
On minimum cost local permutation problems
and their application to smart meter data

Nathaniel Charlton1, Danica Vukadinović Greetham2, and Colin Singleton1
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Abstract. A w-local permutation is a permutation π on {1, . . . , n} that
displaces each element by a distance of at most w. We define the min-
imum cost local permutation (MCLP) problem, where there is a cost
associated with each choice of π(i) for i = 1, . . . , n and the goal is to
find the w-local permutation of minimum total cost. The MCLP prob-
lem generalises the problem of computing the adjusted error, a measure
of the similarity of two household-level smart meter energy profiles. Ex-
isting work has reduced MCLP to the assignment problem, which can be
solved in O(n3) time using the Hungarian algorithm.
We prove a reduction of the MCLP problem to that of computing the
shortest path in a directed acyclic graph. This yields an algorithm that,
for fixed w, solves MCLP in O(n) time. Analysis of running times for
adjusted error computations on a real smart meter data set confirms that
the new method is far faster in practice.
Further, we study N -MCLP, a generalisation of MCLP where N permu-
tations are chosen simultaneously to minimise the associated total cost.
N -MCLP generalises the problem of computing an appropriate “average”
of N smart meter profiles with respect to the adjusted error measure. As
in the MCLP case, we prove a reduction to the problem of computing
the shortest path in a directed acyclic graph. We apply the resulting
algorithm to a smart meter data set, obtaining improved forecasts for
household-level energy consumption.

1 Introduction

We introduce and study the minimum cost local permutation (MCLP) prob-
lem, an optimisation problem regarding local permutations. A permutation π
on {1, . . . , n} is said to be w-local if it displaces each element by a distance of
at most some predefined limit w. In the MCLP problem there is a cost associ-
ated with each choice of π(i) for i = 1, . . . , n and the goal is to find the w-local
permutation of minimum total cost. We further introduce and study an N -way
generalisation of the problem, N -MCLP, where instead of a single permutation,
N permutations much be chosen simultaneously to minimise a total cost.

These two problems arise as generalisations of two problems we have encoun-
tered when dealing with smart meter data detailing the energy consumption over
time of individual households:
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1. The adjusted error [9] has been proposed as a way of measuring how close
a household-level energy use forecast is to the subsequent actual use, and is
defined in terms of local permutations. How can we compute adjusted errors
efficiently?

2. Given N days of historical energy use data for a particular household, how
can we combine them into a day-ahead forecast which performs well under
the adjusted error measure?

The remainder of this report is structured as follows. Section 2 introduces the
MCLP problem, giving a definition and a simple example. Section 3 gives the
reduction we use to solve MCLP: we reduce the MCLP problem to the problem of
computing the shortest path between two vertices of a directed acyclic graph. We
explain the reduction informally through an example, before defining it precisely
and proving its correctness. In Section 4 we present the generalised problem N -
MCLP, which we solve using a similar graph-based method; again we explain the
method informally before proving it correct. In Section 5 we apply our algorithms
to the two smart meter-related problems described above. Section 6 examines
the computational efficiency of our methods, in theory and by reporting run
times in practice, and Section 7 concludes.

A brief description of this work, omitting the technical details but with fur-
ther discussion of the applications to smart meter data, appears in our workshop
paper [2].

2 The minimum cost local permutation (MCLP) problem

The following definitions and example introduce the minimum cost local permu-
tation (MCLP) problem.

Definition 1. A function π from the set {1, . . . , n} to itself is w-local, for 0 ≤
w < n, if for all i, |π(i) − i| ≤ w. We write P(w, n) for the set of w-local
permutations on {1, . . . , n}. ut

Definition 2. An instance MCLP(n,w,C) of the minimum cost local permuta-
tion problem comprises:

– integers n and w such that 0 ≤ w < n
– a function C : {1, . . . , n}×{1, . . . , n} → R≥0 assigning costs to the permuted

points; C(i, j) is the cost of mapping point i onto point j.

Given a permutation π ∈ P(w, n) we define the cost of π to be

Cost(π) :=

n∑
i=1

C(i, π(i)) (1)

A solution to the MCLP problem is a permutation π ∈ P(w, n) that minimises
Cost(π) (in general there may be multiple such permutations). ut
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Fig. 1. The directed acyclic graph we use to solve the MCLP problem in Example 1.

Example 1. We give an example instance of MCLP: let n = 5, w = 1 and define
the cost C(i, j) of mapping point i onto point j by

C(i, j) := i+ j mod 3

The cost of the identity permutation I is then

Cost(I) = C(1, 1) + C(2, 2) + C(3, 3) + C(4, 4) + C(5, 5)
= 2 + 1 + 0 + 2 + 1
= 6

In this case the permutation {1 7→ 2, 2 7→ 1, 3 7→ 3, 4 7→ 5, 5 7→ 4} is the
unique solution, having cost

C(1, 2) + C(2, 1) + C(3, 3) + C(4, 5) + C(5, 4)
= 0 + 0 + 0 + 0 + 0
= 0

ut

3 Reducing MCLP to shortest path in a DAG

In this section we show how to reduce the MCLP problem to that of computing
the shortest path in a directed acyclic graph (DAG). We begin with a preliminary
definition.

Definition 3. An availability set S is a subset of {−w, . . . , w} such that w ∈ S
and |S| = w + 1. Let S be the set of all such availability sets; there are

(
2w
w

)
of

these. Define a distinguished availability set S+ := {0, . . . , w}. ut

Fig. 1 shows the DAG that we will construct from the MCLP instance in
Example 1. Using this, we now explain informally the idea of our construction,
which we will formalise and prove shortly.

Choosing a path from “start” to “end” corresponds to choosing a w-local
permutation π: specifically, choosing the ith edge of such a path (counting from
1) corresponds to choosing the value of π(i). Each node is labelled with a pair
(i, S) where i gives the number of points of the image of π chosen so far, and
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the availability set S records which elements of {1, . . . , n} are available when
choosing π(i + 1). Specifically, if k ∈ S then we are able to choose to map the
value i+ 1 onto the value i+ 1 + k. The cost of each edge leaving the node (i, S)
is the cost associated with mapping i+ 1 to the chosen value.

