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Surface permeability of particulate porous media.

Penpark Sirimark,1 Alex V. Lukyanov,1, a) and Tristan Pryer1

School of Mathematical and Physical Sciences, University of Reading, Reading RG6 6AX,
UK

The dispersion process in particulate porous media at low saturation levels takes place over the surface
elements of constituent particles and, as we have found previously by comparison with experiments, can
be accurately described by super-fast non-linear diffusion partial differential equations. To enhance the
predictive power of the mathematical model in practical applications, one requires the knowledge of the
effective surface permeability of the particle-in-contact ensemble, which can be directly related with the
macroscopic permeability of the particulate media. We have shown previously that permeability of a single
particulate element can be accurately determined through the solution of the Laplace-Beltrami Dirichlet
boundary-value problem. Here, we demonstrate how that methodology can be applied to study permeability
of a randomly packed ensemble of interconnected particles. Using surface finite element techniques we examine
numerical solutions to the Laplace-Beltrami problem set in the multiply-connected domains of interconnected
particles. We are able to directly estimate tortuosity effects of the surface flows in the particle ensemble
setting.

I. INTRODUCTION

Liquid transport in particulate porous media, such as
sand, is customarily classified into fully saturated, funic-
ular and pendular regimes of spreading1–4. The first two
regimes of the liquid dispersion occur at relatively high
saturation levels s > sc ≈ 10%, where saturation s is
defined as the ratio of the liquid volume VL to the vol-
ume of available voids VE in a sample volume element
V , s = VL

VE
. At high saturation levels, above the critical

value sc, liquid transport takes place in the pore space
either fully or partially filled by the liquid.

Our prime concern here is the special case of liquid
dispersion at low saturation levels. As the saturation
level drops below the critical value, s ≤ sc, that is to the
value relevant to the pendular regime of spreading, the
liquid volumes in the porous matrix become isolated2–4.
As a result, at low saturation levels, the liquid is only
contained in the pendular rings formed at the locations of
the particle contacts and on the particle rough surfaces,
and the liquid transport can only occur over the matrix
surface elements, as is illustrated in Fig. 1.

Our main concern here is the wetting cycle, when the
liquid spreads over a dry porous matrix or over a ma-
trix with a very low background saturation level up to
sr ≈ 2%. These conditions are similar to those in the
case studied previously experimentally and theoretically
in6. The main driving force of the dispersion process,
as is often the case during the wetting cycle, is capillary
pressure developed at the moving front in the process of
wetting of dry porous matrix, while the liquid bridges
play a role of variable liquid reservoirs of uniform surface
curvature.

The analysis of this regime of wetting, which is cru-
cial for studies of biological processes and spreading of

a)Electronic mail: corresponding author,
a.lukyanov@reading.ac.uk

non-volatile liquids in arid natural environments and in-
dustrial installations, has shown that the liquid disper-
sion has many distinctive features and can be accurately
described by the so-called superfast non-linear diffusion
equation5,6.

Theoretically, the superfast non-linear diffusion equa-
tion belongs to a special class of mathematical models.
Unlike in the standard porous medium equation7, in this
special case, the non-linear coefficient of diffusion D(s)
demonstrates divergent behaviour as a function of sat-
uration s, D(s) ∝ (s − s0)−3/2, where s0 is some min-
imal saturation level (s0 ≈ 0.5%), which could be only
achieved in a state when the liquid bridges cease to exist
completely3–6. Note, in that respect, that in the domain
of spreading liquid bridges are supposed to never vanish,
so that the condition s > s0 is always fulfilled in the
model, and there is no actual singularity of the mathe-
matical description5,6.

Grain

Grain

Grain

Liquid
Bridge

Surface
Flux

Grain

FIG. 1. Illustration of the liquid distribution in particulate
porous media (grey) with pendular rings (blue) at low satu-
ration levels.

Specifically, in the macroscopic approximation, that
is after averaging over some volume element containing
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many particles of the porous medium, the diffusion pro-
cess in the slow creeping flow conditions can be described
by the following non-linear diffusion equation

∂s

∂t
= ∇ · {D(s)∇s} , t > 0, (1)

where

D(s) =
D0(s)

(s− s0)3/2
, s > s0,

for D0 > 0.
The details of derivation of (1) can be found in5,6, here

we note that, the resultant governing non-linear equation
(1) directly follows from the conservation of mass princi-
ple

∂(φs)

∂t
+∇ ·Q = 0, (2)

where φ is porosity defined as φ =
VE
V

, which is further

assumed to be constant, and Q is the macroscopic flux
density. The macroscopic flux density Q is defined in
such a way that the total flux through the surface of
a macroscopic sample volume element is given by the
surface integral

