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Abstract We study boundary element methods for time-harmonic scattering in
Rn (n = 2, 3) by a fractal planar screen, assumed to be a non-empty bounded
subset Γ of the hyperplane Γ∞ = Rn−1 × {0}. We consider two distinct cases: (i)
Γ is a relatively open subset of Γ∞ with fractal boundary (e.g. the interior of the
Koch snowflake in the case n = 3); (ii) Γ is a compact fractal subset of Γ∞ with
empty interior (e.g. the Sierpinski triangle in the case n = 3). In both cases our
numerical simulation strategy involves approximating the fractal screen Γ by a se-
quence of smoother “prefractal” screens, for which we compute the scattered field
using boundary element methods that discretise the associated first kind boundary
integral equations. We prove sufficient conditions on the mesh sizes guaranteeing
convergence to the limiting fractal solution, using the framework of Mosco conver-
gence. We also provide numerical examples illustrating our theoretical results.
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1 Introduction

The scattering of acoustic waves by screens (or “cracks” in the elasticity literature)
is a classical topic in physics, applied mathematics and scientific computing. The
basic scattering problem involves an incident wave propagating in Rn (n = 2 or 3),
striking a screen Γ , assumed to be a bounded subset (typically, a relatively open
subset) of some (n−1)-dimensional submanifold of Rn, and producing a scattered
field which radiates outward to infinity. In a homogeneous background medium, the
scattering problem can be reformulated as a boundary integral equation (BIE) on
the screen, as described in e.g. [31,38,70,71,76], and numerical solutions can then
be computed using the boundary element method (BEM), as in e.g. [42,70,71,76].
The classical work cited above has since been extended in many directions, e.g. to
the electromagnetic case [11,14], to “multi-screens” (the union of multiple screens
intersecting non-trivially) [28], and to hybrid numerical-asymptotic approximation
spaces [40] for high-frequency problems.

For simplicity we focus on the case where the screen is flat, and the underly-
ing (n − 1)-dimensional submanifold is the hyperplane Γ∞ := Rn−1 × {0} ⊂ Rn.
Restricted to this setting, existing studies all assume (either explicitly or implic-
itly) that the screen Γ ⊂ Γ∞ is a (relatively) open set with smooth (or piece-
wise smooth) boundary. In our recent paper [24] we derived well-posed boundary
value problem (BVP) and BIE formulations for sound-soft and sound-hard acous-
tic scattering by arbitrary bounded screens Γ ⊂ Γ∞, including cases where Γ or
∂Γ has fractal structure. In this paper we consider the numerical solution of these
BVPs/BIEs using the BEM.

Our focus is on scattering by two general classes of fractal screens1:

(i) Γ is a bounded, relatively open subset of Γ∞ with fractal boundary, for
instance the interior of the Koch snowflake in the case n = 3;

(ii) Γ is a compact fractal subset of Γ∞ with empty relative interior, for instance
the Sierpinski triangle in the case n = 3.

In both cases our general approach to analysis and numerical simulation is to ap-
proximate the fractal screen Γ by a sequence of smoother “prefractal” screens Γj ,
j ∈ N0, for which BVP/BIE well-posedness and BEM approximation is classical.
The key question we address in this paper is:

Given a fractal screen Γ , how should the prefractals Γj and the correspond-
ing BEM discretisations be chosen so as to ensure convergence of the nu-
merical solutions on Γj to the limiting solution on Γ?

In this paper we focus exclusively on sound-soft screens, on which homogeneous
Dirichlet boundary conditions are imposed. Our decision to restrict attention to
this case was made partly to make numerical simulations as simple as possible,
since one has only to discretise the weakly-singular single-layer boundary integral
operator. But the sound-soft case is also particularly interesting from a physical
point of view, as there is a strong dependence of the scattering properties on the
fractal dimension of the screen (see Proposition 6.2 and the numerical results in
§§7.3–7.4). We leave for future work the application of the techniques developed in

1 While our focus in this paper is on fractal screens, our main results (for instance, Theorems
5.2 and 5.3) do not require fractality (neither self-similarity nor non-integer fractal dimension),
but apply to any non-smooth screen approximated by a sequence of smoother screens.
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this paper to the numerical simulation of the well-posed BVP/BIE formulations for
scattering by fractal sound-hard and impedance screens presented in [23, 24, 39].
(See [23] for simulations of diffraction through fractal apertures in sound-hard
screens, equivalent, by Babinet’s Principle [12], to the sound-soft screen problem
that we focus on in this paper.)

Our main results and their novelty. The main focus of this paper is to address
the “key question” above, proving results (Theorems 5.2 and 5.3) that specify,
for each of the classes (i) and (ii), how to choose a sequence of prefractals and
their BEM discretisations so as to achieve convergence of the resulting numerical
scheme to the limiting solution on Γ . While BEM simulations have been carried
out previously on sequences of prefractals (see Jones et al. [48] in the context
of potential theory and Panagiotopulos and Panagouli [59] in elasticity), prior to
the results in this paper there does not appear to exist any analysis to justify the
convergence of such simulations, that the sequence of numerical solutions converges
to the desired limiting solution on Γ .

Our focus throughout the paper is on particular BIEs for sound-soft fractal
screens, but we expect the methods and arguments that we introduce to be much
more widely applicable. Indeed, our analysis is based on a variational formulation
of the BIEs in terms of (complex-valued) continuous sesquilinear forms, which al-
lows the question of prefractal to fractal convergence to be rephrased in terms of
the Mosco convergence2 of the discrete BEM subspaces to the fractional Sobolev
space in which the limiting fractal solution lives. The methods that we develop, to
reduce proof of convergence of the numerical solution to the Mosco convergence
of the BEM subspaces (Lemma 2.5), and to prove Mosco convergence of the BEM
subspaces, are potentially widely applicable to Galerkin discretisations of other
integral or differential equations posed on rough (not necessarily fractal) domains
that are approximated by more regular sets. For example, the proof of Theo-
rem 5.3 depends only on a characterisation of Mosco convergence (Lemma 2.4),
quantitative bounds on the norms of mollification operators on scales of Sobolev
spaces (Appendix B), and a quantitative extension of standard piecewise constant
finite element approximation theory (Lemma A.1), all of which should be widely
applicable.

A feature of our numerical analysis based on Mosco convergence is that our
discrete BEM subspaces need not be subspaces of the Hilbert space in which the
solution on Γ lies; indeed, this is crucial whenever the prefractals are not subsets of
the limiting fractal Γ . Our Lemma 2.5, which applies in such cases (and is proved
in slightly more generality than we need for the results in §5, anticipating wider
application) can be seen as a replacement in this circumstance for the standard Céa
lemma and its generalisation to compact perturbations (see, e.g. [69, Thms. 8.10,
8.11]).

2 Mosco convergence (Definition 2.2 below) is a standard notion in the study of variational
inequalities, closely related to Gamma convergence. Introduced by U. Mosco in [54] (almost
exactly 50 years ago), it has been applied by a number of authors to the study of PDEs on
sequences of domains, see e.g. [13,53] and the references therein. It has been mainly used (e.g.
the references just cited) in relation to convergence at a continuous rather than a discrete
level (i.e. in the context of mathematical analysis rather than numerical analysis). But it is
also relevant to proving convergence of numerical methods, as was illustrated already in [55,
Chapt. 3] in the context of numerical methods for variational inequalities.
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While our main results, Theorems 5.2 and 5.3, are quite general in terms of
geometry of the screen Γ and its approximating prefractal sequence, we pay partic-
ular attention in our theory, examples, and numerical simulations to cases where Γ
(or the boundary of Γ ) is the fixed point of an iterated function system (IFS) (e.g.
Corollaries 4.6 and 5.8). In particular our examples in §6 and §7 include the cases
where Γ is (when n = 2) a Cantor set and (when n = 3) a Cantor dust, the Sier-
pinski triangle, or the interior of a Koch snowflake. These are cases where the BIEs
we wish to solve are posed either on fractal sets or on rough domains with fractal
boundaries. Unsurprisingly, subtle and interesting properties of fractional Sobolev
spaces and integral operators on rough sets, explored recently in [15,22,25,26,41],
are crucial to our arguments throughout.

A novel feature of our BEM and its analysis is that convergence can be achieved
in regimes where each boundary element contains many disjoint components of a
prefractal (e.g. Corollary 5.8(ii) and Figure 1). To justify this we need an extension,
that applies in such cases, of standard piecewise constant approximation theory
in scales of Sobolev spaces with explicit constants. We supply this in Lemma A.1.

Applications and motivations. Wave scattering by fractal structures is relevant for
numerous applications, since fractals provide a natural mathematical framework
for modelling the multiscale roughness of many natural and man-made scatter-
ers. We highlight in particular the propagation of acoustic and electromagnetic
waves in dendritic structures like the human lung in medical science [1, 47], and
the scattering of electromagnetic waves by snowflakes, ice crystals and other at-
mospheric particles in climate science [7, 20, 68, 74]. But particularly close to the
fractal screen scattering problems that we focus on in this paper are configura-
tions arising in the design of fractal antennas for electromagnetic wave transmis-
sion/reception (see e.g. [35,61,77]) and fractal piezoelectric ultrasound transducers
(see e.g. [2,3,34,57]) (fractal structures being attractive in these contexts because
of the possibility of wideband performance), and configurations that arise in the
study of fractal aperture problems in laser physics [27, 43, 46, 75]. The current
study into acoustic scattering by fractal screens represents a first step towards
the rigorous numerical analysis of integral equation methods for the study of such
challenging problems involving fractal scatterers.

Related literature. One of the first studies of wave scattering by fractals appears to
be M. Berry’s 1979 paper [10] on scattering by “random phase screens”, in which
Berry coins the term “diffractal” to describe waves that have undergone inter-
actions with fractal structures. The difficult problem of studying high frequency
asymptotics for fractal scattering problems was investigated by Sleeman and Hua
in [44, 65]. Concerning the study of PDE problems on fractal domains more gen-
erally, U. Mosco notes in [56] that “. . . introducing fractal constructions into the
classic theory of PDEs opens a vast new field of study, both theoretically and nu-
merically”, but also that “this new field has been only scratched”. In addition to
papers cited above, research that has started to explore this field of study includes
work on finite element method approximations of heat transmission across fractal
interfaces [5, 16,18,19,51] and H1 extension problems [32]; Dirichlet-to-Neumann
(Poincaré-Steklov) operators on domains with fractal boundaries [4]; and finite dif-
ference [58] and conformal mapping [6] approaches to the computation of Laplace
eigenfunctions on fractal domains.
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Structure of the paper. In §2 we collect some important Hilbert and Sobolev space
results that will be used throughout the paper. The main new result here is Lemma
2.5, which proves convergence of solutions of variational problems for “compactly
perturbed coercive” sesquilinear forms on a Mosco-convergent sequence of closed
subspaces. The compactly perturbed coercive setting is more general than we need
for the particular problem under consideration in this paper, since for flat sound-
soft screens the first-kind formulation is coercive (strongly elliptic) [22]. However,
it is included here to lay the foundations for future investigations into other, closely
related problems, such as curved sound-soft screens (as studied e.g. in [71, 76]),
and impedance screens (as studied e.g. in [9, 39, 50]). In §3 we state well-posed
BVPs and BIEs for open and closed screens, refining results from [24], and in §4
we prove convergence of solutions on prefractal screens to solutions on limiting
fractal screens using the Mosco framework; in particular we prove for the first
time convergence in cases where the prefractal sequence is not monotonic, and it
holds neither that Γ ⊂ Γj for all j, nor that Γj ⊂ Γ for all j. In §5 we study
numerical discretisations based on piecewise constant BEM approximations on
prefractals, determining conditions under which the BEM solution converges to
the limiting fractal solution in the joint limit of prefractal and mesh refinement.
In §6 we present examples of the kind of fractal screens we have in mind, and in §7
we provide numerical results which illustrate our theoretical predictions through a
number of concrete examples. We also include in this section preliminary numer-
ical investigations into physical questions such as how the fractal dimension of a
screen affects the magnitude of the resulting scattered field. In §8 we make a brief
conclusion and list some of the many intriguing open problems.

2 Preliminaries

2.1 Dual space realisations

We say that a linear isomorphism between Hilbert spaces is unitary if it preserves
the inner product (equivalently, if it is isometric [30, Prop. 5.2]). If H is a complex
Hilbert space (as all the Hilbert spaces in this paper are) by its dual space H∗ we
mean, following Kato [49], the space of anti-linear continuous functionals on H. It
is often convenient to identify H∗, itself a Hilbert space with the standard induced
operator norm, with some other Hilbert space H, termed a realisation of H∗. If
〈·, ·〉 is a continuous sesquilinear form on H×H, and the mapping taking φ ∈ H
to `φ ∈ H∗, given by `φ(ψ) = 〈φ, ψ〉, ψ ∈ H, is a unitary isomorphism, then we
say that H is a unitary realisation of H∗ with associated duality pairing 〈·, ·〉. If
W ⊂ H is a closed subspace, then a unitary realisation of W ∗ is provided by the
following simple but important result, e.g. [26, Lem. 2.2], which is a special case
of a more general Banach space result, e.g. [63, Thm. 4.9].

Lemma 2.1. Suppose that H and H are Hilbert spaces, and H is a unitary real-
isation of H∗, with duality pairing 〈·, ·〉, and W ⊂ H is a closed linear subspace.

Set W :=
(
W a,H)⊥ ⊂ H, where ⊥ denotes orthogonal complement and

W a,H := {ψ ∈ H : 〈ψ, φ〉 = 0, for all φ ∈W} ⊂ H
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is the annihilator of W in H. Then W is a unitary realisation of W ∗, and its
associated duality pairing is just the restriction to W ×W of the duality pairing
on H×H.

For a closed subspace W ⊂ H, (W⊥)a,H = (W a,H)⊥ and (W a,H)a,H = W .

2.2 Variational problems

Suppose H is a Hilbert space with norm ‖ · ‖H , and a(·, ·) is a sesquilinear form on
H×H that is continuous, i.e., for some C > 0 (the continuity constant), |a(u, v)| ≤
C‖u‖H‖v‖H , for all u, v ∈ H. To each such a, and each unitary realisationH of the
dual space H∗, with associated duality pairing 〈·, ·〉, there corresponds a unique
bounded linear operator A : H → H defined by

a(u, v) = 〈Au, v〉, u, v ∈ H. (1)

Conversely, every bounded linear operator A : H → H defines via (1) an associated
sesquilinear form a(·, ·) on H ×H.

We say that a and A are coercive if, for some α > 0 (the coercivity constant),

|a(u, u)| ≥ α‖u‖2H , for all u ∈ H.

We recall that A is compact, i.e. maps bounded sets to relatively compact sets,
if and only if it is completely continuous, i.e., for every sequence (uj) ⊂ H and
u ∈ H, uj ⇀ u implies that Auj → Au. (Here → denotes norm convergence in
H and ⇀ weak convergence in H.) We say that a is compact if A is compact:
equivalently, if a(uj , vj) → a(u, v) whenever (uj) ⊂ H, (vj) ⊂ H and u, v ∈ H
satisfy uj ⇀ u and vj ⇀ v. We say that a and A are compactly perturbed coercive
if a = a0 + a1 with a0 coercive and a1 compact; equivalently, A = A0 + A1 with
A0 coercive and A1 compact. 3

Let W ⊂ H be a closed subspace of H and let W := (W a,H)⊥ ⊂ H be the
unitary realisation of W ∗ provided by Lemma 2.1. We say that a is invertible on
W if, for every f ∈ W, the variational problem: find uW ∈W such that

a(uW , v) = 〈f, v〉, for all v ∈W, (2)

has exactly one solution uW ∈W . This holds (e.g. [45, Thm. 2.15]) if and only if

β := inf
u∈W, ‖u‖H=1

sup
v∈W, ‖v‖=1

|a(u, v)| > 0 and sup
u∈W

|a(u, v)| > 0 ∀v ∈W \ {0}.

In terms of the associated operator A, (2) can be written equivalently as

PWAu = f, (3)

where PW is orthogonal projection in H ontoW, so that a is invertible on W if and
only if PWA|W is invertible, in which case ‖ (PWA|W )−1 ‖ = β−1. If a is coercive
then a is invertible on W by the Lax–Milgram lemma and β ≥ α. More generally,
if a is compactly perturbed coercive, then a is invertible on W if and only if it
is injective, meaning that the problem (2) has at most one solution uW ∈ W for
every f ∈ W.

