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Abstract

This thesis can be split into two main components, the first of which looks at the fractal dimension, specifically,
box-counting dimension, of sets related to subordinators (non-decreasing Lévy processes). It was recently
shown in [111] that limδ→0 U(δ)N(t, δ) = t almost surely, where N(t, δ) is the minimal number of boxes of
size at most δ needed to cover a subordinator’s range up to time t, and U(δ) is the subordinator’s renewal
function. The main result in this section is a central limit theorem (CLT) for N(t, δ), complementing and
refining work in [111].

Box-counting dimension is defined in terms of N(t, δ), but for subordinators we prove that it can also
be defined using a new process obtained by shortening the original subordinator’s jumps of size greater
than δ. This new process can be manipulated with remarkable ease in comparison to N(t, δ), and allows
better understanding of the box-counting dimension of a subordinator’s range in terms of its Lévy measure,
improving upon [111, Corollary 1]. We prove corresponding CLT and almost sure convergence results for the
new process.

The second main component of this thesis studies Markov processes conditioned so that their local time
must grow slower than a prescribed function. Building upon recent work on Brownian motion with constrained
local time in [8] and [78], we study whether or not the conditioned process is transient or recurrent, working
with a broad class of Markov processes.

In order to understand the local time, it is equivalent to study the inverse local time, which is itself a
subordinator. The problem at hand is effectively equivalent to determining the distribution of a subordinator
(the inverse local time) conditioned to remain above a given function. In conditioning a subordinator to
remain above a curve of the form g(t), t ≥ 0, the process is restricted to a time-dependent region, in contrast
to previous works in which a process is conditioned to remain in a fixed region (e.g. cones in [43] and [60]).
This means that we study boundary crossing probabilities for a family of curves, and must obtain uniform
asymptotics for such a family.

The main result in this section is a necessary and sufficient condition for transience or recurrence of the
conditioned Markov process. We will explicitly determine the distribution of the inverse local time for the
conditioned process, and in the transient case, we explicitly determine the law of the conditioned Markov
process. In the recurrent case, we characterise the entropic repulsion envelope via necessary and sufficient
conditions.

Mathematics Subject Classification Primary: 60G51; 28A80; 60J55.
Secondary: 60G75; 60F05; 60F15; 60G17; 60J25.

Keywords and key phrases Lévy processes; subordinators; fractal dimension; box-counting dimension;
limit theorems; Markov processes; local time; large deviations; regular variation.
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1.3.2 The Lévy-Khintchine Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Jumps & Poisson Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Examples of Lévy Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.5 Infinitely Divisible Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.6 (Strong) Markov Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.7 Definition of a Subordinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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Chapter 1

Introduction

1.1 History & Motivating Examples

The class of Lévy processes is a rather broad generalisation - one which accounts for a wide range of common

stochastic processes including Brownian motion, Poisson processes, and everything in between. Lévy processes

are characterised as the class of stochastic processes with stationary, independent increments, whose sample

paths are right continuous with left limits. This seemingly simple definition gives rise to a very rich class of

processes, while still allowing us to extend many important results from familiar processes to a much more

general setting.

When studying mathematics, there is often a compromise to be met between the depth of a theorem and

its generality. In this regard, the depth of a theorem is a measure of complexity, while its generality describes

the scope of the result - perhaps a result which considers only a very specific special case, in contrast to a result

which can be drawn upon in a vast number of situations∗. With this in mind, the study of Lévy processes

can be seen in a very positive light. Indeed, we find many beautiful and deep results in the literature which

apply to all Lévy processes (perhaps with a caveat excluding cases for which the result does not make sense

or is trivial, e.g. fractal properties of a process which does not have any meaningful structure at an arbitrarily

∗See [63, Chapters 14-17], for further discussion

1



Chapter 1: Introduction 2

small scale). Among all common classes of stochastic processes which are continuous in time/space, the Lévy

process finds this balance between depth and generality especially well. Before providing statements for some

of the most important, fundamental results on Lévy processes, let us first take a look at some history to

illustrate the significance of this family of processes. We shall also briefly discuss the applications of Lévy

processes before moving on to statements of key results.

Probability Theory The study of probability theory dates back to the 1500s and Cardano’s efforts to

analyse games of chance and gambling in Liber de ludo aleae [39], posthumously published in the 1600s.

Cardano’s gambling-motivated treatise contained preliminary statements alluding to some important results,

albeit without rigorous proofs. For instance, Cardano noted that larger sample sizes tend to yield more

accurate results for understanding a population. Eventually, this idea was captured mathematically and

formally proven by Jakob Bernoulli as a version of the law of large numbers, appearing in his 1713 book Ars

Conjectandi [10].

Between the 1600s and 1800s, the foundations for what was to become modern probability theory were

gradually laid out by a number of mathematicians, most notably including: Fermat; Pascal; de Moivre;

Laplace. However, the main theme of this thesis, stochastic processes, would not appear as a concept until

the early 1900s. Thereafter, the interest in the theory of stochastic processes began to expand quite rapidly.

Let us illustrate this growth with a few examples which, in turn, motivate the study of the processes which

appear in this thesis.

Brownian Motion In 1827, botanist Robert Brown observed the motion of large particles of pollen moving

around in water, a phenomenon now understood via the ubiquitous Wiener process, more commonly referred

to as Brownian motion. The study of Brownian motion, purely from a probabilistic point of view, has its

origins in the early 1900s. This type of process now regularly appears in a vast range of situations across

pure and applied mathematics, physics, and economics.

Poisson Processes Also in the early 1900s, interest in the Poisson process developed as a means of

modelling a variety of situations: numbers of incoming phone calls in an interval of time [53]; occurences of
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insurance claims [91]; alpha particle emission [108]. While Poisson himself did not study these processes, the

name comes from the inherent relationship between Poisson processes and the Poisson distribution, which

was studied (discovered, in fact) by Poisson. The connection is that for a Poisson process of rate λ, the

distribution of the process at time t has Poisson distribution with parameter λt.

Lévy Processes Lévy processes were first studied as a class in the mid-1900s, capturing the attention of a

number of eminent mathematicians including Kiyosi Itô, Andrey Kolmogorov, and Paul Lévy. Many results

on the aforementioned Brownian motion and Poisson process can in fact be proven in general for all Lévy

processes. This is perhaps surprising, given the differences between these processes. For instance, sample

paths of Brownian motion are continuous, whereas a Poisson process has discontinuous sample paths. How-

ever, both processes have càdlàg† (right-continuous with left-limits) sample paths, as do all Lévy processes.

Hence it has become apparent in recent decades that studying Lévy processes as a whole class, rather than

splitting up into individual cases, presents a highly attractive unified theory which contains a large number

of important processes. A variety of books that deal with Lévy processes have been published in recent

years: [1]; [14]; [15]; [45]; [82]; [110].

Random Walks One cannot give a satisfactory introduction to Lévy processes without mentioning random

walks. Random walks have been the subject of many interesting theoretical studies, and remain an important

topic of interest in modern probability theory. The random walk is a highly versatile mathematical tool, and

can be used to model a vast range of phenomena such as the total winnings of a gambler playing a number

of games, or the fluctuating price of a stock.

While a random walk does not actually satisfy the definition of a Lévy process, the similarity between

the two is striking. A random walk is a progressive sum of independent and identically distributed steps.

Independence of the steps corresponds to the independent increments property of Lévy processes, while the

condition that steps are identically distributed corresponds to stationarity of increments of Lévy proesses.

Thus random walks are considered to be the discrete-time analogue of Lévy processes (which exist on a

continuum of time), and vice-versa. Moreover, considering only the values taken by a Lévy process at times

†From the French: continue à droite, limite à gauche
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1, 2, 3, . . . , this gives rise to a random walk (though a lot of information is lost about the original Lévy

process).

Various results on random walks can be generalised to Lévy processes, and many papers consider Lévy

processes in tandem with random walks. The connection between random walks and Lévy processes is

particularly well documented in [45, Chapter 4]. Despite all the similarities between random walks and Lévy

processes, the fact that the latter is defined in a continuous setting, rather than a discrete setting, adds some

additional features of interest. One of these is the behaviour of the process at arbitrarily small scales, which

naturally leads to many interesting questions such as that of the fractal nature of the process, as will be

investigated in Chapter 2.

1.2 Applications of Lévy Processes

Mathematical Finance In mathematical finance, the widely studied Black-Scholes model uses a geometric

Brownian motion to model the instantaneous log-return of a stock price. While geometric Brownian motion

is highly tractable, empirical evidence suggests that it does not adequately capture certain features of market

equity returns, such as volatility smile or asymmetry [29, 37, 57, 81, 93]. Moreover, it has been observed that

the tails of Brownian motion are too light when compared with market data [61]. An alternative model

involves replacing geometric Brownian motion by an exponential of a Lévy process.

A range of Lévy processes other than Brownian motion are used in mathematical finance, each having

advantages in different scenarios. Some Lévy processes used to model the price of a stock are: normal inverse

Gaussian processes [7]; hyperbolic processes [51]; tempered stable processes (also referred to as CGMY

processes) [29, p310]; variance gamma processes [92].

Let us present an example of the kind of problem tackled in mathematical finance. It may be useful to

understand whether or not (perhaps in a given time interval) an agent will go bankrupt, or their capital will

exceed a given level. If we model the agent’s total capital by a random process, then the aforementioned

problem corresponds to determining the probability distribution of the time at which a given process crosses

a certain boundary (or multiple boundaries).
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Such boundary-crossing type problems are particularly useful for understanding barrier options. A barrier

option is a financial option which may be activated (or extinguished) upon the event of a given stock price

crossing a certain level. In Chapter 3, we shall study boundary-crossing behaviour of certain Lévy processes.

In particular, we study the probability that a process lies above a given function over a certain time interval,

which means that we are looking at the boundary-crossing behaviour for our process with regard to the

given function. For further reading on financial applications of Lévy processes, we refer to [1, Section

5.6], [26], [27], [38], [82, Section 1.3], [84], and [112].

Branching Processes In various biological systems, branching processes are used to model the number

of individuals in a population and how they are related to each other, with births and deaths occuring at

different times. The study of branching processes has its origins in the late 1800s, and the emergence of the

Galton-Watson‡ process [121]. Such a process has a given number of individuals at its first time step, each

of which subsequently has a random number of offspring who are added to the population at the next time

step, and so on, where the number of offspring for each individual is independent and identically distributed

for all individuals and generations.

It is simple to modify the Galton-Watson process to exist on a continuous interval of time, rather than

discrete time increments. It is also natural to wish to generalise such branching processes to possess a contin-

uous state space, which motivated Miloslav Jǐrina’s work in the 1950s [68]. It is through this generalisation

to allow for a continuous state space that we see a close, intrinsic connection between branching processes

and Lévy processes.

In the 1960s, John Lamperti discovered a relationship between Lévy processes and continuous-state

branching processes (CSBPs) [85]. Moreover, in the 1970s, Lamperti derived a further relationship between

Lévy processes and positive self-similar processes [86], but we shall focus on the former relationship between

Lévy processes and CSBPs. Lamperti’s result provides a one-to-one correspondence, via a simple random

time change, between CSBPs and Lévy process which have no negative jumps (discontinuities). This has

proved highly valuable in the study of CSBPs (see e.g. [20]), and also in the study of superprocesses [87],

‡Most commonly known as Galton-Watson processes, they are more recently referred to as Bienaymé-Galton-Watson pro-
cesses, due to Bienaymé’s earlier (but less well-known) works on such processes [65].
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as well as for the study of Lévy processes themselves [13]. For further reading on CSBPs one can refer

to [82, Chapter 12] and [90, Chapter 3].

Fragmentation Processes Fragmentation processes are mathematical models which describe how an

object breaks up into smaller pieces, each of which continues to break up into further, smaller pieces, and

so on. The probabilistic study of such processes dates back to the 1940s. In 1940, it was observed by N.K.

Razumovskii that the logarithm of particle sizes of minerals, under grinding, approximately followed a normal

distribution [103]. This motivated Andrey Kolmogorov to formulate a simple branching random walk model,

and subsequently prove a central limit theorem result for such processes [114], thus providing a theoretical

explanation for the phenomenon observed by Razumovskii.

The connection between fragmentation processes and Lévy processes, yielding a rigorous framework

in which to study fragmentation processes in their full generality, is a particularly recent development,

originating in Jean Bertoin’s 2001 paper [16]. The fragmentation processes considered in prior works all had

the constraints that the time taken for each particle to fracture is positive, and that the number of fragments

produced by such a fracture is finite. In order to allow for the instantaneous shattering of a piece into

infinitely many fragments, Bertoin used a construction for a fragmentation process based on a Lévy process,

the details of which can be found in the monograph [17]. Such pioneering works on fragmentation processes

have established a close link between the study of Lévy processes and the study of the fragmentation of blocks

of minerals in the mining industry, see [18] and [58].

Polymer Physics & Local Time In Chapter 3, we shall study the large-scale properties of Markov

processes under certain constraints, motivated by problems in polymer physics which look at the large-scale

behaviour of a long polymer chain. The proofs in this chapter heavily rely upon the intrinsic connection

of certain Markov processes to corresponding non-decreasing Lévy processes, via the concept of local time.

Further discussion of polymer physics and local time shall be postponed until Sections 3.1.1 and 3.1.2.
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1.3 Preliminary Definitions, Notation, & Results

In this section we shall introduce and discuss some essential definitions, notation, and key results which

form the foundations for this thesis. While it is assumed that the reader is reasonably familiar with measure

theoretical probability, some important results from measure theory (integral/limit theorems) and probability

theory (key inequalities) are included in the appendix, see Section A.2 and Section A.3. We also include some

key results on the theory of regularly varying functions in the appendix (Section A.4), although any discussion

of regular variation is postponed until Chapters 2 and 3.

There is, of course, a vast literature providing the necessary background on probability theory and

measure theory, including for example [19,50,55,69].

1.3.1 Definition of a Lévy Process

Definition 1.3.1. A Lévy process, denoted by X = (Xt)t≥0, is a stochastic process in Euclidean space Rd

which starts from 0 almost surely, has càdlàg (right-continuous with left-limits) sample paths almost surely,

and has stationary, independent increments.

That is to say, for each 0 < s < t, the increments Xt −Xs and X ′t−s −X ′0 have the same distribution,

where X ′ is an independent copy of X (stationarity of increments), and for each 0 < s < t < u < v, the

increments Xv −Xu and Xt −Xs are independent (independence of increments).

In terms of topology, a sample path of a Lévy process exists in the space of all càdlàg functions on [0,∞)

endowed with the Skorohod topology. We refer to [19, Section 16] for further details.

1.3.2 The Lévy-Khintchine Formula

The most important discovery on Lévy processes, laying the foundations for the modern study of such

processes, is the celebrated Lévy-Khintchine formula, which gives an analytic expression for the characteristic

function associated to a Lévy process in full generality, in terms of three key quantities. The characteristic

function determines the distribution of a process, giving a simple and elegant way of working with Lévy
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processes.

However, the characteristic function itself is not usually studied - the convention is to work with the

characteristic exponent, Ψ, defined by the relation

E[eiλXt ] = e−tΨ(λ), for t ≥ 0, λ ∈ R.

The fact that this relation holds for all t ≥ 0 follows from the fact that Lévy processes have infinitely divisible

distributions (see the upcoming Subsection 1.3.5), as well as the stationary, independent increments property.

The Lévy-Khintchine formula allows mathematicians to use analytic tools in order to understand prob-

abilistic or geometric properties of Lévy processes. The vast majority of results on Lévy processes are

formulated in terms expressions deriving from this formula. The Lévy-Khintchine formula was first proven

in 1934 by Lévy [89], but a much simpler proof was provided in 1937 by Khintchine [72]. We shall only state

the 1-dimensional version of the Lévy-Khintchine formula, as the Lévy processes studied in this thesis will

typically be 1-dimensional.

Theorem 1.3.2 (Lévy-Khintchine Formula). For a ∈ R, q ∈ [0,∞), for a measure Π on R \ {0} satisfying∫
R\{0}min(1, x2)Π(dx) <∞, and for λ ∈ R, define the function Ψ(λ) by

Ψ(λ) := iaλ+
qλ2

2
+

∫
R\{0}

(
1− eiλx + iλx1{|x|<1}

)
Π(dx). (1.1)

Then there exists a unique probability measure on the space of all càdlàg functions on [0,∞), endowed with

the Skorohod topology, which defines a Lévy process X = (Xt)t≥0 with characteristic exponent Ψ, so satisfies

E[eiλXt ] = e−tΨ(λ), for all t ≥ 0, λ ∈ R. On the other hand, every Lévy process has a unique characteristic

exponent of the above form.

This formula has a very meaningful probabilistic interpretation. Looking at the three terms in the

characteristic exponent, one can deduce that the corresponding Lévy process is a sum of a deterministic linear

drift, a Gaussian process, and a Poisson point process. The Poisson point process contribution determines

the jumps (discontinuities) of the process, which we define now:
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1.3.3 Jumps & Poisson Point Processes

An important feature of Lévy processes is that they can instantaneously change position, or jump from one

point to another. We formally define this as follows:

Definition 1.3.3. The process (Xt)t≥0 has a “jump of size x at time t” if Xt−Xt− = x, where Xt− denotes

lims↑tXs.

The jumps of a Lévy process all come from the Poisson point process contribution, and the distribution

of the rate and size of jumps is entirely determined by the Lévy measure, Π(dx). We now explore how the

jumps of a Lévy process are connected to its Lévy measure.

Closely examining the condition
∫
R\{0}min(1, x2)Π(dx) <∞, it becomes apparent that it is possible for

the Lévy measure to be infinite, in the sense that
∫
R\{0}Π(dx) = ∞ (for example, Π(dx) = |x|−5/2dx). It

is, of course, also possible for the Lévy measure to be finite. While Lévy processes can have infinitely many

infinitesimally small jumps in a finite amount of time, a process with finite Lévy measure corresponds to the

special case where the jumps of the process occur at a finite rate.

Let us first consider the case in which the Lévy measure is finite. The total number of jumps up to any

time t > 0 has Poisson distribution with parameter t ×
∫
R\{0}Π(dx). One can then deduce that the first

jump occurs at a random time T1, which is exponentially distributed with parameter
∫
R\{0}Π(dx). The time

until the next jump also has an exponential distribution with parameter
∫
R\{0}Π(dx), and so on for each

successive jump. The sizes of the jumps are independent, and each distributed according to the rescaled

measure

P(XT1
−XT1− ∈ dy) =

Π(dy)∫
R\{0}Π(dx)

. (1.2)

If the Lévy measure is infinite, then jumps occur at an infinite rate. This means that the notion of a first

jump is not well-defined, in the sense that inf{t > 0 : Xt − Xt− 6= 0} = 0 almost surely. However, we can

still understand the behaviour of our process as an infinite sum of independent processes, each of which has

a finite Lévy measure. For a measurable subset A ⊂ R \ {0} such that
∫
A

Π(dx) <∞, the first jump whose

size is in the set A occurs at an exponentially distributed time TA1 , with parameter
∫
A

Π(dx). The time until
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the next jump has the same distribution, and so on for each successive jump. As in (1.2), the size of each

jump is determined by the rescaled measure

P(XTA1
−XTA1 − ∈ dy) =

Π(dy)∫
A

Π(dx)
. (1.3)

This information is especially useful for Chapter 3, wherein we see that the large-scale behaviour of a Lévy

process is mostly determined by the distribution of its largest jumps. In this context, our set A is of the form

[a,∞), for a > 0.

1.3.4 Examples of Lévy Processes

Now let us take a brief look our two main motivating examples in the light of the Lévy-Khintchine formula,

and using the notion of jumps.

Brownian Motion Standard 1-dimensional Brownian motion, denoted by (Bt)t≥0, is defined as a stochas-

tic process in R which satisfies the following:

(i) B0 = 0 almost surely;

(ii) (Bt)t≥0 has independent increments;

(iii) For each 0 ≤ s < t, the increment Bt −Bs has a normal distribution with mean 0 and variance t− s;

(iv) The function t 7→ Bt is continuous, almost surely.

From property (iii), one can deduce that our 1-dimensional Brownian motion satisfies e−tΨ(λ) = E[eiλBt ] =

e−tλ
2/2, so its characteristic exponent is given by

Ψ(λ) =
λ2

2
.

Comparing this with the general Lévy-Khintchine formula in (1.1), we observe that there is no drift, and the

Lévy measure is zero, so the process has no jumps.
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Poisson Counting Process A Poisson counting process with rate parameter µ > 0, denoted by (Nt)t≥0,

is a stochastic process taking values in N, for which:

(i) N0 = 0 almost surely;

(ii) (Nt)t≥0 has independent increments;

(iii) For each 0 ≤ s < t, the increment Nt −Ns has a Poisson distribution with parameter µ(t− s).

From property (iii), one can deduce that our Poisson counting process satisfies e−tΨ(λ) = E[eiλNt ] =

eµt(e
iλ−1), so its characteristic exponent is given by

Ψ(λ) = µ(1− eiλ).

Comparing this with (1.1), it is clear that there is no drift, nor is there a Gaussian component. The Poisson

counting process does have jumps, and they are each of size 1. Indeed, one can verify that the Lévy measure

is a point mass at 1, with weight µ. That is to say, Π(dx) = µ×∆1(dx), where ∆1(dx) is the Dirac measure

at the point 1 (see [69, p9] for details on the Dirac measure).

So the Poisson counting process is a sum of randomly timed jumps, each of size 1. If we denote the first

jump time by T1, then T1 has an exponential distribution with parameter µ. The time until the next jump

is then independent of T1, and also has an exponential distribution with parameter µ, and so on for each

subsequent jump.

1.3.5 Infinitely Divisible Distributions

Before defining infinite divisibility, we remark that normal and Poisson distributions are infinitely divisible. It

is well-known that these distributions can be rewritten as sums of normal/Poisson distributions, respectively,

from which one can easily verify that they are infinitely divisibile. Here we have two of the simplest examples

of infinitely divisible distributions, which correspond to two of the simplest Lévy processes: Brownian motion

and Poisson counting processes.

Definition 1.3.4. A random variable X has an infinitely divisible distribution if for each n ∈ N, there exist
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independent and identically distributed random variables X1, . . . , Xn, such that X has the same distribution

as X1 + · · ·+Xn.

The stationary independent increments definition implies that Lévy processes have infinitely divisible distri-

butions. Indeed, for each n ∈ N,

Xt
d
= X t

n
+
(
X 2t

n
−X t

n

)
+
(
X 3t

n
−X 2t

n

)
+ · · ·+

(
Xnt

n
−X (n−1)t

n

)
,

where each of these n increments are independent, with the same distribution. Conversely, every infinitely

divisible distribution gives rise to a unique Lévy process, so there is a 1:1 correspondence between Lévy

processes and infinitely divisible distributions. See [55, Chapter XVII] for further details.

1.3.6 (Strong) Markov Property

An important feature of Lévy processes is that they satisfy the Markov property, so a Lévy process is a

Markov process. Essentially, this means that the process has no memory of its past behaviour, so its future

behaviour only depends on its present state. More formally, a stochastic process satisfies the Markov property

if for each t ≥ 0, the process (Ys)s≥0 defined by Ys := Xt+s is conditionally independent of (Xs)0≤s≤t, given

the value of Xt.

A more restrictive property than the Markov property is the strong Markov property, which is almost the

same, only with the additional requirement we can replace t ≥ 0 by a finite stopping time. So a process satisfies

the strong Markov property if for each finite stopping time T , the process (Ys)s≥0 defined by Ys := XT+s

is conditionally independent of (Xs)0≤s<T , given the value of XT . We refer to [14, Section I.2] for further

details, including rigorous definitions of stopping times.

1.3.7 Definition of a Subordinator

A subordinator is the special case of a non-decreasing, real-valued Lévy process. As it is non-decreasing, a

subordinator cannot have a Gaussian component, but it can have a non-negative drift. Moreover, it is clear

that a subordinator cannot have any negative jumps, as otherwise it would not be non-decreasing. So the
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Lévy measure of a subordinator is only supported on (0,∞). However, imposing monotonicity actually adds

a further restriction on the Lévy measure.

Recall that the Lévy measure, Π(dx), of a general Lévy process satisfies
∫
R\{0}min{1, x2}Π(dx) < ∞.

It turns out that the Lévy measure of a subordinator must satisfy the slightly stronger condition that∫∞
0

min{1, x}Π(dx) <∞. This extra condition is a consequence of the fact that the sample paths of a Lévy

process are of bounded variation (BV) on each compact time interval almost surely if and only if q = 0 and∫
R\{0}min{1, x}Π(dx) < ∞. See, for instance, [1, Section 2.3.3] for more details on bounded variation and

Lévy processes. It is straightforward to show that the sample paths of every subordinator are of BV, almost

surely, which leads to the stronger constraint on the Lévy measure. We then arrive at the following definition

for a subordinator:

Definition 1.3.5. A subordinator is a non-decreasing Lévy process (almost surely) which takes values in R,

and whose Lévy measure satisfies
∫∞

0
min{1, x}Π(dx) <∞.

Equivalently, one can define a subordinator as a Lévy process which takes values only in [0,∞) almost

surely, because a Lévy process can decrease if and only if it can take negative values (this is straightforward

to deduce from Definition 1.3.1).

1.3.8 Lévy-Khintchine Formula for Subordinators

Because subordinators are non-negative, their Laplace transform is well-defined. We can hence study the

Laplace exponent φ in place of the characteristic exponent Ψ, where the Laplace exponent φ is defined by:

e−tφ(λ) = E[e−λXt ], for all t ≥ 0, λ ≥ 0.

Observe that the characteristic exponent determines the Laplace exponent via the relationship φ(λ) = Ψ(iλ).

Then we can use the Lévy-Khintchine formula to express the Laplace exponent of a subordinator in a neat,

general form. Recalling that a subordinator has no Gaussian component, has non-negative drift, its Lévy

measure is not supported on (−∞, 0), and its Lévy measure satisfies
∫ 1

0
xΠ(dx) < ∞, we deduce from (1.1)
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that

φ(λ) = Ψ(iλ) = −aλ +

∫ ∞
0

(
1− e−λx − λx1{|x|<1}

)
Π(dx)

= −aλ− λ
∫ 1

0

xΠ(dx) +

∫ ∞
0

(1− e−λx)Π(dx)

=: dλ +

∫ ∞
0

(1− e−λx)Π(dx), d ≥ 0. (1.4)

Hereon, the drift of a subordinator shall refer to the quantity d, as defined in (1.4), rather than the term

“a”, which appears in (1.1).

A function which will be key in the following chapters is the tail of the Lévy measure of a subordinator.

