Dup)φ dνp +

ˆ
Γ

Kp(·, up,Dup) ·Dφ dνp + α

ˆ
Ω

L[φ] dµp = 0,

for all φ ∈ C2
c (Ω). By taking into account that the measures µp, νp as given by (1.17)

are in fact absolutely continuous with respect to the Lebesgue and the Hausdorff
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measure respectively, the above is in fact equivalent to

−
ˆ

Γ

(
Kr(·, up,Dup)φ + Kp(·, up,Dup) ·Dφ

)∣∣Q[up]− qδ
∣∣p−2

(p)

(
Q[up]− qδ

)
∥∥|Q[up]− qδ|(p)

∥∥p−1

Lp(Γ,Hγ)

dHγ

+ α −
ˆ

Ω

L[φ]
|L[up]|p−2

(p) L[up]∥∥|L[up]|(p)
∥∥p−1

Lp(Ω)

dLn = 0,

for all φ ∈ C2
c (Ω).

(iii) Since we only prescribe boundary conditions u = g on ∂Ω but impose no
condition on the gradient (as opposed to e.g. [22], wherein an L∞ minimisation
problem was considered by imposing Du = Dg on ∂Ω additionally to u = g on ∂Ω),
we therefore have “natural boundary conditions” for the gradient on ∂Ω. We will
make no particular further use of this observation.

The following two results are of independent interest and are utilised in the
proof of Theorem 1 that follows. We state and prove them in considerably greater
generality than that needed herein, as they have their own merits in the Calculus
of Variations in L∞.

Proposition 6 (The essential limsup). Let X ⊆ Rn be a Borel set, endowed with
the induced Euclidean topology and let also ν ∈ M(X) be a positive finite Radon
measure on X. For any f ∈ L∞(X, ν), we define the function fF ∈ L∞(X, ν) by
setting

fF(x) := lim
ε→0

(
ν − ess sup

y∈Bε(x)

f(y)

)
and we call f? the ν-essential limsup of f . In the above, Bε(x) symbolises the
open ball of radius ε centred at x ∈ X with respect to the induced topology. Then,
we have:

(i) It holds that f ≤ fF, ν-a.e. on X.

(ii) It holds that fF is upper semicontinuous on X, namely

lim sup
X3y→x

fF(y) ≤ fF(x), x ∈ X.

(iii) fF gives a pointwise meaning to the essential supremum on X, in the sense

sup
X
fF = ν − ess sup

X
f.

Proposition 7 (Lp concentration measures). Let X be a compact metric space,
endowed with a non-negative finite Borel measure ν which attaches positive values
to any non-empty open set on X. Consider a sequence (fk)∞1 ⊆ L∞(X, ν) and
consider the sequence of absolutely continuous signed Radon measures (νk)∞1 ⊆
M(X), given by:

νk :=
1

ν(X)

(
|fk|(k)

)k−2
fk∥∥|fk|(k)

∥∥k−1

Lk(X,ν)

ν, k ∈ N,

where | · |(k) = (| · |2 + k−2)1/2. Then:
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(i) There exists a subsequence (ki)
∞
1 and a limit measure ν∞ ∈M(X) such that

νk
∗−−⇀ ν∞ in M(X),

as ki →∞.

(ii) If there exists f∞ ∈ L∞(X, ν) \ {0} such that

sup
X
|fk − f∞| −→ 0 as k →∞,

then the limit measure is supported in the set where (the ν-essential limsup of) |f∞|
equals ‖f∞‖L∞(X,ν):

supp(ν∞) ⊆
{
|f∞|F = ‖f∞‖L∞(X,ν)

}
.

(iii) If additionally to the assumptions of (ii) the modulus |f∞| of the uniform limit
f∞ is continuous on X, then the next stronger assertion holds true:

supp(ν∞) ⊆
{
|f∞| = ‖f∞‖L∞(X,ν)

}
.

2. Proofs

Herein we establish Theorem 1 and its corollaries, together with the auxiliary
results Propositions 6-7. The proof of Theorem 1 consists of several lemmas. We
note that some of the details might be standard to the experts of Calculus of
Variations, but we do provide most of the niceties for the sake of completeness and
for the convenience of the reader.