∫
Q · n dS, where n is the normal vector

to the surface of the sample volume element.
To obtain (1) from (2), one needs to apply the capil-

lary pressure-saturation relationship5,6,8 dictated by the
liquid bridges behaviour

p = −p0
Ac

(s− s0)1/2
(3)

and the local Darcy’s law9,10 describing the surface flow
in the rough layer of the particle elements

−κm
µ
∇u = q. (4)

Here, Ac =
√

3
4

1−φ
φ

Nc

π , Nc is the coordination number,

that is the average number of bridges per a particle, p0 =
2γ
R cosφc, γ is the coefficient of the surface tension of the
liquid, φc is the contact angle made by the free surface
of the liquid bridge with the rough solid surface of the
constituent particles, R is an average radius of the porous
medium particles, q and u are the averaged local flux
density and pressure in the rough surface layer, µ is liquid
viscosity and km is the local coefficient of permeability of
the rough surface, which is proportional to the average
amplitude of the surface roughness δR, that is the width
of the surface layer conducting the liquid flux

km ∝ δ2
R. (5)

One needs to emphasise here that two levels of averag-
ing are involved in obtaining the final governing equation
(1). While equations (1), (2) and (3) are ’truly’ macro-
scopic, that is obtained by averaging using a volume ele-
ment V containing many grain particles, equation (4) is

only an average over some rough area of a single particle
containing many surface irregularities, so that quantities
q and u are also only local averages over that sample
surface area.

Therefore, to transit from (4) to the macroscopic de-
scription, the spatial averaging theorem formulated in11

should be applied. That is, using intrinsic liquid averag-
ing 〈...〉l = V −1

l

∫
Vl
d3x, where Vl is liquid volume within

the sample volume V , one has 〈u〉l = p and 〈q〉l Se

S = Q.
Here, S is the surface area of the sample volume V with
the effective area of entrances and exits Se. Note, the ra-
tio Se/S is not just a geometric property, but also takes
into account the connectivity of the porous elements. For
example, the effective area of entrances and exits Se is
only defined by the pathways open to the flow.

As a result of the two-level averaging

D0(s) = Ac
K(s)

µ

p0

2φ
,

where K(s) = κm
Se

S is the coefficient of permeability
defined by

Q = −K
µ
∇p.

The global surface permeability of the particles K as
a function of saturation is one of the main elements of
the model to accurately represent liquid dispersion at
low saturation levels. It is fully defined by the particle
geometry and the geometry of the liquid bridge contact
areas, Fig. 1 and Fig. 2.

In particular, the disposition and the size of the liquid
bridges on the particle surface, that is the size of the
domains Ω1,2 and the angle α, should play a leading role
in defining the resistance to the surface flow. It is not
difficult to discern that any variations of the contact area
covered by the liquid bridges (pendular rings), that is
areas Ω1,2 shown in Fig. 2, or the value of the bridge
volume, should affect the global permeability.

Previously, we have shown that permeability of a sin-
gle particle element can be determined by means of a
solution to the equivalent Laplace-Beltrami boundary
value problem formulated in the flow domain Ω0 with
the boundaries ∂Γ1,2 in Fig. 212. We briefly formulate
that problem and summarise the previous results in the
next part. Here we note that, based on the analysis of
the problem, we have been able to show that in a special
azimuthally symmetric case of spherical particles, when
the two areas covered by the liquid bridges, domains Ω1

and Ω2 in Fig. 2, are oriented symmetrically to each
other, that is at α = π, the permeability K is supposed
to follow the scaling

K(s) ∝ 1

| ln(s− s0)|
.

We have studied several generalisations of the symmet-
ric problem, such as arbitrary oriented domains, α 6= π,
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on the surface of the spherical particle, and particles of
arbitrary shapes emulating the shape of a real sand grain.
While variations of the particle shape was found to pro-
duce a relatively modest effect on the particle surface
permeability, the orientation of the boundaries, emulat-
ing tortuosity effects, was found to produce a stronger
impact due to the substantial variation of the distance,
on average, between the boundary contours ∂Γ1,2. It
became clear that while the previously obtained scaling
was a good first step to estimate the surface permeabil-
ity of particulate porous media, a more general case of an
ensemble of interconnected particles should be analysed
to enhance the model predictive power and at the same
time to estimate rigorously the effects of tortuosity of the
surface flow in the particle assembly. In this study, we
will simulate a general case of an ensemble of many parti-
cles linked by liquid bridges. We will concentrate on the
bunch of spherical particles, but of different radii and
randomly arranged in configurations. We compare the
random pack configuration results with some symmetric
case to estimate the effects of tortuosity and formulate
practical recipes to apply the super-fast diffusion model.