This function, defined by Π(y) :=
∫

(y,∞)
Π(dx), determines the rate of occurence of jumps of size greater

than y, as a special case of the relation in (1.3). The tail function offers an alternative formulation of the

general form for the Laplace exponent of a subordinator:

φ(λ) = dλ+

∫ ∞
0

(1− e−λx)Π(dx) = dλ+

∫ ∞
0

λe−λxΠ(x)dx. (1.5)

This version of the Lévy-Khintchine formula for subordinators will be essential for many of the computations

in Chapter 3, as this version allows us to bound the probabilites of various events relating to subordinators

in terms of the asymptotic behaviour of the tail function Π(x).



Chapter 2

Fractal-Dimensional Properties

of Subordinators

Abstract

This chapter looks at the box-counting dimension of sets related to subordinators (non-decreasing Lévy

processes). It was recently shown in [111] that almost surely limδ→0 U(δ)N(t, δ) = t, where N(t, δ) is the

minimal number of boxes of size at most δ needed to cover a subordinator’s range up to time t, and U(δ) is the

subordinator’s renewal function. Our main result is a central limit theorem (CLT) for N(t, δ), complementing

and refining work in [111].

Box-counting dimension is defined in terms of N(t, δ), but for subordinators we prove that it can also

be defined using a new process obtained by shortening the original subordinator’s jumps of size greater

than δ. This new process can be manipulated with remarkable ease in comparison to N(t, δ), and allows

better understanding of the box-counting dimension of a subordinator’s range in terms of its Lévy measure,

improving upon [111, Corollary 1]. Further, we shall prove corresponding CLT and almost sure convergence

results for the new process.

15
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2.1 Literature Overview

2.1.1 Box-Counting Dimension

It is clear how to define the dimension of many simple mathematical objects, simply using an integer. For

example, a line is 1-dimensional, a square is 2-dimensional, and a cube is 3-dimensional. But if we attempt

to generalise this notion of dimension to more complicated sets, such as those with infinitesimally small

structure, it is harder to assign an appropriate value to determine their dimension, and the dimension is not

always an integer.

To answer these natural questions, we require the notion of fractal dimension, which generalises our

familiar notion of the dimension of a set. There are many ways to define the fractal dimension of a set, each

helpful in different contexts. In this chapter we shall focus on the box-counting dimension. Before providing

a formal definition of box-counting dimension, we consider some simple illustrative examples.

Consider splitting a line up into pieces of length at most δ > 0. If we proceed to split into smaller pieces

of length at most δ/2, then we require twice as many pieces. Reducing the size to δ/n, we require n times

more pieces.

For a square, splitting up into squares of side length at most δ > 0, then further reducing the side length

to δ/2, we now require four times as many pieces. Reducing the size to δ/n, we require n2 times more pieces.

Similarly, for a cube split into smaller cubes, reducing the side length by a factor of 1/n requires n3 times

more pieces.

A clear pattern is emerging here: a power law. For the 1-dimensional object, we have n times more pieces.

For the 2-dimensional object, we have n2 times more pieces, and for the 3-dimensional object, we have n3

times more pieces. So for a k-dimensional object split up into smaller k-dimensional “boxes” (hypercubes)

of side length 1/n, it is natural to expect the required number of these boxes to increase by a factor of nk,

as n varies. We can make this idea rigorous through the following definition:

Definition 2.1.1. For a non-empty, bounded subset of Rn, let N(δ) denote the minimal number of boxes

(i.e. lines/squares/cubes/hypercubes) of side length at most δ > 0 required to cover the set. The box-counting
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dimension of the set is defined by

lim
δ→0

log(N(δ))

log(1/δ)
.

When this limit doesn’t exist, we can instead consider the limsup and liminf, which respectively define

the upper and lower box-counting dimensions.

Moreover, closely related to these are the upper/lower modified box-counting dimensions, defined as the

infimum over all suprema of upper/lower box-counting dimensions of members of countable covers of the

set. This modification allows us to consider non-compact sets. See [54, Section 3.3] for more details on

upper/lower modified box-counting dimension.

Relation to Other Notions of Dimension Alongside box-counting dimension (and its modifications),

two of the most widely used notions of fractal dimension are Hausdorff dimension (see [54, Section 2.2])

and packing dimension (see [54, Section 3.4]). It turns out that if we know the box-counting dimension

of a set, then this gives us a good insight into its Hausdorff dimension and packing dimension. With the

obvious shorthand notation, dim denoting upper notion of dimension and dim denoting lower, the following

inequalities (proven in [54, Chapter 3]) show how each of these different notions of dimension are related:

dimH ≤ dimMB ≤ dimB ; dimMB ≤ dimMB ≤ dimP ≤ dimB ;

and moreover, for any subset of Rn, dimP = dimMB .

Our Sets of Interest The main sets of interest in this chapter are the range {Xs : 0 ≤ s ≤ t}, and the

graph {(s,Xs) : 0 ≤ s ≤ t}, of a subordinator (Xs)s≥0. The fractal dimensional study of sets such as the

range or graph of Lévy processes, and especially subordinators, has a very rich history. There are many

works which study the box-counting, Hausdorff, and packing dimensions of sets related to Lévy processes

[23, 31, 54, 56, 59, 64, 73–77, 111, 113, 123]. In particular, we refer to [123, Chapters 4-5] for an account of the

study of fractal properties of the range and graph of Markov processes.

We shall now give a brief summary of some of the most significant/relevant results in the literature on
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fractal dimensional properties of subordinators.

2.1.2 Relevant Results from the Literature

Hausforff Dimension We begin by stating some results from the 1960s on the Hausdorff dimension of the

range of subordinators. We refer to [54, Section 2.2] for a precise definition of Hausdorff dimension.

Blumenthal and Getoor determined the Hausdorff dimension of the range for the special case of a stable

subordinator in [23]. For α ∈ [0, 1], a stable subordinator of index α is defined as a subordinator with Laplace

exponent φ(λ) = Cλα, for a constant C > 0. It makes sense to first consider the special case of stable

subordinators. In this case, difficult problems can be tractable due to the fact that the distribution of the

subordinator at each fixed time is a stable distribution. Blumenthal and Getoor’s result is as follows:

Theorem 2.1.2 (Blumenthal, Getoor 1960). For a stable subordinator of index α ∈ [0, 1], the Hausdorff

dimension of the range up to any fixed time t > 0, {Xu : 0 ≤ u ≤ t}, is almost surely equal to α.

This result was generalised by Pruitt in [101], where a formula for the Hausdorff dimension of the range

of a general subordinator is determined in terms of the asymptotic behaviour of the Laplace exponent:

Theorem 2.1.3 (Pruitt, 1969). For any subordinator, the Hausdorff dimension of its range is almost surely

equal to its “lower index”, which is defined as:

sup

{
α > 0 : lim

λ→∞
λ−αφ(λ) =∞

}
.

Box-Counting Dimension The (upper and lower) box-counting dimension of the range of a general

subordinator was determined by Bertoin in [15, Theorem 5.1], and the results are again expressed in terms

of the asymptotic behaviour of the Laplace exponent:

Theorem 2.1.4 (Bertoin, 1997). For any subordinator, the upper and lower box-counting dimensions of

its range are almost surely equal to, respectively, the upper and lower indices of its Laplace exponent:

ind(φ) = inf

{
α > 0 : lim

λ→∞
λ−αφ(λ) = 0

}
;
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ind(φ) = sup

{
α > 0 : lim

λ→∞
λ−αφ(λ) =∞

}
.

Prior to the recent results of Savov in [111], most works on box-counting dimension focused only on finding

the value of limδ→0 log(N(t, δ))/ log(1/δ), which defines the box-counting dimension, or the limsup/liminf

of this quantity, which determines the upper/lower box-counting dimension. However, working with N(t, δ)

itself allows precise understanding of its fluctuations around its mean, which is inaccessible at the log scale.

Savov’s main result, [111, Theorem 1.1], precisely determines the asymptotic behaviour of N(t, δ) as δ → 0:

Theorem 2.1.5 (Savov, 2014). Let N(t, δ) denote the minimal number of intervals of size at most δ

needed to cover the range {Xs : 0 ≤ s ≤ t} of any subordinator which is not a compound Poisson process.

Then for any t > 0, almost surely,

lim
δ→0

U(δ)N(t, δ) = t,

where we define the passage time, Tδ, of our process above the level δ > 0 as

Tδ := inf {t ≥ 0 : Xt > δ} ,

and the renewal function is defined as U(δ) := E[Tδ], the expected passage time.

This is a more refined result than the previous theorem of Bertoin, which only deals with the number of

boxes at a logarithmic scale. In this chapter, we shall also work with this number of boxes explicitly, rather

than at a logarithmic scale. One of the main results in this chapter, Theorem 2.2.1, is a central limit theorem

for N(t, δ), complementing the almost sure convergence result of Savov.

2.1.3 An Alternative Box-Counting Scheme

So far we have used N(δ), the minimal number of “boxes” of side length δ in a cover, to define box-counting

dimension:

lim
δ→0

log(N(δ))

log(1/δ)
.
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However, the log-scale at which box-counting dimension is defined allows other functions to be used in place

of N(δ), while preserving the above limit. For example, we can replace N(δ) by “M(δ)”, defined as the

number of boxes in a “mesh” of side length δ to intersect with a fractal. The following three figures illustrate

these different box-counting schemes on the Koch curve:

Figure 2.1: Koch curve

Figure 2.2: Koch curve with optimal covering; N(δ) = 67

Figure 2.3: Koch curve with mesh covering; M(δ) = 103
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The inequalities N(δ) ≤ M(δ) and M(δ) ≤ 3nN(δ) hold for any subset of Rn, which implies that

limδ→0 log(N(δ))/ log(1/δ) = limδ→0 log(M(δ))/ log(1/δ), and hence one can use N(δ) and M(δ) interchange-

ably when calculating the box-counting dimension of a set. The same result holds with the limsup/liminf,

meaning the upper/lower box-counting dimension can also be defined using M(δ) or N(δ).

It is easy to prove that N(δ) ≤ M(δ) ≤ 3nN(δ) holds for any subset of Rn. Indeed, first observe that

N(δ) ≤M(δ), since the boxes in the mesh covering, of course, form a cover (but this cover is not necessarily

minimal in terms of number of boxes). On the other hand, considering an optimal covering of N(δ) boxes,

one can easily verify that each box in this covering can be contained in at most 3n boxes in a mesh, and it

follows that M(δ) ≤ 3nN(δ), as required.

Remark 2.1.6. In fact, the box-counting dimension of a set can be defined using any function L(δ), for

which N(δ) � L(δ) as δ → 0, where the notation means that there exist constants α, β ∈ (0,∞) such that

for all sufficiently small δ, αN(δ) ≤ L(δ) ≤ βN(δ). A number of different definitions are used in practice,

see [54, Section 3.1] for further examples.

One of the main results in this chapter involves finding an alternative definition of box-counting dimension

to N(t, δ) in Theorem 2.2.4. This allows us to understand the dimension of the range in terms of the Lévy

measure, complementing results formulated in terms of the renewal function, U(δ), such as Theorem 2.2.1

and [111, Theorem 1.1].

Typically, it is preferable to work with quantities formulated in terms of the Laplace exponent of a

subordinator (i.e. Lévy measure and drift) than with other quantities such as the renewal function, U(δ). So

for subordinators, working with our alternative box-counting scheme provides a natural, simple alternative

to dealing with N(t, δ).

2.2 Main Results

Let us briefly recall some important results and notation introduced in Chapter 1, before stating the main

results for this chapter.

A Lévy process is a stochastic process in Rd which has stationary, independent increments, and starts at
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the origin. A subordinator X := (Xt)t≥0 is a non-decreasing real-valued Lévy process. The Laplace exponent

φ of a subordinator X is defined by the relation e−tφ(λ) = E[e−λXt ] for t, λ ≥ 0. By the Lévy Khintchine

formula as formulated in (1.4), φ can always be expressed as

φ(λ) = dλ+

∫ ∞
0

(1− e−λx)Π(dx), (2.1)

where d ≥ 0 is the linear drift, and Π is the Lévy measure, which determines the size and intensity of the

jumps (discontinuities) of X. The Lévy measure must also satisfy the condition
∫∞

0
(1 ∧ x)Π(dx) <∞, with

the standard notation a ∧ b := min{a, b}.

If the Lévy measure is infinite, in the sense that
∫∞

0
Π(dx) = ∞, then the process will have infinitely

many (infinitesimally small) jumps in each finite time interval, almost surely. In this chapter, we shall not

study processes with finite Lévy measure, for which
∫∞

0
Π(dx) <∞, because such processes have only finitely

many jumps, and hence there is no interesting fractal structure.

2.2.1 A Central Limit Theorem for N(t, δ)

The first result of this chapter is our central limit theorem for the quantity N(t, δ) as δ → ∞. For a

subordinator with no drift, we require a mild regularity condition on the Lévy measure:

lim inf
δ→0

I(2δ)

I(δ)
> 1, (2.2)

where I(u) :=
∫ u

0
Π(x)dx, and Π(x) := Π((x,∞)). The condition (2.2) has many equivalent formulations,

and can also be expressed in terms of the tail function Π, the Laplace exponent φ, or the first derivative

φ′, see [14, Ex. III.7]. and [21, Section 2.1]. We emphasise that this condition is far less restrictive than

regular variation, or even O-regular variation of the Laplace exponent, because our condition is a one-sided

inequality rather than upper and lower bounds. The condition (2.2) also appears naturally in the context of

the law of the iterated logarithm, see e.g. [14, p87].

Recall the definitions Tδ := inf {t ≥ 0 : Xt > δ} and U(δ) := E[Tδ] as introduced in Theorem 2.1.5. These

are required to formulate the central limit theorem result, which we are now ready to state.
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Theorem 2.2.1. For each driftless subordinator with Lévy measure satisfying the regularity condition (2.2),

for any t > 0, N(t, δ) satisfies the central limit theorem

N(t, δ)− ta(δ)

t
1
2 b(δ)

d→ N (0, 1) (2.3)

as δ → 0, where a(δ) := U(δ)−1, b(δ) := U(δ)−
3
2 Var(Tδ)

1
2 , and N (0, 1) is the standard normal distribution.

We will prove Theorem 2.2.1 in Section 2.3. Next we shall state the other main results of this chapter.

2.2.2 An Alternative Box-Counting Scheme, L(t, δ)

The following definition is important, as it gives rise to a new quantity, denoted L(t, δ), which is related to

N(t, δ). This new quantity, L(t, δ), will be used to provide a simpler alternative definition for the box-counting

dimension of the range of a subordinator.

Definition 2.2.2. The process of δ-shortened jumps, X̃δ := (X̃δ
t )t≥0, is obtained by shortening all jumps

of X of size larger than δ to instead have size δ. That is, X̃δ is the subordinator with Laplace exponent

φ̃δ(u) = du+
∫ δ

0
(1−e−ux)Π̃δ(dx) and Lévy measure Π̃δ(dx) = Π(dx)1{x<δ}+Π(δ)∆δ(dx), where ∆δ denotes

a unit point mass at δ, and Π is the Lévy measure of the original subordinator X.



Chapter 2: Fractal-Dimensional Properties of Subordinators 24

The idea of shortening the jumps is simple and intuitive, as illustrated in the following figure:

Xt

t

Xt

t

~ 𝛿

Figure 2.4: Process of δ-shortened jumps, Xδ, alongside original process X

Definition 2.2.3. For δ, t > 0, the key quantity L(t, δ) is defined by L(t, δ) := 1
δ X̃

δ
t .

We will see in Theorem 2.2.4 that L(t, δ) can replace N(t, δ) in the definition limδ→0 log(N(t, δ))/ log(1/δ) of

the box-counting dimension of the range of X. Then we will prove almost sure convergence and CLT results

for L(t, δ). Recall the notation f(x) � g(x), as defined in Remark 2.1.6.

Theorem 2.2.4. For all δ, t > 0, for every subordinator, N(t, δ) � L(t, δ). In particular, by Remark 2.1.6,

L(t, δ) can be used to define the box-counting dimension of the range, i.e. limδ→0 log(N(t, δ))/ log(1/δ) =

limδ→0 log(L(t, δ))/ log(1/δ).
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The following three figures illustrate our three different box-counting schemes of interest on the range of

the subordinator in Figure 2.4 above:

Figure 2.5: N(t, δ) = 19

Figure 2.6: M(t, δ) = 24

Figure 2.7: L(t, δ) ≈ 24.2

Theorem 2.2.5. For every subordinator with infinite Lévy measure, i.e.
∫∞

0
Π(dx) =∞, for all t > 0,

lim
δ→0

L(t, δ)

µ(δ)
= t, (2.4)

almost surely, where µ(δ) := 1
δ (d + I(δ)), and I(δ) :=

∫ δ
0

Π(y)dy.

Theorem 2.2.6. For every subordinator with infinite Lévy measure, for all t > 0,

L(t, δ)− tµ(δ)

t
1
2 v(δ)

d→ N (0, 1) (2.5)

as δ → 0, where µ(δ) := 1
δ (d + I(δ)), and v(δ) := 1

δ

[∫∞
0

(x ∧ δ)2Π(dx)
] 1

2 . Recall that a ∧ b := min{a, b}.
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Let us conclude this results section by discussing benefits of working with L(t, δ) rather than N(t, δ).

Remark 2.2.7. Observe that for each integrable function f , with the notation a ∧ b := min{a, b}, we have

∫ ∞
0

f(x) Π̃δ(dx) =

∫ δ

0

f(x) Π̃δ(dx) =

∫ ∞
0

f(x ∧ δ) Π(dx).

Then applying Definition 2.2.2 and the Lévy Khintchine formula (2.1), it follows that for all δ, t > 0, the

mean and variance of L(t, δ) are given by

E[L(t, δ)] = tµ(δ) =
t

δ
(d + I(δ)),

Var(L(t, δ)) = tv(δ) =
t

δ

[∫ ∞
0

(x ∧ δ)2Π(dx)

] 1
2

.

Computing the moments of L(t, δ) is remarkably simple in comparison to computing the moments of N(t, δ),

which are not well known. We emphasise that for L(t, δ), the moments are all formulated in terms of the

characteristics of the subordinator (i.e. the drift and Lévy measure), which are typically known. Most results

on Lévy processes are typically formulated in terms of their characteristics, so our results on L(t, δ) fit in

naturally with a lot of work in the literature on Lévy processes. On the other hand, results on N(t, δ) are

harder to reconcile with the literature, as they are formulated in terms of the renewal function, U(δ).

Remark 2.2.8. Theorem 2.2.5 is formulated in terms of the characteristics of the subordinator. For N(t, δ),

the almost sure behaviour in Theorem 2.1.5 is formulated in terms of the renewal function (U(δ), and in

order to write this in terms of the characteristics, the expression is more complicated than for L(t, δ). For

details, see [111, Corollary 1] and [49, Prop 1], the latter of which is very powerful for understanding the

asymptotics of U(δ) for subordinators with a positive drift, significantly improving upon results in [30].

Remark 2.2.9. It should also be emphasised that the results on L(t, δ), Theorems 2.2.5 and 2.2.6, hold in

full generality (excluding the trivial case of a subordinator with finite Lévy measure, which has no fractal

structure). In contrast, the CLT result for N(t, δ) in Theorem 2.2.1 requires a slight regularity condition to

exclude particularly poorly-behaved processes, and also for the drift to be zero. Even with this regularity

condition, it is clear that the more general proofs for L(t, δ) are much shorter and rely upon less complicated



Chapter 2: Fractal-Dimensional Properties of Subordinators 27

mathematical tools. This is a strong indication that L(t, δ) is indeed the best quantity to consider for the

purposes of studying box-counting dimension of the range of a subordinator in detail.

Recall the notation f(x) � g(x), as defined in Remark 2.1.6.

Remark 2.2.10. From Theorem 2.1.5, it is known that the asymptotic behaviour of N(t, δ) is like that of

U(δ)−1. It is also known, see [15, Prop 1.4], that U(δ)−1 � µ(δ) = 1
δ (d + I(δ)) for every subordinator. It is

hence natural to ask if there is a definition of box-counting dimension using a quantity which behaves like

µ(δ) asymptotically, as we determine in Theorem 2.2.5. Moreover, Theorem 2.2.4 allows us to understand

the relationship U(δ)−1 � µ(δ) in terms of geometric properties of subordinators.

Remark 2.2.11. Another consequence of [15, Prop 1.4] is that U(δ)−1 � φ(1/δ) � µ(δ). It is also possible

to understand this relationship geometrically by considering the quantity φ(1/δ). Applying (2.1), one can

deduce that

tφ(1/δ) = t
1

δ

[
d +

∫ ∞
0

x

(
δ(1− e− xδ )

x

)
Π(dx)

]
,

so that tφ(1/δ) = E[X
δ

t/δ], where (X
δ

t )t≥0 is the subordinator with Lévy measure
(
δ(1− e−x/δ)/x

)
Π(dx).

The new subordinator (X
δ

t )t≥0 corresponds to an alternative truncation of jumps, but the geometric meaning

behind this truncation is not as transparent as for the truncation used in Definition 2.2.2.

2.3 Proof of Theorem 2.2.1

In this section, we shall prove Theorem 2.2.1, the CLT result for N(t, δ). The proof begins with the Berry-

Esseen theorem, see Lemma 2.3.2, through which we find a sufficient condition for our CLT to hold. We then

proceed by finding a chain of further sufficient conditions, each of which implies the former. At the end of

this chain, we are able to show that our sufficient conditions follow from the imposed regularity condition

(2.2), and hence the CLT result is proven under this condition. This chain of sufficient conditions can be seen

through Figure A.1 (it should be noted that Figure A.1 uses notation not defined until later in this chapter).
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2.3.1 First Sufficient Condition via Berry-Esseen Theorem

We will first work towards proving the following sufficient condition:

Lemma 2.3.1. For every subordinator with infinite Lévy measure, a sufficient condition for the convergence

in distribution (2.3), with σ2
δ := Var(Tδ), is

lim
δ→0

U(δ)
7
3

σ2
δ

= 0. (2.6)

The proof of Lemma 2.3.1 relies upon the Berry-Esseen theorem, which is stated here in Lemma 2.3.2. The

Berry-Esseen theorem is a very powerful result for studying central limit theorem type limiting behaviour,

as it provides the speed of convergence. See e.g. [55, p542] for more details.

Lemma 2.3.2. (Berry-Esseen Theorem) Let Z ∼ N (0, 1). There exists a finite constant c > 0 such that for

every collection of iid random variables (Yk)k∈N with the same distribution as Y , where Y has finite mean,

finite absolute third moment, and finite non-zero variance, for all n ∈ N and x ∈ R,

∣∣∣∣P(Y1 − E[Y ] + · · ·+ Yn − E[Y ]

Var(Y )
1
2
√
n

≥ x
)
− P(Z ≥ x)

∣∣∣∣ ≤ cE[|Y − E[Y ]|3]

Var(Y )
3
2
√
n

. (2.7)

Now we are ready to prove Lemma 2.3.1, then to proceed with our chain of sufficient conditions to prove

Theorem 2.2.1. For brevity, we will only provide calculations for t = 1. The proofs for different values of t

are essentially the same.

Recall the definitions of Tδ and U(δ), provided in Theorem 2.1.5. Recall the notation a(δ) := U(δ)−1,

σ2
δ := Var(Tδ), and b(δ) := U(δ)−

3
2σδ. To prove Theorem 2.2.1, we shall aim to prove that for all x ∈ R,

lim
δ→0

∣∣∣∣P(N(1, δ)− a(δ)

b(δ)
≤ x

)
− P (Z ≤ x)

∣∣∣∣ = 0. (2.8)

For each δ > 0, the inequality (2.7) in the Berry-Esseen theorem provides an upper bound on the difference

of probabilities in (2.8). Then we shall find further upper bounds through our chain of sufficient conditions,

and we will conclude by showing that these converge to zero as δ → 0. First, we prove Lemma 2.3.1, which
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requires the auxiliary Lemma 2.3.3 (this is stated and proven after the proof of Lemma 2.3.1).

Proof of Lemma 2.3.1. Let T
(k)
δ denote the kth time at which N(t, δ) increases, i.e. T

(1)
δ := 0 and T

(n)
δ :=

inf{t ≥ T
(n−1)
δ : Xt > X

T
(n−1)
δ

+ δ}, and let Tδ,k, k ∈ N, denote iid copies of T
(1)
δ . By the strong Markov

property, T
(k)
δ and

∑k
i=1 Tδ,i have the same distribution, since the nth “box” in an optimal cover is the

set [X
T

(n)
δ

, X
T

(n)
δ

+ δ], and the time taken to exit this set from X
T

(n)
δ

has the same law as the time to exit

[X
T

(1)
δ

, X
T

(1)
δ

+ δ] from X
T

(1)
δ

. Then, with n := da(δ) + xb(δ)e, where d·e denotes the ceiling function,

P
(
N(1, δ)− a(δ)

b(δ)
≤ x

)
= P (N(1, δ) ≤ a(δ) + xb(δ)) , (2.9)

and since N(1, δ) only takes integer values and increases only at times X
T

(k)
δ

, k ∈ N, using the fact that T
(n)
δ

has the same distribution as the sum of n iid copies of T
(1)
δ , it follows that

(2.9) = P
(
N(1, δ) ≤ n

)
= P

(
T

(n)
δ ≥ 1

)
= P

(
n∑
i=1

Tδ,i ≥ 1

)

= P

(
n∑
i=1

(
Tδ,i − U(δ)

)
≥ 1− nU(δ)

)

= P

(∑n
i=1

(
Tδ,i − U(δ)

)√
nσ2

δ

≥ 1− nU(δ)√
nσ2

δ

)
.

(2.10)

It follows from Lemma 2.3.3 that σ2
δ ≤ E[T 2

δ ] ≤ CU(δ)2 for a constant C > 0, which then implies that

b(δ) = o(a(δ)) as δ → 0. Then, as δ → 0, the asymptotic behaviour of n is

n = da(δ) + xb(δ)e ∼ a(δ) + xb(δ) = a(δ) + o(a(δ)) ∼ a(δ) = U(δ)−1.