Lemma 8. For any p > n and fixed α, δ > 0, the functional (1.12) has a (global)
minimiser up ∈ (W 2,p ∩W 1,p

g )(Ω):

Ep(up) = inf
{

Ep(v) : v ∈ (W 2,p ∩W 1,p
g )(Ω)

}
.

Proof. Since g ∈ W 2,∞(Ω) (and in particular because g,Dg are continuous on Γ
and therefore Hγ-measurable by identification with their precise Lebesgue repre-
sentatives reconstructed through limits of average values), by the Hölder inequality
and our assumption we have the a priori bound

Ep(g) ≤ E∞(g)

≤ ‖qδ‖L∞(Γ,Hγ) + ‖K(·, g,Dg)‖L∞(Γ,Hγ)

+ α
(
‖A‖L∞(Ω) + ‖b‖L∞(Ω) + ‖c‖L∞(Ω)

)
‖g‖W 2,∞(Ω)

< ∞.

Hence,

0 ≤ inf
{

Ep(v) : v ∈ (W 2,p ∩W 1,p
g )(Ω)

}
≤ E∞(g) < ∞.

Further, Ep is coercive in the space (W 2,p ∩W 1,p
g )(Ω): indeed, by the Lp elliptic

estimates for linear second order equations with measurable coefficients [19, Ch. 9],
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by our assumptions on L and the Hölder inequality we have

Ep(v) ≥ α‖L[v]‖Lp(Ω)

≥ α

C(p,A, b, c)

(
‖v‖W 2,p(Ω) − ‖g‖W 2,p(Ω)

)
≥ α

C(p,A, b, c)

(
‖v‖W 2,p(Ω) − ‖g‖W 2,∞(Ω)

)
for some C = C(p,A, b, c) > 0 and any v ∈ (W 2,p ∩W 1,p

g )(Ω). Let (ump )∞1 be a
minimising sequence of Ep:

Ep(u
m
p ) −→ inf

{
Ep(v) : v ∈ (W 2,p ∩W 1,p

g )(Ω)
}
,

as m→∞. Then, by the above estimates, we have the uniform bound

‖ump ‖W 2,p(Ω) ≤ C

for some C > 0 depending on p but independent of m ∈ N. By standard weak
and strong compactness arguments in Sobolev spaces, there exists a subsequence
(umkp )∞1 and a function up ∈ (W 2,p ∩W 1,p

g )(Ω) such that, along this subsequence
we have 

ump −→ up, in Lp(Ω),

Dump −→ Dup, in Lp(Ω,Rn),

D2ump −−⇀ D2up, in Lp(Ω,Rn×ns ),

as mk → ∞. Additionally, since p > n, by the regularity of the boundary we
have the compact embedding W 2,p(Ω) b C1,k(Ω) as a consequence of the Morrey
estimate. Hence,

ump −→ up in C1,κ(Ω), for κ ∈
(

0, 1− n

p

)
,

as mk →∞. The above modes of convergence and the continuity of the function K
defining the operator Q imply that Q[ump ] −→ Q[up] uniformly on Γ as mk → ∞.
Therefore, ∥∥|Q[ump ]− qδ|(p)

∥∥
Lp(Γ,Hγ)

−→
∥∥|Q[up]− qδ|(p)

∥∥
Lp(Γ,Hγ)

as mk → ∞. Additionally, by the linearity of the operator L and because its
coefficients are L∞, we have that

L[ump ] −−⇀ L[up] in Lp(Ω),

as mk →∞. Since the functional∥∥| · |(p)∥∥Lp(Ω)
: Lp(Ω) −→ R

is convex on this reflexive space and also it is strongly continuous, it is weakly lower
semi-continuous and therefore∥∥|L[up]|(p)

∥∥
Lp(Ω)

≤ lim inf
k→∞

∥∥|L[umkp ]|(p)
∥∥
Lp(Ω)

.

By putting all the above together, we see that

Ep(up) ≤ lim inf
k→∞

Ep(u
mk
p ) ≤ inf

{
Ep(v) : v ∈ (W 2,p ∩W 1,p

g )(Ω)
}
,

which concludes the proof. �
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Lemma 9. For any α, δ > 0, there exists a (global) minimiser u∞ ∈ W2,∞
g (Ω)

and a sequence of minimisers (upi)
∞
1 of the respective Ep-functionals constructed

in Lemma 8, such that (1.16) holds true.