II. MICROSCOPIC MODEL OF THE
SURFACE PERMEABILITY OF THE
ELEMENTS

Microscopically, the liquid creeping flow through the
surface roughness of each particle can be described by
a local Darcy-like relationship (4) between the surface
flux density q and averaged (over some area containing
many surface irregularities) pressure in the grooves u9,10.
Assuming incompressibility of the liquid and that the
liquid layer thickness is constant δR = const, one has

∇ · q = 0. (6)

Equation (4) taking into account (6) can then be trans-
formed into the Laplace-Beltrami equation defined on the
surface Γ of the particle

∆Γu = 0. (7)

Here, ∆Γ designates the Laplace-Beltrami operator,
which is defined on the surface element Γ through the
surface gradient ∇Γ tangential to the surface. Formally,
let nΓ denote the unit normal to the surface Γ, Fig. 2.
Then, one can define the surface gradient of a smooth
function u as ∇Γu := ∇u − (∇u · nΓ)nΓ and then the
Laplace-Beltrami operator is defined as ∆Γu = ∇Γ ·∇Γu.

The second assumption δR = const implies that the
surface layer is fully saturated, that is its content is not
changing on the particle surface. The approximation of
the fully saturated rough surface layer is well fulfilled,
if the characteristic pressure amplitude |u| is less than
the capillary pressure amplitude defined on the length
scale of the surface roughness δR, which is of the order
of δR ∼ 1µm in typical sands13, as is demonstrated in9.

That is, |u| < uc = γ
δR

, and, for example for water (γ =

72 mN/m) at δR = 1µm, this results in |u| < 7.2×104 Pa.
Alternatively, if the surface layer somehow is not fully

saturated, parameter δR should be interpreted as the
characteristic width of the liquid layer within the rough
surface layer and one needs to presume that variations of
the pressure |δu| are negligible |δu| � uc. This is usually
the case in slow, creeping flow conditions in porous me-
dia, and in fact, it is a criterion for the use of macroscopic
approximation to such flows1. As is shown in6, strong
negative capillary pressure on the level of uc are only ex-
pected at the moving front, so that the approximation is
well fulfilled in the macroscopic flow domain. Note also
that, it is always assumed throughout this study that

δR � R,

that is the amplitude of the surface roughness (or the
width of the liquid layer) is always much smaller than
the particle size.

A. Permeability of a single particle element

Consider, as the simplest example, a spherical parti-
cle of radius R with a closed surface Γ, which is split
into three sub-domains Ω0, Ω1 and Ω2 with the surface
boundaries between them ∂Γ1 and ∂Γ2, as is shown in
Fig. 2. The location of the sub-domains Ω1 and Ω2 to
each other on the surface is fixed by the tilt angle α. The
sub-domains Ω1 and Ω2 correspond to the contact area
covered by the liquid in the bridges, while the surface
flow, described by (4), takes place in Ω0. Our prime con-
cern is permeability of the surface elements, so that we
only consider steady state problems.

The distribution of liquid pressure u, as it follows from
(7), should satisfy the Laplace-Beltrami equation now
defined on the surface of the sub-domain Ω0

∆Ω0u = 0. (8)

Note that, in fact, the condition of the fully saturated
surface layer is not essential in calculation of the flows
over one particle element of the porous media. It is suffi-
cient to presume that the variation of the capillary pres-
sure on the length scale of the particle |δu| is negligible,
that is |δu| � uc. In the case when the surface layer is
not fully saturated, parameter δR should be interpreted
as the effective thickness of the layer filled by the liquid.

At the same time, liquid pressure variation in the
bridges is negligible in slow, creeping flows in compar-
ison to that in Ω0. So that, one can assume that

u|∂Γ1
= U1 = const, u|∂Γ2

= U2 = const, (9)

which are the boundary conditions to the Laplace-
Beltrami Dirichlet boundary value problem. The Dirich-
let boundary value problem (8)-(9) has at least a unique
weak solution, if the domain Ω0 and the boundaries ∂Γ1,2
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FIG. 2. Illustration of the flow and solution domains on the
surface Γ of a spherical particle, and their geometric arrange-
ments. In the picture, Ω0 is the domain of the surface flow
and the surface area covered by the liquid bridges corresponds
to the domains Ω1 and Ω2.

are smooth19–21, which, if it is found, allows to calculate
the total flux through the particle element

QT = δR
κm
µ

∫
∂Γ1

∂u

∂ns
dl = −δR

κm
µ

∫
∂Γ2

∂u

∂ns
dl, (10)

where ns is the normal vector to the domain boundaries
∂Γ1,2 on the surface, δR is the average amplitude of the
surface roughness, that is the width of the surface layer
conducting the liquid flux and the line integral is taken
along a closed curve in Ω0, for example the boundary
∂Γ1.