For example, when we are at the start node (0, {0, 1}) in Fig. 1 we have chosen
0 points of the image of π so far, and we are about to choose π(1). The available
choices, corresponding to the two outgoing edges, are 1 and 2. Suppose we take
the horizontal edge, which corresponds to choosing 1 from the availability set to
put π(1) := 2. The cost of the edge is C(1, 2) = 1 + 2 mod 3 = 0, which will be
the contribution for i = 1 to the summation in (1).

The node (1, {−1, 1}) that we reach has availability set {−1, 1} reflecting
that the available options for our next choice, the choice of π(2), are 1 and 3;
these numbers lie, respectively, at offsets of −1 and 1 from the “current” point
2. The availability set does not contain 0, corresponding to a choice of 2, because
we used up 2 already at the previous node.

In fact, however, choosing π(2) := 3 is not feasible: elements can be displaced
by at most w = 1, so if we have assigned π(1) := 2 and then π(2) := 3, we will not
be able to map any of the remaining values 3, 4, 5 onto 1. Thus there is only one
edge available from the node (1, {−1, 1}). Continuing in this way, we gradually
choose the whole 1-local permutation π; when we reach the “end” node we have
finished. The path highlighted with double arrowheads in Fig. 1 corresponds to
the unique solution given earlier.

Once we have the shortest path, we can recover the required permutation. To
find π(i), we go to the ith node of the path (counting from 1); this node will have
the form (i−1, S) and the next node in the path will have the form (i, S′). Then
π(i) = i + m where m is the unique number such that m ∈ S but m−1 /∈ S′.
For example, let us find π(1) for the path highlighted with double arrowheads
in Fig. 1. Going to the first node we have S = {0, 1} and S′ = {−1, 1}. Thus the
unique number m described above is 1, so π(1) = 2.

The following definition shows how to construct the appropriate graph for
an arbitrary MCLP problem.

Definition 4. Given a problem instance MCLP(n,w,C), we define as follows a
DAG G(n,w,C). We take as vertices the elements of {0, . . . , n} × S. We define

decrease(X) := {m− 1 | m ∈ X}

Next we define a partial function T from pairs of vertices to {−w, . . . , w}:

T ((i, S), (i′, S′)) :=



min(X) if i′ = i+ 1 and

X =

{
t ∈ S

∣∣∣∣∣1 ≤ i+1+t ≤ n and

S′ = decrease(S \ {t}) ∪ {w}

}
is nonempty

⊥ otherwise
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(Here the symbol ⊥ means undefined.) We put an edge from vertex v = (i, S) to
vertex v′ if T (v, v′) 6= ⊥; we set the cost of the edge to C(i+ 1, i+ 1 +T (v, v′)).
We define distinguished vertices vstart := (0, S+) and vend := (n, S+). ut

In fact, the set X in the definition of T above is either empty or a singleton
set, as the following lemma shows.

Lemma 1. Let (i, S) and (i + 1, S′) be vertices of G(n,w,C), and let t, t′ ∈ S
be such that:

– 1 ≤ i+ 1 + t ≤ n and S′ = decrease(S \ {t}) ∪ {w}
– 1 ≤ i+ 1 + t′ ≤ n and S′ = decrease(S \ {t′}) ∪ {w}

Then t = t′.

Proof. We have t′ − 1 /∈ decrease(S \ {t′}) ∪ {w} so t′ − 1 /∈ S′. Suppose for a
contradiction that t 6= t′. Then t′−1 ∈ decrease(S \{t})∪{w} so t′−1 ∈ S′. ut

The following definition makes precise the idea explained above of recovering
a permutation from the shortest path.

Definition 5. Let P = v0 → v1 → · · · → vn be a path from vstart to vend
in G(n,w,C). Then we define a corresponding function πP : {1, . . . , n} →
{1, . . . , n} by πP (i) := i + T (vi−1, vi). (Note that T (vi−1, vi) is always defined
here, because by assumption there is an edge from vi−1 to v, and Definition 4
puts edges exactly where T is defined.) ut

It is easy to see that πP as just defined is a w-local function. The following
theorem formalises the link between a problem instance MCLP(n,w,C) and the
corresponding graph G(n,w,C).

Theorem 1. Consider a problem instance MCLP(n,w,C). Let P be a path of
minimal length from vstart to vend in the associated graph G(n,w,C). Then πP
is a solution to MCLP(n,w,C). ut

Once we prove this theorem, we will have an algorithm for solving instances
MCLP(n,w,C) of the MCLP problem: first construct the graph G(n,w,C),
then find the shortest path P from vstart to vend, and finally recover from P the
required permutation πP .

We conclude this section by proving Theorem 1. The theorem follows from
the following two lemmas: one shows how to go from a path with length L to a
permutation with total cost L, and the other shows how to go from a permutation
with total cost L to a path of length L.

Lemma 2 (from paths to local permutations). Let P be a path in G(n,w,C)
from vstart to vend with length L. Then πP ∈ P(w, n) and Cost(πP ) = L.
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Proof. (Note that although it is clear from Definition 5 that πP is a w-local
function, it is not obvious that it is a permutation. The first task in our proof is
to establish this.) P must have the form

v0 → v1 → · · · → vn

where each vi has the form (i, Si) and S0 = Sn = S+. We define a sequence of
partial functions R0, R1, . . . , Rn : {1, . . . , n} ⇀ {1, . . . , n} by R0(m) := ⊥ and,
for i > 0, Ri := πP |{1,...,i}. For i ∈ {0, . . . , n} let Φ(i) be the following statement:

The image Im(Ri) and the set {i+ 1 +m | m ∈ Si} are disjoint, and
their union is {1, . . . , i+ 1 + w}.

We will prove by induction that Φ(i) holds for all i ∈ {0, . . . , n}. The base case is
easily checked. For the inductive case, suppose that Φ(i) holds and let us prove
Φ(i+ 1). We can write Ri+1 in terms of Ri as follows:

Ri+1(m) =

{
i+ 1 + T (vi, vi+1) if m = i+ 1

Ri(m) otherwise

Also by Definition 4 and Lemma 1 we have

Si+1 = decrease(Si \ {T (vi, vi+1)}) ∪ {w} (2)

We shall now show that

Im(Ri+1) ∩ {i+ 2 +m|m ∈ Si+1} = ∅

So let x ∈ {i + 2 + m | m ∈ Si+1} and we will prove x /∈ Im(Ri+1), which is
equivalent to

x /∈ Im(Ri) ∪ {i+ 1 + T (vi, vi+1)}
There is some m′ ∈ Si+1 such that x = i+ 2 +m′. From (2) there are two cases.