Proof. For each p > n, let up ∈ (W 2,p ∩W 1,p
g )(Ω) be the minimiser of Ep given

by Lemma 8. For any fixed q ∈ (n,∞) and p ≥ q, the Hölder inequality and the
minimality property imply the estimates

Eq(up) ≤ Ep(up) ≤ Ep(g) ≤ E∞(g) < ∞.

By the coercivity of Eq in the space (W 2,q ∩W 1,q
g )(Ω), we have the estimate

Eq(up) ≥
α

C(q, A, b, c)

(
‖up‖W 2,q(Ω) − ‖g‖W 2,∞(Ω)

)
,

which implies

sup
p≥q
‖up‖W 2,q(Ω) ≤ C

for some C > 0 depending on q, the coefficient of L and α. By a standard diagonal
argument, for any sequence (pi)

∞
1 with pi −→∞ as i→∞, there exists a function

u∞ ∈
⋂

n<q<∞
(W 2,q ∩W 1,q

g )(Ω)

and a subsequence (denoted again by (pi)
∞
1 ) along which (1.16) holds true. It

remains to show that L[u∞] ∈ L∞(Ω) (which would guarantee membership in the
space W2,∞

g (Ω)) and that u∞ is in fact a minimiser of E∞ over the same space. To
this end, note that for any fixed q ∈ (n,∞) and p ≥ q, we have

Eq(up) ≤ Ep(up) ≤ Ep(v) ≤ E∞(v)

for any v ∈ W2,∞
g (Ω). By the weak lower semi-continuity of Eq in the space

(W 2,q ∩W 1,q
g )(Ω) demonstrated in Lemma 8, we have

Eq(u∞) ≤ lim inf
i→∞

Eq(upi) ≤ E∞(v),

for any v ∈ W2,∞
g (Ω). The particular choice v := g in the above estimate gives the

bound

α‖L[u∞]‖Lq(Ω) ≤ Eq(u∞) ≤ E∞(g).

By letting q →∞ in the last two estimates above, we obtain that L[u∞] ∈ L∞(Ω)
and that

E∞(u∞) ≤ inf
{

E∞(v) : v ∈ W2,∞
g (Ω)

}
,

as desired. �

Lemma 10. For any α, δ > 0 and p > n, consider the minimiser up ∈ (W 2,p ∩
W 1,p
g )(Ω) of the functional Ep constructed in Lemma 8. Consider also the signed

Radon measures µp ∈M(Ω) and νp ∈M(Γ), defined as in (1.17):

νp :=

∣∣Q[up]− qδ
∣∣p−2

(p)

(
Q[up]− qδ

)
Hγ(Γ)

∥∥|Q[up]− qδ|(p)
∥∥p−1

Lp(Γ,Hγ)

HγxΓ,

µp :=
|L[up]|p−2

(p) L[up]

Ln(Ω)
∥∥|L[up]|(p)

∥∥p−1

Lp(Ω)

LnxΩ.
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Then, the triplet (up, µp, νp) satisfies the PDE (1.18) in the distributional sense.
In fact, the following stronger assertion holds: we have

−
ˆ

Γ

(
Kr(·, up,Dup)φ + Kp(·, up,Dup) ·Dφ

)∣∣Q[up]− qδ
∣∣p−2

(p)

(
Q[up]− qδ

)
∥∥|Q[up]− qδ|(p)

∥∥p−1

Lp(Γ,Hγ)

dHγ

+ α −
ˆ

Ω

L[φ]
|L[up]|p−2

(p) L[up]∥∥|L[up]|(p)
∥∥p−1

Lp(Ω)

dLn = 0,

for all φ ∈W 2,p
0 (Ω).