If the total flux QT is determined, one can define the
global permeability coefficient of a single particle K1.
This can be done, if we assume that the particle has
a characteristic size D and so that it can be enclosed in
a volume element V = D3 with the characteristic side
surface area D2. Then, the effective flux density Q can
be represented in terms of K1 (and the total flux QT )

Q =
QT
D2

= −K1

µ

U2 − U1

D
, (11)

if the flow is driven by the constant pressure difference
U2 − U1 applied to the sides of the volume element.

B. Surface permeability of a sphere in the case
of azimuthally symmetric domain boundaries

Consider now a spherical particle in an azimuthally
symmetric case, when the domain boundaries ∂Γ1 and
∂Γ2 are oriented at the reflex angle α = π and have a
circular shape. We use a spherical coordinate system
with its origin at the particle centre and the polar an-
gle θ counted from the axis of symmetry passing through
the centre of the circular contour ∂Γ1. In this case, the

Dirichlet boundary value problem (8)-(9) admits an ana-
lytical solution, so that particle permeability can be de-
termined explicitly. Indeed, problem (8)-(9), if we as-
sume that the liquid pressure distribution u is a func-
tion of θ only and independent of the azimuthal angle, is
equivalent to

1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
= 0, θ0 < θ < π − θ1, (12)

with the boundary conditions

u|θ=θ0 = U1, u|θ=π−θ1 = U2. (13)

The analytic solution to problem (12)-(13) after apply-
ing the boundary conditions can be represented in the
following form

u = Ψ0(U2 − U1) ln

{
sin θ

sin θ0

1 + cos θ0

1 + cos θ

}
+ U1, (14)

where

Ψ0 =
1

ln
{

sin θ1
sin θ0

1+cos θ0
1−cos θ1

} .
One can now calculate the total flux and the perme-

ability, using its definition (11),

QT = −K1

µ
D(U2 − U1) = −2π sin θ0δR

km
µ

∂u

∂θ

∣∣∣∣
θ=θ0

= −(U2 − U1)2πδRΨ0
km
µ
. (15)

So that, taking D = 2R,

K1 = πΨ0
δR
R
km. (16)

Parametrically, the coefficient of permeability (16) is
inversely proportional to the particle radius R, so that
larger particles create stronger resistance to the flow. No-
ticeably, the coefficient demonstrates strong dependence
on the surface layer thickness δR, that is K1 ∝ δ3

R since
it is anticipated that km ∝ δ2

R, so that evaluation of this
parameter in applications is crucial for the accurate esti-
mates of the liquid dispersion rates.

One can see, if we take θ1 = θ0, in fact assuming small
variations of the bridge size and the pressure over one
particle diameter, and θ0 � 1, in fact considering small
values of saturation, s� 1, that the permeability coeffi-
cient K1 tends to zero, that is

K1 =
δR
2R

πkm
| ln θ0|

+ o

(
1

| ln θ0|

)
. (17)

How does the result affect the super-fast diffusion
model (1), and basically how can it be incorporated into
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the main diffusion equation? If we approximate the per-
meability coefficientK byK1 obtained in the azimuthally
symmetric case at θ1 = θ0, (17), and, using an ap-
proximate relationship between the radius of curvature
R sin θ0 of the boundary contour ∂Γ1 and the pendular
ring volume2, one can show that

sin2 θ0 ≈ θ2
0 =
√
s− s0.

Therefore, finally

K(s) ≈ 2
δR
R

πkm
| ln(s− s0)|

. (18)

As it follows from (18), the distinctive particle shape
results in logarithmic correction to the main non-linear

superfast-diffusion coefficient D(s) = D0(s)
(s−s0)3/2

, such that

D(s) ∝ 1

| ln(s− s0)|(s− s0)3/2
.

Apparently, the correction will mitigate to some extent
the divergent nature of the dispersion at the very small
saturation levels s ≈ s0, smoothing out the characteristic
dispersion curves.

C. Surface permeability of a chain of spheres in
the case of azimuthally symmetric domain
boundaries

Consider now how the problem can be formulated in
the case of several particles arranged in a single chain,
as is illustrated in Fig. 3 in the case of two coupled by
the bridge particles. To create the flow in the system
of two coupled particles, one can set pressure difference

between ∂Γ
(1)
1 and ∂Γ

(2)
2 . Mathematically, this is equiv-

alent of setting Dirichlet boundary conditions on ∂Γ
(1)
1

and ∂Γ
(2)
2 as in the previous case of a single particle.