3 Terminology varies: what we call here coercive is often termed H-elliptic or strongly elliptic,
and what we call here compactly perturbed coercive is often termed coercive (e.g. [69]).
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2.3 Mosco convergence

We now consider the problem of approximating the solution of the variational
problem (2) by the solutions of variational problems posed on a sequence of closed
subspaces (Wj)

∞
j=1 ⊂ H. We say that a is uniformly invertible on such a sequence

(Wj)
∞
j=1 if a is invertible on Wj for all j ∈ N and the inverses are uniformly

bounded, meaning that, for some constant C > 0 and all j ∈ N and fj ∈ Wj :=

(W a,H
j )⊥,

‖uWj
‖H ≤ C‖fj‖Wj

,

where uWj
is the unique solution of (2) with W replaced by Wj and f by fj .

Equivalently, a is uniformly invertible on (Wj) if PWj
A|Wj

is invertible for j ∈ N
and

sup
j∈N

∥∥∥(PWj
A|Wj

)−1
∥∥∥ <∞.

Roughly speaking, given a variational problem (2), to ensure that the corre-
sponding solutions on (Wj)

∞
j=1 converge to the solution in W we require that a

is sufficiently “well-behaved” and that Wj approximates W increasingly well as
j →∞ in an appropriate sense. This statement is made precise in Lemma 2.5 for
a compactly perturbed coercive and Wj converging to W in the Mosco sense. The
following definition of Mosco convergence is precisely the notion of set convergence
for convex sets introduced in [54, Definition 1.1], except that we specialise here
from the general Banach space setting to the Hilbert space case, and our convex
sets are specifically closed linear subspaces (as, for example, in [53]).

Definition 2.2 (Mosco convergence). Let W and Wj, for j ∈ N, be closed sub-
spaces of a Hilbert space H. We say that Wj converges in the Mosco sense, or

Mosco-converges, to W (written Wj
M−→W ) if the following conditions hold:

(i) For every w ∈W and j ∈ N there exists wj ∈Wj such that ‖wj − w‖H → 0.
(ii) If (Wjm) is a subsequence of (Wj), wm ∈ Wjm , for m ∈ N, and wm ⇀ w as

m→∞, then w ∈W .

Two simple cases in which Mosco convergence holds [54, Lems. 1.2 and 1.3] are

W1 ⊂W2 ⊂ · · · , with W =
∞⋃
j=1

Wj , and (4)

W1 ⊃W2 ⊃ · · · with W =
∞⋂
j=1

Wj . (5)

The following “sandwich lemma” is a trivial consequence of Definition 2.2.

Lemma 2.3. If W+
j , W−j and Wj are closed subspaces of H satisfying W−j ⊂

Wj ⊂ W+
j for each j ∈ N, and both W+

j and W−j Mosco-converge to some closed
subspace W of H, then Wj also Mosco-converges to W .

The following lemma will also be useful. Again the proof is straightforward.

Lemma 2.4. Let Wj and W be closed subspaces of H. To prove that Wj
M−→W it

suffices to show that (i) there exists a dense subspace W̃ ⊂W such that for every

w ∈ W̃ and j ∈ N there exists wj ∈ Wj such that ‖wj − w‖H → 0, and (ii) there
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exists a sequence of closed subspaces W+
j of H such that Wj ⊂ W+

j for all j ∈ N
and W+

j
M−→W .

Mosco convergence was introduced to study convergence of approximate solu-
tions to variational inequalities. The following lemma, which applies to variational
equalities, appears to be new, but its proof, if specialised to the coercive case, has
something of the flavour of the original arguments of Mosco [54, Thm. A and its
Corollary]. Indeed, in the case that H is a real Hilbert space and a is coercive, this
lemma is a corollary of the results in [54], since variational inequalities on linear
subspaces of real Hilbert spaces are in fact equalities.

Lemma 2.5. Let W ⊂ H and Wj ⊂ H, for j ∈ N, be closed subspaces such
that Wj Mosco-converges to W as j → ∞. Let a be compactly perturbed coercive
and invertible on W . Then there exists J ∈ N such that a is uniformly invertible
on Wj for j ≥ J . Further, if, for some f ∈ H, uW denotes the solution to (2)
and, for j ≥ J , uWj

denotes the solution to (2) with W replaced by Wj, then
‖uWj

− uW ‖H → 0 as j →∞.

Proof. We show first that, for some J ∈ N, a is uniformly invertible on Wj for
j ≥ J . Suppose first that a is not invertible on Wj for all sufficiently large j, in
which case neither is it injective on Wj . Then there exists a subsequence of (Wj),
which we will denote again by (Wj), and vj ∈Wj with ‖vj‖H = 1, such that

a(vj , v) = 0, v ∈Wj . (6)

If on the other hand a is invertible on Wj for all sufficiently large j but is not
uniformly invertible then there exists a subsequence of (Wj), which we will denote
again by (Wj), and vj ∈Wj with ‖vj‖H = 1 such that

sup
v∈Wj , ‖v‖H=1

|a(vj , v)| → 0 as j →∞. (7)

In both of these cases as ‖vj‖H = 1 is bounded we can extract a subsequence that
is weakly convergent to some v ∈ H. Denoting the subsequence again by (vj), we
have that vj ∈Wj and v ∈W by (ii) in Definition 2.2. Further, by (i) in Definition
2.2, for all w ∈ W , there exists a sequence (wj) ⊂ H with wj ∈ Wj such that
‖wj − w‖H → 0. Thus, and by (6) or (7),

a(vj , w) = a(vj , wj) + a(vj , w − wj)→ 0 as j →∞.

But also a(vj , w)→ a(v, w). Thus a(v, w) = 0 for all w ∈W , so that v = 0 as a is
invertible on W . So vj ⇀ v = 0 and, by (6) or (7), a(vj , vj)→ 0. Further, recalling
that a = a0 + a1 with a0 coercive and a1 compact, we have also a1(vj , vj)→ 0 as
a1 is compact. But this implies that a0(vj , vj) → 0, which contradicts that a0 is
coercive. Thus, for some J ∈ N, a is invertible on Wj for j ≥ J and is uniformly
bounded.

Thus, for j ≥ J , uWj
is well-defined and (uWj

)∞j=J is bounded and so has a
weakly convergent subsequence, converging to a limit u∗, and u∗ ∈ W by (ii) in
Definition 2.2. Further, by (i) in Definition 2.2, for all w ∈W there exists wj ∈Wj

such that ‖wj − w‖H → 0, and (2) gives

a(uW , w) = 〈f, w〉 = 〈f, w−wj〉+ 〈f, wj〉 = 〈f, w−wj〉+ a(uWj
, wj)→ a(u∗, w),
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as j → ∞ through that subsequence. Thus a(uW , w) = a(u∗, w), for all w ∈ W ,
so that u∗ = uW by the invertibility of a on W . By the same argument every
subsequence of (uWj

)∞j=J has a subsequence converging weakly to uW , so that
(uWj

)∞j=J converges weakly to uW . Finally, we see that

a(uWj
− uW , uWj

− uW ) = 〈f, uWj
〉 − a(uWj

, uW )− a(uW , uWj
− uW )→ 0

as j → ∞, by the weak convergence of (uWj
)∞j=J and (2). Since a1 is compact,

a1(uWj
− uW , uWj

− uW )→ 0, so that also a0(uWj
− uW , uWj

− uW )→ 0. Since
a0 is coercive it follows that uWj

→ uW .

Remark 2.6. The statement of Lemma 2.5 can be strengthened if additional as-
sumptions are made on a, (Wj)

∞
j=1 and W .

(i) If a is coercive then one can take J = 1 (since a coercive sesquilinear form
is automatically invertible on every subspace). In the special case when (5)
holds, this was noted already in [26, Lem. 2.4].

(ii) If Wj ⊂W for each j ∈ N then (ii) in Definition 2.2 holds automatically and
quasi-optimality holds asymptotically [69, Thms. 8.10-11], meaning that, for
some M > 0 and J ∈ N, a is invertible on Wj for j ≥ J , and

‖uWj
− uW ‖H ≤M inf

wj∈Wj

‖uW − wj‖H , for j ≥ J. (8)

Furthermore, if a is coercive then, by Céa’s lemma, (8) holds with J = 1 and
M = C/α, where C and α are the continuity and coercivity constants for a.

2.4 Sobolev spaces and trace operators

Our notation follows that of [52] and [26]. Let m ∈ N. For a subset E ⊂ Rm we
denote its complement Ec := Rm \E, its closure E and its interior E◦. We denote
the Hausdorff (fractal) dimension of E by dimHE (see, e.g., [72, §I.2]). We say that
a non-empty closed set F ⊂ Rm is a d-set for some 0 ≤ d ≤ m, if it is “uniformly
d-dimensional”, more precisely if there exist c1, c2 > 0 such that

c1r
d ≤ Hd

(
Br(x) ∩ F

)
≤ c2rd, x ∈ F, 0 < r ≤ 1,

where Br(x) is the closed ball of radius r with centre at x and Hd denotes the
d-dimensional Hausdorff measure on Rm [72, §I.3]. We say that a non-empty open
set Ω ⊂ Rm is C0 (respectively Lipschitz) if its boundary ∂Ω can at each point be
locally represented as the graph (suitably rotated) of a C0 (respectively Lipschitz)
function from Rm−1 to R, with Ω lying only on one side of ∂Ω. For a more detailed
definition see, e.g., [37, Defn 1.2.1.1]. For m = 1 these definitions coincide: we
interpret them both to mean that Ω is a countable union of open intervals whose
closures are disjoint and whose endpoints have no limit points.

For s ∈ R, let Hs(Rm) denote the Hilbert space of tempered distributions
whose Fourier transforms (defined for ξ ∈ Rm as û(ξ) := 1

(2π)m/2

∫
Rm e−iξ·xu(x) dx

in the case that u ∈ C∞0 (Rm)) are locally integrable with

‖u‖2Hs(Rm) :=

∫
Rm

(1 + |ξ|2)s |û(ξ)|2 dξ <∞.
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In particular, H0(Rm) = L2(Rm) with equal norms. For the dual space of Hs(Rm)
we have the unitary realisation (Hs(Rm))∗ ∼= H−s(Rm), with duality pairing

〈u, v〉H−s(Rm)×Hs(Rm) :=

∫
Rm

û(ξ)v̂(ξ) dξ, (9)

which coincides with the L2(Rm) inner product when both u and v are in L2(Rm).
Given a closed set F ⊂ Rm, we define

Hs
F := {u ∈ Hs(Rm) : suppu ⊂ F},

and given a non-empty open set Ω ⊂ Rm, we define

H̃s(Ω) := C∞0 (Ω)
Hs(Rm)

,

the closure of C∞0 (Ω) in Hs(Rm). Clearly H̃s(Ω) ⊂ Hs
Ω

, and when Ω is sufficiently

regular it holds that H̃s(Ω) = Hs
Ω

(see Proposition 3.4 for results relevant to the
current study); however, in general these spaces can be different [26, §3.5]. For
non-empty open Ω we also define

Hs(Ω) := {u = U |Ω for some U ∈ Hs(Rm)},
‖u‖Hs(Ω) := inf

U∈Hs(Rm)
U|Ω=u

‖U‖Hs(Rm).

Although Hs(Ω) is a space of distributions on Ω, it can be naturally identified
with a space of distributions on Rm, namely (Hs

Ωc)
⊥ ⊂ Hs(Rm), where ⊥ denotes

orthogonal complement in Hs(Rm), with the restriction operator |Ω : (Hs
Ωc)
⊥ →

Hs(Ω) providing a unitary isomorphism between the two spaces.
Regarding duality, for arbitrary F ⊂ Rm closed and Ω ⊂ Rm open, we can

unitarily realise the dual spaces of Hs
F and H̃s(Ω) by certain closed subspaces of

H−s(Rm), with the duality pairing inherited from (9). Precisely, by Lemma 2.1,

(Hs
F )∗ ∼= (H̃−s(F c))⊥, (10)

(H̃s(Ω))∗ ∼= (H−sΩc )⊥, (11)

where ⊥ denotes orthogonal complement in H−s(Rm), since [26, §3.2] H̃−s(F c)

and H−sΩc are the annihilators of Hs
F and H̃s(Ω), respectively, with respect to the

duality pairing (9). An alternative, and more widely-known unitary realisation of

(H̃s(Ω))∗ (also valid for arbitrary open Ω ⊂ Rm, see [26, Thm. 3.3]) is

(H̃s(Ω))∗ ∼= H−s(Ω) with 〈u, v〉H−s(Ω)×H̃s(Ω) := 〈U, v〉H−s(Rm)×Hs(Rm),

(12)

where U ∈ H−s(Rm) is any extension of u ∈ H−s(Ω) with U |Ω = u. That (11)

and (12) are both unitary realisations of (H̃s(Ω))∗ is consistent with the fact that
|Ω : (H−sΩc )⊥ → H−s(Ω) is a unitary isomorphism, as mentioned above.

In the context of our screen scattering problem, we define Sobolev spaces on
the hyperplane Γ∞ = Rn−1 × {0} by associating Γ∞ with Rn−1 and setting
Hs(Γ∞) := Hs(Rn−1), for s ∈ R, which we shall frequently abbreviate to simply

Hs. For E ⊂ Γ∞ we set Ẽ := {x̃ ∈ Rn−1 : (x̃, 0) ∈ E} ⊂ Rn−1. Then for a closed
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subset F ⊂ Γ∞ we define Hs
F := Hs

F̃
⊂ Hs, and for a (relatively) open subset

Ω ⊂ Γ∞ we set H̃s(Ω) := H̃s(Ω̃) ⊂ Hs and Hs(Ω) := Hs(Ω̃), etc. We stress that

all Sobolev spaces on subsets of Γ∞ such as Hs
F , H̃s(Ω) and Hs(Ω) are defined

starting from Hs = Hs(Γ∞) = Hs(Rn−1), as opposed to Hs(Rn); in other words,
in the definitions earlier in this section we have m = n− 1.

In the exterior domain D := Rn \ Γ we work with Sobolev spaces defined
via weak derivatives. Given a non-empty open Ω ⊂ Rn, let W 1(Ω) := {u ∈
L2(Ω) : ∇u ∈ L2(Ω)} and let W 1,loc(Ω) denote the “local” space in which square
integrability of u and ∇u is required only on bounded subsets of Ω. We note that,
typically, H1(D) $ W 1(D), since the restriction space inherits from H1(Rn) a
requirement of (weak) continuity across Γ . We define U+ := {(x1, . . . , xn) ∈ Rn :
xn > 0} and U− := Rn \ U+, and adopt the convention that the unit normal
vector n on Γ∞ points into U+. From the half spaces U± to the hyperplane
Γ∞ we define the standard trace operators γ± : W 1(U±) → H1/2 = H1/2(Γ∞)
and ∂±n : {u ∈ W 1(U±) : ∆u ∈ L2(U±)} → H−1/2 = H−1/2(Γ∞). We shall
frequently abuse notation and apply γ± and ∂±n to elements u of the local space
W 1,loc(D), assuming implicitly that u has been pre-multiplied by a cutoff φ ∈
C∞0 (Rn) satisfying φ = 1 in some neighbourhood of Γ , and restricted to U± as
appropriate; for example, γ+u should be interpreted as γ+((uφ)|U+).

3 Boundary value problems and boundary integral equations

Given a screen Γ ⊂ Γ∞ (a bounded subset of Γ∞), and an incident wave ui ∈
H1,loc(Rn) (for instance, a plane wave ui(x) := eikd·x with d a unit direction
vector), we seek a scattered acoustic field u satisfying the Helmholtz equation

∆u+ k2u = 0, k > 0, (13)

in D = Rn \ Γ , the Sommerfeld radiation condition

∂u(x)

∂r
− iku(x) = o(r(1−n)/2), r := |x| → ∞, uniformly in x̂ := x/|x|, (14)

and the Dirichlet boundary condition

u = −ui on Γ. (15)

To formulate a well-posed BVP, one needs to be more precise about the sense in
which the boundary condition (15) holds. A detailed investigation into this issue
for general bounded subsets Γ ⊂ Γ∞ was carried out in [24]. Here we apply the
results of [24] to describe well-posed BVP formulations for the two types of screen
mentioned in the Introduction, namely (i) bounded, relatively open subsets of Γ∞,
and (ii) compact subsets of Γ∞, possibly with empty relative interior. From now
on, for brevity we shall omit the words “relative” and “relatively” when discussing
relatively open subsets of Γ∞ and relative complements, boundaries and interiors
of subsets of Γ∞.



12 Simon N. Chandler-Wilde et al.

3.1 Well-posed BVPs and BIEs for bounded open screens

Let Γ be a non-empty bounded open subset of Γ∞. Then we can formulate the
scattering BVP by imposing the Dirichlet boundary condition (15) by restriction
to Γ (denoting this problem as D(Γ )r, D for Dirichlet, r for restriction).

Definition 3.1 (Problem D(Γ )r for bounded open screens). Let Γ ⊂ Γ∞ be non-
empty, bounded and open. Given gr ∈ H1/2(Γ ) (specifically gr := −(γ±ui)|Γ for
the scattering problem), find u ∈ C2 (D) ∩W 1,loc(D) satisfying (13) in D, (14),
and

(γ±u)|Γ = gr.