It follows, with x′δ depending on x and δ, that as δ → 0,

−x′δ : =
1− nU(δ)√

nσ2
δ

=
1− da(δ) + xb(δ)eU(δ)(
da(δ) + xb(δ)e

) 1
2σδ

∼ 1− (a(δ) + xb(δ))U(δ)

(a(δ) + xb(δ))
1
2σδ

(2.11)

=
1− 1− xb(δ)U(δ)

(a(δ) + xb(δ))
1
2σδ
∼ −xb(δ)U(δ)

U(δ)−
1
2σδ

=
−xb(δ)U(δ)

3
2

σδ
= −x. (2.12)
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Now, by the triangle inequality and symmetry of the normal distribution, combining (2.10) and (2.12), and

using the fact that limδ→0 x
′
δ = x, it follows that as δ → 0, for any x ∈ R,

∣∣∣∣P(N(1, δ)− a(δ)

b(δ)
≤ x

)
− P (Z ≤ x)

∣∣∣∣ ≤ |P (Z ≥ −x′δ)− P (Z ≥ −x)|

+

∣∣∣∣∣ P
(

1√
nσ2

δ

n∑
i=1

(Tδ,i − U(δ)) ≥ −x′δ

)
− P ( Z ≥ −x′δ)

∣∣∣∣∣
=

∣∣∣∣∣ P
(

1√
nσ2

δ

n∑
i=1

(Tδ,i − U(δ)) ≥ −x′δ

)
− P ( Z ≥ −x′δ)

∣∣∣∣∣+ o(1).

(2.13)

Recall that we wish to show that (2.13) converges to zero. By the Berry-Esseen Theorem and the fact that

n ∼ U(δ)−1 as δ → 0, it follows that as δ → 0,

(2.13) ≤ cE[|Tδ − U(δ)|3]

σ3
δn

1
2

+ o(1) ∼ cU(δ)
1
2E[|Tδ − U(δ)|3]

σ3
δ

.

Applying the triangle inequality, then Lemma 2.3.3 with m = 2 and m = 3 to E[|Tδ − U(δ)|3], as δ → 0,

(2.13) ≤ cE[T 3
δ ] + 3U(δ)E[T 2

δ ] + 3U(δ)2E[Tδ] + U(δ)3

σ3
δ

≤ 8c′
U(δ)

1
2U(δ)3

σ3
δ

= 8c′

(
U(δ)

7
3

σ2
δ

) 2
3

,

for some constant c′ < ∞. Therefore if the condition (2.6) as in the statement of Lemma 2.3.1 holds, then

the desired convergence in distribution (2.3) follows, as required.

Lemma 2.3.3. For every subordinator with infinite Lévy measure, for all m ≥ 1,

lim sup
δ→0

E[Tmδ ]

U(δ)m
<∞.

Proof of Lemma 2.3.3. First, by the moments and tails lemma (see Lemma A.3.3),

E[Tmδ ]

U(δ)m
= E

[(
Tδ
U(δ)

)m]
=

∫ ∞
0

mym−1P
(

Tδ
U(δ)

> y

)
dy.
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By the definition of Tδ, it follows that Xu ≤ δ if and only if Tδ > u, and then

E[Tmδ ]

U(δ)m
=

∫ ∞
0

mym−1P(XyU(δ) ≤ δ)dy =

∫ ∞
0

mym−1P(e−
1
δXyU(δ) ≥ e−1)dy.

Now, applying Markov’s inequality (Theorem A.2.1), the definition E[e−λXt ] = e−tφ(λ), and the fact that

U(δ)φ(1/δ) ≥ K for some constant K > 0 (see [15, Prop 1.4]),

E[Tmδ ]

U(δ)m
≤
∫ ∞

0

mym−1e1−yU(δ)φ(1/δ)dy ≤
∫ ∞

0

mym−1e1−Kydy,

which is finite and independent of δ. Therefore the lim sup is finite, as required.

2.3.2 Proof of Theorem 2.2.1

We shall now present the proof of Theorem 2.2.1, which requires two lemmas. Theorem 2.2.1 is proven by a

contradiction, using the upcoming Lemma 2.3.6 to show that the sufficient condition in Lemma 2.3.5 holds.

The fact that Lemma 2.3.5 is a sufficient condition for the CLT result in Theorem 2.2.1 is proven through a

chain of lemmas (see Figure A.1), but we shall postpone this series of proofs until after the proof of Theorem

2.2.1, for the sake of clarity. First, we shall introduce some important notation in Definition 2.3.4.

Definition 2.3.4. Recalling from Definition 2.2.2 that the process X̃δ has Laplace exponent φ̃δ(u) = du +∫ δ
0

(1− e−ux)Π(dx) + (1− e−uδ)Π, we define:

(i) g(u) := d
du φ̃

δ(u) = d +
∫ δ

0
xe−uxΠ̃δ(dx),

(ii) R(u) := φ̃δ(u)− ug(u) =
∫ δ

0
(1− e−ux(1 + ux)) Π̃δ(dx),

(iii) λδ denotes the unique solution to g(λδ) = xδ, for d < xδ < d +
∫ δ

0
xΠ̃δ(dx).

We refer to [67, p93] for further details on these important quantities. In fact, one can ignore the drift d in

Definition 2.3.4, since d = 0 throughout Section 2.3. Now we are ready to state Lemma 2.3.5, which is our

final sufficient condition in the chain of implications in Figure A.1.
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Lemma 2.3.5. For α > 0, t = (1 + α)U(δ), and g(λδ) = xδ = δ/t, if

lim sup
δ→0

δλδ <∞, (2.14)

then the desired convergence in distribution (2.3), as in Theorem 2.2.1, holds.

So in order to prove that Theorem 2.2.1 holds, we just need to verify that (2.14) holds under our imposed

regularity condition (2.2). This is made possible by the following lemma.

Lemma 2.3.6. Recall the definition I(δ) :=
∫ δ

0
Π(x)dx. The condition (2.2) implies that for each η ∈ (0, 1),

there exists a sufficiently large integer n such that

lim inf
δ→0

I(δ)

I(2−nδ)
>

1

η
. (2.15)

Proof of Lemma 2.3.6. The integral condition (2.2) imposes that for some B > 1,

lim inf
δ→0

I(δ)

I(δ/2)
= lim inf

δ→0

∫ δ
0

Π(y)(dy)∫ δ/2
0

Π(y)dy
= B. (2.16)

Then, by effectively replacing 1/2 with 2−n (so 1/2 is replaced by a smaller constant), we can replace B with

Bn, which can be made arbitrarily large by choice of n. This follows by splitting up the fraction,

lim inf
δ→0

I(δ)

I(2−nδ)
= lim inf

δ→0

(
I(δ)

I(2−1δ)

I(2−1δ)

I(2−2δ)
· · · I(2−(n−1)δ)

I(2−nδ)

)
≥ lim inf

δ→0

(
I(δ)

I(2−1δ)

)
lim inf
δ→0

(
I(2−1δ)

I(2−2δ)

)
· · · lim inf

δ→0

(
I(2−(n−1)δ)

I(2−nδ)

)
= Bn >

1

η
,

where we simply take n sufficiently large that Bn > 1/η.

Using Lemma 2.3.6 for a contradiction is the step in the proof of Theorem 2.2.1 which requires the condition

(2.2). We are now ready to prove Theorem 2.2.1.
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Proof of Theorem 2.2.1. Assume for a contradiction that there exists a sequence (δm)m≥1 converging to zero,

such that limm→∞ λδmδm = ∞. That is to say, assume that the sufficient condition in Lemma 2.3.5 does

not hold. For brevity, we shall omit the dependence of δm on m. The assumption (for contradiction) implies

that for each fixed η, n > 0, η ≥ e−λδ2−nδ for all small enough δ > 0. By Fubini’s theorem (Theorem A.3.2),

I(δ) =
∫ δ

0
Π(y)dy =

∫ δ
0

∫∞
y

Π(dx)dy =
∫∞

0

∫ x∧δ
0

dyΠ(dx) =
∫ δ

0
xΠ̃δ(dx), so

ηI(δ) + I(2−nδ) ≥ e−λδ2
−nδI(δ) + I(2−nδ) ≥ e−λδ2

−nδ

∫ δ

0

xΠ̃δ(dx) +

∫ 2−nδ

0

xΠ(dx)

= e−λδ2
−nδδΠ(δ) + e−λδ2

−nδ

∫ δ

0

xΠ(dx) +

∫ 2−nδ

0

xΠ(dx). (2.17)

Removing part of the first integral and noting 1 ≥ e−λδx for all x > 0,

(2.17) ≥ e−λδ2
−nδδΠ(δ) +

∫ δ

2−nδ

e−λδ2
−nδxΠ(dx) +

∫ 2−nδ

0

e−λδxxΠ(dx).

Now, e−λδ2
−nδ ≥ e−λδx for x ≥ 2−nδ. So for g(λδ) = xδ = δ

(1+α)U(δ) , where α > 0 is fixed and chosen

sufficiently large that xδ <
∫ δ

0
xΠ̃δ(dx) for all δ (this is possible by the relation U(δ)−1 � I(δ)/δ, see [15, p74]

for the result and Remark 2.1.6 for the notation),

(2.17) ≥ e−λδ2
−nδδΠ(δ) +

∫ δ

2−nδ

e−λδxxΠ(dx) +

∫ 2−nδ

0

e−λδxxΠ(dx)

= e−λδ2
−nδδΠ(δ) +

∫ δ

0

e−λδxxΠ(dx) ≥ g(λδ) =
δ

(1 + α)U(δ)
≥ I(δ)

(1 + α)K
,

where the last two inequalities respectively follow by Definition 2.2.2, Definition 2.3.4 (i) with d = 0, and

the relation U(δ)−1 � I(δ)/δ. So for a constant K > 0, for all sufficiently small δ > 0, we have shown

ηI(δ) + I(2−nδ) ≥ I(δ)
(1+α)K .

Taking η > 0 small enough that 1
(1+α)K ≥ 2η, it follows that I(2−nδ) ≥ ηI(δ), and hence I(δ)/I(2−nδ) ≤

1/η. But in Lemma 2.3.6 we showed that for each fixed η > 0, there is sufficiently large n such that

lim infδ→0 I(δ)/I(2−nδ) > 1/η, which is a contradiction, so the sufficient condition as in Lemma 2.3.5 must

hold.
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Remark 2.3.7. For a driftless subordinator, Theorem 2.2.1 holds under the same condition (2.2) applied

to the function H(y) :=
∫ y

0
xΠ(dx) rather than the integrated tail function I. The integrated tail I(y) =

H(y) + yΠ(y) depends on the large jumps of X since Π(x) = Π((x,∞)), but H does not depend on the large

jumps, so these conditions are substantially different.

With only minor changes, the argument as in the proof of Theorem 2.2.1 works withH in place of I. Under

condition (2.2) forH in place of I, one can prove that Lemma 2.3.6 holds withH in place of I. Then we assume

for a contradiction that there exists a sequence (δm)m≥1 converging to zero, such that limm→∞ λδmδm =∞.

But then as in the proof of Theorem 2.2.1, one can deduce that ηH(δ) + H(2−nδ) ≥ 1
(1+α)K′H(δ), which

contradicts the analogous Lemma 2.3.6 result with H in place of I.

Remark 2.3.8. Theorem 2.2.1 can also be proven for subordinators with a drift d > 0, under a stronger

regularity condition. For Yt := Xt − dt, define φY as the Laplace exponent of Y . The convergence in

distribution (2.3) holds whenever lim supx→0 x
−5/6φY (x) < ∞. This is proven using Remark 2.3.10, the

inequality P(Yt < a) ≥ 1− Cth(a) for all Lévy processes (see [102, p954] for details, including the definition

of the function h(a)), and the asymptotic expansion of U(δ) as in [49, Theorem 4].

2.3.3 Proofs of Lemmas 2.3.9, 2.3.12, 2.3.5

Lemmas 2.3.9, 2.3.12, and 2.3.5 give successive sufficient conditions for Theorem 2.2.1 to hold (see Figure

A.1). The proofs for these lemmas are facilitated by Lemma 2.3.11, which was proven in 1987 by Jain and

Pruitt [67, p94]. Recall that X̃δ denotes the process with δ-shortened jumps, as defined in Definition 2.2.2.

Lemma 2.3.9. The convergence in distribution (2.3) as in Theorem 2.2.1 holds if for some α ∈ (0, 1],

lim infδ→0

[
P
(
X̃δ

(1+α)U(δ) ≤ δ
)

+ P
(
X̃δ

(1−α)U(δ) ≥ δ
)]

> 0.

Proof of Lemma 2.3.9. This result builds upon Lemma 2.3.1. For all α > 0, recalling that E[Tδ] = U(δ),

σ2
δ = Var(Tδ) ≥ Var(Tδ; |Tδ − U(δ)| ≥ αU(δ))

≥ α2U(δ)2[P(Tδ ≥ (1 + α)U(δ)) + P(Tδ ≤ (1− α)U(δ))].
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For the desired convergence in distribution (2.3) to hold, it is sufficient by Lemma 2.3.1 to show that

limδ→0 U(δ)
7
3 /σ2

δ = 0. Now,

U(δ)
7
3

σ2
δ

≤ U(δ)
1
3

α2[P(Tδ ≥ (1 + α)U(δ)) + P(Tδ ≤ (1− α)U(δ))]
.

Note that Tδ ≥ t if and only if X̃δ
t ≤ δ since jumps of size larger than δ do not occur in either case, and

so Xt = X̃δ
t when Tδ ≥ t, so that P(Tδ ≥ (1 + α)U(δ)) = P(X̃δ

(1+α)U(δ) ≤ δ). On the other hand, one can

verify that P(Tδ ≤ (1−α)U(δ)) = P(X̃δ
(1−α)U(δ) ≥ δ), by splitting up according to when the first jump of size

≥ δ occurs. If this jump occurs before time 1− α, then the process passes above δ, regardless of the size of

this jump, so the subordinator is unaffected by the truncation. If the large jump does not occur before time

1− α, then X1−α = X̃δ
1−α, so again the truncation has no effect on the probability. Hence we conclude that

the desired convergence in distribution (2.3) holds if

lim inf
δ→0

[
P
(
X̃δ

(1+α)U(δ) ≤ δ
)

+ P
(
X̃δ

(1−α)U(δ) ≥ δ
)]

> 0.

Remark 2.3.10. The condition in Lemma 2.3.9 is not strictly optimal, in the sense that a weaker sufficient

condition for (2.3) exists. One can verify that if there exists ε ∈ (0, 1/6) for which

lim
δ→0

U(δ)2ε− 1
3

[
P
(
X̃δ
U(δ)+U(δ)1+ε ≤ δ

)
+ P

(
X̃δ
U(δ)−U(δ)1+ε ≥ δ

)]
=∞,

then the convergence in distribution (2.3) follows too. However, using our method of proof, this weaker

condition does not lead to any more generality than the condition (2.2) for driftless subordinators.

Lemma 2.3.11 (Jain, Pruitt [67, Lemma 5.2]). Recall the notation introduced in Definition 2.3.4. There

exists c > 0 such that for every ε > 0, t ≥ 0 and xδ > 0 satisfying d = g(∞) < xδ < g(0) = d +
∫ δ

0
xΠ̃δ(dx),

P
(
X̃δ
t ≤ txδ

)
≥
(

1− (1 + ε)c

ε2tR(λδ)

)
e−(1+2ε)tR(λδ). (2.18)
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Lemma 2.3.12. For α > 0, t = (1 + α)U(δ), and g(λδ) = xδ = δ/t, if

lim sup
δ→0

tR(λδ) <∞,

then the desired convergence in distribution (2.3), as in Theorem 2.2.1, holds.

Proof of Lemma 2.3.12. This result build upon Lemma 2.3.9. Applying inequality (2.18) from Lemma 2.3.11,

P
(
X̃δ

(1+α)U(δ) ≤ δ
)
≥
(

1− (1 + ε)c

ε2tR(λδ)

)
e−(1+2ε)tR(λδ). (2.19)

Now, letting lim supδ→0 tR(λδ) <∞, we will consider two separate cases:

(i) If lim infδ→0 tR(λδ) = β > 0, then by choice of ε > 0 such that 1+ε
ε2 = β

2c , the lower bound in (2.19) is

larger than a positive constant as δ → 0.

(ii) If lim infδ→0 tR(λδ) = 0, then imposing ε = 2c/(tR(λδ)), the lower bound in (2.19) is again larger than

a positive constant as δ → 0.

The desired convergence in distribution (2.3) then follows immediately in each case by Lemma 2.3.9.

Proof of Lemma 2.3.5. This result builds upon Lemma 2.3.12. Noting that 1− e−y(1 + y) ≤ y for all y > 0,

tR(λδ) = (1 + α)U(δ)

∫ δ

0

(1− e−λδx(1 + λδx))Π̃δ(dx)

≤ (1 + α)U(δ)

∫ δ

0

λδxΠ̃δ(dx) = (1 + α)U(δ)

(∫ δ

0

xΠ(dx) + δΠ(δ)

)
λδ. (2.20)

Then by the relation U(δ)I(δ) ≤ Cδ for a constant C (see [15, Prop 1.4]), it follows that

(2.20) = (1 + α)U(δ)I(δ)λδ ≤ (1 + α)Cδλδ.

Hence if lim supδ→0 δλδ <∞, then the desired convergence in distribution (2.3) follows by Lemma 2.3.12.
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2.4 Proofs of Results on L(t, δ)

Now we shall prove the main results on the quantity L(t, δ). Firstly, we prove Theorem 2.2.4, which confirms

that L(t, δ) can replace N(t, δ) in the definition of the box-counting dimension of the range. This is done

by showing that L(t, δ) � N(t, δ), which is known to be sufficient by Remark 2.1.6, where we recall that the

notation notation f(x) � g(x), is defined in Remark 2.1.6.

Proof of Theorem 2.2.4. The jumps of the original subordinator X and the process with shortened jumps

X̃δ are all the same size, other than jumps bigger than size δ. The optimal number of intervals to cover the

range, N(X, t, δ), always increases by 1 at the time of each jump bigger than size δ, regardless of its size, so

it follows that N(X, t, δ) = N(X̃δ, t, δ), with the obvious notation.

Instead of counting the number N(X, t, δ) of boxes needed to cover the range of X, consider counting

those needed for the range of the subordinator X(0,δ) with Lévy measure Π(dx)1{x<δ} (so all jumps of

size larger than δ are removed), and then adding Y δt , which counts the number of jumps of size at least δ

up to time t. This new counting method corresponds to a cover which is not necessarily optimal, so that

N(X, t, δ) ≤ N(X(0,δ), t, δ) + Y δt .

For a bound in the other direction, consider the fact that X can have at most N(X, t, δ)− 1 large jumps of

size at least δ by time t, so that Y δt ≤ N(X, t, δ) − 1. Moreover, it is clear that N(X(0,δ), t, δ) ≤ N(X, t, δ),

and hence N(X(0,δ), t, δ) + Y δt ≤ 2N(X, t, δ), so that N(X, t, δ) � N(X(0,δ), t, δ) + Y δt .

Consider M(X(0,δ), t, δ), the number of intervals in a lattice of side length δ to intersect with the range of

X(0,δ). It is easy to show that N(X(0,δ), t, δ) � M(X(0,δ), t, δ), see [54, p42] for a detailed proof. Also,

M(X(0,δ), t, δ) = d 1
δX

(0,δ)
t e, since X(0,δ) has no jumps of size larger than δ. Now, observe that 1

δX
(0,δ)
t �

d 1
δX

(0,δ)
t e for all small enough δ, and hence

L(X, t, δ) =
1

δ
X̃δ
t =

1

δ
X

(0,δ)
t + Y δt �M(X(0,δ), t, δ) + Y δt

� N(X(0,δ), t, δ) + Y δt � N(X, t, δ).
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It then follows immediately (see Remark 2.1.6) that

lim
δ→0

log(L(t, δ))

log(1/δ)
= lim
δ→0

log(N(t, δ))

log(1/δ)
,

and hence L(t, δ) can be used to define the box-counting dimension of the range of a subordinator.

Next we will prove the CLT result for L(t, δ), working with t = 1 for brevity (the proof is essentially the

same for other values of t > 0). We will show convergence of the Laplace transform of 1
v(δ) (L(1, δ) − µ(δ))

to that of the standard normal distribution, which is sufficient for convergence in distribution [69, Theorem

4.3]. Recall that Z ∼ N (0, 1) has Laplace transform E[e−λZ ] = eλ
2/2.

Proof of Theorem 2.2.6. Recall that by Definition 2.2.2 and (2.1), δL(t, δ) = X̃δ
t is a subordinator with

Laplace exponent φ̃δ(u) = du+
∫ δ

0
(1−e−ux)Π̃δ(dx) and Lévy measure Π̃δ(dx) = Π(dx)1{x<δ}+Π(δ)∆δ(dx),

where ∆δ denotes a unit point mass at δ, and Π is the Lévy measure of the original subordinator X. Therefore,

for all λ ≥ 0, the following two statements are equivalent:

lim
δ→0

E
[
exp

(
−λL(1, δ)− µ(δ)

v(δ)

)]
= e

λ2

2 ⇐⇒ lim
δ→0

(
λµ(δ)

v(δ)
− φ̃δ

(
λ

δv(δ)

))
=
λ2

2
.

Recalling the definition µ(δ) = 1
δ (d+I(δ)), where I(δ) :=

∫ δ
0
xΠ̃δ(dx), and writing φ̃δ in the Lévy Khintchine

representation as in (2.1), it follows that

λµ(δ)

v(δ)
− φ̃δ

(
λ

δv(δ)

)
=
λ(d + I(δ))

δv(δ)
− dλ

δv(δ)
−
∫ δ

0

(1− e−
λx
δv(δ) )Π̃δ(dx)

=
λI(δ)

δv(δ)
−
∫ δ

0

(1− e−
λx
δv(δ) )Π̃δ(dx)

=

∫ δ

0

λx

δv(δ)
Π̃δ(dx) −

∫ δ

0

(1− e−
λx
δv(δ) )Π̃δ(dx). (2.21)
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Then applying the fact that y2

2 −
y3

6 ≤ y − 1 + e−y ≤ y2

2 for all y > 0, we obtain the bounds

∫ δ

0

(
λ2x2

2δ2v(δ)2
− λ3x3

6δ3v(δ)3

)
Π̃δ(dx) ≤ (2.21) ≤

∫ δ

0

λ2x2

2δ2v(δ)2
Π̃δ(dx).

Now, by the definition of v(δ) as in the statement of Theorem 2.2.6, v(δ)2 = 1
δ2

∫ δ
0
x2Π̃δ(dx), and hence

∫ δ

0

λ2x2

2δ2v(δ)2
Π̃δ(dx) =

λ2

2
.

It is then sufficient, in order to show that (2.21) converges to λ2

2 , to prove that

lim
δ→0

∫ ∞
0

x3

δ3v(δ)3
Π̃δ(dx) = 0. (2.22)

Again by the definition of v(δ), for (2.22) to hold we require both

lim
δ→0

∫ δ
0
x3Π(dx)

(
∫ δ

0
x2Π(dx) + δ2Π(δ))

3
2

= 0, (2.23)

lim
δ→0

δ3Π(δ)

(
∫ δ

0
x2Π(dx) + δ2Π(δ))

3
2

= 0. (2.24)

Squaring the expression in (2.23), since x ≤ δ within each integral, it follows that

( ∫ δ
0
x3Π(dx)

)2( ∫ δ
0
x2Π(dx) + δ2Π(δ)

)3 ≤ δ2
( ∫ δ

0
x2Π(dx)

)2( ∫ δ
0
x2Π(dx) + δ2Π(δ)

)3 .
Now, by the binomial series expansion, we have (a+ b)3 ≥ 3a2b for a, b > 0, and therefore as δ → 0,

(2.23) ≤
δ2
( ∫ δ

0
x2Π(dx)

)2
3
( ∫ δ

0
x2Π(dx)

)2(
δ2Π(δ)

) =
1

3Π(δ)
→ 0,

where we use the assumption that
∫∞

0
Π(dx) =∞, which implies that limδ→0 Π(δ) =∞. For (2.24), we again
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use that limδ→0 Π(δ) =∞, and simply observe that as δ → 0,

δ3Π(δ)

(
∫ δ

0
x2Π(dx) + δ2Π(δ))

3
2

≤ δ3Π(δ)

(δ2Π(δ))
3
2

=
1

Π(δ)
1
2

→ 0.

Next we will prove Theorem 2.2.5, the almost sure convergence result for L(t, δ). Using a Borel-Cantelli argu-

ment (see Lemma A.3.4 for details), we shall prove that lim infδ→0 L(t, δ)/µ(δ) = lim supδ→0 L(t, δ)/µ(δ) = t

almost surely. First, we will prove the almost sure convergence to t along a subsequence δn converging to

zero. Then, using the fact that µ(δ) and L(t, δ) are monotone in δ, we will deduce that for all δ between δn

and δn+1, L(t, δ)/µ(δ) also tends to t as δn → 0, which completes the proof.

Proof of Theorem 2.2.5. If there is a drift and the Lévy measure is finite, then as δ → 0, L(t, δ) ∼ dt/δ

almost surely, and moreover µ(δ) ∼ d/δ, so the desired result, limδ→0 L(t, δ)/µ(δ) = t, follows immediately.

Hence we need only consider cases with infinite Lévy measure.

Consider a monotone decreasing subsequence (δn)n≥0 for which limn→∞ δn = 0. We shall choose a spe-

cific subsequence later in the proof. Then for all ε > 0, by Chebyshev’s inequality (Theorem A.2.2) and

Remark 2.2.7,

∑
n

P
( ∣∣∣∣L(t, δn)

tµ(δn)
− 1

∣∣∣∣ > ε

)
≤ 1

ε2

∑
n

Var
(
L(t, δn)

)
t2µ(δn)2

=
1

ε2

∑
n

t
δ2
n

( ∫ δn
0
x2Π(dx) + δ2

nΠ(δn)
)

t2

δ2
n

(
d +

∫ δn
0
xΠ(dx) + δnΠ(δn)

)2
≤ 1

ε2

∑
n

t
δ2
n

( ∫ δn
0
x2Π(dx) + δ2

nΠ(δn)
)

t2

δ2
n

( ∫ δn
0
xΠ(dx) + δnΠ(δn)

)2
=

1

tε2

∑
n

( ∫ δn
0
x2Π(dx) + δ2

nΠ(δn)
)( ∫ δn

0
xΠ(dx) + δnΠ(δn)

)2
≤ 1

tε2

∑
n

δn
( ∫ δn

0
xΠ(dx) + δnΠ(δn)

)( ∫ δn
0
xΠ(dx) + δnΠ(δn)

)2 =:
1

tε2

∑
n

1

µ̂(δn)
, (2.25)
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where µ̂(δ) :=
∫∞

0
((x ∧ δ)/δ) Π(dx) denotes the expectation of L(t, δ) without the drift term, and we use

the notation a ∧ b := min{a, b}. Then since (x ∧ δ)/δ is non-decreasing as δ decreases, it follows that µ̂(δ) is

non-decreasing as δ decreases. Now, limδ→0 µ̂(δ) =∞, and µ̂ is continuous, so for each fixed r ∈ (0, 1) there

is a decreasing sequence δn such that µ̂(δn) = r−n for each n. Then (2.25) is finite, so by the Borel-Cantelli

lemma (see Lemma A.3.4), we conclude that limn→∞ L(t, δn)/µ(δn) = t almost surely. Next we shall prove

that this almost sure convergence holds beyond our specific subsequence, as δ →∞.