Proof. We involve a standard Gateaux differentiability argument. Let us begin by
checking that µp, νp indeed define measures when up ∈ W 2,p(Ω). Indeed, by the
Hölder inequality, we have the total variation estimates

‖νp‖(Γ) ≤
(∥∥|Q[up]− qδ|(p)

∥∥
Lp(Γ,Hγ)

)1−p
−
ˆ

Γ

∣∣Q[up]− qδ
∣∣p−1

(p)
dHγ

≤
(∥∥|Q[up]− qδ|(p)

∥∥
Lp(Γ,Hγ)

)1−p
(
−
ˆ

Γ

∣∣Q[up]− qδ
∣∣p
(p)

dHγ
)p−1

p

= 1

and similarly

‖µp‖(Ω) ≤
(∥∥|L[up]|(p)

∥∥
Lp(Ω)

)1−p
−
ˆ

Ω

∣∣L[up]
∣∣p−1

(p)
dLn

≤
(∥∥|L[up]|(p)

∥∥
Lp(Ω)

)1−p
(
−
ˆ

Ω

∣∣L[up]
∣∣p
(p)

dLn
)p−1

p

= 1.

Next, fix φ ∈ C2
c (Ω). Then, by using the regularity of K, we formally compute

d

dε

∣∣∣∣
ε=0

Ep(up + εφ) = p

(
−
ˆ

Γ

∣∣Q[up]− qδ
∣∣p
(p)

dHγ
)1
p−1

−
ˆ

Γ

∣∣Q[up]− qδ
∣∣p−2

(p)

(
Q[up]− qδ

)
�

�
[
Kr(·, up,Dup)φ + Kp(·, up,Dup) ·Dφ

]
dHγ

+ αp

(
−
ˆ

Ω

∣∣L[up]
∣∣p
(p)

dLn
)1
p−1

−
ˆ

Ω

∣∣L[up]
∣∣p−2

(p)
L[up] L[φ] dLn.

Since up is the minimiser of Ep in the space, we have that Ep(up) ≤ Ep(up + εφ)
for all ε ∈ R and φ ∈ C2

c (Ω). Therefore, this above computation implies that the
PDE (1.18) is indeed satisfied as claimed in the statement of the lemma, upon
confirming that the formal computation in the integrals above is rigorous, and
that therefore Ep is Gateaux differentiable at the minimiser up for any direction

φ ∈ W 2,p
0 (Ω). This is indeed the case: since up ∈ (C1 ∩W 2,p)(Ω), L[up] ∈ Lp(Ω)

and Q[up]− qδ ∈ L∞(Γ,Hγ), the Hölder inequality implies that∣∣L[up]
∣∣p−2

(p)
L[up] L[φ] ∈ L1(Ω)

and∣∣Q[up]− qδ
∣∣p−2

(p)

(
Q[up]− qδ

)[
Kr(·, up,Dup)φ+Kp(·, up,Dup) ·Dφ

]
∈ L1(Γ,Hγ),
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for any φ ∈ W 2,p
0 (Ω) ⊆ C1(Ω), because of the continuity of K(x, r, p) in x and the

C1 regularity in (r, p). �

Lemma 11. For any α, δ > 0, consider the minimiser u∞ of E∞ constructed in
Lemma 9 as sequential limit of minimisers (up)p>n of the functionals (Ep)p>n as
pi → ∞. Then, there exist signed Radon measures µ∞ ∈ M(Ω) and ν∞ ∈ M(Γ)
such that the triplet (u∞, µ∞, ν∞) satisfies the PDE (1.13) in the distributional
sense, that isˆ

Ω

(
Kr(·, u∞,Du∞)φ + Kp(·, u∞,Du∞) ·Dφ

)
dν∞ + α

ˆ
Ω

L[φ] dµ∞ = 0,

for all φ ∈ C2
c (Ω). Additionally, there exists a further subsequence along which the

weak* modes of convergence of (1.17) hold true as p→∞.

Proof. As noted in the beginning of the proof of Lemma 10, we have the p-uniform
total variation bounds ‖µp‖(Ω) ≤ 1 and ‖νp‖(Γ) ≤ 1. Hence, by the sequential
weak* compactness of the spaces of Radon measures

M(Ω) =
(
C0

0 (Ω)
)∗
, M(Ω) =

(
C0(Γ)

)∗
,

there exists a further subsequence denoted again by (pi)
∞
1 such that µp

∗−−⇀µ∞ in
M(Ω) and νp

∗−−⇀ν∞ inM(Γ), as pi →∞. Fix now φ ∈ C2
c (Ω). By Lemma 10, we

have that the triplet (up, µp, νp) satisfies (1.18), that isˆ
Γ

(
Kr(·, up,Dup)φ + Kp(·, up,Dup) ·Dφ

)
dνp +

ˆ
Ω

L[φ] dµp = 0.