A well-posedness result for this formulation is provided in Theorem 3.2, which
is proved in [24, Thm. 6.2(a)]. Before stating it we need some more notation. For

Γ ⊂ Γ∞ non-empty, bounded and open let SΓ : H̃−1/2(Γ )→ C2(D)∩W 1,loc(Rn)
denote the standard single-layer potential, defined for φ ∈ C∞0 (Γ ) by

SΓφ(x) =

∫
Γ

Φ(x,y)φ(y) ds(y), x ∈ D, (16)

with Φ(x,y) = eik|x−y|/(4π|x−y|) (n = 3) or Φ(x,y) = (i/4)H
(1)
0 (k|x−y|) (n =

2), and Sr
Γ : H̃−1/2(Γ ) → H1/2(Γ ) the single layer boundary integral operator

(BIO), the bounded linear operator defined by

Sr
Γφ := (γ±SΓφ)|Γ . (17)

Theorem 3.2 ( [24, Thm. 6.2(a)], [15, Lem. 4.15(ii)]). Let Γ ⊂Γ∞ be non-empty,

bounded and open, with H̃−1/2(Γ ) = H
−1/2

Γ
. Then problem D(Γ )r has a unique

solution. Moreover, it satisfies the representation formula

u(x) = −SΓφ(x), x ∈ D, (18)

where φ = ∂+n u− ∂−n u ∈ H̃−1/2(Γ ) is the unique solution of the BIE

Sr
Γφ = −gr. (19)

Remark 3.3. The statement of [24, Thm. 6.2(a)] includes an extra assumption

that H
1/2
∂Γ = {0}, where ∂Γ denotes the relative boundary of Γ ⊂ Γ∞. But this extra

assumption is superfluous, since by [15, Lem. 4.15(ii)] it follows automatically from

the assumption that H̃−1/2(Γ ) = H
−1/2

Γ
.

The key condition for the well-posedness in Theorem 3.2 is H̃−1/2(Γ ) = H
−1/2

Γ
;

the next proposition gives sufficient conditions on Γ for this to hold.

Proposition 3.4. Each of the following are sufficient for H̃−1/2(Γ ) = H
−1/2

Γ
:

(i) Γ is C0 (which holds in particular if Γ is Lipschitz) [52, Thm. 3.29];
(ii) Γ is C0 except at a set of countably many points P ⊂ ∂Γ such that P has only

finitely many limit points [26, Thm. 3.24];
(iii) |∂Γ | = 0, where | · | denotes Lebesgue measure on Γ∞ ∼= Rn−1, and Γ is “thick”

in the sense of Triebel ( [15, Def. 4.5(iii)] or [73, Def. 3.1(ii)(iv), Rem. 3.2]).
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In §6 we shall combine Theorem 3.2 and Proposition 3.4 to obtain well-posed-
ness results for three-dimensional scattering by certain generalisations of the clas-
sical Koch snowflake, as immediate corollaries of the recently established thickness
results in [15] (which build on earlier results in [73, Prop. 3.8(iii)]). We shall also
deduce well-posedness results for scattering by the standard prefractal approx-
imations to various well-known fractals including the Koch snowflake (and its
generalisations), the Sierpinski triangle, and the Cantor dust. In all these cases
the standard prefractals are either C0 or C0 except at a finite set of points.

Recalling from §2.4 that |Γ : (H
1/2
Γ c )⊥ → H1/2(Γ ) is a unitary isomorphism,

we note that the problem D(Γ )r can be equivalently stated with the boundary
condition (15) imposed by orthogonal projection. (See Remark 3.6 below for an
explanation of why this makes sense physically.) It is instructive to write down
this equivalent formulation explicitly, since we will adopt a similar viewpoint when
defining BVPs for scattering by compact screens in §3.2. In the following let PΓ :

H1/2 → (H
1/2
Γ c )⊥ denote orthogonal projection and define SΓ : H̃−1/2(Γ ) →

(H
1/2
Γ c )⊥ by SΓ := PΓ γ

±SΓ .

Definition 3.5 (Problem D(Γ ) for bounded open screens). Let Γ ⊂ Γ∞ be non-

empty, bounded and open. Given g ∈ (H
1/2
Γ c )⊥ (specifically g := −PΓ γ±ui for the

scattering problem), find u ∈ C2 (D) ∩W 1,loc(D) satisfying (13) in D, (14), and
the boundary condition

PΓ γ
±u = g. (20)

Remark 3.6. To understand why the boundary condition (20) makes sense in
the scattering problem, let ut := u+ ui be the total field (the sum of the scattered
and incident fields), and consider the traces γ±ut of ut on Γ∞ ⊃ Γ . According to
formulation D(Γ )r these traces vanish on Γ , so their support lies in the complement

Γ c, i.e. γ±ut ∈ H1/2
Γ c (more precisely γ±(χut) ∈ H1/2

Γ c for every χ ∈ C∞0 (Rn) with

χ = 1 in a neighbourhood of Γ ). But since the kernel of PΓ is H
1/2
Γ c , this is

equivalent to PΓ γ
±ut = 0 (more precisely PΓ γ

±(χut) = 0), which is just (20)
with g := −PΓ γ±ui.

Since the restriction operator |Γ : (H
−1/2
Γ c )⊥ → H−1/2(Γ ) is unitary, the fol-

lowing proposition is a restatement of Theorem 3.2.

Proposition 3.7. Problems D(Γ )r and D(Γ ) are equivalent, under the identifica-

tion gr = g|Γ . Furthermore, when H̃−1/2(Γ ) = H
−1/2

Γ
the common unique solution

of both problems can be represented as (18) where φ = ∂+n u− ∂−n u ∈ H̃−1/2(Γ ) is
the common unique solution of the BIE (19) and the BIE

SΓφ = −g. (21)

3.2 Well-posed BVPs and BIEs for compact screens

Now let Γ ⊂ Γ∞ be compact. In particular we have in mind the case where
Γ has empty interior, in which case it is not possible to impose the boundary
condition (15) by restriction. But, inspired by Definition 3.5 and Proposition 3.7,
we can impose (15) by an appropriate orthogonal projection; we justify this in
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Remark 3.9 below. Extending our existing notation, for compact Γ let PΓ denote
the orthogonal projection PΓ : H1/2 → (H̃1/2(Γ c))⊥.

Definition 3.8 (Problem D(Γ ) for compact screens). Let Γ ⊂ Γ∞ be non-empty

and compact. Given g ∈ (H̃1/2(Γ c))⊥ (specifically g := −PΓ γ±ui for the scattering
problem), find u ∈ C2 (D) ∩W 1,loc(D) satisfying (13) in D, (14), and

PΓ γ
±u = g. (22)

Remark 3.9. We can justify the formulation in Definition 3.8, in particular (22),
by relating it to a more familiar formulation of the scattering problem for compact
screens [24, Defn. 3.1] that replaces (22) with the requirement that ut := u+ ui ∈
W 1,loc

0 (D), where W 1,loc
0 (D) is the “local” version of W 1

0 (D), and W 1
0 (D) is the

closure of C∞0 (D) in W 1(D). This formulation is well-posed [24, Thm 3.1] when
Γ is any compact subset of Rn. In the particular case when Γ ⊂ Γ∞ is a screen it
is easy to see that ut ∈W 1,loc

0 (D) implies that γ±ut ∈ H̃1/2(Γ c) (more accurately

γ±(χut) ∈ H̃1/2(Γ c) for every χ ∈ C∞0 (Rn) with χ = 1 in a neighbourhood of Γ ).

But since the kernel of PΓ is H̃1/2(Γ c), this is equivalent to PΓ γ
±ut = 0 (more

precisely PΓ γ
±(χut) = 0), which is just (22) with g := −PΓ γ±ui.

Before stating a well-posedness result for this formulation (which we do in
Theorem 3.10), we need some more notation. Given Γ ⊂ Γ∞ compact and ε > 0,
let Γ (ε) := {x ∈ Γ∞ : dist(x, Γ ) < ε} and Dε := Rn \ Γ (ε). Define SΓ (ε) :

H̃−1/2(Γ (ε)) → C2(Dε) ∩ W 1,loc(Rn) by (16) with Γ replaced by Γ (ε). Define

SΓ : H
−1/2
Γ → C2(D) ∩ W 1,loc(Rn) by SΓφ(x) := SΓ (ε)φ(x) for x ∈ D and

0 < ε < dist(x, Γ ), which is well-defined and independent of ε > 0 since H
−1/2
Γ ⊂

H̃−1/2(Γ (ε)) for every ε > 0. Define SΓ : H
−1/2
Γ → (H̃1/2(Γ c))⊥ by SΓ :=

PΓ γ
±SΓ .

Theorem 3.10 ( [24, Thm. 3.29 and Thm. 6.4]). Let Γ ⊂ Γ∞ be non-empty and
compact. Then problem D(Γ ) has a unique solution satisfying the representation

formula (18), where φ = ∂+n u− ∂−n u ∈ H
−1/2
Γ is the unique solution of the BIE

SΓφ = −g.

Remark 3.11. Suppose that Γ ⊂ Γ∞ is non-empty, bounded and open, in which

case Γ is compact, and suppose also that H̃−1/2(Γ ) = H
−1/2

Γ
. Then we have a

choice of well-posed formulations for the scattering problem, potentially with differ-
ent solutions: problem D(Γ ) (see Definition 3.5) with g := −PΓ γ±ui (equivalently,
D(Γ )r with gr := −(γ±ui)|Γ ) and problem D(Γ ) (see Definition 3.8) with g :=

−PΓ γ
±ui. But the assumption that H̃−1/2(Γ ) = H

−1/2

Γ
implies (in fact, is equiv-

alent to) H̃1/2(Γ
c
) = H

1/2
Γ c (see [26, Lem. 3.26] and the proof of [15, Lem. 4.15]),

and from this it follows that SΓ = SΓ , PΓ = PΓ , and SΓ = SΓ = |−1
Γ ◦S

r
Γ . So the

two problems D(Γ ) and D(Γ ) are equivalent, sharing the same unique solution.

It is natural to ask whether, in the case where Γ ⊂ Γ∞ is compact with empty
interior, the screen scatters waves at all. This question was answered in [24].

Proposition 3.12 ( [24, Thm. 4.6]). Let Γ ⊂ Γ∞ be non-empty and compact.

If H
−1/2
Γ = {0} then the solution of D(Γ ) satisfies u = 0 for all g ∈ (H̃1/2(Γ c))⊥
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(and so for all incident waves ui). If H
−1/2
Γ 6= {0} and 0 6= g ∈ (H̃1/2(Γ c))⊥ (in

particular, if g = −PΓ γ±ui and ui is C∞ in a neighbourhood of Γ with ui(x) 6= 0
for all x ∈ Γ ) then u 6= 0.

The question of whether Hs
K = {0} for given s ∈ R and compact K ⊂ Rm

was investigated in detail in [41]. For sets of Lebesgue measure zero, the Hausdorff
dimension dimHK provides a partial characterisation. Specifically, if s > (dimHK−
m)/2 then Hs

K = {0}, and if s < (dimHK − m)/2 then Hs
K 6= {0}. For s =

(dimHK−m)/2 both behaviours are possible. But if K is a d-set for some 0 ≤ d <
m (see §2.4 for definition) then H

(d−m)/2
K = {0}. For such d-sets, the question of

whether Ht
K is dense in Hs

K for s < t < (d −m)/2 was investigated in [15]. The
following lemma collects the results from [15,41] relevant to our current purposes,
translated to our spaces Hs

Γ , where Γ ⊂ Γ∞ = Rn−1 × {0}.

Lemma 3.13 ( [41, Thms. 2.12, 2.17, Cor. 2.16], [15, Prop. 3.7(i), Thm. 6.14]). .
Let Γ ⊂ Γ∞ = Rn−1 × {0} (n = 2, 3) be compact. If d := dimH(Γ ) > n − 2
then Ht

Γ 6= {0} for −1/2 ≤ t < (d − n + 1)/2. If Γ is countable, or if n = 3 and

dimH(Γ ) < n−2 or Γ is an (n−2)-set, then H
−1/2
Γ = {0}. Furthermore, if Γ is a

compact d-set for some n−2 < d < n−1 then Ht
Γ 6= {0} is dense in H

−1/2
Γ 6= {0}

for −1/2 ≤ t < (d− n+ 1)/2.

3.3 Variational formulations of the BIEs

To state and analyse Galerkin methods for the BIE formulations, in particular to
use the Mosco convergence theory of §2.3, we need variational formulations.

When Γ is a bounded open set and H̃−1/2(Γ ) = H
−1/2

Γ
, or when Γ is com-

pact, we have written down, in Proposition 3.7 and Theorem 3.10, BIEs that are
equivalent to the corresponding BVP formulation D(Γ ). In each case these take
the form (21), i.e. SΓφ = −g. In this equation φ ∈ V (Γ ), where

V (Γ ) =

{
H̃−1/2(Γ ) if Γ is bounded and open,

H
−1/2
Γ if Γ is compact,

(23)

and g ∈ V (Γ )∗, where V (Γ )∗ is a unitary realisation of the dual space of V (Γ ),

specifically V (Γ )∗ = (H
1/2
Γ c )⊥ or V (Γ )∗ = (H̃1/2(Γ c))⊥, in the respective cases.

In each case SΓ : V (Γ ) → V (Γ )∗ is a bounded linear operator, a version of the
single-layer potential operator.

As noted in §2.2, SΓ has an associated sesquilinear form aΓ (·, ·) defined by

aΓ (φ, ψ) := 〈SΓφ, ψ〉V (Γ )∗×V (Γ ), φ, ψ ∈ V (Γ ).

Further (see §2.4), the duality pairing on V (Γ )∗×V (Γ ) is simply the restriction to
V (Γ )∗×V (Γ ) of the duality pairing (9) on H1/2×H−1/2. Thus, for φ, ψ ∈ V (Γ ),

aΓ (φ, ψ) = 〈SΓφ, ψ〉H1/2×H−1/2 = 〈γ±SΓφ, ψ〉H1/2×H−1/2 . (24)

The second equality in (24) holds since SΓ = PΓ γ
±SΓ , where PΓ is orthogonal

projection onto V (Γ )∗, and since (V (Γ )∗)⊥ is the annihilator of V (Γ ), as noted
below (11).
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A consequence of (24) and the definition of SΓ is that, if Γ† ⊂ Γ∞ is any bound-

ed open set containing Γ , in which case V (Γ ) is a closed subspace of H̃−1/2(Γ†),
then

aΓ (φ, ψ) = 〈γ±SΓ†φ, ψ〉H1/2×H−1/2 = aΓ†(φ, ψ), φ, ψ ∈ V (Γ ), (25)

i.e. aΓ (·, ·) is the restriction to V (Γ ) of aΓ†(·, ·). Since we can choose Γ† to be as
smooth as we wish, e.g. C∞, or indeed just an open disk, we see that, even when
Γ is fractal or has fractal boundary, the sesquilinear forms we have to deal with
are no more complicated than in the case when Γ is a disk.

A further consequence of (24) is that, in the case when Γ is bounded and open,

aΓ (φ, ψ) = 〈(γ±SΓφ)|Γ , ψ〉H1/2(Γ )×H̃−1/2(Γ ), φ, ψ ∈ V (Γ ) = H̃−1/2(Γ ), (26)

so that, where Sr
Γ is the more familiar screen single-layer potential operator defined

by (17), aΓ (·, ·) is also the sesquilinear form associated to Sr
Γ .

Whether Γ is bounded and open or is compact, the sesquilinear form aΓ (·, ·)
is continuous. Further, as a consequence of our assumption that the screen is flat
(i.e. Γ ⊂ Γ∞ = Rn−1 × {0}), it is coercive. For the bounded open case this is
hinted at in [38, Rem. 6] and proved rigorously in [22], the latter reference also
detailing the wavenumber-dependence of the continuity and coercivity constants.
That coercivity of aΓ (·, ·) holds also for every compact Γ is a simple consequence
of (25), since coercivity implies coercivity on every closed subspace.

As noted in the general Hilbert space setting in §2.2 (see (2) and (3)), the
variational problem: given g ∈ V (Γ )∗

find φ ∈ V (Γ ) s.t. aΓ (φ, ψ) = −〈g, ψ〉V (Γ )∗×V (Γ ), ∀ψ ∈ V (Γ ), (27)

is equivalent to the BIE SΓφ = −g. The duality pairing on the right hand side
can be written equivalently as

〈g, ψ〉V (Γ )∗×V (Γ ) = 〈g, ψ〉H1/2×H−1/2 .

Since aΓ (·, ·) is coercive, (27) is well-posed by the Lax–Milgram lemma.