Whether or not there is a drift, L(t, δ) is obtained by changing the original subordinator’s jump sizes from y

to (y∧δ)/δ. By monotonicity of this map, it follows that for a fixed sample path of the original subordinator,

each individual jump of the process L(t, δn+1) is at least as big as the corresponding jump of the process

L(t, δn). So L(t, δ) is non-decreasing as δ decreases, and similarly for µ(δ). Hence for all δn+1 ≤ δ ≤ δn,

L(t, δn)

tµ(δn)

µ(δn)

µ(δn+1)
≤ L(t, δ)

tµ(δ)
≤ L(t, δn+1)

tµ(δn)
=
L(t, δn+1)

tµ(δn+1)

µ(δn+1)

µ(δn)
.

Then by our choice of the subsequence δn, it follows that for all δn+1 ≤ δ ≤ δn,

r
L(t, δn)

tµ(δn)
≤ L(t, δ)

tµ(δ)
≤ 1

r

L(t, δn+1)

tµ(δn+1)
, (2.26)

and since limn→∞ L(t, δn)/µ(δn) = t, it follows that for all r ∈ (0, 1),

rt ≤ lim inf
δ→0

L(t, δ)

µ(δ)
≤ lim sup

δ→0

L(t, δ)

µ(δ)
≤ t

r
.

Taking limits as r → 1, it follows that limδ→0 L(t, δ)/µ(δ) = t almost surely.
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2.5 Extensions and Special Cases

2.5.1 Extensions: Box-Counting Dimension of the Graph

Having extensively studied the range of a subordinator, we now direct our attention to the graph of a

subordinator X up to time t is the set {(s,Xs) : 0 ≤ s ≤ t}. The box-counting dimensions of the range and

graph are closely related. Indeed, the graph of any Lévy process (Xt)t≥0 can be interpreted as the range of

the bivariate Lévy process (t,Xt)t≥0. This is particularly evident when we consider the mesh box counting

schemes MG(t, δ), MR(t, δ), denoting graph and range respectively. The mesh box-counting scheme counts

the number of boxes in a lattice of side length δ to intersect with a set.

Remark 2.5.1. For every subordinator with infinite Lévy measure or a positive drift, MG(t, δ) = bt/δc +

MR(t, δ), where b·c denotes the floor function. Indeed, MR(t, δ) increases by 1 if and only if MG(t, δ) increases

by 1 in such a way that the new box for the graph lies directly above the previous box. For each integer n,

MG(t, δ) also increases at time nδ, the new box directly to the right of the previous box.

Remark 2.5.2. It follows that the graph of every subordinator X has the same box-counting dimension as

the range of X ′t := t+Xt, the original process plus a unit drift.

Proposition 2.5.3. For every subordinator with drift d > 0, the box-counting dimensions of the range and

graph agree almost surely.

Proof of Proposition 2.5.3. Letting T(δ,∞) denote the first passage time of the subordinator above δ, consider

an optimal covering of the graph with squares of side length δ as follows:

Starting with [0, δ] × [0, δ], at time T1 := min(T(δ,∞), δ), add a new box [T1, T1 + δ] × [XT1
, XT1

+ δ], and

so on. Denote the number of these boxes by NG(t, δ), and write NR(t, δ) as the optimal number of boxes

needed to cover the range.

If d ≥ 1, then we have T1 = T(δ,∞) because Xδ ≥ dδ. It follows that each time NG(t, δ) increases by 1, so

does NR(t, δ), and vice versa, so NG(t, δ) = NR(t, δ), and the box-counting dimension of the range and graph

are equal when d ≥ 1.
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For d ∈ (0, 1), a similar argument applies with a covering of δ
d × δ rectangles rather than δ × δ squares.

Starting with [0, δd ]× [0, δ], at time T1, add a new box [T1, T1 + δ
d ]× [XT1

, XT1
+ δ], and so on. The number

of these boxes is again NR(δ, t), since X δ
d
≥ δ. By Remark 2.1.6 , this covering of rectangles can still be

used to define the box-counting dimension of the range, since for k :=
⌈

1
d

⌉
, writing NG(t, δ) and N ′G(t, δ) for

the number of squares and of rectangles respectively, we have

N ′G(t, δ) ≤ NG(t, δ) ≤ k N ′G(t, δ/k).

Remark 2.5.4. The box-counting dimension of the graph of every subordinator is 1 almost surely, since

the sample paths of subordinators have bounded variation (BV) almost surely. See [1, Section 2.3.3] for more

details on bounded variation. The same is true for the graph of all BV functions/processes, including in

particular every Lévy process without a Gaussian component, whose Lévy measure satisfies the condition∫
(1 ∧ |x|)Π(dx) < ∞. By Proposition 2.5.3, we see that the box-counting dimension of the range of every

subordinator with a non-zero drift is 1 almost surely.

2.5.2 Special Cases: Regular Variation of the Laplace Exponent

Corollary 2.5.5 is analogous to [111, Corollary 2], with L(t, δ) in place of N(t, δ). This allows very fine

comparisons, not visible at the log-scale, to be made between subordinators whose Laplace exponents are

regularly varying with the same index.

Corollary 2.5.5. Consider a subordinator whose Laplace exponent is regularly varying at infinity, such that

φ(λ) ∼ λαF (λ) as λ→∞, for α ∈ (0, 1), where F (·) is a slowly varying function. Then for all t > 0, almost

surely as δ → 0,

L(t, δ) ∼
tδ−αF

(
1
δ

)
Γ(2− α)

.

Proof of Corollary 2.5.5. Note that d = 0, i.e. there is no drift, when the Laplace exponent is regularly
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varying of index α ∈ (0, 1). By Theorem 2.2.5, as δ → 0,

L(t, δ) ∼ tµ(δ) =
tI(δ)

δ
=
t

δ

∫ δ

0

Π(x)dx.

Since φ is regularly varying at 0, as x → 0, Π(x) ∼ φ( 1
x )/Γ(1 − α) (see [14, p75]). Then by Karamata’s

Theorem (see Theorem A.4.3), almost surely as δ → 0,

L(t, δ) ∼
tδ−αF

(
1
δ

)
Γ(2− α)

.

Corollary 2.5.6 strengthens the result of Theorem 2.2.4 when the Laplace exponent φ is regularly varying.

The result can not be strengthened in general, as the relationship between µ(δ) and U(δ)−1 is “�” rather

than “∼” (see [15, Prop. 1.4]), where we recall that the notation “�” is defined in Remark 2.1.6.

Corollary 2.5.6. For a subordinator with Laplace exponent φ regularly varying at infinity, of index α ∈ (0, 1),

for all t > 0, almost surely as δ → 0,

N(t, δ) ∼ Γ(2− α)Γ(1 + α)L(t, δ).

Corollary 2.5.6 follows immediately from Corollary 2.5.5 and [111, Corollary 2], which says that when the

Laplace exponent φ is regularly varying at infinity, such that φ(λ) ∼ λαF (λ) for α ∈ (0, 1), where F (·) is a

slowly varying function, for all t > 0, almost surely as δ → 0,

N(t, δ) ∼ Γ(1 + α)tδ−αF

(
1

δ

)
.

Remark 2.5.7. For α ∈ (0, 1), Γ(2−α)Γ(1 +α) takes values between π/4 and 1. So L(t, δ) and N(t, δ) are

closely related when the Laplace exponent is regularly varying, but as δ → 0, L(t, δ) grows to infinity slightly

faster than N(t, δ).



Chapter 3

Markov Processes with Constrained

Local Time

Abstract

In this chapter, we study Markov processes conditioned so that their local time must grow slower than a

prescribed function. Building upon recent work on Brownian motion with constrained local time in [8, 78],

we study transience and recurrence for a broad class of Markov processes.

Through the notion of inverse local time, this problem is equivalent to studying a non-decreasing Lévy

process (the inverse local time process), conditioned to remain above a given level which varies in time. We

study a time-dependent region, in contrast to previous works in which a process is conditioned to remain in

a fixed region (e.g. in [43, 60]), so we must study boundary crossing probabilities for a family of curves, and

thus obtain uniform asymptotics for such a family.

Main results include necessary and sufficient conditions for transience or recurrence of the conditioned

Markov process. We will explicitly determine the distribution of the inverse local time for the conditioned

process, and in the transient case, we explicitly determine the law of the conditioned Markov process. In the

recurrent case, we characterise the entropic repulsion envelope via necessary and sufficient conditions.

45
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3.1 Introduction & Background

The study of stochastic processes under various constraints is important in a range of theoretical and applied

settings, and there have been many such studies in recent years. We shall discuss the literature on constrained

processes in more detail in Section 3.2.

In this chapter, the specific constraint of interest is that we shall restrict the rate at which a certain type

of stochastic process returns to the origin. The original process is chosen to be recurrent, in the sense that

prior to applying a constraint, it (almost surely) continues to return to the origin at arbitrarily large times.

We will determine, depending on the strength of the constraint, whether or not the constrained process will

continue to return to the origin at arbitrarily large times. If the constraint is too stringent, we will see that

it is possible for the process to never return to the origin again after a certain time, in which case we say the

process is transient. The notions of transience and recurrence are formally defined in Section 3.3.

Let us now proceed by motivating the upcoming research through a brief discussion of some relevant

problems in polymer physics, specific to the modelling of a long polymer chain. Discussion of these problems

is included here as a means of helping the reader to establish an intuitive picture for the upcoming research

questions. Long polymer chain models are particularly relevant here because there is a remarkable similarity

between the questions we ask in this chapter and common research questions on polymers (see e.g. [8, p5]). In

particular, we will see that determining whether a process is transient or recurrent is analogous to determining

if a polymer chain is delocalised or localised, respectively. It should, however, be noted that this is just one

of many applications which justify theoretical studies such as those in this chapter and further theoretical

studies in the literature, as discussed in Section 3.2.

3.1.1 Related Problems in Polymer Physics

Motivation: Study of Transience and Recurrence We shall consider a specific modelling scenario in

detail, to give a clear idea of the relevant problems of interest in polymer physics. This serves as an overall

motivation for similar problems in polymer physics. For a much more detailed account of a variety of related

polymer models, one can refer to [28,118], for instance.
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The setting we shall consider is that of a a polymer made up of two different types of monomer, near a

boundary between two fluids. Further details on this particular example can be found in [28, Section 5].

The monomers may be attracted to or repelled by the fluids, and the different kinds of monomer will feel

a different strength of attractive or repulsive force to each fluid (e.g. hydrophobic/hydrophilic monomers, if

one fluid is water). In a number of scenarios, the polymer tends to place as many monomers in their preferred

fluid as possible, which requires it to remain near the fluid boundary. However, this reduces entropy, and

depending on the strengths of the attractive/repulsive forces involved, a phase transition may occur, wherein

entropic forces cause the polymer to move away from the boundary. The transition is from a localised phase

to a delocalised phase. The following figure depicts a polymer in the localised phase, i.e. one which remains

close to the boundary between two fluids:

Figure 3.1: Polymer at boundary between oil and water. Blue monomers are

attracted to water, yellow monomers are attracted to oil.

Polymer physicists are especially interested in the occurrence of this phase transition between the localised

phase, where the polymer remains close to the interface, and the delocalised phase, where it moves away from

the interface. The goal is often to understand when the transition occurs as underlying model parameters

vary, as in a vast number of works, e.g. [9, 25, 28, 35, 62, 66, 118, 119]. The problem of determining exactly

when a phase transition occurs motivates much of the work in this chapter.

Indeed, we shall study random processes constrained to avoid the origin, where the origin is analogous

to the fluid boundary. We will determine exactly how strong a constraint needs to be in order to change



Chapter 3: Markov Processes with Constrained Local Time 48

the behaviour of a given process from localised to delocalised, which corresponds to finding when this phase

transition occurs in a polymer model, as model parameters vary. Moving from the context of polymers to a

formal setting of stochastic processes, the notions of delocalisation and localisation correspond to transience

and recurrence, respectively (see Definition 3.3.1).

To briefly justify the use of random models for polymers, we note that many polymers, such as fats,

contain chains of hydrophobic/hydrophilic monomers which are arranged in an erratic manner. The disorderly

nature in which such a polymer chain is formed means that a random model is particularly appropriate

for modelling purposes. Further suitable examples include surfactants, emulsifiers, and foaming agents.

See [28, Section 5] for further discussion.

Motivation: Further Questions In the example of a polymer at a boundary between fluids, determining

if a process is transient or recurrent is analagous to determining whether or not the polymer remains close

to the boundary. However, there are still many more natural questions which can be asked in each case.

For instance, in the case where a polymer moves away from the boundary, one can ask how and when the

polymer moves away. In Section 3.4.2, for the transient case, we address the analogous theoretical question

for Markov processes by determining the distribution of the time at which the process returns to the origin

for the last time, see Theorem 3.4.12 and Remark 3.4.13. We also discuss the distribution of the process after

this last return time in Remark 3.4.17.

For the case where a polymer remains close to the boundary, if a lot of the monomers are placed at the

boundary, then the entropy of the system is reduced, and an entropic force is felt by the polymer. This is a

repulsive force which encourages the polymer to place more of its monomers away from the boundary. We

call this phenomenon entropic repulsion. It is then natural to ask how many monomers are situated at (or

near) the boundary. We address an analogous question for recurrent Markov processes by determining the

rate of return to the origin. In Theorem 3.4.22, we find the almost sure asymptotic behaviour of the rate

of growth of the local time, which determines the rate of return to the origin of the Markov process. See

Section 3.1.2 for more details on the notion of local time.

This can be all seen as an extended analogy of work in this chapter, but we will not tackle specific applied
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problems on polymers. Rather, the results here add to a body of theoretical works which set out to improve

our understanding of various stochastic processes, which can then be used in a variety of modelling scenarios.

3.1.2 Local Time of a Markov Process

As discussed in Section 3.1.1, we are going to study Markov processes under a certain type of constraint.

Specifically, we shall impose a restriction on the rate at which our Markov process returns to the origin, and

then we determine exactly how strong the constraint needs to be in order to change the behaviour of a given

process from recurrent (localised) to transient (delocalised). This constraint is made rigorous through the

notion of local time, which we shall now define, after providing a formal definition of a Markov process:

Definition 3.1.1. A Markov process (Mt)t≥0, is a Rd-valued stochastic process such that for each (almost

surely) finite stopping time T , under the conditional law P (·|MT = x) = Px (·), the shifted process (Ms+T )s≥0

is independent of FT and has the same as the law, Px, as the process M started from x. Moreover, we impose

that M has right-continuous sample paths, M0 = 0, and that the origin is regular and instantaneous:

Regular means that for each (almost surely) finite stopping time T , if MT = 0, then inf {t > T : Mt = 0} = T

almost surely. Instantaneous means that for each (almost surely) finite stopping time T , if MT = 0, then

inf {t > T : Mt 6= 0} = T almost surely.

This definition ensures that, conditionally given the present state of the process, the future behaviour

is independent of the past behaviour (the future only depends on the present). There are many different

definitions for Markov processes in the literature. The above definition is particularly helpful because it

ensures that our process is homogeneous in time (although it does not necessarily have to be homogeneous

in space). We have further imposed that the origin is regular and instantaneous so that the behaviour of the

process is suitably interesting, in the sense that the structure of the local time has a fractal nature (there is

non-trivial structure at an arbitrarily small scale). Hereon, (Mt)t≥0 shall always denote a Markov process in

the above sense.

Local Time: Discrete State Space While we are going to constrain the local time of a process on a

continuous state space, it is first helpful to introduce the notion of local time in the simpler discrete setting.
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The local time (at 0) of a Markov process (Mt)t≥0 on a discrete state space is the process (Lt)t≥0, defined by

Lt :=

∫ t

0

1{Ms=0}ds.

The local time (here equivalent to occupation time) simply records how long M spends at 0, in the sense that

Lt is the total time spent at 0, up to time t. The following figure demonstrates how the local time grows

relative to the position of its associated Markov process, with matching time axes:

Mt

t

Lt

t
Figure 3.2: Local time (Lt)t≥0 of a Markov process (Mt)t≥0 on a discrete state space

Local Time: Continuous State Space This chapter concerns Markov processes on a continuous state

space, and many such processes (e.g. Brownian motion) only spend an infinitesimally small period of time

at any single point. That is to say, for many Markov processes of interest (on a continuous state space), the

set of times at which it visits the origin will have zero Lebesgue measure (almost surely). Hence a subtly

different definition is required to capture something non-trivial, which is still analogous to the notion of local

time of a process on a discrete state space, see the upcoming Definition 3.3.2. Informally, the local time can

be thought of as a rescaled measure of how much time the Markov process (Mt)t≥0 spends near the origin.
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Connection to Lévy Processes The local time process (Lt)t≥0 is not usually studied directly. Instead,

it is generally best to work with its inverse. The inverse local time process, (Xs)s≥0, is defined for s ≥ 0

by Xs := inf{u ≥ 0 : Lu > s}. Remarkably, for all Markov processes in the sense of Definition 3.1.1, the

(right-continuous) inverse local time process is in fact a subordinator. The jumps of the inverse local time

subordinator correspond to excursions of (Mt)t≥0 away from 0, which we shall now define:

An excursion interval of a Markov process (away from the origin) is defined as an interval of time,

(g, d) ⊂ [0,∞), such that Ms 6= 0 for all s ∈ (g, d), and (g, d) is maximal (locally).

The value of the local time remains constant when M is in an excursion interval, and increases otherwise.

In our cases of interest, the fact that we have imposed that the origin is regular and instantaneous (see

Definition 3.1.1) ensures that there are inifinitely many excursions of infinitesimally small size (almost surely).

This ensures that the behaviour of the Markov process is suitably interesting, in the sense that there is non-

trivial behaviour at an arbitrarily small scale (in both time and space). At the level of the inverse local time

subordinator, this condition ensures that the subordinator has infinitely many infinitesimally small jumps in

each finite window of time (almost surely).

For a Markov process (on a continuous state space) in the sense of Definition 3.1.1, the following figure

illustrates the relationship between the Markov process and its local time, with matching time axes. Some

large excursion intervals are highlighted in red:
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Mt

t

Lt

t

Figure 3.3: Local time of Markov process on a continuous state space, large excursions coloured in red

Xs

s

Figure 3.4: Inverse of local time, jumps correspond to excursions in Figure 3.3

Remark 3.1.2. Throughout this chapter, we will assume that the inverse local time subordinator has zero

drift. Consider the result [14, Corollary IV.6], which states that for each Markov process in the sense of
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Definition 3.1.1, there exists a constant d ≥ 0 such that its local time can be characterised for all t ≥ 0 by

dLt =

∫ t

0

1{Ms=0}ds.

It follows that the inverse local time (Xt)t≥0 has linear drift d ≥ 0, see [14, Theorem IV.8]. So for our Markov

processes of interest, set of times at which the process takes the value 0 will have zero Lebesgue measure.

We direct the reader to [14, Chapter IV] for a more detailed introduction to local time, including proof

of the fact that the inverse local time process is always a (possibly killed) subordinator [14, Theorem IV.8],

where a killed subordinator takes the value infinity from an independent exponentially distributed random

time onwards (this corresponds to transience of the Markov process). One can refer to e.g. [69, Chapter 19]

or [104, Chapter VI] for discussion of the importance of the study of local time, with particular emphasis on

connections to semimartingales and stochastic calculus.

3.2 Literature Overview

We are going to study the asymptotic behaviour of a Markov process whose local time is constrained to grow

slower than f , an increasing function. Underlying this work is the problem of determining how the local

time behaves. As the (right-continuous) inverse of the local time process is a subordinator, our study of the

behaviour of the local time process is in fact equivalent to studying a subordinator conditioned to grow faster

than the inverse function f−1, i.e. conditioned to remain in a specific region in space and time.

This chapter is hence related to a number of works on stochastic processes conditioned to remain in a

certain fixed region, such as processes conditioned to stay in a cone [43,60,83], or in a Weyl chamber [41,80].

We highlight the fact that our subordinator is conditioned to remain in a region which varies in time, whereas

the aforementioned works consider fixed regions, as appears to be the case for all works prior to [78] and [6].

We thus say that our constraint is a weak constraint, in constrast to strong constraints such as condi-

tioning a process to avoid a point, where the constraint does not change (see e.g. [11, 24, 33]). When our

conditioned Markov process is transient, the constraint varies for only a finite window of time, whereas when

our conditioned Markov process is recurrent, the constraint varies over all time. So our results and methodol-
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ogy, especially in the recurrent case, offer a significant contrast to many prior works which deal with a strong

constraint.

Many works, e.g. [2–4, 22, 40, 42, 46, 70, 71, 88, 94, 100, 120], do consider a time-dependent region, in the

sense that they study the time at which a process will first cross a specific boundary. However, in this chapter

we study the boundary crossing probability for a family of curves, and study the time at which this crossing

occurs (the function f−1 forms our boundary of interest). Moreover, we study these asymptotics, uniformly

among such a family of curves in Lemma 3.5.3, and we consider the deeper problem of determining the law

of a subordinator conditioned to remain in this time-dependent region.

Remark 3.2.1. Our weak constraint is a weak repellence constraint, in the sense that the process is repelled

away from the origin (without the constraint, the process would typically spend more time at the origin). This

links back to our previous discussion of polymer models in Section 3.1.1. Many processes with imposed weak

repellence are studied in works related to polymer physics, see e.g. [9, 28, 62, 115–118, 122].

The work in this chapter is also similar, in spirit, to various other works on Brownian motion [79,98,105,

107], Lévy processes [11, 12, 24, 32, 33, 48, 97, 125, 126], and more general diffusions [106, 109] with restricted

path behaviour.

3.2.1 Relevant Results from the Literature

Let us briefly summarise some important results from the literature on constrained Markov processes. We

begin by considering the example of a process conditioned to avoid the origin. It is important to note here

that the event {Mt 6= 0, for all t ≥ 0} typically has zero probability. When we talk about conditioning upon

this event, the terminology is somewhat informal, but is made rigorous by taking limits, see (3.17). In this

chapter, we use the limiting procedure to make sense of a Markov process with constrained local time, since

the imposed constraint typically has zero probability.

Processes Conditioned to Avoid Zero For a 1-dimensional process with continuous sample paths,

such as Brownian motion, this condition ensures that the process stays on one side of a boundary (i.e. the

process is conditioned to stay positive/negative). The analogous polymer model for this type of process is
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a polymer constrained to stay on one side of an interface, which acts like a hard wall, see [28, Section 3.4].

This contrasts the previous setting of a polymer at a boundary between fluids (see Section 3.1.1), where the

polymer is allowed to cross the boundary, although it may be discouraged from crossing too often.

In 1975, Pitman studied the distribution of a 1-dimensional Brownian motion conditioned to avoid zero

(i.e. to stay positive or negative), and found a remarkable connection with Bessel processes [98]. For d ∈ N,

we define a Bessel process of order d as the real-valued process (B
(d)
t )t≥0, given by B

(d)
t := |Wt|, where Wt

is a d-dimensional Brownian motion, and | · | is the standard Euclidean norm. Pitman’s result is as follows:

Pitman (1975) A 1-dimensional Brownian motion, (Bt)t≥0, conditioned to stay positive is equal in distri-

bution to a Bessel process of order 3. In particular, the process (Bt − 2Bt)t≥0 has the same distribution as

a Bessel process of order 3, where B denotes the running infimum, Bt := inf{Bs : 0 ≤ s ≤ t}.

A natural generalisation of this result, to allow for a 1-dimensional Brownian motion with a linear drift,

was then found by Pitman and Rogers in [99].

Pitman, Rogers (1981) Let (Bµt )t≥0 be a 1-dimensional Brownian motion with a linear drift µ. Then

Bµ conditioned to stay positive is equal in distribution to |Wt|, where (Wt)t≥0 is a 3-dimensional Brownian

motion with a linear drift of absolute value |µ|. The conditioned process again has the same distribution as

(Bµt − 2Bµt )t≥0, with the notation as above, but applied to the Brownian motion with a drift.

For a more general Lévy process with jumps, avoiding the origin is no longer equivalent to staying positive

or negative, as the process can jump over the origin without visiting it. This means that the problem of

conditioning to avoid the origin becomes much harder. However, for a 1-dimensional Lévy process with no

jumps in the negative direction (a spectrally positive Lévy process), conditioning to stay negative is still a

tractable problem, thanks to the simplifying assumption that there are no negative jumps. The distribution

of a spectrally positive Lévy process conditioned to stay negative was determined by Bertoin in [11].

Bertoin (1992) Let (Xt)t≥0 be a spectrally positive Lévy process. Then X conditioned to stay negative

has the same distribution as the process

(Xt − 2X
c

t − Jt)t≥0,
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where Xt := sup{Xs : 0 ≤ s ≤ t} denotes the running maximum of the process X, while X
c

t denotes the

continuous part of X (i.e. X with its jumps removed), and finally J is the process of all jumps of the original

process across its previous maximum, defined by

Jt :=
∑
s≤t

1{Xs>Xs−}(Xs −Xs−),

with the standard notation Xs− := limu↑sXu.

There is a striking similarity between this result and the previous results (Pitman 1975), (Pitman, Rogers,

1981). The fact that the process (Jt)t≥0 is needed reflects the fact that this is a much more difficult problem

for a process with jumps. A spectrally positive Lévy process conditioned to stay negative is equivalent to

a spectrally negative Lévy process (with no positive jumps) conditioned to stay positive, as we can simply

consider the dual process, (−Xt)t≥0, which is spectrally positive.

The more difficult problem of determining the distribution of a Lévy process conditioned to avoid the

origin, where the process has positive and negative jumps, has recently been addressed by Pant́ı, see [97,

Theorem 2.6] for further details. We refer to [34] for more on Lévy processes conditioned to stay positive.

Brownian Motion with Constrained Local Time The aforementioned results are closely related to

the work in this chapter. However, this chapter specifically builds upon two works on Brownian motion with

constrained local time, [8, 78]. In these works, the inverse local time subordinator is stable with index 1/2.

Let us first discuss the work of Benjamini and Berestycki [8], in which a 1-dimensional Brownian motion

is conditioned so that its local time at the origin, (Lt)t≥0, satisfies Lt ≤ f(t) for all t ≥ 0 for a given function

f , and then a sufficient condition for the constraint to yield a transient process is found.