(a) m′ = w: Thus x = i+2+w. We cannot have x = i+1+T (vi, vi+1) because
T (vi, vi+1) ≤ w. Also we cannot have x ∈ Im(Ri) because the induction
hypothesis tells us that Im(Ri) ⊆ {1, . . . , i+ 1 + w}.

(b) m′ ∈ decrease(Si \ {T (vi, vi+1)}): It follows that m′+1 ∈ Si. Thus i+m′ ∈
{i + m | m + 1 ∈ Si}. Hence i + m′ ∈ {i + m − 1 | m ∈ Si}. Therefore
i + 2 + m′ ∈ {i + m + 1 | m ∈ Si} i.e. x ∈ {i + m + 1 | m ∈ Si}. The
disjointness part of the induction hypothesis now tells us that x /∈ Im(Ri).
It remains to show that x 6= i+ 1 + T (vi, vi+1), which, since x = i+ 2 +m′,
is equivalent to i+ 2 +m′ 6= i+ 1 +T (vi, vi+1), that is, m′+ 1 6= T (vi, vi+1).
But this follows from m′ ∈ decrease(Si \ {T (vi, vi+1)}).

Next we need to prove

Im(Ri+1) ∪ {i+ 2 +m | m ∈ Si+1} = {1, . . . , i+ w + 2}

Firstly, let x be an element of the RHS and we will show that it is also an element
of the LHS. There are two cases:
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(a) x = i+ w + 2: From (2), w ∈ Si+1. Hence x ∈ {i+ 2 +m | m ∈ Si+1}.
(b) x ∈ {1, . . . , i+ w + 1}: Then by the induction hypothesis we have x ∈

Im(Ri)∪ {i+ 1 +m | m ∈ Si}. If x ∈ Im(Ri) then clearly also x ∈ Im(Ri+1)
and we are done. Now consider the case when x ∈ {i+ 1 +m | m ∈ Si}.
There exists m′ ∈ Si such that x = i+ 1 +m′. There are two subcases.

(1) m′ = T (vi, vi+1): Then x = i+1+T (vi, vi+1) and it is immediate from
the definition of Ri+1 that x ∈ Im(Ri+1).

(2) m′ 6= T (vi, vi+1): It then follows from (2) that m′− 1 ∈ Si+1. Defining
m′′ := m′ − 1 we have m′′ ∈ Si+1 and x = i + 2 + m′′. Hence x ∈
{i+ 2 +m | m ∈ Si+1}.

Secondly, let x be an element of the LHS and we will show that it is also an
element of the RHS. There are two cases.

(a) x ∈ Im(Ri+1): There are two subcases:

(1) x ∈ Im(Ri): By the induction hypothesis we have x ∈ {1, . . . , i+w+1}.
Therefore x ∈ {1, . . . , i+ w + 2}.

(2) x = i+ 1 + T (vi, vi+1): From the induction hypothesis we know that
{i + 1 + m | m ∈ Si} ⊆ {1, . . . , i + 1 + w}; also T (vi, vi+1) ∈ Si, and
therefore x ∈ {1, . . . , i+ w + 2}.

(b) x ∈ {i+ 2 +m | m ∈ Si+1}: Then there is some m′ ∈ Si+1 such that x =
i+ 2 +m′. Equation (2) gives rise to two subcases:

(1) m′ = w: Then x = i+ 2 + w so clearly x ∈ {1, . . . , i+ w + 2}.
(2) m′ ∈ decrease(Si \ {T (vi, vi+1)}): It follows that m′ + 1 ∈ Si. Thus

i + m′ ∈ {i + m | m + 1 ∈ Si}. Hence i + m′ ∈ {i + m − 1 | m ∈ Si}.
Therefore i+2+m′ ∈ {i+m+1 | m ∈ Si} i.e. x ∈ {i+m+1 | m ∈ Si}. The
induction hypothesis tells us that {i+1+m | m ∈ Si} ⊆ {1, . . . , i+1+w},
and thus x ∈ {1, . . . , i+ w + 2}.

We have thus established that Φ(i) holds for all i ∈ {0, . . . , n}. From Φ(n)
it follows that Im(Rn) and {n + 1 + m | m ∈ Sn} are disjoint with union
{1, . . . , n + 1 + w}. But Sn = S+ = {0, . . . , w}, so we have Im(P ) = Im(Rn) =
{1, . . . , n} i.e. πP is onto the set {1, . . . , n}. It then follows for cardinality reasons
that πP is a bijection i.e. a permutation.

It remains to check that Cost(πP ) = L. We have (from (1) and Definition 5)

Cost(πP ) =

n∑
i=1

C(i, πP (i)) =

n∑
i=1

C(i, i+ T (vi−1, vi))

From Definition 4 the length of the edge from (i, Si) to (i + 1, Si+1) for i ∈
{0, . . . , n− 1} is C(i+ 1, i+ 1 + T (vi, vi+1)); hence

L =

n−1∑
i=0

C(i+ 1, i+ 1 + T (vi, vi+1)) = Cost(πP )

ut
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Lemma 3 (from local permutations to paths). Let π ∈ P(w, n). Then
there exists a path P in G(n,w,C) from vstart to vend with length Cost(π).

Proof. For each i ∈ {0, . . . , n} we construct a set Si ⊆ {−w, . . . , w} as follows:

Si := {m ∈ {−w, . . . , w} | i+ 1 +m /∈ Im(π|{1,...,i}) and i+ 1 +m > 0}

It is easy to see that S0 = S+. We now verify that Sn = S+. Sn simplifies to

{m ∈ {−w, . . . , w} | n+ 1 +m /∈ {1, . . . , n})}

and this is equal to S+.