4 Prefractal to fractal convergence

Now suppose we want to study a sequence of problems on a sequence of screens
(Γj)j∈N0

(each non-empty and either bounded and open or compact) approximat-
ing a limiting screen Γ (again, non-empty and either bounded and open or com-
pact). Assuming that the Γj are uniformly bounded, let Γ† ⊂ Γ∞ be a bounded
open set (e.g. a disk) such that Γ ⊂ Γ† and Γj ⊂ Γ† for each j ∈ N0. Let

g† ∈ (H
1/2
Γ c†

)⊥ ⊂ H1/2 be fixed. Then by the continuity and coercivity of the

sesquilinear form aΓ†(·, ·) (discussed in §3.3), for any closed subspaces Vj and V

of V (Γ†) = H̃−1/2(Γ†) the variational problems

find φ ∈ V s.t. aΓ†(φ, ψ) = −〈g†, ψ〉H1/2×H−1/2 , ∀ψ ∈ V, (28)

find φj ∈ Vj s.t. aΓ†(φj , ψ) = −〈g†, ψ〉H1/2×H−1/2 , ∀ψ ∈ Vj , (29)

are well-posed. The following theorem follows from Lemma 2.5, combined with the
continuity of SΓ† : H̃−1/2(Γ†)→W 1,loc(Rn) (defined by (16)).
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Theorem 4.1. Let Vj and V be closed subspaces of V (Γ†) = H̃−1/2(Γ†) and let

φ ∈ V and φj ∈ Vj denote the solutions of (28) and (29) respectively. If Vj
M−→ V

as j → ∞ then φj → φ as j → ∞ in H̃−1/2(Γ†), and hence SΓjφj = SΓ†φj →
SΓ†φ = SΓφ as j →∞ in W 1,loc(Rn).

Definition 4.2 (BVP convergence). Suppose that Γ is non-empty and either
bounded and open or compact, and that the sequence (Γj)j∈N0

is uniformly bounded,
and that each Γj is non-empty and either bounded and open or compact. Then we

say that “BVP convergence holds” if Vj
M−→ V as j → ∞, where V := V (Γ ) and

Vj := V (Γj), with V (·) defined as in (23).
The rationale behind this terminology is that, with these conditions on Γ and

Γj, if Vj
M−→ V , then it follows by Theorem 4.1 that φj → φ in H−1/2, where φ

and φj are the solutions to (28) and (29), respectively, and that SΓjφj → SΓφ in

W 1,loc(Rn), where (noting (25) and the equivalence of (26) with the BIE) SΓφ and
SΓjφj are the unique solutions to the BVPs D(Γ ) and D(Γj), with data g := PΓ g†
and gj := PΓjg†. In particular, SΓφ and SΓjφj are the scattered fields for scattering

of the incident field ui by Γ and Γj, respectively, provided g† := −PΓ†γ±ui.
Sufficient conditions guaranteeing BVP convergence are given in the following

proposition, which follows trivially from (4), (5), [26, Props. 3.33 and 3.34] and
the “sandwich lemma” of Mosco convergence, Lemma 2.3.

Proposition 4.3. Vj
M−→ V in any of the three following situations:

(i) (increasing open) V := V (Γ ) = H̃−1/2(Γ ) and Vj := V (Γj) = H̃−1/2(Γj),
where Γ and Γj are non-empty, bounded and open with Γj ⊂ Γj+1, j ∈ N0,
and Γ =

⋃
j∈N0

Γj;

(ii) (decreasing compact) V := V (Γ ) = H
−1/2
Γ and Vj := V (Γj) = H

−1/2
Γj

,
where Γ and Γj are non-empty and compact with Γj ⊃ Γj+1, j ∈ N0, and
Γ =

⋂
j∈N0

Γj;

(iii) (sandwiched) V := V (Γ ) = H̃−1/2(Γ ) and Vj = V (Γj) = H̃−1/2(Γj),

where Γ and Γj are non-empty, bounded and open with H̃−1/2(Γ ) = H
−1/2

Γ
,

and there exist Γ−j non-empty, bounded and open and Γ+
j non-empty and

compact such that: Γ−j ⊂ Γ
−
j+1, j ∈ N0; Γ+

j ⊃ Γ
+
j+1, j ∈ N0; Γ−j ⊂ Γj ⊂ Γ

+
j ,

j ∈ N0; Γ =
⋃
j∈N0

Γ−j ; Γ =
⋂
j∈N0

Γ+
j .

Remark 4.4. By combining Theorem 4.1 with Proposition 4.3 (i)-(ii) we repro-
duce the convergence results of [24, Thm. 7.1] (these phrased without reference to
Mosco convergence). The convergence result obtained by combining Theorem 4.1
with Proposition 4.3 (iii), that applies in more subtle cases where neither Γj ⊂ Γ
nor Γ ⊂ Γj, is new. We present an example of this type (the “square snowflake”)
in §6.5 below.

Remark 4.5. The sequences Γ±j required in Proposition 4.3(iii) exist if and only
if

⋂
j∈N0

Λ+
j = Γ and

⋃
j∈N0

Λ−j = Γ, where Λ+
j := Γ ∪

∞⋃
i=j

Γi and Λ−j := Γ∩

( ∞⋂
i=j

Γi

)◦
;

(30)
indeed if (30) holds then we can take Γ±j := Λ±j .
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While parts (i) and (iii) of Proposition 4.3, and their BEM versions in Proposi-
tion 5.2 below, apply to more general bounded open screens Γ , we are particularly
interested in cases where Γ has fractal boundary. The main challenge in apply-

ing part (iii) in such cases is to show that H̃−1/2(Γ ) = H
−1/2

Γ
. But, as noted in

Proposition 3.4, this holds if Γ is “thick” in the sense of Triebel, as recently shown
in [15]. Moreover, it follows from [15, Prop. 5.1] that a large class of domains with
fractal boundaries are thick. We provide some examples in §6 and §7.

4.1 Fractals that are attractors of iterated function systems

While Proposition 4.3 (ii), and its BEM version in Proposition 5.3 below, apply to
more general compact Γ , our main motivation for these results is the case when
Γ is fractal. An important fractal class (e.g. [33, Chap. 9]) is the set of fractals
obtained as attractors of an iterated function system (IFS) {s1, s2, . . . , sν}. Here
ν ≥ 2 and each sm : Rn−1 → Rn−1 is a contraction, meaning that

|sm(x)− sm(y)| ≤ c|x− y|, x, y ∈ Rn−1,

for some c ∈ (0, 1). The attractor of the IFS is the unique non-empty compact set
Γ satisfying

Γ = s(Γ ), where s(U) :=

ν⋃
m=1

sm(U), for U ⊂ Rn−1. (31)

That (31) has a unique fixed point follows from the contraction mapping theorem
since s is a contraction on the set of compact subsets of Rn−1, a complete metric
space equipped with the standard Hausdorff metric, e.g. [33, Thm. 9.1 and its
proof]. If Γ0 is any non-empty compact set then the sequence Γj defined by

Γj+1 := s(Γj), j = 0, 1, . . . (32)

converges in the Hausdorff metric to Γ . In particular, if Γ0 is such that s(Γ0) ⊂ Γ0

then [33, Thm. 9.1]

Γj+1 ⊂ Γj , j ∈ N0, and Γ =
⋂
j∈N0

Γj . (33)

In the case that Γ is a fractal or where Γ is not fractal but has a fractal boundary
it is common to refer to Γj as a sequence of prefractals.

The following is an obvious corollary of the above observations, Theorem 4.1,
and Proposition 4.3(ii).

Corollary 4.6. Suppose that ν ≥ 2, s1, . . . , sν are contractions, and that the non-
empty compact set Γ ⊂ Γ∞ ∼= Rn−1 is the unique attractor of the IFS {s1, . . . , sν},
satisfying (31). Suppose that Γ0 is non-empty and compact with s(Γ0) ⊂ Γ0, and
define the sequence of compact sets Γj by (32). Then BVP convergence holds.

Remark 4.7. With Γj defined by (32), it holds for any non-empty compact Γ0

that Γj → Γ in the Hausdorff metric. However, if s(Γ0) 6⊂ Γ0 it may or may not
hold that φj → φ as j →∞. In particular, if: i) Γ0 is a countable set; or ii) n = 3
and dimHΓ0 < 1; then Γj defined by (32) is also countable or has dimHΓj < 1,
respectively. (The latter case is a consequence of [33, Prop. 2.3].) In such cases

it follows from Lemma 3.13 that H
−1/2
Γj

= {0} so that φj = 0, for j ∈ N0. Thus
φj 6→ φ unless φ = 0.
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5 Boundary element methods and their convergence

In this section we propose Galerkin boundary element methods, based on piecewise
constant approximations, for solving the screen scattering problems of §3 and prove
their convergence. These methods are based on discretisation of a sequence of more
regular screens (Γj)j∈N0

; as in the previous section these converge in an appropriate
sense to a limiting screen Γ ⊂ Γ∞ for which we wish to compute the solution to
the scattering problem D(Γ ) of Definition 3.5 or 3.8.

In particular we have in mind cases where Γ is a compact set with fractal di-
mension < n− 1, and cases where Γ is a bounded open set with fractal boundary.
We prove convergence results that apply in both of these cases, and our examples
in §6 and our numerical results in §7 are of these types. In each of our convergence
results, Γj is a sequence of open sets, divided into a mesh of elements. Appropri-
ately, given that we are approximating on very rough domains, the constraints on
the elements are mild compared to conventional BEM results. In particular our
elements need not be convex or even connected.

In more detail, we assume each Γj is a non-empty bounded open set. On each
Γj we construct a pre-convex mesh Mj = {Tj,1, Tj,2, . . . , Tj,Nj} in the sense of
Appendix A, meaning that Tj,l ⊂ Γj is non-empty and open for l = 1, . . . , Nj ,
the convex hulls of Tj,l and Tj,l′ are disjoint for l′ 6= l, ∂Tj,l has zero (n − 1)-
dimensional Lebesgue measure, and Γj is the interior of the union of the closures
of the Tj,l, i.e.

Γj =
(⋃Nj

l=1
Tj,l

)◦
.

We call hj := maxl∈{1,...,Nj} diam(Tj,l) the mesh size and Tj,1, Tj,2, . . . , Tj,Nj the
elements of the mesh.

Our Galerkin boundary element method (BEM) is to solve the variational
problem (29) with Vj chosen to be the Nj-dimensional space of piecewise constant
functions on the mesh Mj , which we denote by V hj . It follows from (25), (26), and

the comment following (9), that the BEM solution φhj is defined explicitly by

(SrΓjφ
h
j , ψ)L2 = −(g†, ψ)L2 , ∀ψ ∈ V hj , (34)

where (·, ·)L2 is the inner product on L2 = L2(Γ∞) = L2(Rn−1). Moreover, when
we are solving the scattering problem, g† = −PΓ†γ±ui, and (34) can be written
as

(SrΓjφ
h
j , ψ)L2 = (γ±ui, ψ)L2 , ∀ψ ∈ V hj .

Definition 5.1 (BEM convergence). Let the discrete approximation space V hj
be defined as above, and let the Sobolev space V (Γ ) be defined as in (23). If V hj
Mosco-converges to V (Γ ) then we say that “BEM convergence holds”. In this case,
it follows by Theorem 4.1 that φhj → φ in H−1/2, where φhj and φ are the solutions

to (34) and (28), respectively, and SΓjφhj → SΓφ in W 1,loc(Rn), with SΓφ the
solution to D(Γ ) with g = PΓ g†.

5.1 Bounded open screens

The following theorem provides a BEM convergence result in the case where the
limiting screen Γ is non-empty, bounded and open. The result is stated for case
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(iii) in Proposition 4.3, but it also covers case (i), since if H̃−1/2(Γ ) = H
−1/2

Γ
(which we require in any case for well-posedness of D(Γ )) then case (i) is a special
case of case (iii) with Γ−j = Γj and Γ+

j = Γ , j ∈ N0.

Theorem 5.2 (Γ bounded and open). Let Γ , Γj and Γ±j satisfy the conditions
of Proposition 4.3(iii). For each j, let Mj be a pre-convex mesh on Γj with mesh
size hj. Then BEM convergence holds provided that hj → 0 as j →∞.

Proof. To show that V hj
M−→ V = H̃−1/2(Γ ) we proceed by verifying that the

conditions (i) and (ii) in Lemma 2.4 hold (with Wj = V hj , W = V , and H =

H̃−1/2(Γ+
0 )). Regarding condition (ii), note that V hj ⊂ H̃−1/2(Γj), and H̃−1/2(Γj)

M−→ H̃−1/2(Γ ) = V by Proposition 4.3(iii). Regarding condition (i), let v ∈ C∞0 (Γ )

(which is dense in V = H̃−1/2(Γ ) by definition of the latter) be given. Since
Γ =

⋃
j∈N0

Γ−j and Γ−j ⊂ Γ−j+1 for j ∈ N0, it follows (e.g. [21, Lem. 4.15]) that

there exists j∗ ∈ N such that supp v ⊂ Γ−j∗ ⊂ Γj∗ , and hence that v ∈ C∞0 (Γj) ⊂
H̃−1/2(Γj), for all j ≥ j∗. In particular, v|Γj ∈ L2(Γj), so that by Lemma A.1

‖v − vj‖H̃−1/2(Γ ) = ‖v − vj‖H̃−1/2(Γj)
≤ (hj/π)1/2‖v|Γj‖L2(Γj), j ≥ j∗,

where vj ∈ V hj is the L2 projection of v onto the discrete space V hj . But since for
j ≥ j∗ the norm ‖v|Γj‖L2(Γj) = ‖v|Γj∗ ‖L2(Γj∗ )

does not depend on j, it follows
that vj → v provided hj → 0.

5.2 Compact screens

When the limiting screen Γ is compact and H̃−1/2(Γ ◦) 6= H
−1/2
Γ , neither Theo-

rem 5.2 nor its method of analysis can be applied. In particular, if H
−1/2
Γ 6= {0}

and Γ has empty interior (Γ ◦ = ∅) then it is clearly impossible to approximate

a limiting non-trivial integral equation solution v ∈ H−1/2
Γ by a sequence of ele-

ments of C∞0 (Rn−1) supported inside Γ , since no such non-trivial functions exist.
In the following theorem we address this case. The proof relies on mollification ar-
guments (see Appendix B) to obtain smooth approximations to v to which we can
apply the BEM approximation theory (Lemma A.1). This produces approximating
smooth functions whose support is strictly larger than that of v. This introduces
a constraint on the sequence Γj to which the analysis applies. In particular, each
Γj must contain Γ (ε) := {x ∈ Γ∞ : dist(x, Γ ) < ε}, the ε-neighbourhood of Γ , for
some carefully chosen j-dependent ε > 0.

Theorem 5.3 (Γ compact). Let Γ ⊂ Γ∞ be non-empty and compact. Let Γj be
a sequence of bounded open subsets of Γ∞ such that Γ ⊂ Γ (εj) ⊂ Γj ⊂ Γ (ηj), for
some 0 < εj < ηj, with ηj → 0 as j → ∞. Let Mj be a pre-convex mesh on Γj

with mesh size hj. If Ht
Γ is dense in H

−1/2
Γ for some t ∈ [−1/2, 0] (always true

for t = −1/2) then BEM convergence holds if hj = o((εj)
−2t) as j →∞.

Proof. Assuming that ηj → 0 as j → ∞, to show that V hj
M−→ V = H

−1/2
Γ we

proceed by verifying the two conditions (i) and (ii) in Lemma 2.4 (with Wj = V hj ,



Boundary element methods for acoustic scattering by fractal screens 21

W = V , and H = H̃−1/2(Γ†) for some bounded open set Γ† ⊂ Γ∞ that contains

Γ (ηj) for j ∈ N0). Regarding condition (ii) we note that V hj ⊂ H
−1/2

Γ (ηj)
, and

H
−1/2

Γ (ηj)

M−→ H
−1/2
Γ = V by Proposition 4.3(ii), since ηj → 0. To establish condition

(i), suppose that v ∈ Ht
Γ , where t ∈ [−1/2, 0] is such that Ht

Γ is dense in H
−1/2
Γ .

(Note that we are including t = −1/2 as a possibility here, in which case density
holds trivially.) For each j ∈ N define ṽj := ψεj/2 ∗v to be the mollification defined

in Appendix B. Then ṽj ∈ C∞0 (Γj) (since ṽj is smooth and supp ṽj ⊂ Γ (εj/2) ⊂
Γ (εj) ⊂ Γj) and ‖ṽj − v‖H−1/2(Γ∞) → 0 as j → ∞, since εj → 0. It remains to

show that there exists vj ∈ V hj such that ‖vj − ṽj‖H−1/2(Γ∞) → 0 as j →∞. For

this we define vj to be the orthogonal projection in L2(Γj) of ṽj ∈ C∞0 (Γj) onto
V hj ⊂ L2(Γj). From (47) we have that

‖ṽj‖L2(Γ∞) ≤ cn−1c
′
−t(εj/2)t‖v‖Ht

Γ
,

so that, by Lemma A.1,

‖vj − ṽj‖H−1/2(Γ∞) = ‖vj − ṽj‖H̃−1/2(Γj)
≤ (hj/π)1/2‖ṽj‖L2(Γj)

= (hj/π)1/2‖ṽj‖L2(Γ∞)

= cn−1c
′
−t(εj/2)t(hj/π)1/2‖v‖Ht

Γ
.