Benjamini, Berestycki (2011) Consider a 1-dimensional Brownian motion conditioned so that its local

time (Lt)t≥0 satisfies Lt ≤ f(t) for all t ≥ 0. If the following integral converges,

∫ ∞
1

f(s)

s
3
2

ds <∞, (3.1)

then (under some regularity conditions on the function f) any resultant process which arises as a weak
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subsequential limit of the conditioning is a transient process.

Remark 3.2.2. The local time (at 0) of an unconditioned 1-dimensional Brownian motion (almost surely)

grows proportionally to
√
t as t → ∞ (this can be verified using e.g. Brownian scaling, see [8, p2]). The

unconditioned process is known to be recurrent, but inspecting the criterion in (3.1) it follows that restricting

the local time so that Lt ≤ f(t) =
√
t log(t)−1−ε for some ε > 0, the conditioned process then becomes

transient. Remarkably, a very minor restriction on the local time results in a significant change to the

conditioned process, compared with the original Brownian motion.

It was then proven by Kolb and Savov that the criterion in (3.1) is in fact a necessary and sufficient for

transience of the conditioned Brownian motion, see [78, Theorem 3].

Kolb, Savov (2016) Consider a 1-dimensional Brownian motion conditioned so that its local time (Lt)t≥0

satisfies Lt ≤ f(t) for all t ≥ 0 (under some regularity conditions). The conditioned process is transient if

and only if the integral in (3.1) converges. The conditioned process is recurrent otherwise.

In the transient case, an explicit formulation for the distribution of the conditioned Brownian motion is

found, see [78, Section 3]. In the recurrent case, understanding the distribution of the conditioned Brownian

motion is much harder. However, in the recurrent case, Kolb and Savov determine a very deep result about

the rate of growth of the inverse local time Lt, as t → ∞. Note that in the transient case, the conditioned

Brownian motion never visits the origin again after a certain finite time. The local time never grows beyond

this time, which corresponds to explosion of the inverse local time, i.e. reaching an infinite value in a finite

time. Hence one can only make sense of the long-term rate of growth of the local time in the recurrent case.

Entropic Repulsion For conditioned Brownian motion in the recurrent case where
∫∞

1
f(s)/s3/2ds =∞,

the conditioned process typically doesn’t use all of its allowance of local time, in the sense that while Lt ≤ f(t)

is required, it does not usually come close to the boundary at which Lt = f(t). This phenomenon is related

to entropic effects, which cause the process to stay far away from breaking the constraint to allow for more

fluctuations. The term entropic repulsion is used to describe this kind of situation, borrowing the term from

physics (see e.g. [36]). In fact, the most likely way for the conditioned Brownian motion process to satisfy an

imposed condition is for it to satisfy an even stronger condition, in the sense that Lt = o(f(t)) as t→∞.
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This is made rigorous by Kolb and Savov in [78, Theorem 4] through their characterisation of the entropic

repulsion envelope. Consider the set of non-decreasing functions w such that limt→∞ w(t) = ∞, for which

limt→∞Q(Xt ≥ w(t)f−1(t)) = 1, where Q(·) denotes the probability measure obtained by conditioning on

Lt ≤ f(t) for all t ≥ 0. The set of such functions is called the entropic repulsion envelope for the function f ,

and is denoted by

Rf−1 :=
{
w : lim

t→∞
w(t) =∞, w is non-decreasing, lim

t→∞
Q(Xt ≥ w(t)f−1(t)) = 1

}
.

Kolb and Savov’s result is as follows:

Kolb, Savov (2016) If the conditioned process as above is recurrent, then (under some regularity conditions)

the entropic repulsion envelope for the function f is given by:

w ∈ Rf−1 ⇐⇒ lim
h→∞

∫ f(f−1(h)w(h))

h

1√
f−1(s)

ds = 0.

This chapter specifically builds upon Kolb and Savov’s work in [78], which itself builds upon Benjamini

and Berestycki’s work in [8]. In particular, we shall provide results analogous to those in [78], but for a much

broader class of processes than Brownian motion. It was conjectured in [78, Remark 9] that such analogous

results hold when the Lévy measure of the inverse local time process (see the upcoming Section 3.1.2) has

a regularly varying tail function, which we confirm in this chapter. We shall extend further beyond this

conjecture by including a much more general setting, see Definition 3.4.8.

3.2.2 Brief Exposition of the Main Result: Necessary and Sufficient Condition

Now we provide a brief exposition of the main result, before introducing some key definitions. Starting with

a recurrent Markov process, we constrain its local time (Lt)t≥0 so that Lt ≤ f(t) for all t, using a limiting

procedure. The following necessary and sufficient condition tells us if the constraint is strong enough to

change the behaviour of the process from recurrent to transient: it is transient if

∫ ∞
1

f(x)Π(dx) <∞, (3.2)
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and the process remains recurrent otherwise. Here Π(dx) denotes the Lévy measure of the inverse local

time subordinator (see the upcoming Section 3.1.2). For a large class of subordinators and functions f , our

criterion (3.2) can be understood in terms of the rate of growth of the inverse local time (Xs)s≥0 as s→∞,

as it is known [14, Theorem III.13] that if E[X1] =∞, f−1 is increasing, and t 7→ f−1(t)/t is increasing,

∫ ∞
1

f(x)Π(dx) <∞ ⇐⇒ lim
s→∞

Xs

f−1(s)
= 0, almost surely.

So the boundary choice of f , at which the conditioned process changes from recurrent to transient, coincides

with the boundary at which Xs grows to infinity faster or slower than f−1(s).

Remark 3.2.3. In constraining the local time of a Markov process, the extent to which our constraint affects

the process varies over time, depending on the past behaviour of the process. For instance, if at a certain

time, the Markov process has used little of its allowance of local time, then the local time can subsequently

grow very rapidly for a short period. This is not possible if the full allowance of local time has been used,

and we remark that the conditioned process M is hence no longer Markovian. Still, as for a Markov process,

exactly one of transience and recurrence holds here (see Proposition 3.4.14, Proposition 3.4.19).

Remark 3.2.4. The conditioned process is no longer homogeneous in time unless f is linear, in which case

the inverse local time subordinator conditioned to grow faster than f−1(t) = at+b is equivalent to a spectrally

positive Lévy process with drift −a conditioned to stay above 0, as dealt with in [11].

The remainder of the chapter is structured as follows: Section 3.3 provides key definitions; Section

3.4 outlines the statements of the main results and the conditions under which they hold, including the

necessary and sufficient conditions for transience/recurrence, the distribution of the conditioned process, and

the characterisation of the entropic repulsion envelope; Section 3.5 contains the proofs of the main results;

Sections 3.6, 3.7, and 3.8 contain the proofs of 3 key lemmas required for the main results; Section 3.9 contains

the proofs of the remaining auxiliary lemmas.

3.3 Key Definitions

We shall provide some definitions, following conventions of [14, Chapter IV].
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Definition 3.3.1. A process Y is transient under the law P(·) if P-almost surely, sup{t ≥ 0 : Yt = 0} is

finite, or recurrent if this supremum is infinite. By Kolmogorov’s 0-1 law [69, Theorem 2.13], exactly one of

transience or recurrence holds for Markov processes in the sense of Definition 3.1.1.

Definition 3.3.2. For a Markov process, and for an arbitrary choice of c ∈ (0,∞), let l1(x) denote the

length of the first excursion interval (away from zero) of length l > x > 0, and define

P (a) :=


1/P(l1(a) > c), 0 < a ≤ c,

P(l1(c) > a), a > c.

Let gn(a) be the start time of the nth excursion of length l > a > 0, write Na(t) := sup{n ∈ N : gn(a) < t}.

Then the local time process, (Lt)t≥0, of M at zero is defined by Lt := lima→0Na(t)/P (a), t ≥ 0.

See [14, Chapter IV] for more details on the definition of local time. A subordinator is defined to be a

non-decreasing real-valued stochastic process with stationary independent increments, started from 0. The

right-continuous inverse local time process, defined by Xt := inf{s > 0 : Ls > t}, is a subordinator. The

jumps of (Xt)t≥0 correspond to excursions of (Mt)t≥0 away from zero.

The Laplace exponent φ of a subordinator X is defined by e−φ(λ) = E[e−λX1 ], λ ≥ 0. By the Lévy-

Khintchine formula (1.4), φ can always be written

φ(λ) = dλ+

∫ ∞
0

(1− e−λx)Π(dx),

where d ≥ 0 is the linear drift, and Π is the Lévy measure, which determines the size and rate of the jumps

of X, and satisfies
∫∞

0
(1 ∧ x)Π(dx) < ∞. For our purposes in this chapter, d = 0, so we aim to formulate

our results in terms of the measure Π(dx). We refer to [14,15,45] for background on subordinators.

Next, we define some important classes of functions with which we shall work.

Definition 3.3.3 (Regular Variation and Related Properties).

1. A function h : R→ R is regularly varying at ∞ with index α ∈ R if for all λ > 0, limt→∞ h(λt)/h(t) =
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λα. We refer to [21] for background on regular variation.

2. A function L : R→ R is slowly varying at ∞ if limt→∞ L(λt)/L(t) = 1 for each λ > 0. A function h,

regularly varying at ∞ of index α, can always be written as h(x) = xαL(x), where L is slowly varying

at ∞, see [21].

3. The lower index, β(h), of a function h : R→ R is the supremum of β ∈ R for which there exists C > 0

so that for all Λ > 1, h(λx)/h(x) ≥ (1 + o(1))Cλβ, uniformly in λ ∈ [1,Λ], as x→∞, see [21, p68].

4. A function h is CRV at ∞ if limλ→1 limt→∞ h(λt)/h(t) = 1. The class of CRV functions lies between

extended regularly varying functions and O-regularly varying functions. See [44] for details.

5. A function h : R → R is O-regularly varying at ∞ if for each λ > 0, both lim supt→∞ h(λt)/h(t)<∞

and lim inft→∞ h(λt)/h(t) > 0. See [44] for further details.

3.4 Statements of Main Results

We aim to constrain the local time so that Lt ≤ f(t) for all t ≥ 0, where f : [0,∞) → (0,∞) is increasing,

f(0) ∈ (0, 1), and limt→∞ f(t) = ∞. This work concerns the behaviour of our process as t → ∞, which

is unaffected by the condition on f(0). Before stating our main results, we define the regularity conditions

under which these results hold.

3.4.1 Regularity Conditions

We shall impose regularity conditions on the function f , its inverse function g := f−1 (extended so that for

x ∈ [0, f(0)), g(x) = 0), and the tail Π(x) := Π(x,∞) in two main cases of interest. Our conditions are

imposed on the inverse local time subordinator rather than directly on the Markov process. Now let us define

the main cases of interest for our results:
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Definition 3.4.1 (Case (i)). We impose on our subordinator that the drift is zero, and the tail Π(x) =

Π(x,∞) is regularly varying at ∞ with index −α ∈ (−1, 0), so Π(x) = x−αL(x) for L slowly varying at ∞.

We further impose there exist B,N > 0 such that the function x 7→ xNL(x) is non-decreasing on (B,∞).

We impose that f(0) ∈ (0, 1), limt→∞ f(t) = ∞, f is differentiable, tf ′(t)Π(t) decreases to 0 as t → ∞ (so

f is increasing), the inverse g := f−1 satisfies limt→∞ g(t+ ε)/g(t) = 1 for all ε > 0, and there exists some

value β > (1 + 2α)/(2α+ α2) > 1 such that

lim
t→∞

tΠ

(
g(t)

log(t)β

)
= 0. (3.3)

Remark 3.4.2. Case (i) includes stable subordinators, and subordinators whose Lévy measures have similarly

well-behaved tail asymptotics. Thus the set of Markov processes corresponding to case (i) includes Bessel

processes, stable Lévy processes of index α ∈ (1, 2), and other Markov processes with similarly well-behaved

asymptotics. Considering Π(x) = x−α log(x)δ, with f(t) = 1/2 + tα log(e + t)γ , so g(t) ∼ t1/α log(t)−γ/α as

t→∞, for γ < −δ − αβ and α ∈ (0, 1), one can verify that this class of examples is included in case (i).

Remark 3.4.3. The results for case (i) in the upcoming Section 3.4.2 do not make use of the assumption

that f is differentiable or that tf ′(t)Π(t) decreases to 0 as t→∞. We can also weaken the assumption (3.3)

by replacing β by 1, and all the proofs in Section 3.4.2 are still valid, as is that of Lemma 3.5.1.

Remark 3.4.4. For all results in this chapter, we can replace the condition “tf ′(t)Π(t) decreases to 0” by

a weaker combination of two conditions: limt→∞ tf ′(t)Π(t) = 0; there exists κ > 0 such that tκf ′(t)Π(t)

decreases to zero as t→∞. We use the condition “tf ′(t)Π(t) decreases to 0” for brevity.

Definition 3.4.5 (Case (ia)). Under the assumptions of case (i), define “case (ia)” by imposing f , f ′ are

O-regularly varying at ∞, the densities ft(x)dx := P(Xt ∈ dx) and u(x)dx := Π(dx) exist, u has bounded

increase and bounded decrease (see Definition A.4.5), and there exist constants a, x0 ∈ (0,∞), such that for

all t ∈ (0,∞) and x ≥ g(t) + x0, where g = f−1,

ft(x) ≤ atu(x). (3.4)

Remark 3.4.6. If Π is regularly varying at ∞ and the density ft exists, then (3.4) holds for each fixed t and
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x > x(t), where x(t) may depend on t (see e.g. [124, Theorem 1]). Here we further impose a bound on x(t),

so that (3.4) holds uniformly among sufficiently many x and t for us to prove Theorem 3.4.22. For a stable

subordinator of index α ∈ (0, 1), the density ft exists (see [14, p227]) and (3.4) holds for all functions g = f−1

satisfying the conditions for case (ia) (see Corollary 3.4.23), so case (ia) includes stable subordinators.

Remark 3.4.7. Imposing that f and f ′ are O-regularly varying at ∞ is by no means a restrictive condition.

It effectively removes particularly fast-growing functions, e.g. f(t) ∼ et as t → ∞, for which conditioning

upon {Xt ≥ f−1(t), t ≥ 0} does not have much of an interesting effect as t→∞, since the rate of growth of

Xt is typically extremely fast compared with that of f−1(t).

Definition 3.4.8 (Case (ii)). We impose on our subordinator that the drift is zero, and the tail function

Π(x) = Π(x,∞) is CRV at ∞, with lower index β(Π) > −1.

We impose that f(0) ∈ (0, 1), f is increasing, and that there exists ε > 0 such that for g := f−1,

lim
t→∞

t1+εΠ (g(t)) = 0. (3.5)

Remark 3.4.9. In Definition 3.4.8, we impose β(Π) > −1, which is equivalent to imposing that the function∫ x
0

Π(y)dy has positive increase as x→∞ (see [21, Section 2.1] for a definition). This has many equivalent

formulations [14, Ex. III.7], [21, Section 2.1], and appears naturally in a range of contexts [5, p2], [14, p87].

Remark 3.4.10. Considering Π(x) = x−α log(x)δ, δ > 0, with f(t) = 1/2 + t1/(α+τ), τ > 0, one can verify

that this class of examples is included in case (ii).

Now let us introduce some notation required to formulate our results. Recall that f : [0,∞) → (0,∞) is

increasing, f(0) ∈ (0, 1), and g := f−1 is the inverse of f , where we take g(x) = 0 for x ∈ [0, f(0)). The

event Ou corresponds to bounding the inverse local time until time u (or equivalently, bounding the local

time until time g(u)). We will study the asymptotics of P(Ou) as u → ∞, and those of the integral Φ(s) of
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this probability.

Ou := {Xs ≥ g(s),∀ 0 ≤ s ≤ u}, (3.6)

Φ(s) :=

∫ s

0

P(Ou)du. (3.7)

We shall also study the event Ou for the process X(0,a) with truncated Lévy measure Π(dx)1{x∈(0,a)},

Ou,X(0,a) :=
{
X(0,a)
s ≥ g(s),∀ 0 ≤ s ≤ u

}
. (3.8)

The time of our subordinator’s first jump of size larger than x > 0, or in the interval (a, b) for b > a > 0, are

respectively denoted by

∆x
1 := inf {t ≥ 0 : Xt −Xt− > x} , (3.9)

∆
(a,b)
1 := inf {t ≥ 0 : Xt −Xt− ∈ (a, b)} . (3.10)

In Theorem 3.4.16 and Proposition 3.4.19, we determine that I(f) <∞ is a necessary and sufficient condition

for transience of the conditioned process (when such a process exists), where

I(f) :=

∫ ∞
1

f(x)Π(dx). (3.11)

Remark 3.4.11. The necessary and sufficient condition I(f) <∞ arises naturally in a number of contexts,

including rate of growth of subordinators [14, Theorem III.13] and spectrally negative Lévy processes [95,

Theorem 3].
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For h < t, by the stationary independent increments property, the conditional event {Xt > g(t)|Xh = y} is

the same as {Xt−h > g(t)−y} = {Xt−h > g((t−h)+h)−y}, in the sense that they have the same probability.

This new boundary for X to stay above is given by ghy (·), with Og
h
y
u , Φhy(s) corresponding to Ou, Φ(s).

ghy (t) := g(t+ h)− y, (3.12)

Og
h
y
u := {Xs ≥ ghy (s),∀ 0 ≤ s ≤ u}, (3.13)

Φhy(s) :=

∫ s

0

P(Og
h
y
u )du. (3.14)

The functions ρ(·), ρhy(·) are error terms in the upcoming equations (3.18) and (3.19).

ρ(t) :=
P (Ot)
Φ(t)

−Π(g(t)), (3.15)

ρhy(t) :=
P(Og

h
y

t )

Φhy(t)
−Π(ghy (t)). (3.16)

The law of our conditioned process will be found by taking limits. Recall the notation (3.6) and (3.13). For

the measure Q(·) := limt→∞ P(·|Ot), for all Bh ⊆ Oh,Bh ∈ Fh, where (Fu)u≥0 is the natural filtration of X,

Q(Xh ∈ dy;Bh) := lim
t→∞

P (Xh ∈ dy;Bh|Ot) = lim
t→∞

P (Xh ∈ dy;Bh;Oh|Ot)

= lim
t→∞

P (Ot|Xh ∈ dy;Bh;Oh)P (Xh ∈ dy;Bh;Oh)

P(Ot)

= P (Xh ∈ dy;Bh) lim
t→∞

P(Og
h
y

t−h)

P(Ot)
. (3.17)

To understand the behaviour of X under Q, we study the probabilities P(Og
h
y

t ) and P(Ot) as t→∞. Lemma

3.5.1, proven in Section 3.6, relates the asymptotics of P(Ot) to Φ(t), and P(Og
h
y

t ) to Φhy(t), and as a result,

by (3.3) , (3.5) respectively in cases (i), (ii), limt→∞ P(Ot) = limt→∞ P(Og
h
y

t ) = 0. We obtain the equations

P(Ot) =
d

dt
Φ(t) =

(
Π(g(t)) + ρ(t)

)
Φ(t), (3.18)

P(Og
h
y

t ) =
d

dt
Φhy(t) =

(
Π(ghy (t)) + ρhy(t)

)
Φhy(t). (3.19)
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We can determine Φ(t),Φhy(t) from these equations, yielding (for B > 0 as in Definition 3.4.1) the expressions

Φ(t) = Φ(1) exp

(∫ t

1

Π(g(s))ds+

∫ t

1

ρ(s)ds

)
, (3.20)

Φhy(t) = Φhy(t0(y)) exp

(∫ t

t0(y)

Π(ghy (s))ds+

∫ t

t0(y)

ρhy(s)ds

)
, (3.21)

t0(y) := f(Ay) ∨ f(1 + 2/A), A > 3 ∨ (B − 1). (3.22)

The error terms ρ(·) and ρhy(·) are later shown to be integrable (the latter uniformly in y and h), which is key

for determining the distribution of our conditioned process. The required bound for ρ(·) is given in Remark

3.5.4, and we provide a uniform bound for ρhy(·) in Lemma 3.5.3, proven in Section 3.7.

3.4.2 Results in the I (f ) <∞ Case

We shall see in Theorem 3.4.16 that when I(f) <∞, any possible weak limit of our conditioned process M

is transient. Theorem 3.4.12 explicitly finds the distribution of the process X in this case.

Theorem 3.4.12. With assumptions on f and Π in case (i) or case (ii), if I(f) < ∞, then the measure

Q(·) := limt→∞ P(·|Ot) exists for the space D[0,∞), to which X belongs, of càdlàg paths on [0,∞), in the

sense that for all h > 0, y > g(h), for all Bh ⊆ Oh,Bh ∈ Fh, where (Fu)u≥0 is the natural filtration of X,

Q(Xh ∈ dy;Bh) =
Φhy(∞)

Φ(∞)
P (Xh ∈ dy;Bh) ,

where Φ(∞) <∞, Φhy(∞) <∞. Define, independently of M or X, the random variable C by

P (C ∈ ds) :=
P(Os)
Φ(∞)

ds, s ≥ 0, (3.23)

which exists since Φ(∞) <∞. Then for all h ≥ 0, Q(Xh <∞) = P(C > h).

Remark 3.4.13. Since Q(Xh < ∞) = P(C > h) for all h > 0, the process X under Q(·) is finite until a

random time, which we denote by T∞, and which has the same distribution under Q(·) as C under P(·). In

particular, Q(T∞ ∈ ds) = P(C ∈ ds) for all s ≥ 0. In Theorem 3.4.16, we will show that under any possible
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weak limit measure, the process M never returns to 0 after time XT∞− = lims↑T∞ Xs.

Proposition 3.4.14. In cases (i) and (ii), ((Xu)
∆
g(t)
1 >u≥0

,∆
g(t)
1 ), t ≥ 0 under P(·|Ot) converges as t→∞,

in the sense that there exists a unique limit measure Q′(·), on the space D[0,∞)× (0,∞), where D[0,∞) is

the space of càdlàg paths on [0,∞), such that for all y > g(x), t > b > a > x > 0, with a, b, x, y fixed, and

for all events BX ∈ Fx, where (Fu)u≥0 is the natural filtration of X, such that BX ⊆ Ox, for C as in (3.23),

lim
t→∞

P(Xx ∈ dy;BX ; ∆
g(t)
1 ∈ (a, b)|Ot)=

∫ b

a

P(Xx∈dy;BX |Os)P(C ∈ ds) =: Q′ (Xx ∈ dy;BX ;T ′∞ ∈ (a, b)) ,

(3.24)

for the explosion time T ′∞ defined under Q′(·) as T∞ is defined under Q(·) in Remark 3.4.13. The projection

of Q′(·) onto (0,∞) agrees with Q(·) in the sense that Q′(T ′∞ ∈ ds) = Q(T∞ ∈ ds) = P(C ∈ ds).

We shall now determine the behaviour of the conditioned process M until a time corresponding to the point

at which X becomes infinite. Theorem 3.4.16 and Remark 3.4.17 consider the behaviour after this time.

Proposition 3.4.15 requires some understanding of excursion theory of Markov processes. For background on

excursion theory, we direct the reader to [14, Chapter IV].

Proposition 3.4.15. In cases (i) and (ii), if I(f) < ∞ then there exists a measure Q′′(·) on the product

space of the space containing the excursion process with D[0,∞)×(0,∞), where D[0,∞) is the space of càdlàg

paths on [0,∞), such that for all fixed b > a > h > 0, and for B ⊆ Oh, B ∈ Fh, where F denotes the natural

filtration of X, with F1 a bounded continuous functional on the excursion process (εs)s≥0 of M , defining the

operator πh((Zu)u≥0) := (Zu)h≥u≥0, let F1 satisfy F1((εs)s≥0) = F1(πh((εs)s≥0))) (F1 depends only on the

excursion process of M up to time h, or equivalently, the excursions in the first h units of time),

lim
t→∞

E
[
F1(πh((εs)s≥0)) 1{πh(X)∈B}1{∆g(t)

1 ∈(a,b)}

∣∣ Ot ] (3.25)

=

∫
ν∈B

∫
u∈(a,b)

E
[
F1(πh((εs)s≥0))

∣∣πh(X) = ν
]
Q′ (πh(X) ∈ dν;T ′∞ ∈ du)

=: EQ′′
[
F1(πh((εs)s≥0)) 1{πh(X)∈B} 1{T ′′∞∈(a,b)}

]
,

where T ′′∞ is the explosion time under the measure Q′′(·), and the projection of Q′′(·) onto D[0,∞)× (0,∞)

agrees with Q′(·). In particular, with ∆ := ∆
g(t)
1 , ((Mt)X∆−>t≥0, (Xs)∆>s≥0,∆) under P(·|Ot) converges
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weakly as t → ∞ to ((Mt)XT ′′∞−>t≥0, (Xs)∞>s≥0, T
′′
∞) under Q′′(·). The behaviour of M under Q′′(·) before

time XT ′′∞− has the same distribution as the following construction, expressed in terms of the original measure

P as follows: sampling the random time C = s under P(·), we run X conditioned on Os until time s, take

Xu = ∞ for all u ≥ s, then construct M via its excursions using (Xu)∞>u≥0 to determine the timing and

length of each excursion, where we sample each excursion of M until time Xs− using the excursion measure

conditional on the given excursion length.

Theorem 3.4.16. In cases (i) and (ii), if I(f) < ∞ then M is transient under any possible weak limit of

the measure P(·|Ot) as t→∞.

Remark 3.4.17. While the last excursion of the Markov process M is not dealt with explicitly here, the

behaviour of M from time XC− onwards should be the same as that of M conditioned to avoid zero. Proving

this requires existence of the limit as g(t)→∞ of the excursion measure conditioned on the length (lifetime)

of an excursion being longer than g(t), which is beyond the scope of this work. This is verified in the simple,

single case where M is a 1-dimensional Brownian motion in [78, p8]. When M is a Lévy process, the

behaviour of the process conditioned to avoid zero is well understood, see [97, Theorem 8]. There is some

technical difficulty in applying results from [97] to our final excursion. The measures Q,Q′,Q′′ are constructed

by conditioning until a deterministic time t → ∞, but in [97], the measure is constructed by conditioning

until an independent exponential random time with parameter q → 0. Equivalence of such deterministic and

random limits is a separate matter, beyond the scope of the work in this chapter.

3.4.3 Results in the I (f ) =∞ Case

We now restrict our attention to case (i). We will see that when I(f) =∞, our conditioned Markov process

is recurrent. Theorem 3.4.18 determines the distribution of the conditioned inverse local time subordinator

in this case.