Since

L[φ] ∈ C0
0 (Ω), Kp(·, u∞,Du∞) ·Dφ ∈ C0(Γ)

and also

Kr(·, up,Dup)φ+Kp(·, up,Dup) ·Dφ −→
Kr(·, u∞,Du∞)φ + Kp(·, u∞,Du∞) ·Dφ,

uniformly on Γ as pi →∞ (as a consequence of the C1 regularity of K and the con-
vergence up −→ u∞ in C1(Ω)), the weak*-strong continuity of the duality pairings
between the above spaces of measures M(Ω), M(Γ) and their respective predual
spaces C0

0 (Ω), C0(Γ), allows us to conclude and obtain (1.13) by passing to the
limit as pi →∞ in (1.18). �

Remark 12. By testing in the weak formulation of (1.18) against φ ∈ C2
c (Ω \ Γ)

(namely for those test functions such that φ ≡ 0 on Γ), we obtain L∗[µ∞] = 0 in
Ω \ Γ, that is

L∗
(∣∣L[up]

∣∣p−2

(p)
L[up]

)
= 0 in Ω \ Γ,

in the distributional sense. Similarly, by testing in the weak formulation of (1.13)
against φ ∈ C2

c (Ω \ Γ), we obtain

L∗[µ∞] = 0 in Ω \ Γ,

in the distributional sense.

Lemma 13. For any α, δ > 0, p > n and u0 ∈ (W 2,p ∩W 1,p
g )(Ω) such that∥∥qδ −Q[u0]

∥∥
L∞(Γ,Hγ)

≤ δ,
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the ((α, δ)-dependent) minimiser up of Ep (constructed in Lemmas 8-11), satisfies
the error bounds (1.20), that is:∥∥∥Q[up]−Q[u0]

∥∥∥
L∞(Γ,Hγ)

≤ 2δ + α ‖L[u0]‖Lp(Ω).

If additionally u0 ∈ W2,∞
g (Ω), then the ((α, δ)-dependent) minimiser u∞ of E∞

(constructed in Lemmas 8-11), satisfies the error bounds (1.19), that is:∥∥∥Q[u∞]−Q[u0]
∥∥∥
L∞(Γ,Hγ)

≤ 2δ + α ‖L[u0]‖L∞(Ω).

Proof. Let us use the symbolisation q0 := Q[u0], noting also that q0 ∈ C0(Γ) and
that we have the estimate

‖qδ − q0‖L∞(Γ,Hγ) ≤ δ.

For any p ∈ (n,∞), the function up is a global minimiser of Ep in (W 2,p∩W 1,p
g )(Ω).

Therefore,

Ep(up) ≤ Ep(u
0).

This implies the estimate∥∥Q[up]− qδ
∥∥
Lp(Γ,Hγ)

+ α
∥∥L[up]

∥∥
Lp(Ω)

≤
∥∥Q[u0]− qδ

∥∥
Lp(Γ,Hγ)

+ α
∥∥L[u0]

∥∥
Lp(Ω)

.

The latter estimate together with the Minkowski and Hölder inequalities, in turn
yield ∥∥Q[up]−Q[u0]

∥∥
Lp(Γ,Hγ)

≤
∥∥Q[u0]− qδ

∥∥
Lp(Γ,Hγ)

+
∥∥Q[u0]− qδ

∥∥
Lp(Γ,Hγ)

+ α
∥∥L[u0]

∥∥
Lp(Ω)

= 2‖qδ − q0‖L∞(Γ,Hγ) + α
∥∥L[u0]

∥∥
Lp(Ω)

≤ 2δ + α ‖L[u0]‖Lp(Ω),

as claimed. To obtain the corresponding estimate for u∞ in the case that addi-
tionally u0 ∈ W2,∞

g (Ω), we may pass to the limit as p → ∞ in the last estimate
above: indeed, consider the subsequence pi → ∞ along which we have the strong
convergence up −→ u∞ in C1(Ω) and therefore Q[up] −→ Q[u∞] uniformly on Γ.
Since by assumption L[u0] ∈ L∞(Ω), the conclusion follows by letting i → ∞ in
the last estimate. �

We now establish Proposition 6.