Hence ‖vj − ṽj‖H−1/2(Γ∞) → 0 as j → ∞ provided that h
1/2
j εtj → 0 as j → ∞,

which is equivalent to saying that hj = o(ε−2t
j ) as j →∞.

Remark 5.4. Theorem 5.3 applies in the case when V = H
−1/2
Γ = {0} when

(trivially) H0
Γ = {0} is dense in V , to give that V hj

M−→ V as j → ∞, provided
that ηj → 0 and hj → 0 as j → ∞. But, in this case, if ηj → 0 then, as argued

in the above proof, V hj ⊂ H
−1/2

Γ (ηj)

M−→ V as j → ∞, so that, by Lemma 2.4,

V hj
M−→ V = {0} as j →∞, with no constraint on the mesh size hj. More generally,

if Mj is any mesh on any open set Γj such that Vj = H̃−1/2(Γj)
M−→ {0}, then

V hj
M−→ {0}.

Remark 5.5. For many compact Γ of interest it is straightforward to see how
to construct sequences Γj and Mj satisfying the conditions of Theorem 5.3 (see,
for instance the examples in §6). But here is a construction that works in every
case. Let M1, M2, . . . be a sequence of uniform meshes of convex elements on
Γ∞ = Rn−1×{0}, i.e. Mj = {Sj,n : n ∈ N} is a family of open, bounded, convex,
pairwise disjoint, congruent subsets of Γ∞ that tile Γ∞ in the sense that Γ∞ is
the closure of

⋃∞
n=1 Sj,n. Let hj be the (common) diameter of Sj,n, for n ∈ N,

and assume that hj → 0 as j → ∞. (For example, we might take (for n = 2)
Mj = {((n − 1)hj , nhj) : n ∈ Z} × {0}.) For j ∈ N choose εj > 0 with εj → 0
as j →∞, let Mj denote the set of those elements of Mj that have a non-empty
intersection with Γ (εj), and let Γj denote the interior of

⋃
T∈Mj

T , so that Mj is

a convex mesh on Γj in the sense of §A (and, in particular, is pre-convex). Then
Γ (εj) ⊂ Γj ⊂ Γ (εj + hj) ⊂ Γ (ηj) provided ηj > εj +hj, so that Γj and Mj satisfy
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the conditions of Theorem 5.3 provided that hj = o(ε−2t
j ) for some t ∈ [−1/2, 0]

such that Ht
Γ is dense in H

−1/2
Γ .

Combining Theorem 5.3 and Remark 5.4 with the density results in Lemma
3.13 we obtain the following corollary.

Corollary 5.6. Suppose that Γ ⊂ Γ∞ = Rn−1 × {0}, V , Γj, V
h
j and Mj satisfy

the assumptions of Theorem 5.3. Then BEM convergence holds if either

(i) dimHΓ < n− 2 or Γ is a (n− 2)-set (so that V = {0});
(ii) Γ is a d-set for some n − 2 < d < n − 1 (so that V 6= {0}) and hj = o(εµj )

as j →∞, for some µ > n− 1− d.

We emphasize that in Corollary 5.6(ii) it is possible (since 0 < n−1−d < 1) to
take µ < 1, giving convergence when hj ∼ εj or even hj � εj . See the discussion
around (42) and after Corollary 5.8(b) below, where this result is applied.

5.3 The BEM on fractals and prefractals arising from iterated function systems

An important IFS subclass is where each sm is a contracting similarity, i.e.

|sm(x)− sm(y)| = rm|x− y|, x, y ∈ Rn−1, (35)

for some rm ∈ (0, 1). In the case that the IFS additionally satisfies the standard
open set condition [33, (9.11)], that there exists a non-empty bounded open set
O ⊂ Rn−1 such that

s(O) ⊂ O and sm(O) ∩ sm′(O) = ∅, m 6= m′, (36)

it is well known [72, Thm. 4.7] that Γ is a d-set, in particular that dimHΓ = d,
where d ∈ (0, n− 1] is the unique solution of the equation

ν∑
m=1

rdm = 1. (37)

Thus Corollary 5.6 applies to this important class of fractal examples.
Suppose that O satisfies the open set condition, and consider the sequence of

compact sets Γj defined by (32) with Γ0 := O, i.e.

Γ0 := O, Γj+1 := s(Γj), j = 0, 1, . . . (38)

so that Γj = sj(O), where sj is the mapping s iterated j times. Then the open
set condition implies that s(O) ⊂ O, so that (33) holds, in particular Γ ⊂ O,
and it follows from Corollary 4.6 that the solution to the BVP D(Γj) converges
to that of D(Γ ) as j → ∞. Note also that s(O) has Lebesgue measure |s(O)| =∑ν
m=1 r

n−1
m |O|, so it follows from (37) that d < n−1 unless |s(O)| = |O|, in which

case s(O) = O so that Γ = O (as Γ is the unique fixed point).
Furthermore, for any O satisfying the open set condition, the sequence Γj (cf.

(38)) given by
Γ0 := O, Γj+1 := s(Γj), j = 0, 1, . . . (39)

so that Γj = sj(O), is a natural sequence of open sets converging to the fractal
Γ that can be discretised by the BEM. For simplicity we assume for the rest of
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this subsection that rm = r ∈ (0, 1) for m = 1, . . . , ν in (35), in which case (37)
becomes

d = log(r)/ log(1/ν). (40)

Assume that O is connected. Then the open set condition implies that Γj given
by (39) has νj components, each component similar to O but reduced in diameter
by a factor rj . If O is convex and M0 = {T0,1, . . . , T0,N0

} is a convex mesh on Γ0,
a natural construction of a convex mesh on Γj is to take

Mj :=
{
sm1 ◦ · · · ◦ smj (T0,l) : 1 ≤ mj′ ≤ ν for j′ = 1, . . . , j and 1 ≤ l ≤ N0

}
.

(41)
The mesh Mj has N0 elements on each component of Γj , so Nj = νjN0 elements
in total. If h0 is the mesh size for M0, then Mj has mesh size hj = rjh0.

One can also consider meshes for which there is less than one degree of freedom
(DOF) per component of Γj . Precisely, for each j choose i = i(j) ∈ {0, . . . , j}, let
τi,1, . . . , τi,νi be the components of Γi, and consider the mesh Mj on Γj defined
by

Mj :=
{
Γj ∩ τi,1, . . . , Γj ∩ τi,νi

}
. (42)

(Figure 1 shows the meshes given by (42) for j = 0, 1, 2 and 0 ≤ i ≤ j for a Cantor
dust example from §6.2 below.) If i = j the mesh (42) is convex (the elements
are convex sets), indeed Mj coincides with the mesh given by (41) with N0 = 1.
But if i < j then the mesh Mj given by (42) has only Nj = νi elements and each
element is comprised of νj−i separate components. This mesh Mj is clearly not
convex, if i < j, but it is pre-convex (in the sense of Appendix A) under the above
assumptions on O, as captured in the following straightforward lemma.

Lemma 5.7. Suppose that the bounded open set O ⊂ Rn−1 is convex and satisfies
the open set condition (36). Then Mj given by (42) is a pre-convex mesh on Γj.

The following corollary, which follows from Theorems 4.1 and 5.3, Corollary
5.6 and Lemma 5.7, justifies convergence of the BEM when Γj is the sequence
of prefractals (39) and Mj is defined by either (41) or (42), under the additional
requirement that Γ ⊂ O (rather than Γ ⊂ O). We will see that this condition
holds for obvious choices of O in the Cantor set and Cantor dust examples that
we treat in the next sections.

Corollary 5.8. Suppose that ν ≥ 2 and s1, . . . , sν are contracting similarities,
satisfying (35) with rm = r, for m = 1, . . . , ν and some r ∈ (0, 1), and that the
compact set Γ is the unique fixed point of the IFS {s1, . . . , sν}, satisfying (31).
Suppose that the bounded open set O ⊂ Rn−1 is convex and satisfies the open set
condition (36) and that Γ ⊂ O. Then Γ is a d-set with d ∈ (0, n − 1) given by
(40).

Define Γj by (39). Then BEM convergence holds if either

(a) Mj is the convex mesh defined by (41); or
(b) Mj is the pre-convex mesh defined by (42) and either

(i) d ≤ n− 2 (so that V = {0});
(ii) n− 2 < d < n− 1 and i(j) > µj, j ∈ N0, for some µ > n− 1− d.

Proof. That Γ is a d-set with d given by (40) follows as discussed above; it holds, as
discussed above (38), that d < n−1 since Γ ⊂ O so that Γ 6= O. Since O is bounded
and open and Γ ⊂ O = Γ0, it follows that Γ ⊂ Γ (ε0) ⊂ Γ0 ⊂ Γ (η0), for some
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Fig. 1 Six pre-convex meshes, given by (42) with j = 0, 1, 2 and i = 0, . . . , j, for the Cantor
dust example of §6.2 with parameter α = 1/3. The prefractals Γj are defined by (39) with
Γ0 := O := (−δ, 1 + δ)2 and δ = 1/4, and with ν = 4 and the similarities s1, . . . , sν given by
(43). Each mesh corresponds to a different pair of values (j, i). In each mesh the number inside
each component of Γj is the index ` ∈ {1, . . . , Nj} of the mesh element Γj ∩ τi,` to which that

component belongs, and Nj = νi is the total number of elements in the mesh on Γj .

0 < ε0 < η0, so that, since Γ = sj(Γ ) and Γj = sj(Γ0), Γ ⊂ Γ (εj) ⊂ Γj ⊂ Γ (ηj),
for j ∈ N0, with εj = rjε0 and ηj = rjη0.

Suppose next that the mesh Mj on Γj is given by (41). Then the mesh size for

Mj is hj = rjh0, and that V hj
M−→ V as j →∞ follows from Corollary 5.6 applied

with µ = 1.

Suppose instead that Mj is given by (42) with i = i(j) ∈ {0, 1, . . . , j} and let

L be the diameter of Γ0. Then hj = riL, and that V hj
M−→ V as j → ∞ follows

from Lemma 5.7 and Corollary 5.6, since, in the case n − 2 < d < n − 1, i > µj
for some µ > n− 1− d implies that hj = o(εµj ) as j →∞.

Corollary 5.8 proves BEM convergence for the case Γ ⊂ O under rather mild
mesh refinement. When d ≤ n − 2 (zero limiting solution) there is no restriction
on the mesh size, in accordance with Remark 5.4. When n− 2 < d < n− 1 (non-
zero limiting solution) it is possible to take µ < 1 in Corollary 5.8(ii)(b).4 This
means that BEM convergence holds with just one, or even less than one DOF per
component of Γj .

4 There is a curious “discontinuity in convergence” in Corollaries 5.6 and 5.8(ii): the infimum
of the permitted µ values increases from 0 to 1 as d decreases from n− 1 to n− 2, then jumps
back to 0 for d < n− 2.
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Remark 5.9. Corollary 5.8 does not apply to what is the standard choice of
prefractal sequence in the Cantor set, Cantor dust, and Sierpinski triangle examples
that we treat in §6, namely to define the sequence Γj by (39) with O := (Conv(Γ ))◦,
the interior of the convex hull of Γ , which is an open interval, an open square,
an open triangle, in the Cantor set, Cantor dust, and Sierpinski triangle cases,
respectively. In each case this choice of O satisfies the open set condition, but it
does not hold that Γ ⊂ O, only that Γ ⊂ O.

In such cases, assuming that H̃−1/2(Γj) = H
−1/2

Γj
for each j, given an arbitrary

element v ∈ V = H
−1/2
Γ one can prove the existence of a sequence of mesh sizes hj

for which infvhj ∈V
h
j
‖v − vhj ‖H̃−1/2 → 0 as j → ∞ by a simple diagonal argument:

since V ⊂ Vj = H̃−1/2(Γj) = H
−1/2

Γj
, there exists vj ∈ C∞0 (Γj) such that ‖v −

vj‖H−1/2 ≤ (1+j)−1, say, and then by Lemma A.1 there exists hj such that, if the
mesh size on Γj is less than hj, there exists vhj ∈ V hj such that ‖vj − vhj ‖H−1/2 ≤
(1+j)−1, and the claimed convergence follows by the triangle inequality. However,
the required choice of hj depends on vj, which itself depends on v. So such an
argument does not prove the existence of a single mesh refinement strategy for

which V hj
M−→ V .

The development of a satisfactory convergence analysis for BEM on these stan-
dard prefractal sequences remains an open problem.

6 Examples

We now apply the theory developed above to some specific examples of fractal
screens. In our first example, the Cantor set, the scattering problem is posed in
R2 (so n = 2), the screen being a subset of the one-dimensional hyperplane Γ∞ =
R× {0}. In all other examples, the scattering problem is posed in R3 (so n = 3),
the screen being a subset of the two-dimensional hyperplane Γ∞ = R2 × {0}. In
the first three examples Γ is a compact fractal d-set (for some d < n − 1) that
is the attractor (31) of some IFS of contracting similarities {s1, . . . , sν}. In the
remaining examples Γ is a (relatively) open subset of Γ∞ with fractal boundary.

6.1 Cantor sets

We consider first the Cantor set Γ , a compact subset of R with empty interior,
depending on a parameter 0 < α < 1/2, defined by (31) with ν = 2 and

s1(x1) = αx1, s2(x1) = αx1 + 1− α.

Since the open set condition (36) holds with O = (0, 1), Γ is a d-set with Hausdorff
dimension d = log 2/ log(1/α). The standard prefractals Γj are defined by (32)
with Γ0 := O = [0, 1], so that Γj is the union of 2j closed intervals of length αj ,
and the Γj are a decreasing nested sequence of compact sets satisfying (33). To
construct what we will term “thickened” open prefractals satisfying the conditions
of Theorem 5.3, choose a parameter 0 < δ < 1

2α − 1, and define Γj by (39) with

Γ0 := O := (−δ, 1 + δ), so that Γj is the disjoint union of the 2j intervals of length
αj(1+2δ) centred at the centres of the 2j components of the standard prefractals.
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Then Γ ⊂ Γ (εj) ⊂ Γj ⊂ Γ (ηj), for εj = αjδ and for any ηj > supx∈Γj dist(x, Γ ) =

αj max{δ, 1/2− α}. Clearly we can choose ηj so that ηj = O(αj)→ 0 as j →∞.
The following result follows from Proposition 3.12, Lemma 3.13, Remark 5.4,

Corollary 5.6, and Corollary 5.8.

Proposition 6.1 (Cantor set). For 0 < α < 1/2, let Γ be the Cantor set defined
above and let Γj be either the standard compact prefractals or the thickened open
prefractals. Then the BVPs D(Γ ) and D(Γj) are well-posed, BVP convergence
holds, and the solution of D(Γ ) is non-zero if and only if g 6= 0.

For the thickened prefractals, BEM convergence holds if hj = o(αµj) for some
µ > µ0 := 1− log 2

log(1/α) . In particular, BEM convergence holds for the convex mesh

(41), and for the pre-convex mesh (42) with i(j) > µj, j ∈ N0, provided µ > µ0.

Interpreted in terms of DOFs, the final statement in Proposition 6.1 says that
BEM convergence holds for the pre-convex mesh (42) on the thickened prefractal

Γj using (2
1− log 2

log 1/α
+ε

)j DOFs, for arbitrary ε > 0. For example, for the middle
third Cantor set (α = 1/3) it suffices to take 1.3j DOFs on Γj (note that Γj has
2j components).

6.2 Cantor dusts

We now consider the Cantor dust Γ , a compact subset of R2 with empty interior,
defined for 0 < α < 1/2 to be the Cartesian product of two identical Cantor sets
from §6.1. Equivalently, the set Γ is defined by (31) with ν = 4 and

s1(x1, x2) = α(x1, x2), s2(x1, x2) = α(x1, x2) + (1− α)(1, 0),

s3(x1, x2) = α(x1, x2) + (1− α)(0, 1), s4(x1, x2) = α(x1, x2) + (1− α)(1, 1).
(43)

Since the open set condition (36) holds with O = (0, 1)2, Γ is a d-set with Hausdorff
dimension d = log 4/ log(1/α). The standard prefractals Γj are defined by (32)
with Γ0 := O = [0, 1]2, so that Γj is the union of 4j closed squares of side length
αj , and the Γj are a decreasing nested sequence of compact sets satisfying (33).
See Figure 2 for an illustration.