The boundaries ∂Γ
(2)
1 and ∂Γ

(1)
2 are ’internal’, that is

common to the bridge linking the flow between the two
particles. Apparently, the pressure is supposed to be the
same on the two contours

u1 |∂Γ
(2)
1

= u2 |∂Γ
(1)
2

= const (19)

and due to conservation of mass in steady state condi-
tions in the absence of sinks and sources of the liquid one
has∮
∂Γ

(2)
1

∇u1 ·ns1 |∂Γ
(2)
1
dl = −

∮
∂Γ

(1)
2

∇u2 ·ns2 |∂Γ
(1)
2
dl (20)

where ns1 and ns2 are the outward tangential normal

vectors to the boundary contours ∂Γ
(2,1)
1,2 , and u1 and u2

designate distribution of pressure on each particle respec-
tively.

As a result, the problem to define the flow and the
permeability of the system corresponds to a system of
two Laplace-Beltrami equations

1

sin θ

∂

∂θ

(
sin θ

∂u1

∂θ

)
= 0 , θ0 ≤ θ ≤ π − θ0 (21)

and

1

sin θ

∂

∂θ

(
sin θ

∂u2

∂θ

)
= 0 , θ0 ≤ θ ≤ π − θ0, (22)

but with a slightly different set of the boundary condi-
tions

u1 |θ=θ0 = U1 (23)

u2 |θ=π−θ0 = U2, (24)

u1 |θ=π−θ0 = u2

∣∣
θ=θ0

(25)

and (
sin θ

∂u1

∂θ

)∣∣∣∣
θ=π−θ0

=

(
sin θ

∂u2

∂θ

)∣∣∣∣
θ=θ0

, (26)

where θ0, as before, defines the size of the bridge footprint
on the particle surface in the spherical coordinate system
with the axis of symmetry passing through the centre
of the bridge area, Fig. 3. Since we assumed, due to
relatively small variations of pressure over a few grain
particles, that all bridges are roughly identical, we have
only one parameter θ0 to describe the bridge size.

Apparently, equations (21) and (22) can be integrated
twice, similar to the previous problem of a single particle
(12), to obtain

u1 = C0 ln
sin θ

1 + cos θ
+ C1, (27)

u2 = B0 ln
sin θ

1 + cos θ
+B1, (28)

where C1,2 and B1,2 are free constant parameters to be
found from the boundary conditions.

It is not difficult to see from (26), that one has C0 = B0

implying continuity of the contact flux. Applying the
remaining boundary conditions (23)-(25), from (27) and
(28)

u1 = Ψ
(2)
0 (U2−U1) ln

(
sin θ

1 + cos θ

1 + cos θ0

sin θ0

)
+U1, (29)

u2 = Ψ
(2)
0 (U2−U1) ln

(
sin θ

1 + cos θ

1− cos θ0

sin θ0

)
+U2, (30)
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FIG. 3. Illustration of the solution domains in a system of two
coupled spherical particles and their geometric arrangements.

where

Ψ
(2)
0 =

1

2 ln
(

1+cos θ0
1−cos θ0

) .
One can now calculate total flux and define permeabil-

ity of the coupled spherical particles K2

QT = −K2

2µ
D(U2 − U1) = −2π sin θ0δR

km
µ

∂u1

∂θ

∣∣∣∣
θ=θ0

= −(U2 − U1)2πδRΨ
(2)
0

km
µ
, (31)

where D is the characteristic length scale of the cross-
section in the problem, κm is local permeability of the
surface layer, δR is the layer width and µ is liquid viscos-
ity.

So that, taking simply D = 2R,

K2 = 2πΨ
(2)
0

δR
R
km. (32)

One can see that the permeability of a system of two
coupled particles K2 is identical to that of a single par-
ticle (16), basically from (16) and (32)

K2

K1
=

2Ψ
(2)
0

Ψ0
= 1.

It is not difficult to discern by deduction that in a
general case of N coupled particles in a chain

KN = πNΨ
(N)
0

δR
R
km = K1 (33)

where

Ψ
(N)
0 =

1

N ln
(

1+cos θ0
1−cos θ0

) .
Note, experimentally, the setup of many beads coupled
by liquid bridges is often used in microfluidics to create
flexible water channels14. If the radius of curvature of
the particle chain is much larger than the particle size,
the transport through such a microfluidic system should
be defined by the permeability of a single particle, rela-
tionship (16), if the particle shape can be approximated
by a sphere.

Sample volume 
element

Lx
B

L y
B

L z
B

Flux

u=U 2

u=U 1

FIG. 4. Schematic illustration of the particle ensemble and
the sample volume element setup.