Proof of Proposition 6. (i) Let Bnρ (x) be the open ρ-ball of Rn centred at x.
By the Lebesgue differentiation theorem (see e.g. [16]) applied to the measure νxX
(namely to ν extended to Rn by zero on Rn \ X) and by recalling that Bρ(x)
symbolises the open ball in X, we have

f(x) = lim
ρ→0

(
−
ˆ
Bnρ (x)

f d(νxX)

)
= lim

ρ→0

(
1

ν(Bρ(x))

ˆ
Bρ(x)

f dν

)
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and therefore

f(x) ≤ lim
ρ→0

(
1

ν(Bρ(x))

ˆ
Bρ(x)

f dν

)
≤ lim

ρ→0

(
ν − ess sup

Bρ(x)

f

)
= fF(x),

for ν-a.e. x ∈ X.

(ii) Fix x ∈ X and ε > 0. For any δ ∈ (0, ε) and y ∈ Bδ(x) we have the inclusion
of balls

Bε−δ(y) ⊆ Bε(x).

Hence, since the limit as ε → 0 in the definition of fF is in fact an infimum over
all ε > 0, we have

sup
y∈Bδ(x)

fF(y) = sup
y∈Bδ(x)

[
lim
ρ→0

(
ν − ess sup

z∈Bρ(y)

f(z)

)]
= sup

y∈Bδ(x)

[
inf
ρ>0

(
ν − ess sup

z∈Bρ(y)

f(z)

)]
≤ sup

y∈Bδ(x)

[
ν − ess sup

z∈Bε−δ(y)

f(z)

]
≤ sup

y∈Bδ(x)

[
ν − ess sup

z∈Bε(x)

f(z)

]
= ν − ess sup

z∈Bε(x)

f(z).

By letting δ → 0 and ε→ 0, we obtain

lim
δ→0

(
sup

y∈Bδ(x)

fF(y)

)
≤ lim

ε→0

(
ν − ess sup

z∈Bε(x)

f(z)

)
= fF(x),

for any x ∈ X. Hence

lim sup
X3y→x

fF(y) ≤ fF(x),

for any x ∈ X, as desired.

(iii) We begin by noting that for any x ∈ X and ε > 0 we have

ν − ess sup
y∈Bε(x)

f(y) ≤ ν − ess sup
y∈X

f(y)

which readily implies

sup
x∈X

fF(x) = sup
x∈X

(
ν − ess sup

y∈Bε(x)

f(y)

)
≤ ν − ess sup

x∈X
f(x).

Conversely, by the definition of the essential supremum, for any δ > 0, the set

X(δ) :=

{
x ∈ X : f(x) > ν − ess sup

y∈X
f(y)− δ

}
satisfies

ν(X(δ)) > 0.
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By the Lebesgue-Besicovitch differentiation theorem (see e.g. [16]), ν-a.e. point
x ∈ Xδ has density 1, namely

lim
ε→0

ν
(
X(δ) ∩ Bnε (x)

)
ν(Bnε (x))

= 1,

where Bnε (x) is the open ε-ball centred at x with respect to Rn. Hence, since

Bε(x) = X ∩ Bnε (x),

for any δ > 0, there exists xδ ∈ X(δ) such that

ν
(
X(δ) ∩ Bε(xδ)

)
= ν

(
X(δ) ∩ Bnε (xδ)

)
> 0.

Therefore, since

ν − ess sup
y∈X

f(y) ≤ δ + f(x), ν − a.e. x ∈ X(δ),

we deduce

ν − ess sup
y∈X

f(y) ≤ δ + ν − ess sup
y∈Bε(xδ)∩X(δ)

f(y)

≤ δ + ν − ess sup
y∈Bε(xδ)

f(y).

By letting ε→ 0 in the above inequality, we infer that

ν − ess sup
x∈X

f(x) ≤ δ + lim
ε→0

(
ν − ess sup

y∈Bε(xδ)
f(y)

)
= δ + fF(xδ)

≤ δ + sup
x∈X

fF(x),

for any δ > 0. By letting δ → 0, we obtain

ν − ess sup
x∈X

f(x) ≤ sup
x∈X

fF(x),

as desired. This inequality completes the proof. �

By invoking Proposition 7 whose proof follows, we readily obtain (1.14)-(1.15)
by choosing

X = Γ, ν = HγxΓ, fk = Q[upk ]− qδ, f∞ = Q[u∞]− qδ.