Next we will show that, for each i ∈ {0, . . . , n− 1}, T ((i, Si), (i+ 1, Si+1)) is
defined and equal to π(i+ 1)− i− 1. By Lemma 1 this amounts to showing that

1. π(i+ 1)− i− 1 ∈ Si
2. 1 ≤ i+ 1 + π(i+ 1)− i− 1 ≤ n
3. Si+1 = decrease(Si \ {π(i+ 1)− i− 1}) ∪ {w}

For 1.), we first need to show that π(i+1)−i−1 ∈ {−w, . . . , w}. This follows from
the w-locality of π. Next we need to show that i+1+π(i+1)−i−1 /∈ Im(π|{1,...,i}),
i.e. π(i + 1) /∈ Im(π|{1,...,i}). This follows from the injectivity of π. Finally we
must show i+ 1 + π(i+ 1)− i− 1 > 0 which trivially simplifies to π(i+ 1) > 0.

For 2.) we easily simplify our goal to 1 ≤ π(i+ 1) ≤ n which trivially holds.

For 3.) we first prove the ⊆ inclusion. Let x ∈ Si+1. If x = w we are done,
so suppose x 6= w. Because x ∈ Si+1 we have x ∈ {−w, . . . , w},

i+ 2 + x /∈ Im(π|{1,...,i+1}) (3)

and

i+ 2 + x > 0 (4)

It will suffice to prove that (a). x+ 1 ∈ Si and (b). x+ 1 6= π(i+ 1)− i− 1. For
(a). we need to show

x+ 1 ∈ {m ∈ {−w, . . . , w} | i+ 1 +m /∈ Im(π|{1,...,i}) and i+ 1 +m > 0}

From x ∈ {−w, . . . , w} and x 6= w it follows that x + 1 ∈ {−w, . . . , w}. Next,
i + 1 + (x + 1) /∈ Im(π|{1,...,i}) follows from (3). Finally, i + 1 + (x + 1) > 0 is
just (4). (b). is equivalent to i+ 2 + x 6= π(i+ 1) which follows from (3).

Secondly we prove the ⊇ inclusion. Let x ∈ decrease(Si \{π(i+ 1)− i−1})∪
{w}. We split into two cases; in each we must show x ∈ Si+1.

(a) x = w: To show x ∈ Si+1 it suffices to show i+ 2 +w /∈ Im(π|{1,...,i+1}) and
i+ 2 +w > 0. The second conjunct holds trivially; for the first, observe that
by w-locality of π, π−1(i+ 2 + w) can be no smaller than i+ 2.
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(b) x ∈ decrease(Si \ {π(i+ 1)− i− 1}): Then x+ 1 ∈ Si and

x+ 1 6= π(i+ 1)− i− 1 (5)

The first step to showing x ∈ Si+1 is showing that x ∈ {−w, . . . , w}. We
know that −w ≤ x+ 1 ≤ w i.e. −w − 1 ≤ x < w, but we still need to make
sure that x 6= −w−1. So suppose for a contradiction that x = −w−1. Then
x+ 1 = −w, so −w ∈ Si. Therefore

i+ 1− w /∈ Im(π|{1,...,i}) (6)

and i+1−w > 0. By w-locality of π we have π−1(i+1−w) ≤ i+1; together
with (6) this implies that π(i+1) = i+1−w = i+2+x. But this contradicts
(5). Hence we have proved that x ∈ {−w, . . . , w}. Now, from x + 1 ∈ Si it
follows that

i+ 2 + x /∈ Im(π|{1,...,i}) (7)

and i+ 2 + x > 0.
To show x ∈ Si+1 it suffices to prove that i + 2 + x /∈ Im(π|{1,...,i+1}) and
i+ 2 +x > 0. The second conjuct we have shown already; (7) almost implies
for the first conjunct, leaving us only to check that π(i+ 1) 6= i+ 2 + x. But
this follows from (5).

We have thus shown that, for each i ∈ {0, . . . , n − 1}, T ((i, Si), (i + 1, Si+1)) is
defined and equal to π(i+ 1)− i−1. This means that, according to Definition 4,
P = (0, S0)→ (1, S1)→ · · · → (n, Sn) is a path from vstart to vend in G(n,w,C).

The length of the ith edge of P (counting from 0) is C(i + 1, i + 1 +
T ((i, Si), (i+ 1, Si+1))) so the length of P is

n−1∑
i=0

C(i+ 1, i+ 1 + T ((i, Si), (i+ 1, Si+1)))

which, using T ((i, Si), (i+ 1, Si+1)) = π(i+ 1)− i− 1, we can rewrite as

n−1∑
i=0

C(i+ 1, π(i+ 1))

and this equals Cost(π) as required. ut

4 Generalisation to N permutations

We now define a generalisation N -MCLP of the MCLP problem, where N local
permutations are chosen simultaneously to minimise their joint total cost.

Definition 6. An instance N−MCLP(n,w,C) of the N -way minimum cost lo-
cal permutation problem comprises:
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– integers n and w such that 0 ≤ w < n
– a function C : {1, . . . , n} × {1, . . . , n}N → R≥0 assigning costs to the per-

muted points; C(i, j1, . . . , jN ) is the cost of mapping point i onto point j1

in permutation π1, mapping point i onto point j2 in permutation π2, and so
on.

Given permutations π1, . . . , πN ∈ P(w, n) we define the cost of π1, . . . , πN to be

Cost(π1, . . . , πN ) :=

n∑
i=1

C(i, π1(i), . . . , πN (i)) (8)

A solution to the N -MCLP problem is a choice of permutations π1, . . . , πN that
minimises Cost(π1, . . . , πN ). ut

Example 2. We give an example instance of N -MCLP: let N = 2, n = 5, w = 1
and define the cost C(i, j1, j2) of mapping point i onto point j1 in permutation
π1 and mapping point i onto point j2 in permutation π2 to be

C(i, j1, j2) := i+ j1 + j2 mod 4

(Note that the interaction between j1 and j2 in the cost function stops us from
trivially decomposing the problem into two MCLP problems.) The cost of taking
both permutations to be the identity I is then

Cost(I, I) = C(1, 1, 1) + C(2, 2, 2) + C(3, 3, 3) + C(4, 4, 4) + C(5, 5, 5)
= 3 + 2 + 1 + 0 + 3
= 9

In this case several solutions achieve the minimum cost of 5, such as:

π1 := {1 7→ 2, 2 7→ 1, 3 7→ 3, 4 7→ 5, 5 7→ 4} (9)

π2 := {1 7→ 1, 2 7→ 2, 3 7→ 4, 4 7→ 3, 5 7→ 5}
which has cost

C(1, 2, 1) + C(2, 1, 2) + C(3, 3, 4) + C(4, 5, 3) + C(5, 4, 5)
= 0 + 1 + 2 + 0 + 2 = 5

ut

We will solve the N -MCLP problem using a graphical approach similar to
the one we used for MCLP. Fig. 2 contains the graph we generate from the
N -MCLP problem in Example 2, where N = 2.