One can conclude in this part, that if the porous me-
dia configuration is made of parallel chains of particles
oriented symmetrically to each other, and the flow is gen-
erated along the chains, the surface permeability given by
(16) is the exact result.
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III. SURFACE PERMEABILITY OF A
RANDOMLY PACKED PARTICLE
ENSEMBLE

In real systems, the particles are interconnected ran-
domly, so that the effects of tortuosity should substan-
tially affect the permeability of the system1,15–17. To
analyse those effects, we consider an ensemble of spher-
ical particles randomly packed, as is shown in Fig. 4.
The randomly packed configuration of approximately
3000 − 7000 particles has been generated by means of
a molecular dynamics technique by applying a constant
force to every particle placed in a box with reflecting
boundaries (in the perpendicular direction to the box
side), and interacting via the Lennard-Jones potential
with different characteristic length scales R distributed
normally, that is with the probability of the particle ra-

dius W (R) ∝ exp
(
− (R−R0)2

∆R2

)
at ∆R/R0 = 0.3. In this

study, there were particles with three different character-
istic dimensions R1 = 1.3R0, R2 = R0 and R3 = 0.7R0.
The resultant porosity in the configurations was about
48%.

To obtain the configuration, the particle temperature
controlled by the thermostat has been gradually reduced
to bring the system to a minimum energy, frozen state.
A representative sample volume element with dimensions
LBx , L

B
y , L

B
z then was cut off the system, as is illustrated

in Fig. 4, containing NS = 13 − 17 particles, see Table
I for details. We have generated several statistically in-
dependent sample configurations, and, as in the previous
examples, set constant pressure difference U2−U1 at the
boundaries of the sample elements, Figs. 4 and 6.

The Laplace-Beltrami method then has been applied
after establishing the position of the liquid bridges cou-
pling the particles in the sample. Two particles (of radii
R1 and R2) are assumed to be coupled by a liquid bridge
if the distance between their centres r was only slightly
larger than the sum of their radii

R1 +R2 ≤ r < R1 +R2 + 0.05 max(R1, R2).

The size of a single liquid bridge footprint HB on the
particle surface can be characterised, as before, by the
polar angle θ0 in the polar coordinate system with the
symmetry axis passing through the centre of the circular
contour, the boundary of the area covered by the bridge,
as is shown in the symmetric case in Fig. 3. That is,

HB = 2Rk sin θ
(k)
0 . Due to the specific geometric proper-

ties of the pendular rings (constant mean curvature sur-
face), we assume that even in the case of a distribution
of particles with different radii Rk, the size of the bridge
area in the sample is approximately the same in the low

saturation limit s� 1 (θ
(k)
0 � 1)2,8,18.

Indeed, when s� 1, the pressure in the pendular ring
p is defined by the smallest radius of curvature r1, Fig. 5,
p ≈ −γ cosφc/r1, which is related with the second radius

r1 ≈ r2
2/2Rk, (34)

Grain

Grain

Pendular 
ring

r1

2r 2

FIG. 5. Illustration of the pendular ring characteristic geom-
etry.

so that when s � 1, one has r2 � r1. Obviously, r2

defines the size of the area covered by the bridge, HB =

2r2 = 2Rk sin θ
(k)
0 .

If we have two particles of different radii, say R1 and
R2, in contact, the size of the bridge area will be ap-

proximately the same r
(1)
2 ≈ r(2)

2 at low saturation levels,
s� 1, with the difference being proportional to r1, that
is

r
(1)
2 − r(2)

2

max(R1, R2)
= O

(
r1

max(R1, R2)

)
. (35)

Apparently, in a general case, no analytic solution is
expected to the Laplace-Beltrami problem and a well es-
tablished surface finite element technique19–21 is applied
after the tessellation of the domains, as is shown in Fig.
7 for one particulate element with two boundary con-
tours. The numerical method has been validated against
analytical solutions previously demonstrating prescribed
order of accuracy and numerical convergence, see details
in12.

The number of particles in the sample volume ele-
ment was negotiated between computational efficiency
of the surface finite element method (so that, practically,
any mesh resolution can be used to deal with any de-

tails on the boundary contours ∂Γ
(l)
k and on the particle

surfaces) and fluctuations of the averaged quantities ob-
tained using the sample element, which are proportional

to N
−1/2
S ≈ 25%. Moderate increase of the number of
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particles in the sample may significantly increase com-
putational time to obtain highly resolved numerical so-
lutions, while at the same time would not substantially
reduce the effect of particle number fluctuations.