Proof of Proposition 7. (i) By the definition of νk, we have for any continuous
function φ ∈ C0(X) with |φ| ≤ 1 that∣∣∣∣ˆ

X

φdνk

∣∣∣∣ ≤ 1∥∥|fk|(k)

∥∥k−1

Lk(X,ν)

−
ˆ
X

∣∣∣(|fk|(k)

)k−2
fk φ

∣∣∣dν
≤ 1∥∥|fk|(k)

∥∥k−1

Lk(X,ν)

−
ˆ
X

(
|fk|(k)

)k−1
dν.

Hence, by Hölder inequality, we have the total variation bound

‖νk‖(X) ≤
(∥∥|fk|(k)

∥∥
Lk(X,ν)

)1−k
(
−
ˆ
X

(
|fk|(k)

)k
dν

)k−1
k

= 1.
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By the sequential weak* compactness of the space M(X) =
(
C0(X)

)∗
, we obtain

the desired subsequence (νki)
∞
1 ⊆ M(X) and the weak* sequential limit measure

ν∞ ∈M(X).

(ii) We begin by showing the elementary inequality∣∣|fk|(k) − |f∞|
∣∣ ≤ ∣∣fk − f∞∣∣ +

1

k
on X.

Indeed, if |fk|(k) ≥ |f∞|, we have∣∣|fk|(k) − |f∞|
∣∣ =

√
|fk|2 + k−2 − |f∞|

≤ |fk| − |f∞| +
1

k

≤
∣∣fk − f∞∣∣ +

1

k

whilst if |fk|(k) < |f∞|, we have∣∣|fk|(k) − |f∞|
∣∣ = |f∞| −

√
|fk|2 + k−2

≤ |f∞| − |fk|

≤
∣∣fk − f∞∣∣ +

1

k
.

Fix now ε > 0. The inequality we just proved implies that if fk −→ f∞ uniformly
on X as k → ∞ (note that fk, f∞ might be discontinuous), then |fk|(k) −→ |f∞|
uniformly on X as k →∞. Hence, there exists k(ε) ∈ N such that

‖fk − f∞‖L∞(X,ν) <
ε

4
,
∥∥|fk|(k) − |f∞|

∥∥
L∞(X,ν)

<
ε

4
,

for all k ≥ k(ε). Therefore,

|fk| ≤ |f∞| +
ε

4
, ν − a.e. on X,

|fk|(k) ≥ |f∞| −
ε

4
, ν − a.e. on X.

By integrating the latter inequality and using the Minkowski inequality, we obtain

‖|fk|(k)‖Lk(X,ν) ≥ ‖f∞‖Lk(X,ν) −
ε

4
,

for all k ≥ k(ε). Since

‖f∞‖L∞(X,ν) = lim
k→∞

‖f∞‖Lk(X,ν),

by choosing k(ε) greater if necessary, we deduce

‖|fk|(k)‖Lk(X,ν) ≥ ‖f∞‖L∞(X,ν) −
ε

2
,

for all k ≥ k(ε). Let now dνk/dν symbolise the Radon-Nikodym derivative of νk
with respect to ν. It follows that

dνk
dν

=
1

ν(X)

(
|fk|(k)

)k−2
fk∥∥|fk|(k)

∥∥k−1

Lk(X,ν)

, ν-a.e. on X.
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By the above, for any ε > 0 small enough (recall that f∞ 6≡ 0) and for any k ≥ k(ε),
we have the estimate

∣∣∣∣dνkdν

∣∣∣∣ ≤ 1

ν(X)

 1

k
+ |f∞| +

ε

4

‖f∞‖L∞(X,ν) −
ε

2


k−1

, ν − a.e. on X.

By choosing k(ε) even larger if needed, we can arrange∣∣∣∣dνkdν

∣∣∣∣ ≤ 1

ν(X)

(
2|f∞| + ε

2‖f∞‖L∞(X,ν) − ε

)k−1

, ν − a.e. on X.

Since by Proposition 6 we have |f∞| ≤ |f∞|F ν-a.e. on X, we obtain∣∣∣∣dνkdν

∣∣∣∣ ≤ 1

ν(X)

(
2|f∞|F + ε

2‖f∞‖L∞(X,ν) − ε

)k−1

, ν − a.e. on X.