This graph is similar to the one in Fig. 1, except that now each vertex is
labelled with N = 2 availability sets rather than one; following an edge from a
node (i, S1, S2) now corresponds to assigning values π1(i + 1) and π2(i + 1) to
two permutations π1 and π2 rather than one permutation. Thus as one chooses
a path from the “start” node on the left to the “end” node on the right, one
simultaneously chooses N permutations. For space reasons, edge costs are not
shown in Fig. 2.

We now make this construction precise and prove its correctness.
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Fig. 2. The directed acyclic graph we use to solve the N -MCLP problem in Example 2.
For space reasons, edge costs are not shown.

Definition 7. Given a problem instance N -MCLP(n,w,C), we define as follows
a DAG GN (n,w,C). We take as vertices the elements of {0, . . . , n} × SN . Let
≤N be any total order on N -tuples of integers. Next we define a partial function
T from pairs of vertices to {−w, . . . , w}:

T ((i, S1, . . . , SN ), (i′, S1′, . . . , SN
′
)) :=

min≤N
(X) if i′ = i+ 1 and

X =

 (t1, . . . , tN )

∈ (S1, . . . , SN )

∣∣∣∣∣∣∣
for all j ∈ {1, . . . , N},
1 ≤ i+1+tj ≤ n and

Sj
′

= decrease(Sj \ {tj}) ∪ {w}


is nonempty

⊥ otherwise

where min≤N
denotes minimum with respect to the total order ≤N . Where T (v, v′)

is defined, we write T j(v, v′) for the jth component of T (v, v′). We put an edge
from vertex v = (i, S1, . . . , SN ) to vertex v′ if T (v, v′) 6= ⊥; we set the cost of the
edge to C(i+1, i+1+T 1(v, v′), . . . , i+1+TN (v, v′)). We define distinguished
vertices vstart := (0, S+, . . . , S+) and vend := (n, S+, . . . , S+). ut

Definition 8. Let P = v0 → v1 → · · · → vn be a path from vstart to vend in
GN (n,w,C). Then we define corresponding functions π1

P , . . . , π
N
P : {1, . . . , n} →

{1, . . . , n} by πjP (i) := i+ T j(vi−1, vi). ut
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Theorem 2. Consider a problem instance N -MCLP(n,w,C). Let P be a path
of minimal length from vstart to vend in the associated graph GN (n,w,C). Then
(π1
P , . . . , π

N
P ) is a solution to MCLP(n,w,C). ut

We remark that, unlike in the case of MCLP, there is no obvious way of
reducing N -MCLP to the assignment problem; the above algorithm is the only
method we know for solving MCLP problems besides exhaustive enumeration.

We conclude this section by proving Theorem 2. The theorem follows from
three lemmas, which are the generalisations to N permutations of Lemmas 1, 2
and 3.

Lemma 4. Let (i, S1, . . . , SN ) and (i+1, S1′, . . . , SN
′
) be vertices of GN (n,w,C),

let (t1, . . . , tN ) ∈ S1 × · · · × SN and let (t1
′
, . . . , tN

′
) ∈ S1 × · · · × SN be such

that for all j ∈ {1, . . . , N}:

– 1 ≤ i+ 1 + tj ≤ n and Sj
′

= decrease(Sj \ {tj}) ∪ {w}
– 1 ≤ i+ 1 + tj

′ ≤ n and Sj
′

= decrease(Sj \ {tj ′}) ∪ {w}

Then (t1, . . . , tN ) = (t1
′
, . . . , tN

′
).3

Proof. We use a simple adaptation to N permutations of the argument used to
prove Lemma 1. For a contradiction, suppose (t1, . . . , tN ) 6= (t1

′
, . . . , tN

′
). Then

for some j, tj 6= tj
′
. We have tj

′− 1 /∈ decrease(Sj \ {tj ′})∪{w} so tj
′− 1 /∈ Sj ′.

But also tj
′ − 1 ∈ decrease(Sj \ {tj}) ∪ {w} so tj

′ − 1 ∈ Sj ′. ut

Lemma 5 (from paths to local permutations). Let P be a path in GN (n,w,C)
from vstart to vend with length L. Then π1

P , . . . , π
N
P ∈ P(w, n) and Cost(π1

P , . . . , π
N
P ) =

L.

Proof. This lemma is proved with a simple adaptation to N permutations of the
argument used to prove Lemma 2; the extra superscript index j = 1, . . . , N for
the N permutations propagates docilely through that proof. ut

Lemma 6 (from local permutations to paths). Let π1, . . . , πN ∈ P(w, n).
Then there exists a path Pπ1,...,πN in GN (n,w,C) from vstart to vend with length
Cost(π1, . . . , πN ).

Proof. The argument that we used to prove Lemma 3 applies mutatis mutandis;
again the extra superscript index j = 1, . . . , N for the N permutations propa-
gates docilely through that proof. ut

3 Among other things, this result shows that the choice of order ≤N in Definition 7 is
irrelevant; min≤N is used only to provide a well-defined way of selecting an element
from a non-empty set.
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Fig. 3. (top) An informative Forecast A, a flat uninformative Forecast B and the sub-
sequent actual energy consumption (bottom) A locally permuted version of Forecast
A matching the actual energy consumption well.

5 Application to smart meter data

In this section we apply our graph-based methods to two problems arising in the
field of household-level electricity use forecasting.

By an energy use profile we mean a vector x of n non-negative real numbers
(i.e. x ∈ R≥0n) where the components represent the (electrical) energy use of
a household, sampled at n evenly spaced time points. Typically we work with
daily profiles read from smart meters installed in houses, reading every hour or
every 30 minutes. Common values of n are thus 24 and 48.