As one can see, problem (21) - (26) and hence total
flux QT through a particle or a chain of particles, (15)
or (31), are invariant under the transformation of the
particle dimension R provided that the angular size of
the bridge θ0 is fixed. In what follows, we change to
non-dimensional description by normalising length scales
by the average radius R0 of the particles in the sample
and pressure by the characteristic capillary pressure p0 =
2γ cosφc/R0. The flux QT will be normalised by the
characteristic value

Q0 = p0δR
κm
µ

Ū2 − Ū1

L̄Bz

inspired by the analytical result (15) and by the non-
dimensional sample box surface area S0 = L̄Bx L̄

B
y ,

where non-dimensional quantities L̄Bx,y,z = LBx,y,z/R0 and

Ū1,2 = U1,2/p0. The latter normalisation allows to bring
simulation results in slightly different geometric settings,
as is detailed in Table I, into equivalent conditions suit-
able for comparison, that is basically providing the non-
dimensional permeability K̄ = K

κm

R0

δR
.

Parameters of the configurations

Configuration N1 N2 N3 R̄/R0 φS (%) LB
x /R0 L

B
y /R0 L

B
z /R0

1 5 6 4 1 52 5.2 4.6 5.5

2 5 7 5 1 47 5.7 4.8 4.9

3 5 4 4 1 47 5.2 3.7 5.3

TABLE I. Tabulated values of the system parameters in the
random configurations used in the study. Here, N1, N2 and
N3 are the number of particles in the configuration with radii
R1 = 1.3R0, R2 = R0 and R3 = 0.7R0 respectively, φS is
porosity of the sample and R̄ = NkRk∑3

j=1 Nj
.

Schematically, the simulation domains for the Laplace-
Beltrami problem are shown in Fig. 6. As in the previ-
ous case of particles coupled in a chain, there are inter-

nal, common boundaries, contours ∂Γ
(l)
k , k 6= l, where

the continuity boundary conditions are applied and ex-

ternal boundaries, contours ∂Γ
(k)
k , where the Dirichlet

boundary conditions are set to generate a flow through
the system. The pressure value on the contours facing the

bottom of the simulation box (for example, ∂Γ
(2)
2 , ∂Γ

(3)
3

and ∂Γ
(4)
4 in Fig. 6) is set to U2 and on the contours

facing the top side of the pack (for example, ∂Γ
(0)
0 and

∂Γ
(1)
1 in Fig. 6) is set to U1. The values of the boundary

pressure U1,2 were identical in the simulations involving
different configurations.

Geometrically, the external boundary contours are ori-
ented in the flow direction, as is illustrated in Fig. 6.
While this particular orientation seems to be arbitrary or
may even look artificial, within the statistical approach,

Ω0
(2)

Ω0
(0)

Ω0
(4)

∂Γ4
(1)

Ω0
(1)

Ω0
(3)

∂Γ4
(4)

∂Γ4
(3)

∂Γ1
(1)

∂Γ0
(0)

∂Γ1
(0)

∂Γ1
(4)

∂Γ1
(3)

∂Γ3
(3)

∂Γ3
(4)

∂Γ3
(2)

∂Γ3
(0)∂Γ3

(1)

∂Γ0
(1)

∂Γ0
(3)

∂Γ0
(2)

∂Γ2
(0)

∂Γ2
(3)

∂Γ2
(2)

u=U 1

u=U 2

Flow

FIG. 6. Illustration of the particle sample and the flow do-
mains.

∂Γ2

∂Γ1

nΩ0

Ω0

FIG. 7. Illustration of the tessellated flow domain of a particle
for the surface finite element method.

the choice of the boundary contour orientation should
not render any excessive (in excess of the statistical er-
rors due to the particle number fluctuations) influence
upon the results, that is the value of the total flux and
the ’macroscopic’ permeability. A posteriori, one can see
that this seemed to be the case, Fig. 8, as in different
configurations, Table I, the resultant curves are close and
parallel to each other.

There are two main questions, we would like to answer
in this part of the study. First, how does permeabil-
ity of the particle sample depend on the composition?
Basically, how strong are there fluctuations? Secondly,
what is the contribution of the tortuosity effects? To ob-
tain statistically meaningful results, we consider several
randomly generated configurations, as is summarised in
Table I. We would like to stress here, that all configu-
rations have been cut off from statistically independent
particle distributions generated with the help of random
initial distributions of larger number of particles, as we

8



0.12 0.14 0.16 0.18
0.0

0.3

0.6

 

 

T
o

ta
l 

fl
u

x
 Q

T
/S

0
Q

0

Function 
0
(H

B
/2R

0
)

 Configuraiton 1
 Configuration 2
 Configuration 3
  Exact solution

Error bar

FIG. 8. Reduced total flux QT /S0Q0, Q0 = p0δR
κm

µ

Ū2 − Ū1

L̄B
z

and S0 = L̄B
x L̄

B
y , as a function of Ψ0(HB/2R0). The error

bar indicates the statistical error, which is expected due to
the fluctuations of the number of particles in the samples.

have described.
As before, we are going to find a weak solution to a

system of the Laplace-Beltrami equations

∆
Ω

(k)
0
uk = 0

defined on each particle domain Ω
(k)
0 , as in in Fig. 6.