Fig. 2 The first five standard prefractals Γ0, . . . , Γ4 of the middle third Cantor dust (α = 1/3).

Thickened open prefractals satisfying the conditions of Theorem 5.3 can be
constructed by taking Cartesian products of the thickened prefractals for the Can-
tor set. Explicitly, given 0 < δ < 1

2α − 1 we define Γj by (39) with Γ0 := O :=

(−δ, 1 + δ)2, so that Γj is the disjoint union of the 4j squares of side length
αj(1+2δ) centred at the centres of the 4j components of the standard prefractals.
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(Figure 1 shows (meshes on) Γ0, Γ1, and Γ2 when α = 1/3 and δ = 1/4.) Then
Γ ⊂ Γ (εj) ⊂ Γj ⊂ Γ (ηj), for εj = αjδ and for any ηj > supx∈Γj dist(x, Γ ) =√

2αj max{δ, 1/2− α} → 0 as j →∞.
The following result (cf. Proposition 6.1) follows from Proposition 3.12, Lemma

3.13, Remark 5.4, Corollary 5.6, and Corollary 5.8.

Proposition 6.2 (Cantor dust). For 0 < α < 1/2, let Γ be the Cantor dust defined
above and let Γj be either the standard compact prefractals or the thickened open
prefractals. Then the BVPs D(Γ ) and D(Γj) are well-posed, and BVP convergence
holds.

Now let Γj be either the interior of the standard compact prefractals, or the
thickened open prefractals. Then

(i) for 0 < α ≤ 1/4, the solution of D(Γ ) is zero, and BEM convergence holds
for any pre-convex mesh on Γj;

(ii) for 1/4 < α < 1/2, the solution of D(Γ ) is non-zero if and only if g 6= 0,
and BEM convergence holds for the thickened prefractals if hj = o(αµj) for
some µ > µ0 := 2 − log 4

log(1/α) . In particular, BEM convergence holds for the

convex mesh defined by (41), and the pre-convex mesh defined by (42) with
i(j) > µj, j ∈ N0, and µ > µ0.

Recalling Proposition 3.12, and comparing Propositions 6.1 and 6.2, we see
that (provided the incident field doesn’t vanish on the fractal screen), Cantor sets
(n = 2) give rise to non-zero scattered fields for any value of α, while Cantor dusts
(n = 3) give rise to non-zero scattered fields only for α > 1/4.

6.3 Sierpinski triangle

The Sierpinski triangle (or gasket) Γ is a compact subset of R2 with empty interior,
defined by (31) with ν = 3 and

s1(x1, x2) = 1
2 (x1, x2), s2(x1, x2) = 1

2 (x1, x2) + (1
2 , 0),

s3(x1, x2) = 1
2 (x1, x2) + (1

4 ,
√
3

4 ).

Since the open set condition (36) holds with O the open unit equilateral triangle
with vertices (0, 0), (1, 0), (1/2,

√
3/2), Γ is a d-set with Hausdorff dimension

d = log 3/ log 2. The standard prefractals Γj are defined by (32) with Γ0 := O (the
closed unit equilaterateral triangle), so that Γj is the (non-disjoint) union of 3j

closed equilateral triangles of side length 2−j , and the Γj are a decreasing nested
sequence of compact sets satisfying (33). The first five prefractals are shown in
Figure 3.

Fig. 3 The first five standard prefractals Γ0, . . . , Γ4 of the Sierpinski triangle.
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The interior Γ ◦j of each prefractal is C0 except at a finite set of points (the
intersection points between neighbouring triangles), and hence by the results of
§3 (see in particular Remark 3.11), the problems D(Γj) and D(Γ ◦j ) share the same
unique solution. To define thickened open prefractals satisfying the conditions of
Theorem 5.3, given δ > 0 we define O to be the open triangle of side length
1 + 2δ with the same centre and side alignment as the unit equilateral triangle
considered above, and define Γj by (39) with Γ0 := O, so that Γj is the (non-
disjoint) union of 3j equilateral triangles of side length 2−j(1 + 2δ). Then Γ ⊂
Γ (εj) ⊂ Γj ⊂ Γ (ηj), for εj = 2−jδ/

√
3 and for any ηj > supx∈Γj dist(x, Γ ) =

(2−j+1/
√

3) max{δ, 1/4} → 0 as j →∞.

For this choice of O, BEM convergence again follows from Theorem 5.3. But
Corollary 5.8 does not apply here, because O does not satisfy the open set condition
(disjointness fails). In fact, it is easy to see that for the Sierpinksi triangle there does
not exist an open set O satisfying both the open set condition and the additional
requirement that Γ ⊂ O.

Proposition 6.3 (Sierpinski triangle). Let Γ be the Sierpinski triangle defined
above and let Γj be either the standard compact prefractals or the thickened open
prefractals. Then the BVPs D(Γ ) and D(Γj) are well-posed, BVP convergence
holds, and the solution of D(Γ ) is non-zero if and only if g 6= 0.

For the thickened prefractals, BEM convergence holds if hj = o(2−µj) for some
µ > 2− log 3

log 2 , in particular if hj = O(2−j).

6.4 Classical snowflakes

We now consider the family of “classical snowflakes” studied in [17], which gener-
alise the standard Koch snowflake. Each snowflake Γ is a bounded open subset of
R2 with fractal boundary, depending on a parameter 0 < β < π

2 , or equivalently
on 1

4 < ξ := 1
2(1+sin β) < 1

2 . The standard Koch snowflake corresponds to the

choice β = π/6 (ξ = 1/3). We note that ξ is denoted α−1 in [17, §2]; our notation
follows that in [15].

To define and approximate Γ we introduce a sequence of increasing nested open
“inner prefractals” (Γ−j )j∈N0

, defining Γ by Γ :=
⋃
j∈N0

Γ−j , and a sequence of

decreasing nested closed “outer prefractals” (Γ+
j )j∈N0

, such that Γ ⊂ Γ+
j , j ∈ N0.

The inner and outer prefractals for three examples (including the standard Koch
snowflake) are shown in Figure 4.

Each Γ−j is an open polygon with M−j := 3 · 4j edges of length ξj . Γ−0 is

the equilateral triangle with vertices (0, 0), (1, 0), (1
2 ,

1
2

√
3). For j ∈ N, Γ−j is the

union of Γ−j−1 and M−j−1 identical disjoint isosceles triangles (together with their

bases) with base length ξj−1(1 − 2ξ), side length ξj , height ξj−1
√
ξ − 1

4 , apex

angle 2β, placed in such a way that the midpoint of the base of the kth such
triangle coincides with the midpoint of the kth side of Γ−j−1, for k = 1, . . . ,M−j .

Our sequence of “outer prefractals” generalises those considered in [6] for the
standard Koch snowflake. Each Γ+

j is a closed polygon with M+
j := 6 · 4j edges

of length ξj+
1
2 . Γ+

0 is the convex hexagon obtained as union of Γ−0 and the three
isosceles closed triangles with base the three sides of Γ−0 , respectively, and height
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Fig. 4 The first 6 inner and outer prefractals Γ±0 , . . . , Γ
±
5 of the classical snowflakes for β = π

3

(top), β = π
6

(centre), β = π
20

(bottom). The inner prefractals Γ−j are the black shapes and

the outer ones Γ+
j are the union of the blue and the black shapes. The parameter 0 < β < π

2

represents half the width of each convex angle of the inner prefractals (except possibly the
three angles of the first inner prefractal), and the parameter 1/4 < ξ = 1

2(1+sin β)
< 1/2

represents the ratio of the side lengths of two successive prefractals.

√
ξ − 1

4 (Γ+
0 is a regular hexagon only if β = π

6 ). For j ∈ N, Γ+
j is the difference

of Γ+
j−1 and M+

j−1 identical disjoint isosceles triangles (together with their bases)

with base length ξj−
1
2 (1− 2ξ), side length ξj+

1
2 , height ξj−

1
2

√
ξ − 1

4 , apex angle

2β, placed in such a way that the midpoint of the base of the kth such triangle
coincides with the midpoint of the kth side of Γ+

j−1, for k = 1, . . . ,M+
j .

Note that (cf. Figure 4) Γ−j ⊂ Γ
+
j , Γ−j ⊂ Γ

−
j+1 and Γ+

j+1 ⊂ Γ
+
j for each j ∈ N0.

In [15] we proved that

• Γ =
⋂
j∈N0

Γ+
j , Γ = (Γ )◦ and |∂Γ | = 0;

• ∂Γ is a d-set with Hausdorff dimension d = log 4/ log(1/ξ) (with the standard
Koch snowflake having dimension log 4/ log 3);

• Γ is a “thick” domain (in the sense of Triebel), so H̃s(Γ ) = Hs
Γ

for all s ∈ R.

Combining these facts with Theorem 3.2, Proposition 3.7, Proposition 4.3(iii) and
Theorem 5.2, gives the following result.

Proposition 6.4 (Classical snowflakes). Let 0 < β < π
2 , and define the classical

snowflake Γ and its inner and outer prefractals Γ±j as above. Let Γj be any se-

quence of bounded open sets satisfying Γ−j ⊂ Γj ⊂ Γ+
j , with H̃−1/2(Γj) = H

−1/2

Γj

(in particular this applies if Γj = Γ−j or Γj = (Γ+
j )◦, since then Γj is C0). Then

the BVPs D(Γ ) and D(Γj) are well-posed, and BVP convergence holds. Further-
more, BEM convergence holds if hj → 0 as j →∞.
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6.5 Square snowflake

As our final example we consider the “square snowflake” studied in [64] (see
also [36, §7.6] and the references therein). This is an open subset of R2 with
fractal boundary, constructed as the limit of a sequence of non-nested polygonal
prefractals Γj , j ∈ N0, the first five of which are shown in Figure 5.

Fig. 5 The first five standard prefractals Γ0, . . . , Γ4 of the square snowflake.

Each prefractal Γj is an open polygon whose boundary is the union of Nj :=
4 · 8j segments of length `j := 4−j aligned to the Cartesian axes. Let Γ0 = (0, 1)2

be the open unit square. For j ∈ N, ∂Γj is constructed by replacing each horizontal
edge and each vertical edge of ∂Γj−1 respectively by the following polygonal lines
composed of 8 edges each:

  

(Note that the fourth and the fifth segments obtained are aligned; in the following
however we count them as two different edges of Γj .) Each polygonal path ∂Γj
constructed with this procedure is the boundary of a simply connected polygon
Γj of unit area, composed of 16j squares of side length `j . (See [15, §5.2] for more
detail of this construction.) The resulting sequence of prefractals {Γj}j∈N0

is not
nested: for each j ∈ N neither Γj ⊂ Γj−1 nor Γj ⊃ Γj−1. Indeed, the two set
differences Γj \ Γj−1 and Γj−1 \ Γj are composed of 4 · 8j−1 = 23j−1 disjoint
squares of side length `j . Thus the limit set of the sequence cannot be defined
simply as a union or intersection of the prefractals.

In [15] we showed how to construct inner and outer nested prefractal sequences
Γ±j such that Γj and Γ±j satisfy the assumptions of Proposition 4.3(iii), with the

limit set Γ defined as Γ :=
⋃
j∈N0

Γ−j =
(⋂

j∈N0
Γ+
j

)◦
. In [15] we proved further

that ∂Γ is a d-set with Hausdorff dimension d = 3/2, and that Γ is a thick domain,

so that H̃s(Γ ) = Hs
Γ

for all s ∈ R. Combining these facts with Theorem 3.2,
Proposition 3.7, Proposition 4.3(iii) and Theorem 5.2, gives the following result.

Proposition 6.5 (Square snowflake). Define the square snowflake Γ and its stan-
dard prefractals Γj as above. Then the BVPs D(Γ ) and D(Γj) are well-posed, and
BVP convergence holds. Furthermore, BEM convergence holds if hj → 0.
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7 Numerical results

In this section we present numerical results validating our theory, and demonstrate
the feasibility of using BEM to calculate scattering by fractal screens.

While our theoretical convergence analysis in §§5-6 is for Galerkin discreti-
sations, the numerical results in this section were obtained using a collocation
method, to make implementation as simple and flexible as possible. Our Matlab
collocation code was validated against our own 2D Galerkin code for the case of
the Cantor set (see Figure 8 below) and the open-source 3D Galerkin software Be-
mpp [66] for the case of the Sierpinski triangle. In both cases, for fixed prefractal
level the collocation code was found to give similar accuracy to the Galerkin codes
(using the same meshes), but with a slightly lower computational cost, allowing us
to reach slightly higher prefractal levels in 3D than was possible with the Galerkin
code (using default Bempp settings and dense linear algebra).

All our experiments are on prefractals that are finite unions of disjoint segments
(when n = 2) or finite unions of Lipschitz polygons (when n = 3). For simplicity we
use uniform meshes throughout. In fact, in each experiment the elements are either
congruent segments (when n = 2), or congruent squares, or congruent equilateral
triangles.

7.1 Collocation method

Given a prefractal Γj partitioned by a uniform mesh Mj = {Tj,1, . . . , Tj,Nj} with
mesh size hj (the diameter of each element of the uniform mesh), our collocation
discretisation of the BIE (21) computes φhj ∈ V hj (the Nj-dimensional space of
piecewise constants on Mj) by solving the equations

(SΓjφ
h
j )(xl) = −g†(xl), l = 1, . . . , Nj ,

where xl is the centre of the element Tj,l. This is equivalent to approximating
the testing integrals in the Galerkin equations (34) with a 1-point-per-element
quadrature formula.

The vector u containing the values of φhj on each mesh element satisfies a
square linear system Au = b where the matrix A and right-hand side vector
b have entries Al,m =

∫
Tj,m

Φ(xl,x)ds(x) and bl = −g†(xl), respectively. The

integrals in the off-diagonal matrix entries are approximated with Gauss–Legendre
quadrature on line segments and the tensorized version of the same rule on square
elements; in both cases the number of quadrature points per element is chosen to
be at least max{20hj/λ, 3}n−1, λ = 2π/k being the wavelength. Numerical tests
show that higher-order quadratures do not noticeably improve solution accuracy
for the range of parameters considered. On triangular elements we use a classical
7-point symmetric formula (as in [62, p. 415], with degree of exactness 3). The
integrands of the diagonal entries Al,l have a weak singularity at the element
centre xl. For line segments, Al,l is computed by dividing the segment in half and
applying a high-order Gauss–Legendre quadrature on each side of the singularity.
For square and equilateral triangle elements we split Tj,l into 4 or 3 identical
isosceles triangles respectively (with a common corner at the singularity), apply
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symmetry, and transform to polar coordinates, to evaluate Al,l as

Al,l =

∫
Tj,l

eik|x−xl|

4π|x− xl|
dx =


1

πik

∫ π/4

−π/4
(e

ikL
2 cos θ − 1)dθ if Tj,l is a square,

3

4πik

∫ π/3

−π/3
(e

ikL
2
√

3 cos θ − 1)dθ if Tj,l is a triangle,

where L is the element side length. The integrals over θ are computed using Mat-
lab’s integral function. Since the mesh is uniform, all diagonal terms coincide and
only one such computation is needed for a given value of kL. The (dense, com-
plex, non-Hermitian) linear systems in our numerical experiments are relatively
small (with fewer than 11000 DOFs) and are solved with a direct solver (Matlab’s
backslash).

7.2 Experiments performed

We use our BEM code to compare the numerical solutions on a sequence of pre-
fractal screens Γj approximating a limiting fractal screen Γ , for the examples in
§6. In addition to showing domain plots of the scattered fields for different Γj ,
we study the j-dependence of the norm of the numerical solution using the three
norms defined in Table 1. The table also shows the marker type these norms will
be represented by in all the plots. To validate our theoretical convergence re-
sults we also compute near- and far-field errors for the solution on Γj , relative to
the solution on the finest prefractal Γjmax , using these same norms. In all tests
we simulate scattering problems, and the incident field is a plane wave, so that
g†(x) = −eikd·x, x ∈ Γj , for some d ∈ Sn−1, the incident wave direction. In the
convergence plots for compact screens, red continuous lines correspond to results
for standard prefractals and blue dashed lines to results for thickened prefractals.

7.3 Cantor set

We first fix Γ to be the standard Cantor set, as defined in §6.1, with α = 1/3, set
k = 30 (so that the acoustic wavelength λ := 2π/k ≈ 0.209 and there are roughly
5 wavelengths across Γ ), and choose the direction of the incident plane wave as
d = (1/2,−

√
3/2).