Consider now for any ε > 0 the ν-measurable set

Xε :=
{
|f∞|F < ‖f∞‖L∞(X,ν) − 2ε

}
.

Notice also that Xε is in fact open in X because |f∞|F is upper semicontinuous
(Proposition 6). Additionally, we have the estimate∣∣∣∣dνkdν

∣∣∣∣ ≤ 1

ν(X)

(
2‖f∞‖L∞(X,ν) − 3ε

2‖f∞‖L∞(X,ν) − ε

)k−1

, ν − a.e. on Xε.

The above estimate together with the Lebesgue Dominated Convergence theorem
imply that for any ε > 0 small enough we have

dνk
dν
−→ 0 in L1(Xε, ν), as k →∞.

Consider now the sequence of nonnegative total variation measures (‖νk‖)∞1 ⊆
M(X). Since this sequence is also bounded in the space, there exists a nonnegative
limit measure λ∞ such that

‖νk‖ ∗−−⇀ λ∞ in M(X),

along perhaps a further subsequence (ki)
∞
1 . Additionally, since νk

∗−−⇀ν∞ inM(X),
we have the inequality (see e.g. [2])

‖ν∞‖ ≤ λ∞.

Note now that for each k ∈ N, by the Lebesgue-Radon-Nikodym theorem applied
to ‖νk‖ << ν we have the decomposition

‖νk‖ =

∣∣∣∣dνkdν

∣∣∣∣ ν.
Hence, we infer that

‖νk‖(Xε) ≤
ˆ
Xε

∣∣∣∣dνkdν

∣∣∣∣dν −→ 0, as k →∞.
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Therefore, since Xε is open in X, by the weak* lower-semicontinuity of measures
on open sets (see e.g. [16, 2]) and the above arguments, we have

‖ν∞‖(Xe) ≤ λ∞(Xε)

≤ lim inf
i→∞

‖νki‖(Xε)

≤ lim inf
i→∞

ˆ
Xε

∣∣∣∣dνkidν

∣∣∣∣dν
= 0.

Therefore, we have obtained

ν∞

({
|f∞|F < ‖f∞‖L∞(X,ν) − 2ε

})
= 0, for any ε > 0.

By letting ε→ 0 along the sequence εj := 2−j−1, the continuity of the measure ν∞
implies

ν∞

({
|f∞|F < ‖f∞‖L∞(X,ν)

})
= ν∞

( ∞⋃
j=1

{
|f∞|F < ‖f∞‖L∞(X,ν) − 2−j

})

= lim
j→∞

ν∞

({
|f∞|F < ‖f∞‖L∞(X,ν) − 2−j

})
= 0.

Then, the definition of support of the measure ν∞ and the upper semicontinuity of
the function |f∞|F on X (by Proposition 6) yield

X \ supp(ν∞) =
⋃{

U ⊆ X open : ν∞(U) = 0
}

⊇
{
|f∞|F < ‖f∞‖L∞(X,ν)

}
.

In conclusion, we infer that

supp(ν∞) ⊆ X \
{
|f∞|F < ‖f∞‖L∞(X,ν)

}
=
{
|f∞|F = ‖f∞‖L∞(X,ν)

}
,

as desired.

(iii) Suppose that |f∞| is continuous on X and recall the properties of the essential
limsup established in Proposition 6. Then, for any x ∈ X we have∣∣∣|f∞|F(x)− |f∞|(x)

∣∣∣ =

∣∣∣∣∣ limε→0

(
ν − ess sup

Bε(x)

|f∞|
)
− |f∞|(x)

∣∣∣∣∣
=

∣∣∣∣∣ limε→0

(
ν − ess sup

Bε(x)

|f∞| − |f∞|(x)

)∣∣∣∣∣
≤ lim sup

ε→0

∣∣∣∣∣ν − ess sup
Bε(x)

(
|f∞| − |f∞|(x)

)∣∣∣∣∣
≤ lim sup

ε→0

∥∥∥|f∞| − |f∞|(x)
∥∥∥
L∞(Bε(x),ν)

= 0,

showing that |f∞|F ≡ |f∞|, if it holds that |f∞| is continuous on X. �
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