On the internal boundaries of the domains we set up

continuity conditions, for example on ∂Γ
(2)
3 and ∂Γ

(3)
2

u2 |∂Γ
(3)
2

= u3 |∂Γ
(2)
3

= const, (36)

∮
∂Γ

(3)
2

∇u2 ·ns2 |∂Γ
(3)
2
dl = −

∮
∂Γ

(2)
3

∇u3 ·ns3 |∂Γ
(2)
3
dl. (37)

While on a few external boundaries, Dirichlet boundary
conditions are set.

The numerical solution allows to calculate the total
flux through the system by summing up the fluxes pass-
ing through the external contours, where the Dirichlet
boundary conditions are set, either at the top of the pack
or at the bottom using (10). The results are summarised
in Fig. 8.

Remarkably, the reduced flux QT /S0Q0 as a function
of

Ψ0(HB/2R0) = ln−1

1 +

√
1−

(
HB

2R0

)2

1−
√

1−
(
HB

2R0

)2

 ,

where HB is the bridge size HB = 2R0 sin θ0, behaves

linearly in all configurations. This behaviour mirrors the

flux dependence observed in azimuthally symmetric an-
alytical solutions, see (15) or (31). The variations in
the dependencies between different configurations are ob-
served to be well within the statistical error expected in
this case, error bar in Fig 8. At the same time, a com-
parison with a similar, but a regular arrangement, as in
Fig. 3 at R = R0 demonstrates that there is a clear cut
contribution from the effects of tortuosity, solid line in
Fig. 8.

Indeed, given identical porosity (φ ≈ 50%) and mean
particle size (R/R0 = 1) in the regular, symmetric and
randomly generated configurations, the normalised flux
values differ by a factor of two, which is consistent with
the tortuosity values obtained in porous media in dif-
ferent conditions and configurations17. For example,
both hydraulic τh and diffusive τd tortuosity estimated
in unsaturated porous media using different permeabil-
ity models (often used in applications, for example22,23)
was found in between 1.5 ≤ τh,d ≤ 2 at φ = 50%17.

It is important that the result, that is the ratio of the
total flux in the random and regular configurations does
not practically depend on the size of the contour HB , ba-
sically the size of the liquid bridge, and hence the value
of saturation in the porous media. This implies, that
the observed effect is purely down to the distribution of
contacts between the particles, but not the particular
pathway on each single particle surface. That is, funda-
mentally, tortuosity in the surface diffusion processes is
a geometric factor independent of the particular surface
flow regime. At the same time, the pathways, on aver-
age, of course, does depend on the bridge size value HB

leading to smaller permeability as the size of the contact
area diminishes. This trend is expected, but essentially,
the correction to the effective coefficient of diffusion

D(s) ∝ 1

| ln(s− s0)|(s− s0)3/2

is only down to a single universal factor of two represent-
ing the tortuosity effects in surface diffusion in particular
porous media at low values of saturation. Note, this value
is also in agreement with experimental observations and
a comparison of the super-fast diffusion model with the
data, where the tortuosity effects were estimated to re-
duce the effective permeability twofold6.

This is the main result of this study, which can be
used in practical applications to calculate permeability
in particular porous media. Basically, as the first step,
one can calculate permeability of a single, representative
element of the media or several elements to obtain some
mean value and its dispersion. This way permeability
K(s), via (18), and the diffusion coefficient D(s) for the
macroscopic model can be established in the first approx-
imation. Macroscopic permeability K(s) or the diffusion
coefficient D(s) then should be corrected by the universal
factor of two in the macroscopic diffusion model.
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IV. CONCLUSIONS

We have demonstrated that the Laplace-Beltrami
method can be used to obtain permeability of partic-
ulate porous media at low saturation levels and to es-
timate contribution from the effects of tortuosity. Es-
sentially, analytical results obtained using azimuthally
oriented coupled particles can be used with a universal
correcting prefactor to estimate permeability of particle
ensembles. That is, from the practical point of view, re-
sults obtained by analysing single representative element
of particulate porous media can be translated into per-
meability of a particle composition.
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