We make BEM computations on both the standard (open) prefractals Γj , de-
fined by (39) with O = (0, 1), which have 2j components of length 3−j (cf. §6.1),
and the thickened prefractals as defined in §6.1 with δ = 1

4α −
1
2 = 1

4 , which we

denote by Γ δj , and which have 2j components of length 3
23−j . We present results

for the simplest case where the BEM meshes have exactly one element per com-
ponent of each prefractal, so that we are using the convex mesh (41) with N0 = 1.
Thus there are Nj = 2j elements and DOFs on the jth prefractal. For these simple
meshes (Galerkin) BEM convergence is guaranteed for the thickened prefractals
by Proposition 6.1.

Figure 6 shows the real part and magnitude of the scattered and total fields
on the box (−1, 2)× (−1.5, 1.5), computed for prefractal level j = 13, discretising
Γ δ13 with N13 = 213 = 8192 elements and DOFs.
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Marker Norm

©

The H̃−1/2(Γj) norm on Γj , computed via an accurate numerical in-

tegration of the representation ‖φhj ‖2H̃−1/2(Γj)
= 2

∫
Γj

(Si
Γjφ

h
j )φhj ds,

where Si
Γj is the single-layer operator for the equation ∆u− u = 0

(compare the definition of the norm in §2.4 and [38, eq. (3.5),
(3.28)]).

�

The L2(Box) norm in a near-field region, computed over the “box”
used for the domain plots. For the Cantor set this “box” is the
square (−1, 2) × (−1.5, 1.5). For all other examples it comprises
three perpendicular faces of the cuboid (−1, 2)× (−1, 2)× (−1, 1).
See e.g. Figures 6 and 10.

∗

The L2(Sn−1) norm on Sn−1 := {x̂ ∈ Rn, |x̂| = 1}, the unit
sphere. In particular we compute this quantity for the far-field pat-
tern uj,∞ of the field scattered from Γj , defined by uj,∞(x̂) :=
−ik(n−3)/2

2(2πi)(n−1)/2

∫
Γj

e−ikx̂·yφhj (y)ds(y), for x̂ ∈ Sn−1 [29, (2.13), (3.64)].

This norm is proportional to the square root of the total acoustic
power flux in the scattered field.

Table 1 The graphical conventions used in the plots.

Fig. 6 The real part and magnitude of the scattered and total fields on the box (−1, 2) ×
(−1.5, 1.5) for the Cantor set problem in §7.3, approximating Γ by the level 13 thickened
prefractal Γ δ13 and using N13 = 8192 DOFs.

The left panel in Figure 7 shows the norms, as defined in Table 1, of the
(collocation) BEM solution on Γj and Γ δj for j = 0, . . . , 13. In all cases the norms
quickly settle to an approximately constant value, suggesting that a limiting value
as j →∞ has been reached. The right panel in Figure 7 shows the near- and far-
field relative errors for j = 0, . . . , 12, measured against the solutions for j = 13.
Standard prefractals seem to give slightly smaller errors than thickened ones. But
in both cases the relative errors decay exponentially in j, this numerical evidence
of collocation BEM convergence, both for standard and thickened prefractals.

For this specific 2D problem we have also implemented a Galerkin BEM. The
left panel of Figure 8 demonstrates the close agreement between our collocation
solutions and the corresponding Galerkin solution (to which Proposition 6.1 applies
to prove convergence in the thickened prefractal case). Taken together, since we
know from Proposition 6.1 that the Galerkin solution on the thickened prefractal
sequence converges to the correct limiting solution of the BIE on the Cantor set
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Fig. 7 Numerical results for the Cantor set problem in §7.3 for prefractal levels 0 to 13. Left:
the convergence of the boundary, near- and far-field norms of the discrete solutions. Right: the
exponential decay (in j) of the near- and far-field relative errors between the solutions on the
jth prefractal and the 13th prefractal. Continuous red lines correspond to standard prefractals
and dashed blue lines show the same quantities for thickened prefractals.

Fig. 8 Left: validation of our collocation code against a Galerkin implementation for the Can-
tor set problem in §7.3. Continuous red lines correspond to standard prefractals and dashed
blue lines show the same quantities for thickened prefractals (see Table 1). Note that there are
6 lines in total on this graph, but the near-field and far-field relative errors are almost indis-
tinguishable. Right: exponential decay of the relative difference between the fields scattered
by the standard (Γj) and thickened (Γ δj ) prefractals for the Cantor set problem in §7.3. Here

φh,δj and uδj,∞ denote the BEM solution on Γ δj and the corresponding far-field pattern.

Γ , Figures 7 and 8 are persuasive numerical evidence that: i) the Galerkin solution
on the standard prefractal sequence; and ii) the collocation solutions on both the
standard and the thickened prefractal sequences, are all converging to the correct
limiting solution for the Cantor set Γ as j → ∞. These conclusions are further
supported by the right panel in Figure 8 which shows that the near and far-field
relative differences between the fields computed on the standard and thickened
prefractals (using collocation BEM) also decrease exponentially in j.

Figure 9 shows how norms of the Cantor set solution, approximated by (col-
location BEM) computations on the finest prefractal level, vary as a function of
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the Cantor set parameter α. Recall that α is related to the Hausdorff dimension
of the Cantor set Γ by d = log 2/ log(1/α). The strength of the scattered field
decreases with decreasing α (decreasing d). This is consistent with our earlier
theory. Specifically, let (α`)`∈N0

⊂ (0, 1/2) be any decreasing sequence such that
α` → 0, and let ΓC` denote the corresponding sequence of Cantor sets, and let
ΓC,+` :=

⋃
i≥` Γ

C
i . Then, since ΓC,+`+1 ⊂ ΓC,+` , it follows from Theorem 4.1 and

Proposition 4.3(ii) that BVP convergence holds, specifically that the solution for
ΓC,+` converges to that for ΓC :=

⋂
`∈N0

ΓC,+` as ` → ∞. But ΓC = {0, 1},
since {0, 1} ⊂ ΓC,+` ⊂ [0, α`] ∪ [1 − α`, 1] for each `. Thus, by Lemma 3.13 and

Proposition 3.12, H
−1/2

ΓC
= {0} and the field scattered by ΓC is zero. Further,

by Lemma 2.3, since ΓC` ⊂ ΓC,+` , the solution for ΓC` also converges to zero as
`→∞.

Fig. 9 Solution norms for the finest standard prefractal Γ13, plotted against the Cantor set
parameter α.

7.4 Cantor dust

We now make computations for two Cantor dusts, as defined in §6.2, with α = 1/3
and α = 1/10 respectively, setting k = 50 (so that λ ≈ 0.126 and there are roughly
11 wavelengths across the diagonal of Γ ), and choosing d = (0, 1√

2
,− 1√

2
).

Similarly to §7.3 we make (collocation) BEM computations on both the stan-
dard (open) prefractals Γj , defined by (39) with O = (0, 1)2 (cf. §6.2), and the
thickened prefractals as defined in §6.2 with δ = 1

4 , which we denote by Γ δj . As in
§7.3 we use BEM meshes with exactly one element per component of each prefrac-
tal, giving Nj = 4j DOFs in total. It follows from Proposition 6.2 that (Galerkin)
BEM convergence is guaranteed for the standard prefractals for α = 1/10 (since
the limiting solution is zero), and for the thickened prefractals for both α = 1/3
and α = 1/10.
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Fig. 10 The scattered field for the Cantor dust problem in §7.4 with α = 1/3, computed on Γ6

with N6 = 4096 DOFs. Left and centre: the real part and magnitude of the scattered field on
three faces of the box (−1, 2)×(−1, 2)×(−1, 1) (with Γ ⊂ (0, 1)2×{0}). The red/blue segment
denotes the direction of the incoming wave. Right: the magnitude of the far-field pattern uj,∞
on the upper half-sphere S2 ∩ {x3 > 0}; the angular coordinate is the longitude, the radial
coordinate the colatitude (the green circle through the bright spot is the π/4 parallel).

Figure 10 shows near- and far-field plots of the scattered field for the standard
prefractal of level j = 6 with N6 = 46 = 4096 DOFs.

Figure 11 shows the solution norms for prefractal levels 0 to 6 and the relative
errors against the computations on the finest prefractal. From the left panels we see
that for α = 1/3 the norms appear to converge to a constant positive value, while
for α = 1/10 they converge (exponentially) to 0, consistent with Proposition 6.2.
The superior convergence rate in the near- and far-field L2 norms compared to the
H̃−1/2 energy norm, visible for α = 1/10, is in line with standard superconvergence
theory for functionals of a BEM solution—see e.g. [67, §4.2.5].

In the right panels of Figure 11 we observe the exponential (in j) decay of the
errors of near- and far-fields against the solutions on the finest prefractal. We have
also computed (but do not plot) the differences between standard and thickened
prefractals in the near- and far-fields. These behave similarly to those in Figure 8
(for n = 2). These various numerical experiments, together with validations we
have made (see the beginning of §7) of our collocation code against 3D Galerkin
code, and the theoretical (Galerkin) BEM convergence results of Proposition 6.2,
provide persuasive evidence (cf. the penultimate paragraph of §7.3) that our col-
location BEM results are converging as j →∞ to the correct limiting solution for
scattering by the Cantor dust Γ .

The left panel of Figure 12 shows how the magnitude of the scattered field de-
pends on the parameter α, and thus on the Hausdorff dimension d=log 4/ log(1/α),
for different prefractal levels j. Note that in this experiment we used a fixed total
number Nj = 4096 of DOFs on each prefractal, so that the lower order prefractal
solutions are computed more accurately than they would be using our usual pre-
scription Nj = 4j . We recall (Proposition 6.2) that in the limit j → ∞ the field
should vanish for α ≤ 1/4; compare this to the right panel of Figure 9 for the
Cantor set (n = 2), where the limit is non-zero for all α.

The right panel of Figure 12 shows the dependence on the wavenumber k
of ‖φhj ‖H̃−1/2(Γj)

, for the largest prefractal level j = 6 that approximates the

fractal limit. We find that ‖φh6‖H̃−1/2(Γ6)
grows with increasing k like k0.19 for the

larger values of k. In the same panel we also plot ‖φh6‖H̃−1/2
k (Γ6)

and ‖φh0‖H̃−1/2
k (Γ0)
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Fig. 11 Analogue of Figure 7 for the Cantor dust problem in §7.4, except that in the right
column we show absolute errors. Top row: α = 1/3, bottom row: α = 1/10. From the left plots
we see that, when the prefractal is refined, the solution norms converge to positive values for
α = 1/3 and to 0 for α = 1/10, in agreement with theory.

against k (φh0 the numerical solution on the screen Γ0, i.e. the solution for a unit
square screen, this computed with 10000 DOFs corresponding to more than 6
DOFs/wavelength at the highest wavenumber k = 100). Here ‖ · ‖

H̃
−1/2
k (Γj)

is

a wavenumber-dependent norm on H̃−1/2(Γj) commonly used in high frequency
analysis (see the discussion in [22, §2.1]), given by

‖ψ‖2
H̃
−1/2
k (Γj)

=

∫
Rn−1

(k2 + |ξ|2)−1/2|ψ̂(ξ)|2 dξ, ψ ∈ H̃−1/2(Γj).

Clearly ‖ · ‖
H̃
−1/2
k (Γj)

coincides with the standard norm for k = 1 and is equivalent

to it for any fixed k, precisely [22, Eqn. (28)]

min
(

1, k−1/2
)
‖ψ‖H̃−1/2(Γj)

≤ ‖ψ‖
H̃
−1/2
k (Γj)

≤ max
(

1, k−1/2
)
‖ψ‖2

H̃−1/2(Γj)
,

for ψ ∈ H̃−1/2(Γj).
Plotting these wavenumber-dependent norms enables comparison with the the-

oretical bounds in [22] that are expressed in terms of these norms. It follows from
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Fig. 12 Left: the L2(S2) norms of the far-field pattern for the Cantor dust, plotted against
the parameter α, for standard prefractals of level j = 0, 1, . . . , 6, computed with Nj = 4096
DOFs for each j. Proposition 6.2 implies that the limit for j → ∞ is 0 for α ≤ 1/4. Right:
solution norms for α = 1/3 and j = 6 (in red) and j = 0 (unit square, in green) as a function
of the wavenumber k.

the coercivity and inhomogeneous term estimates in [22, Thms. 1.7, Lemma 6.1(i),
(27)] that, for every value of j, ‖φj‖H̃−1/2

k (Γj)
(φj the exact solution for the screen

Γj) grows with increasing k at a rate no faster than k1/2. In the results in the
right panel ‖φh0‖H̃−1/2

k (Γ0)
, the solution for a unit square, grows for larger k at a

rate k0.48, while ‖φh6‖H̃−1/2
k (Γ6)

, the solution approximating the fractal limit, grows

at a much more modest rate k0.15. This suggests that the upper bounds in [22],
which depend only on k and on the diameter of the screen, are sharp for large k
in terms of their dependence on screen geometry for a regular screen, but are not
sharp for screens with fractal dimension < n− 1.

7.5 Sierpinski triangle

We approximate the Sierpinski triangle with the standard prefractals Γj described
in §6.3 (to be precise we mesh Γ ◦j , the interior of Γj). We set k = 40, so that
λ ≈ 0.157 and the diameter of Γ is approximately 6.4 wavelengths, and consider
a downward-pointing incoming wave with d = (0, 0,−1).

Figure 13 shows the near field and the magnitude of the (collocation) BEM
solution φhj for prefractal level j = 8 and N8 = 6561 DOFs (one per component of

Γ ◦j ). We note that |φhj | achieves its maxima at the midpoints of the sides of the
triangular holes of side length 1/8, this size comparable with the wavelength λ.

Figure 14 (left panel) shows the solution norms for prefractal levels 0 to 8.
In these computations we vary from our prescription in the results above of one
DOF per component of the prefractal, using a larger number of elements at the
lower prefractal levels to ensure that quadrature errors in the evaluation of the
coefficients in the linear system are not significant with the 7-point quadrature
rule that we use on triangular elements (see §7.1). Precisely, for prefractals Γ0

to Γ5 we use a mesh of equilateral triangles of side hj = 2−5. For Γ5 to Γ8 we
use equilateral triangles of size hj = 2−j , i.e. with one DOF per component of
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Fig. 13 Left and centre: the real part and magnitude of the field scattered by the level 8
prefractal approximation of the Sierpinski triangle, for the problem in §7.5, computed with
N8 = 38 = 6561 DOFs. Right: the magnitude |φhj | of the piecewise constant BEM solution.

Note that the peaks in |φhj | (shown in yellow) are located close to the midpoints of the sides

of the 9 triangular holes of size comparable to the wavelength (red segment).

Fig. 14 Analogue of Figures 7 and 11 for the Sierpinski triangle, for the problem of §7.5,
showing results for standard (non-thickened) prefractals only.

Γ ◦j . The numbers of DOFs for j = 0, . . . , 8 are N0 = 1024, N1 = 768, N2 =
576, N3 = 432, N4 = 324, N5 = 243, N6 = 729, N7 = 2187, N8 = 6561. As in
previous examples, we observe in the left panel rapid convergence of the norms
to positive constant values. In the right panel we plot relative errors compared
to the result for the finest prefractal Γ8. As in the right panel of Figure 11 we
see convergence which is exponential in j for j ≥ 5. But the convergence is not
monotonic in j for j ≤ 5 where we fix hj as we increase j.

7.6 Classical snowflakes

We now turn to examples in which the limiting screen Γ is a bounded open set with
fractal boundary. In these cases, as j →∞ the area of the prefractals must tend to
the (non-zero) area of the limiting screen. Thus, in our simulations based on uni-
form meshes, the cost increase associated with the increasingly fine mesh required
to represent the prefractal boundary exactly as j →∞ will not be compensated by
a decrease in the area to be meshed, as was the case for the Cantor sets/dusts and
the Sierpinski triangle. This in turn means that our simulations based on uniform
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Fig. 15 The real part, magnitude and far-field pattern of the field scattered by the level 4
inner prefractal approximation Γ−4 of the Koch snowflake, for the problem in §7.6, computed

using a uniform BEM mesh with N−4 = 10344 DOFs.

meshes and direct solvers will be more expensive than the numerical experiments
reported above, limiting the prefractal level that can be attained. More efficient
BEM approaches could be developed for these problems using appropriate non-
uniform meshes such as those in [5,19,51], and/or fast iterative matrix-free linear
solvers. But for brevity we leave such considerations to future work.

We consider first the standard Koch snowflake Γ with β = π/6 and ξ = 1/3, in
the notation of §6.4. We approximate Γ with both the inner (open) and the outer
(compact) prefractals Γ−j and Γ+

j defined in §6.4, on which we build uniform

meshes conforming to the prefractal geometries (strictly, our mesh is on (Γ+
j )◦

in the outer prefractal case). Figure 15 shows the scattered field for an incident
plane wave with k = 61 (wavelength λ ≈ 0.103) and d = (0, 1√

2
,− 1√

2
), at inner

prefractal level 4, computed with N−4 = 10344 DOFs.