Theorem 3.4.18. In case (i), if I(f) =∞, then the law Q(·) = limt→∞ P(·|Ot) exists for the process X in

the sense that for all h > 0 and y ≥ g(h), for all h > 0, y > g(h), for all Bh ⊆ Oh,Bh ∈ Fh, where (Fu)u≥0
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is the natural filtration of X,

Q (Xh ∈ dy;Bh) = lim
t→∞

P(Og
h
y

t−h)

P(Ot)
P (Xh ∈ dy;Bh)

= qh(y)P (Xh ∈ dy;Bh) , (3.26)

where qh(y) is finite, non-decreasing in y, and satisfies

qh(y) =
Φhy(t0(y))

Φ(1)
lim
t→∞

exp

(∫ t

t0(y)

(
Π(ghy (s)) + ρhy(s)

)
ds−

∫ t

1

(
Π(g(s)) + ρ(s)

)
ds

)
,

t0(y) := f(Ay) ∨ f(1 + 2/A), A > 3 ∨ (B − 1),

for B > 0 as in Definition 3.4.1.

We now verify that when I(f) = ∞, M is recurrent under the new measure Q′′(·), as X never hits infinity

at a finite time, Q-almost surely, and then M under Q′′(·) is constructed from its excursion process and X.

Proposition 3.4.19. In case (i), if I(f) =∞, then for each h > 0, Q (Xh ∈ (g(h),∞)) = 1.

Proposition 3.4.20. In case (i), if I(f) =∞, then there exists a measure Q′′(·) on the product space of the

space containing the excursion process with the space D[0,∞) of càdlàg paths on [0,∞), such that for all fixed

h > 0, and for B ⊆ Oh, B ∈ Fh, where F denotes the natural filtration of X, let F1 be a bounded continuous

functional on the excursion process (εs)s≥0 of M , defining the operator πh((Zu)u≥0) := (Zu)h≥u≥0, with F1

such that F1((εs)s≥0) = F1(πh((εs)s≥0))),

lim
t→∞

E
[
F1(πh((εs)s≥0)) 1{πh(X)∈B}

∣∣ Ot ] (3.27)

=

∫
ν∈B

E
[
F1(πh((εs)s≥0))

∣∣πh(X) = ν
]
Q (πh(X) ∈ dν)

=: EQ′′
[
F1(πh((εs)s≥0)) 1{πh(X)∈B}

]
,

where the projection of Q′′(·) onto D[0,∞) agrees with Q(·) = limt→∞ P(·|Ot). In particular, as t → ∞,

((Mt)∞>t≥0, (Xs)∞>s≥0) under P(·|Ot) converges weakly to ((Mt)∞>t≥0, (Xs)∞>s≥0) under Q′′(·). We con-
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struct M via its excursions using (Xu)∞>u≥0 to determine the timing and length of each excursion, where

we sample the excursions of M using the excursion measure conditional on each excursion length. Moreover,

M visits 0 at arbitrarily large times, so M is recurrent under Q′′(·).

Now we shall determine the entropic repulsion envelope through Theorem 3.4.22.

Definition 3.4.21. A non-decreasing function w, with limh→∞ w(h) = ∞, is in the entropic repulsion

envelope Rg (for the function g = f−1) if

lim
h→∞

Q′′ (Xh ≥ w(h)g(h)) = 1. (3.28)

Theorem 3.4.22. In case (ia), a necessary and sufficient condition for a non-decreasing function w, for

which limh→∞ w(h) =∞, to be in Rg, for g = f−1 is

w ∈ Rg ⇐⇒ lim
h→∞

∫ f(w(h)g(h))

h

Π(g(s))ds = 0.

We illustrate the generality of Theorem 3.4.22 via the following corollary, expanding upon [78, Theorem 4].

Corollary 3.4.23. In case (i), with f, f ′ O-regularly varying at ∞, for a stable subordinator of index α ∈

(0, 1), a necessary and sufficient condition for non-decreasing w, with limh→∞ w(h) = ∞, to be in Rg, for

g = f−1 is

w ∈ Rg ⇐⇒ lim
h→∞

∫ f(w(h)g(h))

h

g(s)−αds = 0.

Consider a stable subordinator of index α, with f(t) = tα log(t)−γ , and so g(t) ∼ t1/α log(t)γ/α as t → ∞,

where γ ∈ (αβ, 1), for β as in (3.3). One can verify that this scenario is included in case (ia), and the entropic

repulsion envelope contains the function w(t) := eln(t)γ , see [78, Remark 5] for further details.
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3.5 Proofs of Main Results

This section contains the proofs of the results stated in Section 3.4. First we state Lemmas 3.5.1 and 3.5.3,

which are proven in Sections 3.6 and 3.7, respectively.

Lemma 3.5.1. In cases (i) and (ii), as t→∞,

P (Ot) =
(
Π(g(t)) + ρ(t)

)
Φ(t) = (1 + o(1)) Π(g(t))Φ(t). (3.29)

Definition 3.5.2. In this chapter we use the following asymptotic notation:

f(x) ∼ g(x) as x→∞ if limx→∞ f(x)/g(x) = 1.

f(x) . g(x) if there exists C ∈ (0,∞) such that for all large enough x, f(x) ≤ Cg(x).

Moreover, we write f(x) & g(x) if g(x) . f(x), and

f(x) � g(x) if both f(x) & g(x) and f(x) . g(x).

Lemma 3.5.3. In cases (i) and (ii), there exists a function u(t) with limt→∞ u(t) = 0, and there exists ε > 0

such that uniformly for all A > 3, h > 0, y > g(h), and t > t0(y), and t > t0(y) as defined in (3.22), we have

ρhy(t) .
1

t log(t)1+ε

(
1 +

1

f(y)− h

)
, (3.30)

ρhy(t) ≤ u(t)Π(g(t))

(
1 +

1

f(y)− h

)
. (3.31)

Remark 3.5.4. The inequality (3.30) also holds when y = h = 0 (recall that we have imposed f(0) > 0).

The proof of this fact is omitted, as computations are much simpler without dependence on y, h. This implies∫∞
t0
ρ(s)ds <∞, so by (3.20), uniformly as t→∞,

Φ(t) = Φ(1) exp

(∫ t

1

(Π(g(s)) + ρ(s))ds

)
� exp

(∫ t

1

Π(g(s))ds

)
. (3.32)

Lemma 3.5.5. In case (i), for the function ρ as defined in (3.15), lim inft→∞ ρ(t) ≥ 0.
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3.5.1 Proofs in the I(f) <∞ Case

Proof of Theorem 3.4.12

Proof of Theorem 3.4.12. First, let us verify that Φ(∞) <∞. Recalling that g := f−1, we have

I(f) =

∫ ∞
1

f(x)Π(dx) =

∫ ∞
1

∫ f(x)

0

dyΠ(dx) =

∫ ∞
0

∫ ∞
1∨g(y)

Π(dx)dy =

∫ ∞
0

Π(1 ∨ g(y))dy. (3.33)

Now, recall from (3.20) that

Φ(∞) = Φ(1) exp

(∫ ∞
1

Π(g(s))ds+

∫ ∞
1

ρ(s)ds

)
.

By Lemma 3.5.1, as s→∞, ρ(s) = o(Π(g(s))). Then by (3.33), since I(f) <∞,

∫ ∞
1

Π(g(s))ds+

∫ ∞
1

ρ(s)ds
3.5.1

.
∫ ∞

1

Π(g(s))ds
(3.33)
< ∞,

so Φ(∞) <∞. Now, it follows by Lemma 3.5.5 that
∫∞

1
ρ(s)ds > −∞, and hence

I(f) <∞ ⇐⇒ Φ(∞) <∞. (3.34)

To show Φhy(∞) <∞, with t0(y) as defined in (3.22), recall that by (3.21),

Φhy(∞) = Φhy(t0(y)) exp

(∫ ∞
t0(y)

Π(ghy (s))ds+

∫ ∞
t0(y)

ρhy(s)ds

)
.

Now, observe that for each fixed y, h > 0, g(s) ∼ ghy (s) as s→∞, by (3.12) and the properties of g introduced

in Definition 3.4.1, so Π(g(s)) ∼ Π(ghy (s)) as s→∞, since Π is CRV at ∞. Now, applying (3.31) and (3.33),

since y and h are fixed and y > g(h) implies f(y)− h > 0, noting that s > t0(y) ensures ghy (s) > 0, we get

∫ ∞
t0(y)

Π(ghy (s))ds+

∫ ∞
t0(y)

ρhy(s)ds
(3.31)

.

(
1 +

1

f(y)− h

)∫ ∞
t0(y)

Π(g(s))ds
(3.33)
< ∞,
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and hence Φhy(∞) <∞. By (3.17) and Lemma 3.5.1, since Π(g(t)) ∼ Π(ghy (t− h)) as t→∞,

Q(Xh ∈ dy;Bh)
(3.17)

= P (Xh ∈ dy;Bh) lim
t→∞

P
(
Og

h
y

t−h
)

P (Ot)

3.5.1
= P (Xh ∈ dy;Bh) lim

t→∞

Π(ghy (t− h))Φhy(t− h)

Π(g(t))Φ(t)
= P (Xh ∈ dy;Bh)

Φhy(∞)

Φ(∞)
. (3.35)

Now we show that Q(Xh <∞) = P (C > h). By (3.35),

Q(Xh <∞) =

∫ ∞
g(h)

Q(Xh ∈ dy) =

∫ ∞
g(h)

Φhy(∞)

Φ(∞)
P (Xh ∈ dy;Oh)

=
1

Φ(∞)

∫ ∞
g(h)

∫ ∞
0

P
(
Og

h
y
v

)
dvP (Xh ∈ dy;Oh)

=
1

Φ(∞)

∫ ∞
0

∫ ∞
g(h)

P
(
Og

h
y
v

)
P (Xh ∈ dy;Oh) dv.

Now, P
(
Og

h
y
v

)
P (Xh ∈ dy;Oh) = P (Ov+h;Xh ∈ dy) by (3.13). Then by the definition (3.6) of Ov+h,

Q(Xh <∞) =
1

Φ(∞)

∫ ∞
0

∫ ∞
g(h)

P (Ov+h;Xh ∈ dy) dv =
1

Φ(∞)

∫ ∞
0

P (Ov+h;Xh > g(h)) dv

(3.6)
=

1

Φ(∞)

∫ ∞
0

P (Ov+h) dv =
1

Φ(∞)

∫ ∞
h

P (Ou) du =: P (C > h) .

Proof of Proposition 3.4.14

Proof of Proposition 3.4.14. For y > g(x), t > b > a > x > 0, with a, b, x, y fixed, and an event BX ∈ Fx,

where (Fu)u≥0 is the natural filtration of X, such that BX ⊆ Ox, consider

lim
t→∞

P
(
Xx ∈ dy;BX ; ∆

g(t)
1 ∈ (a, b)|Ot

)
. (3.36)
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If ∆
g(t)
1 ∈ ds, then Xs > g(t), so Ot is fully attained by time s, and thus Ot can be replaced by Os, yielding

(3.36) = lim
t→∞

1

P(Ot)

∫ b

a

P
(
Xx ∈ dy;BX ; ∆

g(t)
1 ∈ ds;Ot

)
= lim
t→∞

1

P(Ot)

∫ b

a

P
(
Xx ∈ dy;BX ; ∆

g(t)
1 ∈ ds;Os

)
.

Recall the definition (3.8). Given ∆
g(t)
1 > a > x, we can replace {Xx ∈ dy},BX , Os by corresponding events

{X(0,g(t))
x ∈ dy},BX(0,g(t)) , Os,X(0,g(t)) for the process X(0,g(t)) with Lévy measure restricted to (0, g(t)), i.e.

all jumps larger than g(t) are removed. These events are each independent of ∆
g(t)
1 , and since ∆

g(t)
1 is

exponentially distributed with parameter Π(g(t)), we get

(3.36) = lim
t→∞

1

P(Ot)

∫ b

a

P
(
X(0,g(t))
x ∈ dy;BX(0,g(t)) ; ∆

g(t)
1 ∈ ds;Os,X(0,g(t))

)
= lim
t→∞

1

P(Ot)

∫ b

a

P
(
X(0,g(t))
x ∈ dy;BX(0,g(t)) ;Os,X(0,g(t))

)
P
(

∆
g(t)
1 ∈ ds

)
= lim
t→∞

Π(g(t))

P(Ot)

∫ b

a

P
(
X(0,g(t))
x ∈ dy;BX(0,g(t)) ;Os,X(0,g(t))

)
e−Π(g(t))sds. (3.37)

Now, since limt→∞ e−Π(g(t))s = 1, uniformly among s ∈ (a, b),

(3.36) = lim
t→∞

Π(g(t))

P(Ot)

∫ b

a

P
(
X(0,g(t))
x ∈ dy;BX(0,g(t)) ;Os,X(0,g(t))

)
ds.

Applying Lemma 3.5.1, and recalling from (3.34) that Φ(∞) <∞ when I(f) <∞,

(3.36) =
1

Φ(∞)
lim
t→∞

∫ b

a

P
(
X(0,g(t))
x ∈ dy;BX(0,g(t)) ;Os,X(0,g(t))

)
ds (3.38)

=
1

Φ(∞)
lim
t→∞

∫ b

a

P
(
X(0,g(t))
x ∈ dy;BX(0,g(t))

∣∣Os,X(0,g(t))

)
P
(
Os,X(0,g(t))

)
ds.

Now, limt→∞ P(Os,X(0,g(t)))/P (Os) = 1, uniformly among s ∈ (a, b), so

(3.36) = lim
t→∞

∫ b

a

P
(
X(0,g(t))
x ∈ dy;BX(0,g(t))

∣∣Os,X(0,g(t))

) P (Os)
Φ(∞)

ds,
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and similarly P(X
(0,g(t))
x ∈ dy;BX(0,g(t))

∣∣Os,X(0,g(t))) ∼ P
(
Xx ∈ dy;BX

∣∣Os) as t → ∞, uniformly among

s ∈ (a, b). Then by the definition of C in (3.23),

(3.36) =

∫ b

a

P
(
Xx ∈ dy;BX

∣∣ Os) P (Os)
Φ(∞)

ds =

∫ b

a

P
(
Xx ∈ dy;BX

∣∣ Os)P (C ∈ ds)

=: Q′ (Xx ∈ dy;BX ;T ′∞ ∈ (a, b)) .

(3.39)

It is clear that (3.39) uniquely determines the limit measure Q′(·) on D[0,∞) × (0,∞). To verify that T ′∞

under Q′(·) has the desired properties, by (3.39) with BX = Ox, since x < a < s,

Q′(T ′∞ ∈ (a, b)) =

∫ ∞
g(x)

Q′ (Xx ∈ dy;Ox;T ′∞ ∈ (a, b)) =

∫ ∞
g(x)

∫ b

a

P
(
Xx ∈ dy;Ox

∣∣ Os)P (C ∈ ds)

=

∫ b

a

P
(
Xx > g(x);Ox

∣∣ Os)P (C ∈ ds) =

∫ b

a

P (C ∈ ds) = P(C ∈ (a, b)) = Q(T∞ ∈ (a, b)) = P(C ∈ (a, b)).

Similarly, by (3.39) with BX = Ox, taking limits as a→ x and b→∞, since x < s, we also have

Q′(Xx <∞) =

∫ ∞
g(x)

∫ ∞
x

P(Xx ∈ dy;Ox|Os)P(C ∈ ds)

=

∫ ∞
x

P
(
Xx > g(x);Ox

∣∣ Os)P (C ∈ ds) =

∫ ∞
x

P (C ∈ ds) = P(C > x) = Q′(T ′∞ > x),

so that T ′∞ is indeed the explosion time for the process X under Q′(·).

Proof of Proposition 3.4.15

Proof of Proposition 3.4.15. Recall ∆
g(t)
1 is the time of X’s first jump bigger than g(t), πh(X) is the sample

path of X up to time h, F1 is a functional on the excursion process, and B ⊆ Oh, B ∈ Fh, where (Fu)u≥0 is

X’s natural filtration. For fixed b > a > h > 0, disintegrating on the values of ∆
g(t)
1 and πh(X),

E
[
1{πh(X)∈B} 1{∆g(t)

1 ∈(a,b)}F1(πh((εs)s≥0))
∣∣ Ot ] (3.40)
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=

∫
ν∈B

∫
u∈(a,b)

E
[
F1(πh((εs)s≥0))

∣∣Ot;πh(X) = ν; ∆
g(t)
1 = u

]
P
(
πh(X) ∈ dν; ∆

g(t)
1 ∈ du|Ot

)
.

Given a fixed path πh(X) = ν, πh((εs)s≥0) depends only on ν, so πh((εs)s≥0) is conditionally independent

of ∆
g(t)
1 and Ot. Here, h < a < u, so the excursion process (εs)s≥0 contains only excursions of length at

most g(t), so we may replace πh((εs)s≥0) by πh((ε
g(t)
s )s≥0), where (ε

g(t)
s )s≥0 is the excursion process sampled

using the conditional excursion measure on the space of excursions of length at most g(t), so

(3.40) =

∫
B

∫ b

a

E
[
F1(πh((εg(t)s )s≥0))

∣∣πh(X) = ν
]
P
(
πh(X) ∈ dν; ∆

g(t)
1 ∈ du|Ot

)
,

Now, limt→∞ g(t) =∞, so limt→∞ E[F1(πh((ε
g(t)
s )s≥0))

∣∣ πh(X) = ν ] = E[F1(πh((εs)s≥0))
∣∣πh(X) = ν], and

by Proposition 3.4.14, limt→∞ P(πh(X) ∈ dν; ∆
g(t)
1 ∈ du|Ot) = Q′ (πh(X) ∈ dν;T ′∞ ∈ du), so we conclude

lim
t→∞

(3.40) =

∫
B

∫ b

a

E
[
F1(πh((εs)s≥0))

∣∣πh(X) = ν
]
Q′ (πh(X) ∈ dν;T ′∞ ∈ du)

=: EQ′′
[
F1(πh((εs)s≥0)) 1{πh(X)∈B} 1{T ′′∞∈(a,b)}

]
,

(3.41)

where we are able to exchange the order of limits and integration since F1 is bounded. Taking F1 ≡ 1, it

follows immediately that Q′′(·) and Q′(·) agree on D[0,∞) × (0,∞). The weak convergence as t → ∞ of

((Mt)X∆−>t≥0, (Xs)∆>s≥0,∆) under P(·|Ot) to ((Mt)XT ′′∞−>t≥0, (Xs)∞>s≥0, T
′′
∞) under Q′′(·) then follows

immediately from the fact (see e.g. [14, Ex. IV.6.3] or [78, p4113]) that for all x > 0, (Mt)Xx−>t≥0 is

uniquely determined by (εs)x>s≥0 and (Xs)x>s≥0, and both of (εs)x>s≥0 and (Xs)x>s≥0 have weak limits as

determined in (3.41). That is, we construct M pathwise via its excursions using (Xu)∞>u≥0 to determine

the timing and length of each excursion, where we sample the excursions of M until time Xs− using the

excursion measure conditional on each excursion length. Similarly, the explicit description of the behaviour

of M until time XT ′′∞− under Q′′(·) follows immediately from the definition of Q′(·) in (3.24), using the fact

that Q′′(·) and Q′(·) agree on D[0,∞)× (0,∞).
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Proof of Theorem 3.4.16

Proof of Theorem 3.4.16. As X determines the lengths and timings of excursions of M (see [14, Ex. IV.6.3]),

it follows that for all K > 0 and b > a > 0, for all t large enough that g(t) > K,

{∆g(t)
1 ∈ (a, b)} = {∆g(t)

1 ∈ (a, b)} ∩ {Mv 6= 0, for all v ∈ (X
∆
g(t)
1 −, X∆

g(t)
1 − +K)}. (3.42)

Let us assume that a weak limit measure Q̂(·) = limt→∞ P(·|Ot) exists on the space containing (Mt)t≥0. Such

a measure must agree with Q′(·) on D[0,∞)× (0,∞), as we proved in Proposition 3.4.14 that any such limit

measure is uniquely determined on D[0,∞)× (0,∞) by (3.24). It follows that for all K > 0 and b > a > 0,

lim
t→∞

P(Mv 6= 0, for all v ∈ (X
∆
g(t)
1 −, X∆

g(t)
1 − +K); ∆

g(t)
1 ∈ (a, b)|Ot) (3.43)

= Q̂(Mv 6= 0, for all v ∈ (XT̂∞−, XT̂∞− +K); T̂∞ ∈ (a, b)),

where T̂∞ is the explosion time for X under Q̂(·). But also by (3.42) and uniqueness of the limit measure on

D[0,∞)× (0,∞), we have for all K > 0 and b > a > 0,

Q̂(Mv 6= 0, for all v ∈ (XT̂∞−, XT̂∞−+K); T̂∞ ∈ (a, b)) = (3.43) = lim
t→∞

P(∆
g(t)
1 ∈ (a, b)|Ot) = Q̂(T̂∞ ∈ (a, b)),

from which it follows immediately that M is transient under Q̂(·), as required.

3.5.2 Proofs in the I (f ) =∞ Case

The next three proofs require Lemma 3.5.6, proven in Section 3.9.

Lemma 3.5.6. In case (i), for t0(y) as defined in (3.22), uniformly in h > 0, y > g(h), and t ∈ (t0(y),∞],

∫ t

t0(y)

(
Π(g(s+ h)− y)−Π(g(s))

)
ds . yf ′(y)Π(y). (3.44)
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Proof of Theorem 3.4.18

Proof of Theorem 3.4.18. For each fixed h > 0, y > g(h), we will prove qh(y) := limt→∞ P(Og
h
y

t−h)/P(Ot) <∞.

For each h > 0, y > g(h), note g(t) ∼ ghy (t − h) by the properties of g(t) given in Definition 3.4.1. Hence

Π(g(t)) ∼ Π(ghy (t− h)) as t→∞, since Π is CRV at ∞. Thus, applying Lemma 3.5.1,

lim
t→∞

P
(
Og

h
y

t−h
)

P(Ot)
= lim
t→∞

Π(ghy (t− h))Φhy(t)

Π(g(t))Φ(t)
= lim
t→∞

Φhy(t)

Φ(t)
. (3.45)

Then by (3.20) and (3.21), for t0(y) as defined in (3.22),

(3.45) =
Φhy(t0(y))

Φ(1)
lim
t→∞

exp

(∫ t

t0(y)

(
Π(ghy (s)) + ρhy(s)

)
ds−

∫ t

1

(
Π(g(s)) + ρ(s)

)
ds

)
.

By (3.30) in Lemma 3.5.3, the integral
∫∞
t0(y)

ρhy(s)ds is uniformly bounded for all h > 0, y > g(h). By Lemma

3.5.5, it follows that −
∫∞

1
ρ(s)ds <∞, so

(3.45) .
Φhy(t0(y))

Φ(1)
lim
t→∞

exp

(∫ t

t0(y)

Π(ghy (s))ds−
∫ t

1

Π(g(s))ds

)

.
Φhy(t0(y))

Φ(1)
lim
t→∞

exp

(∫ t

t0(y)

(
Π(ghy (s))−Π(g(s))

)
ds

)
.

Applying Lemma 3.5.6, and recalling that yf ′(y)Π(y) decreases to zero as y →∞, we get

(3.45) .
Φhy(t0(y))

Φ(1)
exp

(
yf ′(y)Π(y)

)
<∞.

Now, qh(y) := limt→∞ P(Og
h
y

t−h)/P(Ot) is non-decreasing in y since for all y < y′, ghy (t) = g(t + h) − y >

g(t + h) − y′ = ghy′(t), and so P(Og
h
y

t−h) ≤ P(O
gh
y′

t−h). Finally, we conclude by (3.17) that Q (Xh ∈ dy;Bh) =

P (Xh ∈ dy;Bh) qh(y), as required.
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3.5.3 Proof of Proposition 3.4.19

Proof of Proposition 3.4.19. For h > 0, limt→∞ P (Xh ∈ (g(h),∞)|Ot) = 1. We will prove by dominated

convergence (Theorem A.3.1) that limits and integration can be exchanged from (3.46) to (3.47), so by

(3.17), for each h > 0,

1 = lim
t→∞

P (Xh ∈ (g(h),∞)|Ot) = lim
t→∞

∫ ∞
g(h)

P (Xh ∈ dy|Ot)

(3.17)
= lim

t→∞

∫ ∞
g(h)

P(Og
h
y

t−h)

P(Ot)
P (Xh ∈ dy;Oh) (3.46)

=

∫ ∞
g(h)

lim
t→∞

P(Og
h
y

t−h)

P(Ot)
P (Xh ∈ dy;Oh) (3.47)

= Q (Xh ∈ (g(h),∞)) , (3.48)

as required. For A > 3 ∨ (B − 1), we will bound the integral over (g(h),∞) via:

[
g(t− h)

A
,∞
)
∪ (g(h), g(h+ 1)] ∪

(
g(h+ 1),

g(t− h)

A

)
=: I1 ∪ I2 ∪ I3. (3.49)

Proof for I1 Recall that g = f−1. Since y ∈ I1 if and only if t ≤ f(Ay) + h, by Lemma 3.5.1, we get

∫ ∞
g(h)

1{y∈I1}
P(Og

h
y

t−h)

P(Ot)
P (Xh ∈ dy;Oh) .

∫ ∞
g(h)

1{y∈I1}

Π(g(t))Φ(t)
P (Xh ∈ dy) =

P
(
Xh ≥ g(t−h)

A

)
Π(g(t))Φ(t)

.

Now, I(f) =∞, so limt→∞ Φ(t) =∞ by (3.34), and it suffices to show that

lim sup
t→∞

P
(
Xh ≥ g(t−h)

A

)
Π(g(t))

(3.50)

is finite for each fixed h > 0, as the integal in (3.46) over the region I1 tends to 0 as t→∞, so the dominated

convergence theorem applies, trivially, on I1, since the limit of the integral is simply zero, and the integral

over I1 does not contribute to the value of (3.46).
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Recall the notation in (3.9). Observe that ∆
g(t)
1 has exponential distribution of rate Π(g(t)), so

P
(
Xh ≥

g(t− h)

A

)
= P

(
Xh ≥

g(t− h)

A
; ∆

g(t)
1 > h

)
+ P

(
Xh ≥

g(t− h)

A
; ∆

g(t)
1 ≤ h

)
≤ P

(
X

(0,g(t))
h ≥ g(t− h)

A

)
+ P

(
∆
g(t)
1 ≤ h

)
= P

(
X

(0,g(t))
h ≥ g(t− h)

A

)
+ 1− e−hΠ(g(t))

≤ P
(
X

(0,g(t))
h ≥ g(t− h)

A

)
+ hΠ(g(t)), (3.51)

where X(0,g(t)) has the same Lévy measure as X, but restricted to (0, g(t)), so X(0,g(t)) has no jumps larger

than g(t). By (3.51) and Markov’s inequality (Theorem A.2.1),

(3.50)− h ≤ lim sup
t→∞

P
(
X

(0,g(t))
h ≥ g(t−h)

A

)
Π(g(t))

. lim sup
t→∞

AE[X
(0,g(t))
h ]

Π(g(t))g(t− h)
= lim sup

t→∞

Ah
∫ g(t)

0
xΠ(dx)

Π(g(t))g(t− h)
.