5.1 Computing adjusted errors: evaluating household-level
electricity use forecasts

The forecasting of aggregated energy demand, such as at the regional or national
level, has been well studied; demand at these levels is quite smooth and a plethora
of forecasting techniques have been developed (see for example [8,12]). Such
forecasts are typically assesed using RMSE (root mean square error), MAPE
(mean absolute percentage error) or variants thereof.
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Much less has been done for forecasting at the level of individual households,
which appears to be a much harder problem: at the household level one has
volatile, non-smooth load functions that are much harder to predict, similar to
individual levels of natural gas consumption [1]. In fact, the volatile environment
of household-level forecasting requires not only different forecasting techniques,
but a different notion of what constitutes a good forecast.

Haben et al. [9] demonstrate that at the household level RMSE does a poor
job of distinguishing good (useful) forecasts from poor (useless) forecasts. Fig. 3
(top) shows two forecasts A and B plotted against the subsequent actual energy
consumption. As argued in [9], Forecast A is a good, informative forecast: it
contains the right number of peaks in consumption, at approximately the right
times and with approximately the right magnitudes. Yet under RMSE the flat
Forecast B scores better, despite giving us no indication of the expected times
and magnitudes of the peaks.

To address this, [9] proposed a new method, the adjusted error, of quantifying
the similarity between two household-level load curves, typically a forecast and
the actual usage. The idea of the adjusted error is to make allowances for small
discrepancies in time that may be present between the forecast and actual profiles
by allowing a w-local permutation to be applied to the forecast: we then consider
a forecast good if, among all the possible w-local permutations of the forecast,
there is one that is close to the actual consumption at each time point.

Fig.3 (bottom) shows a locally permuted version of Forecast A matched
against the subsequent actual consumption. As they are very close, Forecast
A will be given a small adjusted error. Because Forecast B is flat, no permuting
of its components can bring it closer to the actual profile. We have taken w = 3,
so that components of the forecast have been shifted forwards or backwards by
no more than an hour and a half.

Formally, [9] defines the adjusted error Ewp (x,y) between an actual profile x
and a forecast profile y by

Ewp (x,y) := min
π∈P(w,n)

(
n∑
i=1

|(π(y))i − xi|p
)1/p

(10)

where p ≥ 1. Here we overload notation by allowing permutations π to be applied
to vectors of n components; if x = (x1, . . . , xn) is a vector of n reals, then π(x)
denotes the vector (xπ−1(1), xπ−1(2), . . . , xπ−1(n)). Note that Ewp is symmetric:
for all x and y, Ewp (x,y) = Ewp (y,x).

The parameters w and p can be chosen differently for different applications.
However if w is set too close to n, adjusted errors are unlikely to yield useful
information about profile (dis)similarity: for example if we have daily profiles
with n = 24, meaning hourly readings, and we set w = 10, then a peak in
consumption at 8 AM in the first profile could be matched with a peak at 6 PM
in the second profile. But even a small value such as w = 2 will usually be enough
to match events such as cooking dinner, which tend to occur at approximately
the same time each day. Thus in practice we are concerned about computing
adjusted errors when w is much smaller than n. [9] recommends using p = 4 for
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Fig. 4. Comparison of three household-level forecasting methods under the adjusted
error measure (with w = 3 and p = 4). The PM forecast we have introduced performs
better than the existing AA forecast [9] and a simple mean forecast.

smart storage control applications, so that a forecast with the right number of
peaks but slightly wrong peak amplitudes and timings is preferred over a forecast
which predicts exactly the right amplitude and timing for some of the peaks but
completely misses another.

We now show how to formulate adjusted error computation as an instance
of MCLP.

Remark 1. Given two profiles x,y ∈ R≥0n and an adjustment limit w, we form
an instance of the MCLP problem by defining

C(i, j) := |yi − xj |p

Then the adjusted error Ewp (x,y) is equal to the cost of the solution to the
MCLP instance raised to the power 1/p. Thus we can use our algorithm for
MCLP to compute adjusted errors. ut

5.2 Merging profiles

As well as computing adjusted errors quickly, we can use a generalisation of
our graph-based method to create forecasts that perform well under the ad-
justed error measure. Our idea is as follows. Suppose we have energy use profiles
x1, . . . ,xN for the previous N Tuesdays for a particular household, and we wish
to make a forecast of that household’s energy use profile for next Tuesday, us-
ing some form of average over the previous N Tuesdays and ignoring for now
temperature and seasonal effects.
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Fig. 5. (top) Actual energy use profiles from two recent Tuesdays (bottom) The mean
forecast and PM (permutation merge) forecast for next Tuesday. The PM forecast is
much more similar in shape to the recent actual profiles.

We will show shortly that using our algorithm for N -MCLP problems we can
compute a profile y that minimises the following criterion:

N∑
j=1

(
EWp (x j ,y)

)p
(11)

for even p. Intuitively an optimal profile, which we denote y ∗, is one that is not
too distant (under the adjusted error measure with an adjustment limit W ) from
any of the N historical profiles; because people often observe the same routine
from one week to the next, the profile y ∗ works well as a forecast, as we shall
shortly demonstrate. We call this forecast the permutation merge (PM) forecast.

We emphasise that the adjustment limit W used in the PM forecast need
not be the same as the adjustment limit w with which one intends to evaluate
the forecasts.

We applied the PM forecast to real data from the Commission for Energy
Regulation [4]. We took the 543 control households for which there is complete
data for the 22 weeks from 3rd May 2010 to 3rd Oct 2010, and produced forecasts
of the last 7 weeks of this period. (In Ireland the effect of temperature on demand



17

is small over this period.) Fig. 4 shows the results. The horizontal axis shows
the number N of historical profiles (vectors) used to produce the forecast. The
vertical axis shows the adjusted error in the forecasts in kWh using w = 3 and
p = 4 summed over the 543 households and 7×7 days. Three forecasts are shown
for N from 1 up to 12:

1. a simple mean forecast, where at time i we forecast the mean (x1i + · · · +
xNi )/N of the load at time i in the historical profiles,

2. the AA forecast from [9], which is a forecast specifically designed to score
well under the adjusted error metric, and

3. the PM forecast using W = 1.

Our key finding is that for N ≥ 3 the PM forecast performs better than the
other forecasts, and, unlike the others, continues to improve as more historical
profiles are used. An investigation of which values of W and N give the best
PM forecasts for the various values of w is future work, as is the incorporation
of weather variables.