By Proposition 6.4, which relies on the fact that Γ is thick, so that H̃−1/2(Γ ) =

H
−1/2

Γ
, Galerkin BEM solutions for the inner and outer prefractals should both

converge to the unique limiting solution on Γ , provided that hj → 0 as j →∞. We
investigate this numerically (for the collocation BEM) in Figure 16 (though our
simulations use a fixed hj on each Γ−j and a fixed mesh size also on each Γ+

j , as is
described in more detail below). This figure shows that the alternating inner/outer
sequence of prefractal approximations Γ−0 , Γ

+
0 , Γ

−
1 , Γ

+
1 , Γ

−
2 , Γ

+
2 , Γ

−
3 , Γ

+
3 , Γ

−
4 has

the property that the H−1/2(R2) norm of the difference between the BEM solu-
tions on consecutive prefractals in the sequence tends to zero monotonically (and
approximately exponentially) as one moves along the sequence. The figure also
suggests that plane waves hitting the screen perpendicularly lead to the lowest
relative difference between solutions on inner and outer prefractals, that grazing
incident waves lead to the largest difference, and that the relative errors are rather
insensitive to the wavenumber for the values of k investigated.

For completeness we give a brief explanation of how the results in Figure 16
were computed. The inner prefractals Γ−j of levels 0 ≤ j ≤ 4 are the union of 1,

12, 120, 1128 and 10344 equilateral triangles of side 3−j , respectively. We mesh
them all with equilateral triangles of the same side length 3−4 ≈ 0.0123, so that
the total numbers of DOFs on the respective meshes M−j are N−0 = 6561 = 38,

N−1 = 8748 = 36 · 12, N−2 = 9720 = 34 · 120, N−3 = 10152 = 32 · 1128, and
N−4 = 10344. The outer prefractals Γ+

j of levels 0 ≤ j ≤ 3 are the union of 6,
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Fig. 16 The relative difference, measured in the H−1/2 norm, between the BEM solutions
on Γ−jin and on Γ+

jout
, for jin + jout = 0, 1, . . . , 7, with jout ∈ {jin − 1, jin}, for the problem

described in §7.6 (green curve). We show results also for four other similar problems with
different values of k and either vertically, horizontally or obliquely incident plane waves.

Fig. 17 The real part of the BEM solutions φhj
±

on the inner and outer prefractals Γ−0 , . . . , Γ
−
4

and Γ+
0 , . . . , Γ

+
3 of the standard Koch snowflake, for the problem in §7.6. All plots are in the

same colour scale.

48, 408 and 3576 equilateral triangles of side 3−j−
1
2 , respectively. We mesh them

all with equilateral triangles of the same side length 3−
7
2 ≈ 0.0214, so that the

total numbers of DOFs on the respective meshes M+
j are N+

0 = 4374 = 36 · 6,

N+
1 = 3888 = 34 · 48, N+

2 = 3672 = 32 · 408 and N+
3 = 3576. Figure 17 shows the

real part of the BEM solution φhj
±

for these prefractals and meshes.

To compute an approximation to the H−1/2(R2) norm of the difference φhj
−−

φhj
+

, as plotted in Figure 16, we first represent both piecewise-constant fields on

the same mesh. We note that the equilateral triangles of M+
j are rotated by an

angle of π/2 with respect to those of M−j and are larger by a (linear) factor
√

3.
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Fig. 18 Left: a portion of the meshes used to compute the norm of the difference of the BEM

solutions φh2
−

and φh2
+

on the inner and the outer prefractals Γ−2 and Γ+
2 . The black triangles

are the elements of M−2 and the red triangles are the elements of M+
2 . The circles denote the

centres of the triangles of the same colour. The extended uniform mesh M∗2 is composed of the

black and the yellow triangles, which cover the whole of Γ+
2 . Right: the analogous construction

for the comparison between the solutions φh4
−

and φh3
+

on the prefractals Γ−4 and Γ+
3 .

We define M∗j to be the smallest uniform mesh that extends M−j and covers Γ+
j ;

see Figure 18 for an illustration. We define two piecewise constant functions ψ±j

on this mesh. The first, ψ−j , is simply the zero-extension of φhj
−

. The second, ψ+
j ,

is defined from φhj
+

as follows: noting that the centre of each element of M∗j lies

on an edge of M+
j , we define the value of ψ+

j on T ∗j,l ∈ M∗j to be the average

of the values of (the zero-extension of) φhj
+

on the two triangles of (the uniform

extension of) M+
j intersecting T ∗j,l. The norm ‖ψ−j − ψ

+
j ‖H−1/2(R2) approximates

‖φhj
− − φhj

+‖H−1/2(R2) and can be computed using the reaction–diffusion single-

layer operator as in the previous examples. To compute the norm of φh
−

j+1 − φhj
+

we proceed similarly.

7.7 Square snowflake

Finally, we consider the square snowflake Γ and the associated sequence of non-
nested prefractals Γj described in §6.5. We choose k = 40 and d = (0, 0,−1). Plots
of the resulting near- and far-field solutions for prefractal level j = 3 are shown
in Figure 19. Proposition 6.5 implies that we have (Galerkin) BEM convergence
provided hj → 0 as j → ∞. But numerical validation of this convergence is
hampered by the fact that the minimal number of DOFs required to discretise the
jth-level prefractal with a uniform mesh of squares is 16j . In order to simulate
higher-level prefractals more sophisticated BEM implementations are needed, e.g.
using fast matrix–vector multiplications, and non-uniform or non-convex meshes.
This will be considered in future work.

8 Conclusion and open problems

In this paper we have written down in §3 well-posed BVP and BIE formulations for
scattering by an acoustic screen Γ that is either fractal or has fractal boundary,
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Fig. 19 Left and centre: the real part and magnitude of the field scattered by the level 3
prefractal approximation of the square snowflake, for the problem in §7.7, computed with
N3 = 163 = 4096 DOFs, i.e. ≈ 10 DOFs per wavelength. Right: the far-field pattern for the
same problem.

refining, simplifying, and extending (in particular through application of recent
results from [15]) the earlier results of [24]. Generalising the treatment in [24], we
have studied in §4 (using Mosco convergence for the first time in this context) the
convergence of BIE solutions on a sequence of prefractals Γj to the solution on a
limiting set Γ ; in particular we have proved in Theorem 4.1 and Proposition 4.3
new convergence results in cases where the sequence of prefractals Γj is not mono-
tonically convergent to Γ , and have applied these results in §4.1 to sequences of
prefractals generated by general iterated function systems.

But the crucial novelty of the paper has been the analysis and implementation
of the BEM in §§5–7. In §4.1 we have obtained, to our knowledge, the first rigorous
convergence analysis of a numerical method for scattering by a fractal object and
the first proofs of convergence of BEM, applied on a sequence of prefractal sets Γj ,
to the solution of the BIE on the limiting set Γ , both in cases when Γ is fractal
(in particular the fixed point of an IFS of contracting similarities satisfying the
standard open set condition, for example the Cantor set or dust, the Sierpinski
triangle) and in cases where Γ is an open set with fractal boundary (for example
the Koch or square snowflake). We have studied these specific cases as examples
of applying these new convergence results in §6, and in numerical experiments in
§7.

These results are, we consider, important first steps in understanding BIEs
and their solutions on sets that are fractal or have fractal boundary, and the con-
vergence to these solutions of BEM approximations on sequences of more regular
prefractals. More generally, these results and methods are applicable to the con-
vergence analysis of Galerkin methods for BIEs (and, we anticipate, other integral
equations and PDEs) posed on any rough domain that cannot be discretised ex-
actly but first needs to be approximated by a sequence of more regular sets.

For the specific screen scattering problems that have been the focus of this
paper, and for large classes of related problems, there remain many intriguing and
important open questions. These include:

1. What is the regularity of the BIE solution on the limiting screen Γ , and how
does this depend on the fractal dimension of Γ or its boundary? In the case
when Γ is fractal the density results summarised in Lemma 3.13 are one step
towards addressing this question.
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2. At what rate do BIE solutions on a prefractal sequence Γj converge to the
limiting BIE solution on Γ?

3. If the BIE is additionally discretised by BEM, how does the convergence rate
depend jointly on the prefractal level j and the discretisation? (The numerical
simulations in §7 provide some experimental data.)

4. Extending this question, what is the optimal balance (to achieve an accurate
approximation of the solution on Γ with least work) between increasing the
prefractal level and mesh refinement? For example, for the family of pre-convex
meshes (42), what is the optimal choice of the parameter i(j)?

We hope to address some of these questions in future work, together with explor-
ing more efficient BEM implementations (e.g. using locally-refined meshes, fast
iterative solvers for structured meshes), and the extension of the methods devel-
oped here to more general problems (e.g. curvilinear screens, different boundary
conditions, elastic and electromagnetic waves, other PDEs).
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A Finite element approximation by piecewise constants

Let m ∈ N and Ω ⊂ Rm be a non-empty bounded open set. Let us say that M is a pre-
convex mesh on Ω if, for some N ∈ N, M = {T1, T2, . . . , TN} is a collection of open subsets
Tj ⊂ Ω such that: (i) the convex hulls Conv(Tj) are pairwise disjoint; (ii) each ∂Tj has zero

m-dimensional Lebesgue measure; and (iii) Ω =
(⋃N

j=1 Tj

)◦
. We note that (ii) holds (and

this will be the case in the applications that we make) if each Tj is the union of a finite number
of pairwise disjoint Lipschitz open sets, in particular if each Tj is convex, in which case we
term M a convex mesh.

In the case that Ω is a curvilinear Lipschitz polygon and each Tj is a curvilinear triangle
or quadrilateral, the following lemma is a standard BEM error estimate (e.g. [69, Thm. 10.4,
(10.10)]), except that in the standard versions the explicit constant πs−t in (44) is replaced
by an unknown constant that depends (in an unspecified way) on the domain and the shape
regularity of the elements. The version we prove here, which applies to any bounded open set
Ω and any pre-convex mesh M , and provides explicit constants independent of the domain
and element shape, should be of some independent interest and is essential for our application
to BEM on sequences of prefractals converging to a fractal limit.

Lemma A.1. Let m ∈ N and N ∈ N, and let Ω ⊂ Rm be a non-empty bounded open set and
M = {T1, T2, . . . , TN} be a pre-convex mesh on Ω. Let V ⊂ L2(Ω) denote the set of piecewise
constant functions on M , so that u ∈ V if u ∈ L2(Ω) and u|Tj is constant, for j = 1, . . . , N .

Let Π : L2(Ω)→ V be orthogonal projection, so that

(Πu)|Tj =
1

|Tj |

∫
Tj

u(x) dx, j = 1, . . . , N.
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Let h := maxT∈M diam(T ). Then, for −1 ≤ s ≤ 0 and 0 ≤ t ≤ 1, if u ∈ Ht(Ω), then

‖u−Πu‖
H̃s(Ω)

≤ (h/π)t−s‖u‖Ht(Ω), (44)

where on the left hand side we extend u−Πu from Ω to Rm by zero to become an element of

H̃0(Ω) ⊂ H̃s(Ω).

Proof. Clearly (44) holds for s = t = 0 as H0(Ω) = L2(Ω), with identical norms, and Π
is an orthogonal projection operator on L2(Ω). Now suppose that s = 0 and t = 1. In this

case, recalling that H̃0(Ω) = C∞0 (Ω)
L2(Rm)

= L2(Ω) with equal norms, and that ‖u‖H1(Ω) =

minU∈H1(Rm), u=U|Ω
‖U‖H1(Rm), the required bound (44) is implied by

‖u−Πu‖L2(Ω) ≤
h

π
‖∇U‖L2(Rm), (45)

where U ∈ H1(Rm) is such that u = U |Ω and ‖u‖H1(Ω) = ‖U‖H1(Rm). To see that this bound

holds, let THj denote the convex hull of Tj , for j = 1, . . . , N , which has the same diameter as

Tj , and let ΩH :=
(⋃N

j=1 T
H
j

)◦
, so that MH := {TH1 , . . . , THN } is a convex mesh on ΩH . Let

V H ⊂ L2(ΩH) denote the space of piecewise constant functions on MH , ΠH : L2(ΩH)→ V H

be orthogonal projection, and uH := U |ΩH . Then (ΠHuH)|Ω ∈ V so that

‖u−Πu‖2
L2(Ω)

≤ ‖u− (ΠHuH)|Ω‖2L2(Ω)

≤ ‖uH −ΠHuH‖2
L2(ΩH )

=

N∑
j=1

‖(uH −ΠHuH)|THj ‖
2
L2(THj )

.

But

‖(uH −ΠHuH)|THj ‖L2(THj ) ≤ C‖(∇U)|THj ‖L2(THj )

for some C > 0, by the standard Poincaré inequality. Indeed, since THj is convex, this bound

holds with C = hj/π, where hj = diam(Tj) = diam(THj ), which is known [8,60] to be the best

constant in this inequality for convex domains. The inequality (45) follows since the T jH are
pairwise disjoint.

Thus (44) is proved for s = 0 and t = 0, 1, and by interpolation it extends to s = 0
and 0 < t < 1. Precisely, let ‖ · ‖t denote the norm on the K-method interpolation space
Kt,2((L2(Ω), H1(Ω))), with the normalisation defined in [25, (7,8)]. Then

‖u−Πu‖L2(Ω) ≤ (h/π)t‖u‖t ≤ (h/π)t‖u‖Ht(Ω), 0 < t < 1, (46)

where the first inequality follows by interpolation since Kt,2((L2(Ω), L2(Ω))) = L2(Ω) with
equality of norms given the normalisation [25, (7,8)] (see [25, Lem. 2.1(iii), Thm. 2.2(i)]); the
second inequality holds since, again given this normalisation, the embedding of Ht(Ω) into
Kt,2((L2(Ω), H1(Ω))) has norm ≤ 1 [25, Lem. 4.2].

Finally, suppose that −1 ≤ s < 0 and 0 ≤ t ≤ 1. Then, as H−s(Ω) is a unitary realisation

of the dual space of H̃s(Ω) via an extension of the L2(Ω) inner product, if u ∈ Ht(Ω) then

‖u−Πu‖
H̃s(Ω)

= sup
0 6=v∈H−s(Ω)

|(u−Πu, v)L2(Ω)|
‖v‖H−s(Ω)

= sup
0 6=v∈H−s(Ω)

|(u−Πu, v −Πv)L2(Ω)|
‖v‖H−s(Ω)

≤ (h/π)t−s‖u‖Ht(Ω),

where the final bound follows from the Cauchy–Schwarz inequality and two applications of
(46).
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B Mollification and Sobolev regularity

Given m ∈ N, choose ψ ∈ C∞0 (Rm) with ψ(x) = 0 for |x| > 1 and
∫
Rm ψ(x)dx = 1, and for

ε > 0 let
ψε(x) := εmψ(x/ε), x ∈ Rm.

Given s ∈ R, for φ ∈ Hs(Rm) and ε > 0 we define φε, the ε-mollification of φ, by φε := ψε ∗ φ,
where

ψε ∗ φ(x) :=

∫
Rm

ψε(x− y)φ(y) dy, x ∈ Rm,

in the case that φ ∈ L2(Γ ), and, in the case that s < 0, the definition of ψε ∗ φ is extended to
all φ ∈ Hs(Rm) by continuity and density. It is standard that φε → φ in Hs(Rm) as ε → 0
(e.g. [52, Exercise 3.17]). Moreover, with the Fourier transform normalised as in §2.4, we have
that

ψ̂ε(ξ) = ψ̂(εξ) and φ̂ε(ξ) = cmψ̂ε(ξ)φ̂(ξ), for ξ ∈ Rm,

where cm := (2π)m/2. Hence it holds for t ≥ s that

‖φε‖2Ht(Rm) = c2m

∫
Rm
|ψ̂(εξ)|2 |φ̂(ξ)|2(1 + ξ2)t/2 dξ ≤ c2mC2

ε ‖φ‖2Hs(Rm),

where
Cε := sup

ξ∈Rm

∣∣∣ψ̂(εξ)(1 + ξ2)(t−s)/2
∣∣∣ = sup

ξ∈Rm

∣∣∣ψ̂(ξ)(1 + (ξ/ε)2)(t−s)/2
∣∣∣ .

Since ψ ∈ C∞0 (Rm), it holds for 0 < ε ≤ 1 that

Cε ≤ c′t−s sup
ξ∈Rm

(
1 + ξ2/ε2

1 + ξ2

)(t−s)/2
≤ c′t−s εs−t, where c′p := max

ξ∈Rm
|ψ̂(ξ)|(1 + ξ2)p/2,

for p ≥ 0. Thus, for t ≥ s, ε > 0, and φ ∈ Hs(Rm), it holds that

‖φε‖Ht(Rm) ≤ cmc′t−s εs−t ‖φ‖Hs(Rm). (47)
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