Now, observe that

∫ g(t)

0

xΠ(dx) =

∫ g(t)

x=0

∫ x

y=0

dyΠ(dx) =

∫ g(t)

y=0

∫ g(t)

x=y

Π(dx)dy ≤
∫ g(t)

0

Π(y)dy. (3.52)

Then as Π is regularly varying at ∞, limt→∞ g(t − h)Π(g(t)) = ∞, and g(t) ∼ g(t − h) as t → ∞ (see

Definition 3.4.1), by Karamata’s theorem (Theorem A.4.3), we deduce, as required for dominated convergence

on I1, that for each h > 0,

(3.50)
(3.52)

. h+ lim sup
t→∞

Ah
∫ 1

0
Π(y)dy +Ah

∫ g(t)
1

Π(y)dy

Π(g(t))g(t− h)

A.4.3

. h+ lim sup
t→∞

Ahg(t)Π(g(t))

Π(g(t))g(t− h)

3.4.1
< ∞.

Proof for I2 By Theorem 3.4.18, qh(y) is non-decreasing in y, so by (3.26), P(Og
h
y

t−h) is non-decreasing in

y. Now, limt→∞ P(Og
h
g(h+1)

t−h )/P(Ot) = qh(g(h+ 1)) <∞ for each fixed h by Theorem 3.4.18, and we conclude
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that

lim
t→∞

∫ ∞
g(h)

1{y∈I2}
P(Og

h
y

t−h)

P(Ot)
P (Xh ∈ dy;Oh) ≤ lim

t→∞

P(Og
h
g(h+1)

t−h )

P(Ot)

∫ ∞
g(h)

1{y∈I2}P (Xh ∈ dy;Oh)

= qh(g(h+ 1))P (Xh ∈ I2;Oh) ,

which is finite for each h > 0, so dominated convergence applies on I2.

Proof for I3 By (3.19) and Lemma 3.5.1, for all large enough t,

P(Og
h
y

t−h)

P(Ot)
≤ 2

[
Π(ghy (t− h)) + ρhy(t− h)

]
Φhy(t− h)

Π(g(t))Φ(t)
.

For y ∈ I3, y > g(h + 1), so f(y) − h > f(g(h + 1)) − h = 1, and 1 + 1/(f(y) − h) < 2. By (3.31), as

limt→∞ u(t) = 0, for all large enough t and for all y ∈ I3,

P(Og
h
y

t−h)

P(Ot)
≤ 2

(
1 + u(t)

(
1 + 1

f(y)−h
))

Π(ghy (t− h))Φhy(t− h)

Π(g(t))Φ(t)

P(Og
h
y

t−h)

P(Ot)
≤ 6

Π(ghy (t− h))Φhy(t− h)

Π(g(t))Φ(t)
.

Now, recall A > 3, so y < g(t − h)/A < g(t)/3 for y ∈ I3, and by (3.12), since Π is regularly varying at ∞,

Π(ghy (t− h)) = Π(g(t)− y) . Π(g(t)), uniformly among y ∈ I3. So for each fixed h > 0, for all large enough

t, uniformly in y ∈ I3,

P(Og
h
y

t−h)

P(Ot)
.

Φhy(t− h)

Φ(t)
. (3.53)

Now, by (3.21), for t0(y) as defined in (3.22), we have

Φhy(t− h) = Φhy(t0(y)) exp

(∫ t−h

t0(y)

Π(ghy (s))ds+

∫ t−h

t0(y)

ρhy(s)ds

)
.
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Applying (3.30) and recalling that 1 + 1/(f(y) − h) < 2 for y ∈ I3, the integral
∫∞
t0(y)

ρhy(s)ds is uniformly

bounded among y, so uniformly among y ∈ I3,

Φhy(t− h) . Φhy(t0(y)) exp

(∫ t−h

t0(y)

Π(ghy (s))ds

)
.

By Lemma 3.5.5, lim inft→∞ ρ(t) ≥ 0, so lim inft→∞
∫ t

1
ρ(s)ds > −∞, then by (3.18),

Φ(t) = Φ(1) exp

(∫ t

1

Π(g(s))ds+

∫ t

1

ρ(s)ds

)
& exp

(∫ t

1

Π(g(s))ds

)
.

Since y > g(h+ 1) in I3, recalling (3.22), t0(y) ≥ f(Ay) > f(y) ≥ h+ 1 > 1, so

Φhy(t− h)

Φ(t)
. Φhy(t0(y)) exp

(∫ t−h

t0(y)

Π(ghy (s))ds−
∫ t

1

Π(g(s))ds

)

≤ Φhy(t0(y)) exp

(∫ t

t0(y)

(
Π(ghy (s))−Π(g(s))

)
ds−

∫ t0(y)

1

Π(g(s))ds

)
.

Now, by Lemma 3.5.6, since yf ′(y)Π(y) decreases to zero as y →∞, we have uniformly among y > g(h),

∫ t

t0(y)

(
Π(ghy (s))−Π(g(s))

)
ds ≤

∫ ∞
t0(y)

(
Π(ghy (s))−Π(g(s))

)
ds . sup

y>g(h)

yf ′(y)Π(y) <∞.

So for each fixed h > 0, uniformly among y > g(h), by (3.14),

lim
t→∞

Φhy(t− h)

Φ(t)
. Φhy(t0(y))e−

∫ t0(y)
1 Π(g(s))ds ≤ t0(y)e−

∫ t0(y)
1 Π(g(s))ds. (3.54)

Now, it follows from (3.53) and (3.54) that for each fixed h > 0, uniformly for all t large enough,

∫ ∞
g(h)

1{y∈I3}
P(Og

h
y

t−h)

P(Ot)
P (Xh ∈ dy;Oh) .

∫ ∞
g(h)

1{y∈I3}t0(y)e−
∫ t0(y)
1 Π(g(s))dsP (Xh ∈ dy;Oh) . (3.55)
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Now (by choice of A = A(f) sufficiently large if necessary) we have t0(y) = f(Ay) ∨ (1 + 2/A) = f(Ay) for

all y > g(h + 1) > g(1). Then writing ζ(x) := xe−
∫ x
1

Π(g(u))du, noting ζ(·) is differentiable with ζ ′(x) =

(1− xΠ(g(x)))e−
∫ x
1

Π(g(u))du > 0 for all large enough x since limx→∞ xΠ(g(x)) = 0, and noting ζ(1) = 1,

(3.55) =

∫ ∞
g(h)

1{y∈I3}f(Ay)e−
∫ f(Ay)
1 Π(g(s))dsP (Xh ∈ dy;Oh)

=

∫ ∞
g(h+1)

f(Ay)e−
∫ f(Ay)
1 Π(g(s))dsP (Xh ∈ dy;Oh)

≤
∫ ∞
g(h+1)

f(Ay)e−
∫ f(Ay)
1 Π(g(s))dsP (Xh ∈ dy) =

∫ ∞
g(h+1)

ζ(f(Ay))P (Xh ∈ dy)

=

∫ ∞
g(h+1)

(∫ f(Ay)

1

ζ ′(x)dx+ 1

)
P (Xh ∈ dy)

= P (Xh ≥ g(h+ 1)) +

∫ ∞
g(h+1)

∫ f(Ay)

1

ζ ′(x)dxP (Xh ∈ dy) .

Changing the order of integration, and applying the result that for each fixed c, h > 0, P(Xh ≥ z) � Π(z),

uniformly in z > c, since Π is regularly varying, see [52, Theorem 1 (iii)], we get

∫ ∞
1

ζ ′(x)

∫ ∞
g(h+1)∨ g(x)

A

P (Xh ∈ dy) dx ≤
∫ ∞

1

ζ ′(x)

∫ ∞
g(x)
A

P (Xh ∈ dy) dx =

∫ ∞
1

ζ ′(x)P
(
Xh ≥

g(x)

A

)
dx

�
∫ ∞

1

ζ ′(x)Π

(
g(x)

A

)
dx .

∫ ∞
1

ζ ′(x)Π (g(x)) dx

=

∫ ∞
1

(
e−
∫ x
1

Π(g(u))du − xΠ(g(x))e−
∫ x
1

Π(g(u))du
)

Π (g(x)) dx

≤
∫ ∞

1

e−
∫ x
1

Π(g(u))duΠ (g(x)) dx =

∫ ∞
1

d

dx

(
−e−

∫ x
1

Π(g(u))du
)
dx <∞,

and therefore (3.55) <∞, so the dominated convergence theorem applies on I3, and the order of limits and

integration can be swapped between (3.46) and (3.47), as required.
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3.5.4 Proof of Proposition 3.4.20

Proof of Proposition 3.4.20. Recall πh(X) is the sample path of X up to time h, F1 is a functional on the

excursion process, and B ⊆ Oh, B ∈ Fh, where (Fu)u≥0 is X’s filtration. Disintegrating on the value of

πh(X) ∈ B,

E
[
F1(πh((εs)s≥0)) 1{πh(X)∈B} | Ot

]
(3.56)

=

∫
ν∈B

E
[
F1(πh((εs)s≥0))

∣∣Ot;πh(X) = ν
]
P
(
πh(X) ∈ dν|Ot

)
.

Given a fixed path πh(X) = ν, πh((εs)s≥0) depends only on ν, so πh((εs)s≥0) is conditionally independent

of Ot, and then since limt→∞ P(πh(X) ∈ dν|Ot) = Q(πh(X) ∈ dν) by Theorem 3.4.18,

lim
t→∞

(3.56) = lim
t→∞

∫
B
E
[
F1(πh((εs)s≥0))

∣∣πh(X) = ν
]
P (πh(X) ∈ dν|Ot)

3.4.18
=

∫
B
E
[
F1(πh((εs)s≥0))

∣∣πh(X) = ν
]
Q(πh(X) ∈ dν) (3.57)

=: EQ′′
[
F1(πh((εs)s≥0)) 1{πh(X)∈B}

]
,

where we can swap the order of limits and integration since F1 is bounded. Taking F1 ≡ 1, it follows

immediately that Q′′(·) and Q(·) agree on D[0,∞). The weak convergence as t → ∞ of ((Mt)t≥0, (Xs)s≥0)

under P(·|Ot) to ((Mt)t≥0, (Xs)s≥0) under Q′′(·) then follows immediately from the fact (see e.g. [14, Ex.

IV.6.3] or [78, p4113]) that for all x > 0, (Mt)t≥0 is uniquely determined by (εs)s≥0 and (Xs)s≥0, and both

of (εs)s≥0 and (Xs)s≥0 have weak limits as determined in (3.57). That is, we construct M pathwise via

its excursions using (Xu)u≥0 to determine the timing and length of each excursion, where we sample the

excursions of M using the excursion measure conditional on each excursion length. The fact that M is

recurrent under Q′′(·) follows immediately from this construction, since X does not explode to infinity by

Proposition 3.4.19.
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Proof of Theorem 3.4.22

Lemmas 3.5.7, 3.5.8, 3.5.9, and 3.5.10, proven in Sections 3.8, 3.9, are required for the proof of Theorem

3.4.22. We shall use the notation µ(ds) � ν(ds) for measures, meaning that there exist α, β > 0 such that

for each measurable set A, αµ(A) ≤ ν(A) ≤ βµ(A).

Lemma 3.5.7. For each subordinator and g = f−1 in case (ia), there exist K,h0 > 0 such that for all

h > h0, with Π(y) = y−αL(y), uniformly in y > K,

P (Xh ∈ g(h)dy;Oh) � y−1−αL(g(h)y)

L(g(h))
P(Oh)dy. (3.58)

Lemma 3.5.8. In case (i), for δ > 0 small enough that 0 < f(0) < f(δ) < 1, uniformly for all h > 0 and

y > g(h+ f(δ)),

qh(y) � Φhy(f(Ay)) exp

(
−
∫ f(Ay)

1

Π(g(s))ds

)
.

Lemma 3.5.9. For a subordinator and a function g = f−1 as in case (ia), let S
∆
g(h)
1

denote the size of its

first jump of size greater than g(h). Then there exists h0 > 0 such that uniformly for all h > h0 and v > 1,

P
(
S

∆
g(h)
1
∈ g(h)dv

)
=

Π(g(h)dv)

Π(g(h))
� L(g(h)v)

L(g(h))
v−1−αdv.

In particular there is x0 ∈ (0,∞) so that for all x > x0, with Π(dx) = u(x)dx,

u(x) � x−1Π(x) = L(x)x−1−α. (3.59)

Lemma 3.5.10. Recall the notation (3.14) , (3.22). If h > 0, y > g(h), and t ≥ f(Ay), for A > 3 ∨ (B − 1),

then Φhy(t) ≥ f(y)− h.

Proof of Theorem 3.4.22. By Proposition 3.4.19, Q′′(Xh ∈ (g(h),∞)) = Q(Xh ∈ (g(h),∞)) = 1, h ≥ 0,

when I(f) =∞, so since Q′′(·) and Q(·) agree on the space D[0,∞) containing X, by Definition 3.4.21,

w ∈ Rg ⇐⇒ lim
h→∞

Q (Xh ∈ (g(h), w(h)g(h))) = 0. (3.60)
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Now, by Theorem 3.4.18,

lim
h→∞

Q (Xh ∈ (g(h), w(h)g(h))) = lim
h→∞

∫ w(h)g(h)

g(h)

qh(y)P (Xh ∈ dy;Oh) . (3.61)

We begin by showing that if limh→∞
∫ f(w(h)g(h))

h
Π(g(s))ds = 0, then w ∈ Rg.

Proof of Sufficient Condition Let limh→∞
∫ f(w(h)g(h))

h
Π(g(s))ds = 0. To show w ∈ Rg, we will show

that the limit of the integral in (3.61) is zero on each of

[g(h), g(h+ 1)] ∪ [g(h+ 1),Kg(h)] ∪ [g(h+ 1) ∨Kg(h), w(h)g(h)] =: R1 ∪R2 ∪R3

separately, where K is the constant as in Lemma 3.5.7. Note that if g(h + 1) > Kg(h), then we need only

consider R1 ∪R3. Since g is non-decreasing, we only need to consider the value K if K > 1.

Proof for R1 By Theorem 3.4.18, qh(y) is non-decreasing in y, so

lim
h→∞

∫ g(h+1)

g(h)

qh(y)P (Xh ∈ dy;Oh) (3.62)

≤ lim
h→∞

qh(g(h+ 1))

∫ g(h+1)

g(h)

P (Xh ∈ dy;Oh) ≤ lim
h→∞

qh(g(h+ 1))P (Oh) .

Applying Lemma 3.5.8, then applying Lemma 3.5.1,

(3.62) . lim
h→∞

Φhg(h+1)(f(Ag(h+ 1)))e−
∫ f(Ag(h+1))
1 Π(g(s))dsP (Oh)

= lim
h→∞

Φhg(h+1)(f(Ag(h+ 1)))e−
∫ f(Ag(h+1))
1 Π(g(s))dsΦ(h)Π(g(h)).
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Now, Φhg(h+1)(f(Ag(h+ 1))) ≤ f(Ag(h+ 1)) . h, and f(Ag(h+ 1)) ≥ h, as f = g−1 is O-regularly varying,

increasing, and A > 1. By (3.32) and (3.3),

(3.62) . lim
h→∞

he−
∫ f(Ag(h+1))
1 Π(g(s))dsΦ(h)Π(g(h))

≤ lim
h→∞

he−
∫ h
1

Π(g(s))dsΦ(h)Π(g(h))
(3.32)

. lim
h→∞

hΠ(g(h))
(3.3)
= 0.

Proof for R2 Recall that we only need to consider R2 when g(h + 1) < Kg(h), in which case K must

satisfy K > 1. By Theorem 3.4.18, qh(y) is non-decreasing in y, so

lim
h→∞

∫ Kg(h)

g(h+1)

qh(y)P (Xh ∈ dy;Oh) (3.63)

≤ lim
h→∞

qh(Kg(h))

∫ Kg(h)

g(h+1)

P (Xh ∈ dy;Oh) ≤ lim
h→∞

qh(Kg(h))P (Oh) .

Applying Lemma 3.5.1, then Lemma 3.5.8. (note g(h+ f(δ)) < g(h+ 1) < Kg(h) for δ > 0 in Lemma 3.5.8),

(3.63)
3.5.1
≤ lim

h→∞
qh(Kg(h))Φ(h)Π(g(h)).

3.5.8

. lim
h→∞

ΦhKg(h)(f(AKg(h)))e−
∫ f(AKg(h))
1 Π(g(s))dsΦ(h)Π(g(h)).

Observe that ΦhKg(h)(t) ≤ t for all t > 0, by (3.14), and f(AKg(h)) ≥ f(g(h)) = h since f increasing and

A,K > 1. Moreover, as f is O-regularly varying at ∞, f(AKg(h)) . f(g(h)) = h, as h→∞, so

(3.63) ≤ lim
h→∞

f(AKg(h)) exp

(
−
∫ f(AKg(h))

1

Π(g(s))ds

)
Φ(h)Π(g(h)).

≤ lim
h→∞

f(AKg(h)) exp

(
−
∫ h

1

Π(g(s))ds

)
Φ(h)Π(g(h))

. lim
h→∞

h exp

(
−
∫ h

1

Π(g(s))ds

)
Φ(h)Π(g(h)).
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By (3.32), Φ(h) � exp(
∫ h

1
Π(g(s))ds) as h → ∞, so as limh→∞ hΠ(g(h)) = 0 by (3.3), we conclude that

(3.63) = 0, so the integral over R2 is zero, and thus

lim
h→∞

∫
R1∪R2

qh(y)P (Xh ∈ dy;Oh) = 0. (3.64)

Proof for R3 Now we wish to show convergence to zero of

∫ w(h)g(h)

g(h+1)∨Kg(h)

qh(y)P (Xh ∈ dy;Oh) =

∫ w(h)

g(h+1)
g(h)

∨K
qh(g(h)v)P (Xh ∈ g(h)dv;Oh) . (3.65)

Applying Lemma 3.5.7, then changing variables back to y = g(h)v, recalling that Π(g(h)) = g(h)−αL(g(h)),

then applying Lemma 3.5.1, as h→∞,

(3.65)
3.5.7�

∫ w(h)

g(h+1)
g(h)

∨K
qh(g(h)v)v−1−αL(g(h)v)

L(g(h))
P(Oh)dv

=
P (Oh) g(h)α

L(g(h))

∫ w(h)

g(h+1)
g(h)

∨K
qh(g(h)v)g(h)−αv−1−αL(g(h)v)dv

=
P (Oh)

Π(g(h))

∫ w(h)g(h)

g(h+1)∨Kg(h)

qh(y)y−1−αL(y)dy
3.5.1∼ Φ(h)

∫ w(h)g(h)

g(h+1)∨Kg(h)

qh(y)y−1−αL(y)dy.

Changing variables (u = Ay), applying Lemma 3.9 and then the uniform convergence theorem (Theorem

A.4.1), as L is slowly varying at ∞ and Φhy(f(u)) ≤ f(u), it follows that as h→∞,

(3.65)
3.9� Φ(h)

∫ w(h)g(h)

g(h+1)∨Kg(h)

Φhy(f(Ay)) exp

(
−
∫ f(Ay)

1

Π(g(s))ds

)
y−1−αL(y)dy

≤ Φ(h)

∫ w(h)g(h)

Kg(h)

Φhy(f(Ay)) exp

(
−
∫ f(Ay)

1

Π(g(s))ds

)
y−1−αL(y)dy

. Φ(h)

∫ Aw(h)g(h)

AKg(h)

Φhy(f(u)) exp

(
−
∫ f(u)

1

Π(g(s))ds

)
u−1−αL(u)du

≤ Φ(h)

∫ Aw(h)g(h)

AKg(h)

f(u) exp

(
−
∫ f(u)

1

Π(g(s))ds

)
u−1−αL(u)du.
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Since A,K > 1, we can split up the integral as follows, and we will deal with each term separately:

(3.65) . Φ(h)

∫ w(h)g(h)

g(h)

f(u) exp

(
−
∫ f(u)

1

Π(g(s))ds

)
u−1−αL(u)du

+ Φ(h)

∫ Aw(h)g(h)

w(h)g(h)

f(u) exp

(
−
∫ f(u)

1

Π(g(s))ds

)
u−1−αL(u)du

=: J1(h) + J2(h). (3.66)

Proof for J2(h) As f(u) ≥ f(w(h)g(h)) ≥ f(g(h)) = h for u ≥ w(h)g(h), by (3.32),

J2(h) = Φ(h)

∫ Aw(h)g(h)

w(h)g(h)

f(u)e−
∫ f(u)
1 Π(g(s))dsu−1−αL(u)du

= Φ(h)e−
∫ h
1

Π(g(s))ds

∫ Aw(h)g(h)

w(h)g(h)

f(u)e−
∫ f(u)
h Π(g(s))dsu−1−αL(u)du

(3.32)

.
∫ Aw(h)g(h)

w(h)g(h)

f(u)e−
∫ f(u)
h Π(g(s))dsu−1−αL(u)du ≤

∫ Aw(h)g(h)

w(h)g(h)

f(u)u−1−αL(u)du.

Since f and f ′ are O-regularly varying at ∞, one can verify that for all sufficiently large u, f(u)/u � f ′(u),

see Theorem A.4.9. Now, in case (i), uf ′(u)Π(u) decreases to 0 as u→∞, so as h→∞,

J2(h) .
∫ Aw(h)g(h)

w(h)g(h)

f ′(u)u−αL(u)du =

∫ Aw(h)g(h)

w(h)g(h)

uf ′(u)Π(u)u−1du.

≤ w(h)g(h) f ′
(
w(h)g(h)

)
Π
(
w(h)g(h)

) ∫ Aw(h)g(h)

w(h)g(h)

u−1du

= o(1)×
∫ Aw(h)g(h)

w(h)g(h)

u−1du = o(1)× log(A) = o(1), (3.67)

so limh→∞ J2(h) = 0, and J2(h) never contributes. Now we consider J1(h).
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Proof for J1(h) First, changing variables from s to v := g(s), so that s = f(v), we have

J1(h) = Φ(h)

∫ w(h)g(h)

g(h)

f(u) exp

(
−
∫ f(u)

1

Π(g(s))ds

)
u−1−αL(u)du

= Φ(h)

∫ w(h)g(h)

g(h)

f(u) exp

(
−
∫ u

g(1)

Π(v)f ′(v)dv

)
u−1−αL(u)du.

Recall u−αL(u) = Π(u), and f(u) � uf ′(u) as u→∞, so as h→∞,

J1(h) � Φ(h)

∫ w(h)g(h)

g(h)

f ′(u) exp

(
−
∫ u

g(1)

Π(v)f ′(v)dv

)
u−αL(u)du

= Φ(h)

∫ w(h)g(h)

g(h)

f ′(u)Π(u) exp

(
−
∫ u

g(1)

Π(v)f ′(v)dv

)
du.

Changing variables from u to z := e−
∫ u
g(1)

Π(v)f ′(v)dv and applying (3.32), it follows that as h→∞,

J1(h) � Φ(h)
[
e
−
∫ g(h)

g(1)
Π(v)f ′(v)dv − e−

∫w(h)g(h)

g(1)
Π(v)f ′(v)dv

]
= Φ(h)

[
e−
∫ h
1

Π(g(s))ds − e−
∫ f(w(h)g(h))
1 Π(g(s))ds

]
(3.32)
� 1− e−

∫ f(w(h)g(h))
h Π(g(s))ds. (3.68)

Thus by (3.64), (3.67) and (3.68), whenever limh→∞
∫ f(w(h)g(h))

h
Π(g(s))ds = 0, w is in the entropic repulsion

envelope Rg, as required for the sufficient condition. In this case, limh→∞ J1(h) = 0.

Now we will prove the converse, that is, if w ∈ Rg, then limh→∞
∫ f(w(h)g(h))

h
Π(g(s))ds = 0.

Proof of Necessary Condition Let w ∈ Rg. Then by (3.26),

0 = lim
h→∞

Q (Xh ∈ (g(h), w(h)g(h)))

= lim
h→∞

∫ w(h)g(h)

g(h)

qh(y)P (Xh ∈ dy;Oh) = lim
h→∞

∫ w(h)g(h)

Kg(h)

qh(y)P (Xh ∈ dy;Oh) ,
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since the limit of the integral over R1 ∪R2 = (g(h),Kg(h)) is always zero by (3.64), regardless of whether or

not limh→∞
∫ f(w(h)g(h))

h
Π(g(s))ds = 0. Changing variables to v = y/g(h), then applying Lemma 3.5.7,

0 = lim
h→∞

∫ w(h)

K

qh(g(h)v)P (Xh ∈ g(h)dv;Oh)
3.5.7
= lim

h→∞
P(Oh)

∫ w(h)

K

qh(g(h)v)v−1−αL(g(h)v)

L(g(h))
dv.

Changing variables to y = g(h)v and recallling that Π(g(h)) = g(h)−αL(g(h)), then applying Lemmas 3.5.1,

3.5.8, and 3.5.10,

0 = lim
h→∞

P(Oh)

Π(g(h))

∫ w(h)g(h)

Kg(h)

qh(y)y−1−αL(y)dy
3.5.1
= lim

h→∞
Φ(h)

∫ w(h)g(h)

Kg(h)

qh(y)y−1−αL(y)dy

3.5.8
= lim

h→∞
Φ(h)

∫ w(h)g(h)

Kg(h)

Φhy(f(Ay))e−
∫ f(Ay)
1 Π(g(s))dsy−1−αL(y)dy

3.5.10
≥ lim

h→∞

[
Φ(h)

∫ w(h)g(h)

Kg(h)

f(y)e−
∫ f(Ay)
1 Π(g(s))dsy−1−αL(y)dy

− hΦ(h)

∫ w(h)g(h)

Kg(h)

e−
∫ f(Ay)
1 Π(g(s))dsy−1−αL(y)dy

]

=: lim
h→∞

[I1 − I2] .

First we consider I2. Note that AK > 1, so f(Ay) ≥ f(AKg(h)) ≥ h for all y ≥ Kg(h). Then since

Φ(h) � e−
∫ h
1

Π(g(s))ds by (3.32),

lim
h→∞

|I2| ≤ lim
h→∞

hΦ(h)

∫ w(h)g(h)

Kg(h)

e−
∫ h
1

Π(g(s))dsy−1−αL(y)dy . lim
h→∞

h

∫ w(h)g(h)

Kg(h)

y−1−αL(y)dy.