Fig. 5 shows the PM forecast in action. Fig. 5 (top) shows smart meter profiles
for a particular household, from the last two Tuesdays. Fig. 5 (bottom) shows
the mean forecast that would be generated from these two historical profiles,
and the PM forecast using W = 1. Because the evening peaks in the two actual
profiles occur one hour apart, the (pointwise) mean forecast does not strongly
resemble either of the actuals: it contains two evening peaks, of about half the
magnitude. On the other hand, the PM forecast effectively shifts the actual
profiles’ evening peaks half an hour forward and backward respectively, so that
they coincide, and then averages them, producing a single evening peak at about
the same time, with approximately the same magnitude. By construction, the
PM forecast profile is close — in the E1

4 sense — to both the actual profiles. In
this way, the permutation merge method tends to produce better forecasts, as
we confirmed in Fig. 4.

We now show how we compute the optimal profile y∗ that minimises the
criterion (11). Let p ≥ 2 be an even number. We form an N -MCLP problem by
defining

C(k, j1, . . . , jN ) := min
f∈R

N∑
i=1

(f − xiji)
p (12)

This choice of C is well-defined and can be solved numerically; additionally if
p = 2 or p = 4 then a minimum of the function

∑N
i=1(f − xiji)

p can be found
symbolically by finding the roots of the derivative. Once we have the solution
permutations π1, . . . , πN we construct our forecast vector f by setting its kth
component fk as follows:

fk := arg min
f∈R

N∑
i=1

(f − xiπi(k))
p (13)

The values of the components fk can again be computed numerically, or sym-
bolically in the case that p = 2 or p = 4. We now prove that the PM forecast
does in fact minimise the criterion (11) as claimed.
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Theorem 3. Given vectors x1, . . . ,xN ∈ R≥0n, the vector f with components
defined as in (13) minimises the criterion (11). ut

Before proving this theorem we establish three lemmas.

Lemma 7. Let π1, . . . , πN be W -local permutations and let C and f be as de-
fined in (12) and (13). Then

Cost(π1, . . . , πN ) =

n∑
k=1

N∑
i=1

(fk − xiπi(k))
p

Proof. By definition,

Cost(π1, . . . , πN ) =
n∑
k=1

C(k, π1(k), . . . , πN (k))

Substituting in the definition of C, we have

Cost(π1, . . . , πN ) =

n∑
k=1

min
f∈R

N∑
i=1

(f − xiπi(k))
p

But each fk is chosen exactly to minimise the inner sum, so we are done. ut

Lemma 8. Let σ1, . . . , σN be W -local permutations and let y1, . . . , yn ∈ R≥0.
Then

Cost(σ1, . . . , σN ) ≤
n∑
k=1

N∑
i=1

(yk − xiσi(k))
p

Proof. By definition,

Cost(σ1, . . . , σN ) =

n∑
k=1

C(k, σ1(k), . . . , σN (k))

Substituting in the definition of C, we have

Cost(σ1, . . . , σN ) =

n∑
k=1

min
f∈R

N∑
i=1

(f − xiσi(k))
p

and the result follows by inspection. ut

Lemma 9. Let π1, . . . , πN be W -local permutations and let C and f be as de-
fined in (12) and (13). Then

N∑
i=1

(
EWp (xi,f)

)p ≤ Cost(π1, . . . , πN )
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Proof. By Lemma 7, it suffices to prove

N∑
i=1

(
EWp (xi,f)

)p ≤
n∑
k=1

N∑
i=1

(fk − xiπi(k))
p (14)

By the defining equation (10) for adjusted error, the left hand side of (14) is
equal to

N∑
i=1

min
π∈P(W,n)

n∑
k=1

(fπ−1(k) − xik)p

The right hand side of (14) is equal to

N∑
i=1

n∑
k=1

(fk − xiπi(k))
p

which is in turn equal to

N∑
i=1

n∑
k=1

(f(πi)−1(k) − xik)p

Hence it will suffice to show

N∑
i=1

min
π∈P(W,n)

n∑
k=1

(fπ−1(k) − xik)p ≤
N∑
i=1

n∑
k=1

(f(πi)−1(k) − xik)p

and this is trivially true. ut

Now we can prove Theorem 3.

Proof (Theorem 3). Let π1, . . . , πN be a solution of the N -MCLP problem de-
fined as in (12), and let f be the forecast vector defined as in (13). Now suppose
for a contradiction that there is some vector g such that

N∑
i=1

(
EWp (xi, g)

)p
<

N∑
i=1

(
EWp (xi,f)

)p
(15)

By the definition of adjusted error, there exist W -local permutations σ1, . . . , σN

such that
N∑
i=1

n∑
k=1

(g(σi)−1(k) − xik)p =

N∑
i=1

(
EWp (xi, g)

)p
Rewriting the left hand side, we have

N∑
i=1

n∑
k=1

(gk − xiσi(k))
p =

N∑
i=1

(
EWp (xi, g)

)p
(16)
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Applying Lemma 8 we obtain

Cost(σ1, . . . , σN ) ≤
n∑
k=1

N∑
i=1

(gk − xiσi(k))
p (17)

Combining (15), (16) and (17) we get

Cost(σ1, . . . , σN ) <

N∑
i=1

(
EWp (xi,f)

)p
From Lemma 9 we have

N∑
i=1

(
EWp (xi,f)

)p ≤ Cost(π1, . . . , πN )

and therefore
Cost(σ1, . . . , σN ) < Cost(π1, . . . , πN )

Now we have a contradiction because π1, . . . , πN is a solution to the N -MCLP
problem. ut

6 Analysis of running time

We start this section with a theoretical analysis of the time taken by our graph-
based algorithm to solve the MCLP and N -MCLP problems, before reporting
running times measured in practice.

6.1 Theoretical analysis

When we solve an MCLP problem by reducing to an instance of the problem of
finding a shortest path in a DAG, we must do two things:

1. construct the appropriate DAG G(n,w,C) as per Definition 4, and
2. solve the resulting shortest path problem.

Note that the DAG constructed always has a layered structure, as visible in
Fig. 1: if we take all the nodes of the form (i, S) to be the ith layer of the graph,
then all edges go from a layer j to the next layer j + 1.

Suppose we construct G(n,w,C) by starting at layer 0 and generating each
successive layer in turn. Each layer contains

(
2w
w

)
nodes as noted in Definition 3.

It follows from Definition 4 that each node has out-degree at most w+1. Thus we
can construct a layer from the previous layer in time proportional to (w+1)

(
2w
w

)
;

there are n+ 1 layers so we can construct the whole graph in time proportional
to (n+ 1)(w + 1)

(
2w
w

)
.

Thanks to the layered structure of the graphs, a topological sort of the nodes
is trivial to obtain: first list the nodes of form (0, S), then those of form (1, S),
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then those of form (2, S) and so on. Hence we can compute the shortest path
from vstart to vend in time O(|E|), as detailed in [5, §24.2], where |E| is the
number of edges in the graph. But |E| ≤ (n+ 1)(w + 1)

(
2w
w

)
.

Thus solving an MCLP instance takes time proportional to (n+1)(w+1)
(
2w
w

)
.

Using the inequality
(
2w
w

)
≤ 4w we have the following results.4

Corollary 1. Our graph-based method solves the MCLP problem in O(nw · 4w)
time. ut

Corollary 2. Our graph-based method computes the adjusted error Ewp (x,y) in
time O(nw · 4w). ut

Existing work [9] has in effect reduced MCLP to the assignment problem,
which can be solved in O(n3) using the Hungarian algorithm [11,13]. When n
is large compared to w, as will be the case in our smart meter applications,
our running time of O(nw · 4w), which is linear in n, compares favourably to
the O(n3) running time of the existing method. We explore running times in
practice in the next section.

For the N -MCLP problem, each layer of the DAG GN (n,w,C) contains(
2w
w

)N
nodes, and each node has out-degree at most (w + 1)N . Thus we can

construct a layer from the previous layer in time proportional to (w+1)N
(
2w
w

)N
;

there are n+ 1 layers so we can construct the whole graph in time proportional

to (n+ 1)(w+ 1)N
(
2w
w

)N
. We can compute the shortest path from vstart to vend

in time O(|E|), where |E| ≤ (n + 1)(w + 1)N
(
2w
w

)N
. Thus solving an N -MCLP

instance takes time proportional to (n+ 1)(w+ 1)N
(
2w
w

)N
. Using the inequality(

2w
w

)
≤ 4w we have the following result.

Corollary 3. Our graph-based method solves the N -MCLP problem in time
O(nwN · 4Nw). ut

6.2 Running times in practice

We evaluated our algorithm for MCLP using real data from Ireland’s Commission
for Energy Regulation [4]. We took 2,000 household-level electricity use profiles,
with half-hourly readings (so n = 48) and computed the adjusted error between
all pairs of these (resulting in 1,999,000 adjusted error computations). Table 1
compares the CPU time required for this task, using the Hungarian algorithm
and using our new algorithm, for values of w from 1 to 6. CPU times reported
are measured on a single core of a 2.2Ghz Intel PC, using C++ implementations.

The results show that our new algorithm is very much faster for small values
of w. The running time of our algorithm grows more quickly than that of the
Hungarian algorithm as w increases, so for sufficiently large w the Hungarian

4 Given a set of size 2w there are
(
2w
w

)
ways of choosing a subset of size w, whereas

there are 22w = 4w ways of choosing an arbitrary subset. Hence
(
2w
w

)
≤ 4w.
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w Adj. error computation Clustering
Our new Hungarian using PAM

algorithm algorithm
1 1.0 1920.2 < 0.1
2 3.2 3114.0 < 0.1
3 12.2 4048.9 < 0.1
4 91.3 4796.5 < 0.1
5 885.9 5399.8 < 0.1
6 4906.8 5914.3 < 0.1

Table 1. Running times (in seconds) of our algorithm and the Hungarian algorithm
computing adjusted errors between all pairs of 2,000 profiles, and of clustering the same
2,000 profiles into 5 clusters using the PAM technique.

algorithm will be faster; for n = 48 this happens at w ≥ 7. Crucially however,
as explained in Section 5.1, in practice w is small and our algorithm delivers
orders-of-magnitude savings.

Although it has been termed an error, Ewp (x,y) can be used as a measure
of (dis)similarity between any two profiles; one need not be a forecast. We can,
for instance, use adjusted error as one measure of profile dissimilarity when
clustering profiles. Clustering of smart meter profiles has been proposed as a
component in various smart grid management activities such as tariff design [3],
targeting of behaviour modification initiatives [6] and improving short term load
forecasts [7].

Table 1 also reports the CPU time required for clustering the 2,000 smart
meter profiles into 5 clusters using the PAM technique [10]. To use PAM clus-
tering, one defines a distance function between the objects being clustered (here
profiles). We took the distance between profiles x and y to be a weighted sum
of the following ingredients:

– the adjusted error Ew4 (x,y),

– the (absolute) difference between the largest component of x and the largest
component of y,

– the (absolute) difference between the smallest component of x and the small-
est component of y,

– the (absolute) difference between the mean component of x and the mean
component of y.

Hence performing the 1,999,000 adjusted error computations was a necessary
precursor to performing the clustering.

The CPU times required for the clustering step are tiny compared to those
required for computing the adjusted errors. We include them to illustrate that
in smart grid applications, the adjusted error computations can give rise to a
substantial part (here the vast majority) of the computational burden, so our
faster algorithm will be useful in practice.
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7 Conclusions

We studied the minimum cost local permutation (MCLP) problem, which gener-
alises the problem of computing the adjusted error, a measure of the similarity
of two household-level smart meter energy profiles. We proved a reduction of
the MCLP problem to that of computing the shortest path in a directed acyclic
graph. This yielded an algorithm that, for a fixed adjustment limit w, solves
MCLP in O(n); this is better than the existing approach which used the Hun-
garian algorithm to solve MCLP in O(n3). We reported running times observed
in practice for adjusted error computations on a real smart meter data set, and
confirmed that our new method is far faster in practice.

We studied N -MCLP, a generalisation of MCLP where N permutations are
chosen simultaneously to minimise the associated total cost. Again we proved a
reduction to the problem of computing the shortest path in a directed acyclic
graph.

Finally we considered the problem of computing an appropriate “average” of
N smart meter profiles with respect to the adjusted error measure. We showed
how to use our algorithm for N -MCLP to solve this problem, using the resulting
method to produce substantially improved household-level energy consumption
forecasts using real smart meter data.
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