By (3.59), y−1−αL(y)dy � Π(dy), so as Π is regularly varying at ∞, by (3.3),

lim
h→∞

|I2|
(3.59)

. lim
h→∞

h

∫ w(h)g(h)

Kg(h)

Π(dy) ≤ lim
h→∞

hΠ(Kg(h)) . lim
h→∞

hΠ(g(h))
(3.3)
= 0,

so I2 = 0, and thus limh→∞ I1 ≤ 0. As I1 is non-negative, limh→∞ I1 = 0. Now, changing variables to

v := Ay, as f is O-regularly varying at∞ and L is slowly varying at∞, by the uniform convergence theorem
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(Theorem A.4.1),

0 = lim
h→∞

I1 = lim
h→∞

Φ(h)

∫ Aw(h)g(h)

AKg(h)

f
( v
A

)
e−
∫ f(v)
1 Π(g(s))dsv−1−αAαL

( v
A

)
dv

A.4.1
= lim

h→∞
Φ(h)

∫ Aw(h)g(h)

AKg(h)

f(v)e−
∫ f(v)
1 Π(g(s))dsv−1−αL(v)dv.

Recall v−αL(v) = Π(v), and f(v) � vf ′(v) for all large enough v, because f , f ′ are O-regularly varying at

∞, see Theorem A.4.9. Then

0 = lim
h→∞

Φ(h)

∫ Aw(h)g(h)

AKg(h)

f(v)e−
∫ f(v)
1 Π(g(s))dsv−1Π(v)dv

A.4.9
= lim

h→∞
Φ(h)

∫ Aw(h)g(h)

AKg(h)

f ′(v)Π(v)e−
∫ f(v)
1 Π(g(s))dsdv.

Now, one can verify that P (v) :=
∫ v
g(1)

Π(u)f ′(u)du =
∫ f(v)

1
Π(g(s))ds by changing variables from u to

s = f(u). Then as A > 3 and P ′(v) = Π(v)f ′(v) ≥ 0,

0 = lim
h→∞

Φ(h)

∫ Aw(h)g(h)

AKg(h)

P ′(v)e−P (v)dv

≥ lim
h→∞

[
Φ(h)

∫ w(h)g(h)

g(h)

P ′(v)e−P (v)dv − Φ(h)

∫ AKg(h)

g(h)

P ′(v)e−P (v)dv

]

=: lim
h→∞

[K1 −K2] .

Now, recall that by (3.68), for all large enough h,

K1 � J1 �
(

1− e−
∫ f(w(h)g(h))
h Π(g(s))ds

)
. (3.69)

So if we prove limh→∞K1 = 0, then limh→∞
∫ f(w(h)g(h))

h
Π(g(s))ds = 0, and the proof is complete. As

K1 is always non-negative, it suffices to prove that limh→∞K1 ≤ 0. To prove this, we will show that
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limh→∞ |K2| = 0. Since g = f−1, note f(v) > h for v > g(h), then as Φ(h) � e
∫ h
1

Π(g(s))ds by (3.32),

lim
h→∞

|K2| = lim
h→∞

Φ(h)

∫ AKg(h)

g(h)

Π(v)f ′(v)e−
∫ f(v)
1 Π(g(s))dsdv

(3.32)
� lim

h→∞

∫ AKg(h)

g(h)

Π(v)f ′(v)e−
∫ f(v)
h Π(g(s))dsdv ≤ lim

h→∞

∫ AKg(h)

g(h)

vf ′(v)Π(v)v−1dv.

Recall that by assumption, vf ′(v)Π(v) decreases to 0 as v →∞, and hence

lim
h→∞

|K2| . lim
h→∞

g(h) f ′(g(h)) Π(g(h))

∫ AKg(h)

g(h)

v−1dv

= lim
h→∞

g(h) f ′(g(h)) Π(g(h))× log(AK) = 0.

Proof of Corollary 3.4.23

Proof of Corollary 3.4.23. We need to verify that a stable subordinator of index α ∈ (0, 1) satisfies (3.4),

so Theorem 3.4.22 applies. For t > 0 and x > g(t) + x0, by the scaling property of stable subordinators

(see [14, p227]),

ft(x) = t−
1
α f1

(
x

t
1
α

)
. (3.70)

Now consider the result (see [96, Theorem 1.12]) that for a stable subordinator of index α ∈ (0, 1), f1(v) ∼

cαv
−1−α as v → ∞, for cα > 0 constant. In particular, for all large enough v, f1(v) is arbitrarily close

to cαv
−1−α. Taking e.g. a′ = 2cα, it follows that there exist a′, C ∈ (0,∞) such that for all v > C,

f1(v) ≤ a′v−1−α.

As Π(dv) = u(v)dv = cv−1−αdv for a constant c > 0, if we can show that x/t1/α ≥ C for all t > 0,

x > g(t) + x0, with a suitable choice of x0 > 0, then by (3.70),

ft(x) = t−
1
α f1

(
x

t
1
α

)
≤ a′ctx−1−α = atu(x),
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for a = a′c, so condition (3.4) is satisfied, and the proof will be complete. Indeed, by (3.3), limt→∞ tΠ(g(t)) =

limt→∞ tg(t)−α = 0, so there exists D ∈ (0,∞) such that for all t > D, tg(t)−α ≤ C−α, so t1/α ≤ C−1g(t),

and hence for all t > D,

x

t
1
α

≥ g(t) + x0

t
1
α

≥ g(t)

t
1
α

≥ C.

On the other hand, if t ≤ D, then x/t1/α ≥ (g(t) +x0)/D1/α ≥ x0/D
1/α, and (choosing x0 large enough that

x0/D
1/α > C if necessary), we conclude that x/t1/α > C for all t > 0, x > g(t) + x0, so [96, Theorem 1.12]

applies to (3.70). It follows that condition (3.4) is satisfied, and so Theorem 3.4.22 applies, as required.

3.6 Proof of Lemma 3.5.1

Before proving Lemma 3.5.1, let us begin by stating Lemma 3.6.1, which is key to proving Lemmas 3.5.1 and

3.5.3, and is itself proven in Section 3.9.

Lemma 3.6.1. Let (Xt)t≥0 be a subordinator satisfying the assumptions in case (i) or (ii). Then there exists

a constant C > 0, which depends only on the law of X, such that for all t > 0, A(t) ∈ (1,∞), B(t) > 0, and

H(t) ∈ (0, 1),

P
(
X

(0,A(t))
t > B(t)

)
≤ exp

(
Ct log

(
1

H(t)

)
H(t)−

A(t)
B(t) Π(A(t))

A(t)

B(t)

)
H(t). (3.71)

Proof of Lemma 3.5.1. The strategy for proving Lemma 3.5.1 involves splitting up the probability P(Ot) into

several smaller pieces, which we bound separately. We refer the reader to Figure A.2, which provides a guide

for following the structure of the proof. Since g = f−1 is continuous, for each x > 0, t > 0,

P
(
Ot,X(0,x)

)
= P

(
Ot−,X(0,x)

)
, (3.72)
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where Ot−,X(0,x) :=
⋂
u<tOu,X(0,x) , and moreover by the definition (3.8), for all s < t,

P(Ot,X(0,x)) ≤ P
(
Os,X(0,x) ;X

(0,x)
t > g(t)

)
≤ P

(
X

(0,x)
t > g(t)

)
. (3.73)

Now, we partition and disintegrate on the value of ∆
g(t)
1 , which is exponentially distributed with rate Π(g(t)).

Then by (3.6), (3.72) and (3.8), using that X
d
= X̃(0,g(t))+X̃ [g(t),∞), where the process X̃(0,g(t)) is independent

of X̃ [g(t),∞) and hence independent of any jumps of size in [g(t),∞), we get

P(Ot|∆g(t)
1 =s)

(3.6)
= P(Os|∆g(t)

1 =s)
(3.72)

= P(Os−|∆g(t)
1 =s)

(3.8)
= P(Os−,X(0,g(t)))

(3.72)
= P(Os,X(0,g(t)));

P(Ot; ∆
g(t)
1 = s)

(3.6)
= P(Os; ∆

g(t)
1 = s)

(3.74)

so it follows that

P (Ot) = P(Ot; ∆
g(t)
1 ≤ t) + P(Ot; ∆

g(t)
1 > t)

= Π(g(t))

∫ t

0

P(Ot|∆g(t)
1 = s)e−Π(g(t))sds+ P(Ot; ∆

g(t)
1 > t)

= Π(g(t))

∫ t

0

P( Os,X(0,g(t)) ) e−Π(g(t))sds+ P(Ot; ∆
g(t)
1 > t). (3.75)

Now, observe that by the definition (3.8), P(Os|∆g(t)
1 > s) = P(Os,X(0,g(t))), so

P(Os) = P(Os; ∆
g(t)
1 ≤ s) + P(Os; ∆

g(t)
1 > s)

= P(Os; ∆
g(t)
1 ≤ s) + P(Os|∆g(t)

1 > s)P(∆
g(t)
1 > s)

= P(Os; ∆
g(t)
1 ≤ s) + P

(
Os,X(0,g(t))

)
e−Π(g(t))s. (3.76)
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Disintegrating on ∆
g(t)
1 , recalling the notation (3.7), (3.9), by (3.75), (3.76), and (3.74),

P (Ot) = Π(g(t))

∫ t

0

[
P(Os)− P(Os; ∆

g(t)
1 ≤ s)

]
ds+ P(Ot; ∆

g(t)
1 > t)

= Π(g(t))Φ(t)−Π(g(t))2

∫ t

0

∫ s

0

P(Os|∆g(t)
1 = v)e−Π(g(t))vdvds+ P(Ot; ∆

g(t)
1 > t)

(3.74)
= Π(g(t))Φ(t)−Π(g(t))2

∫ t

0

∫ s

0

P(Ov,X(0,g(t)))e−Π(g(t))vdvds+ P(Ot; ∆
g(t)
1 > t)

= : (a1)− (a2) + (a3). (3.77)

Firstly, let us show that (a2) = o(Π(g(t))Φ(t)) as t→∞. Indeed,

|(a2)| ≤ Π(g(t))2

∫ t

0

∫ s

0

P(Ov,X(0,g(t)))dvds ≤ Π(g(t))2

∫ t

0

∫ t

0

P(Ov,X(0,g(t)))dvds

= tΠ(g(t))2

∫ t

0

P(Ov,X(0,g(t)))dv ≤ tΠ(g(t))2

∫ t

0

P(Ov,X)dv = tΠ(g(t))2Φ(t) = o(Π(g(t))Φ(t)),

where the last equality holds by (3.3) in case (i), or by (3.5) in case (ii), since both imply limt→∞ tΠ(g(t)) = 0.

Now, for t ≥ 1,

Φ(t) ≥ Φ(1) = constant > 0. (3.78)

We shall use (3.78) to prove (a3) = o(Φ(t)Π(g(t))) as t→∞. For suitably large t, we partition (a3) as

(a3) = P(Ot; ∆
θg(t)
1 < t; ∆

g(t)
1 > t) + P(Ot; ∆

g1(t)
1 < t; ∆

θg(t)
1 > t) + P(Ot; ∆

g1(t)
1 > t)

=: (3A) + (3B) + (3C), (3.79)

with g1(t) := g(t)/ log(t), and θ ∈ (0, 1). Later we split (3B) into more pieces.
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Proof for (3A) We shall disintegrate on the value of ∆
(θg(t),g(t))
1 , the time of the first jump of size between

θg(t) and g(t). As this time is exponentially distributed with rate parameter Π(θg(t))−Π(g(t)),

(3A) = e−tΠ(g(t))P(Ot; ∆
(θg(t),g(t))
1 < t|∆g(t)

1 > t) = e−tΠ(g(t))P(Ot,X(0,g(t)) ; ∆
(θg(t),g(t))
1 < t)

= e−tΠ(g(t))

∫ t

0

P(Ot,X(0,g(t)) |∆(θg(t),g(t))
1 = s)Π((θg(t), g(t)))e−(Π(θg(t))−Π(g(t)))sds

≤ (Π(θg(t))−Π(g(t)))

∫ t

0

P(Ot,X(0,g(t)) |∆θg(t)
1 = s)ds

≤ (Π(θg(t))−Π(g(t)))

∫ t

0

P(Os,X(0,θg(t)))ds ≤
(

Π(θg(t))

Π(g(t))
− 1

)
Π(g(t))

∫ t

0

P(Os)ds. (3.80)

Now, limθ→1 limt→∞
(
Π(θg(t))/Π(g(t))− 1

)
= 0, as Π is CRV at ∞ in both cases, and therefore by (3.80),

(3A) = o(Π(g(t))Φ(t)) as t→∞ then θ → 1.

Partitioning (3B) Recall the notation (3.6). Disintegrating on ∆
g1(t)
1 , using the stationary independent

increments property to write Xt
d
= Xs+ X̂t−s, for X̂ an independent copy of X, as there are no jumps bigger

than θg(t) we have Xt
d
= Xs + X̂

(0,θg(t))
t−s , and so by (3.73) and (3.74), we can bound

(3B) = P(Ot; ∆
g1(t)
1 < t; ∆

θg(t)
1 > t)

= Π(g1(t))

∫ t

0

P(Ot; ∆
θg(t)
1 > t|∆g1(t)

1 = s)e−Π(g1(t))sds

≤ Π(g1(t))

∫ t

0

P(Os;Xt > g(t); ∆
θg(t)
1 > t|∆g1(t)

1 = s)ds

= Π(g1(t))

∫ t

0

P(Os; X̂(0,θg(t))
t−s +Xs− + (Xs −Xs−) > g(t); ∆

θg(t)
1 > t|∆g1(t)

1 = s)ds,

where X̂(0,θg(t)) is an independent copy of X with no jumps bigger than θg(t) as in the definition (3.8). Then

as the jump at time ∆
g1(t)
1 = s has size Xs −Xs− ≤ θg(t),

(3B) ≤ Π(g1(t))

∫ t

0

P(Os,X(0,g1(t)) ; X̂
(0,θg(t))
t−s +X

(0,g1(t))
s− > (1− θ)g(t); ∆

θg(t)
1 > t)ds

≤ Π(g1(t))

∫ t

0

P(Os,X(0,g1(t)) ; X̂
(0,θg(t))
t−s +X

(0,g1(t))
s− > (1− θ)g(t))ds.
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Partitioning according to A := {X(0,g1(t))
s− > (1− θ)g(t)/2} and Ac, using that X and X̂ are independent,

(3B) ≤ Π(g1(t))

∫ t

0

P(Os,X(0,g1(t)) ; X̂
(0,θg(t))
t−s +X

(0,g1(t))
s− > (1− θ)g(t);A)ds

+ Π(g1(t))

∫ t

0

P(Os,X(0,g1(t)) ; X̂
(0,θg(t))
t−s +X

(0,g1(t))
s− > (1− θ)g(t);Ac)ds

≤ Π(g1(t))

∫ t

0

P
(
X

(0,g1(t))
s− >

(1− θ)g(t)

2

)
ds

+ Π(g1(t))

∫ t

0

P
(
Os,X(0,g1(t)) ; X̂

(0,θg(t))
t−s >

(1− θ)g(t)

2

)
ds

≤ tΠ(g1(t))P
(
X

(0,g1(t))
t >

(1− θ)g(t)

2

)
+ Π(g1(t))P

(
X

(0,θg(t))
t >

(1− θ)g(t)

2

)∫ t

0

P (Os) ds.

=: (J1) + (J2). (3.81)

Proof for (J1), Case (i) Recall that Π(x) = x−αL(x) for L slowly varying. Then by Potter’s theorem

(Theorem A.4.2), Π(g1(t)) . log(t)2αΠ(g(t)) as t → ∞. Applying Lemma 3.6.1 with H(t) = t−n, n > 1, as

t→∞,

(J1) . t log(t)2αΠ(g(t))P
(
X

(0,g1(t))
t >

(1− θ)g(t)

2

)
3.6.1

. t log(t)2αΠ(g(t)) exp ((∗)) t−n,

(∗) . nt log(t)t
2n

(1−θ) log(t) Π(g1(t))
2g1(t)

(1− θ)g(t)
. te

2n
1−θ Π(g1(t)) . tΠ(g1(t)).

By (3.3), limt→∞(∗) = 0 for each n > 1 and θ ∈ (0, 1), so in case (i), using (3.78), we can conclude that

(J1) . log(t)2αΠ(g(t))t−(n−1) = o(Π(g(t)Φ(t)) as t→∞ then θ → 1.

Proof for (J1), Case (ii) In case (ii), for each fixed θ, let us replace g1(t) by cg(t), for small c ∈ (0, θ),

and replace (J1) by (J1′) with cg(t) in place of g1(t). As Π is O-regularly varying at ∞, as t→∞,

(J1′) = tΠ(cg(t))P
(
X

(0,cg(t))
t >

(1− θ)g(t)

2

)
. tΠ(g(t))P

(
X

(0,cg(t))
t >

(1− θ)g(t)

2

)
.
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By Lemma 3.6.1 with H(t) = t−n, for ε > 0 as in (3.5) and n > 1 + ε > 1, taking c small enough that

2cn/(1− θ) ≤ 1, it follows that as t→∞,

(J1′) . Π(g(t)) exp ((∗)) t−(n−1),

(∗) . t log(tn)t
2cn

(1−θ) Π(cg(t))
2cg(t)

(1− θ)g(t)

= tn log(t)e
2cn
1−θ Π(cg(t))

. t log(t)Π(g(t))

. t1+εΠ(g(t)).

By (3.5), limt→∞(∗) = 0 by so for each fixed θ ∈ (0, 1), (J1′) = o(Π(g(t))) as t → ∞ in case (ii), and by

(3.78), (J1′) = o(Π(g(t))Φ(t)) as t→∞ then θ → 1.

Proof for (J2), Case (i) We begin with case (i). Recall that Φ(t) :=
∫ t

0
P(Os,X)ds. Applying Markov’s

inequality (Theorem A.2.1),

(J2) = Π(g1(t))Φ(t)P
(
X

(0,θg(t))
t >

(1− θ)g(t)

2

)
≤ 2Π (g1(t)) Φ(t)

(1− θ)g(t)
E
[
X

(0,θg(t))
t

]
=

2tΠ (g1(t)) Φ(t)

(1− θ)g(t)

∫ θg(t)

0

xΠ(dx) =
2tΠ (g1(t)) Φ(t)

(1− θ)g(t)

∫ θg(t)

0

(
Π(x)−Π(θg(t))

)
dx

≤ 2tΠ(g1(t))Φ(t)

(1− θ)g(t)

∫ θg(t)

0

Π(x)dx.

As Π is regularly varying at ∞, by Karamata’s theorem (Theorem A.4.3), as t→∞,

(J2) .
2tΠ(g1(t))Φ(t)

(1− θ)g(t)
θg(t)Π(θg(t)) . tΠ(g1(t))Φ(t)Π(g(t)).

By (3.3), limt→∞ tΠ(g1(t)) = 0, so (J2) = o(Π(g(t))Φ(t)) as t→∞ for each fixed θ ∈ (0, 1).
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Proof for (J2), Case (ii) For case (ii), recall we have (J2′) with cg(t) in place of g1(t), for c ∈ (0, θ). By

Lemma 3.6.1 with H(t) = 1/ log(log(t)), since Π(c(g(t)) . Π(g(t)) as t→∞,

(J2′) = Π(cg(t))Φ(t)P
(
X

(0,θg(t))
t >

(1− θ)g(t)

2

)
.

Π(g(t))Φ(t)

log(log(t))
exp ((∗)) ,

(∗) = t log(log(log(t))) log(log(t))
2θ

1−θ Π(θg(t))
2θ

1− θ
. t log(t)2Π(g(t)).

For ε > 0 as in (3.5), observe that log(t)2 = o(tε) as t → ∞, and it follows that (∗) = o(t1+εΠ(g(t))) as

t → ∞, for each fixed θ ∈ (0, 1). Then by (3.5), (J2′) = o(Π(g(t))Φ(t)) as t → ∞ for each fixed θ ∈ (0, 1),

in case (ii).

Proof for (3C), Case (i) In case (i), by (3.73) and Lemma 3.6.1 with H(t) = Π(g(t))2, as t→∞,

(3C) = P(Ot; ∆
g1(t)
1 > t) ≤ P

(
X

(0,g1(t))
t > g(t)

)
≤ exp ((∗)) Π(g(t))2, (3.82)

(∗) . t log
(
Π(g(t))−2

)
Π(g(t))−

2
log(t)

Π(g1(t))

log(t)
.
t log

(
1

Π(g(t))

)
log(t)

(
1

Π(g(t))

) 2
log(t)

Π(g1(t)).

Now we split into subsets of t > 0 (if one subset is bounded, we need only consider the other). Fix M > 6/α.

First we consider all t > 0 for which g(t) ≤ tM . Recall Π(x) = x−αL(x) with L slowly varying at ∞, and

moreover limt→∞ tΠ(g1(t)) = 0 by (3.3). Then as g(t)1/M ≤ t→∞, we have

(∗) .
log
(

1
Π(g(t))

)
log(t)

(
1

Π(g(t))

) 2
log(t)

=
log
(
g(t)αL(g(t))−1

)
log(t)

g(t)
2α

log(t)L(g(t))−
2

log(t) .
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As L is slowly varying at ∞, g(t)αL(g(t))−1 ≤ g(t)2α, so as g(t)1/M ≤ t→∞,

(∗) .
log
(
g(t)2α

)
log(t)

g(t)
4α

log(t) .
log
(
t2αM

)
log(t)

t
4αM
log(t) = 2αMe4αM <∞.

Therefore for all t > 0 for which g(t) ≤ tM , we can conclude by (3.82) and (3.78) that (3C) . Π(g(t))2 =

o(Π(g(t))Φ(t)) as t→∞.

For all t > 0 such that g(t) ≥ tM , as t → ∞, log(1/Π(g(t))) ≤ Π(g(t))−1/3, Π(g(t))−2/ log(t) ≤ Π(g(t))−1/3,

and Π(g(t)) = g(t)−αL(g(t)) . g(t)−αg(t)α/2 = g(t)−α/2 ≤ t−αM/2. Applying Potter’s theorem (Theorem

A.4.2) to Π(g1(t))/Π(g(t)) = log(t)−αL(g1(t))/L(g(t)), for each δ > 0, as g(t)1/M ≥ t→∞,

(∗) .
t log

(
1

Π(g(t))

)
log(t)

(
1

Π(g(t))

) 2
log(t)

Π(g1(t)) .
tΠ(g(t))−

1
3

log(t)
Π(g(t))−

1
3 Π(g1(t))

. tΠ(g(t))
1
3 log(t)−1−α+δ = tg(t)−

α
3 L(g(t))

1
3 log(t)−1−α+δ

. tg(t)−
α
6 log(t)−1−α+δ . t1−

αM
6 log(t)−α+δ.

Recall M > 6/α, so 1 − αM/6 < 0, and limt→∞(∗) = 0. Then by (3.78) and (3.82), (3C) = o(Π(g(t))Φ(t))

as t→∞ in case (i), as required.
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Proof for (3C), Case (ii) In case (ii), recall we have (3C ′) with cg(t) in place of g1(t). By (3.73), applying

Lemma 3.6.1 with H(t) = Π(g(t))2, for arbitrarily small η > 0, as t→∞,

(3C ′) = P (Ot; ∆
cg(t)
1 > t)

(3.73)

≤ P(X
(0,cg(t))
t > g(t))

. exp ((∗)) Π(g(t))2,

(∗) = t log
(
Π(g(t))−2

)
Π(g(t))−2ccΠ(cg(t))

. t log(1/Π(g(t)))Π(g(t))−2cΠ(g(t))

. tΠ(g(t))1−η−2c.

By (3.5), taking c, η sufficiently small, limt→∞(∗) = 0, then by (3.78), (3C ′) . Π(g(t))2 = o(Π(g(t))Φ(t)) as

t→∞ then θ → 1 in case (ii), as required.

3.7 Proof of Lemma 3.5.3

In order to prove Lemma 3.5.3, we require Lemma 3.7.1, which is proven in Section 3.9.

Lemma 3.7.1. Recalling (3.12) and (3.22), if t > t0(y), then for all y, h > 0, we have ghy (t) ≥ (1− 1/A) g(t).

Lemma 3.5.3 shall be proven by splitting up ρhy(t) into smaller pieces, and then showing that the inequalities

(3.30) and (3.31) hold for each piece separately.

Proof of Lemma 3.5.3. The strategy for proving Lemma 3.5.3 involves splitting up the probability P(Og
h
y

t )

into several smaller pieces, which we bound separately. We thus refer the reader to Figure A.3, which provides

a guide for following the structure of the proof in case (i). Similarly, Figure A.4 shows the structure of the

proof in case (ii). As with Lemma 3.5.1, Lemma 3.5.3 is simpler to prove in case (ii) than case (i) thanks to

the condition (3.5). Now, recall the notation introduced in (3.8) and (3.14). First, repeating the argument
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as in (3.77), but now with ghy (t) in place of g(t), we get

P(Og
h
y

t ) = Π(ghy (t))Φhy(t) + P
(
Og

h
y

t ; ∆
ghy (t)

1 > t

)
−Π(ghy (t))2

∫ t

0

∫ s

0

P(Og
h
y
v )e−Π(ghy (t))vdvds

≤ Π(ghy (t))Φhy(t) + P
(
Og

h
y

t,X
(0,ghy (t))

)
−Π(ghy (t))2

∫ t

0

∫ s

0

P(Og
h
y
v )e−Π(ghy (t))vdvds

≤ Π(ghy (t))Φhy(t) + P
(
Og

h
y

t,X
(0,ghy (t))

)
. (3.83)

Recall the notation (3.9), (3.10), and (3.16). By (3.83), partitioning on the value of ∆

(
ghy (t)

log(t)
,ghy (t)

)
1 , the time

of the first jump of size between ghy (t)/ log(t) and ghy (t), as there are no jumps bigger than ghy (t), we have

ρhy(t) : =
P(Og

h
y

t )

Φhy(t)
−Π(ghy (t))

(3.83)

≤ 1

Φhy(t)
P
(
Og

h
y

t,X
(0,ghy (t))

)

=
1

Φhy(t)

[
P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
ghy (t)

log(t)

1 > t
)

+ P
(
Og

h
y

t,X
(0,ghy (t))

; ∆

(
ghy (t)

log(t)
,ghy (t)

)
1 ≤ t

)]

=:
1

Φhy(t)
[(a) + (b)] . (3.84)

So to prove (3.30), we need to prove, uniformly in h > 0, y > g(h), as t→∞,

(a) + (b) .
Φhy(t)

t log(t)1+ε

(
1 +

1

f(y)− h

)
. (3.85)

For (3.31), we need suitable u so that uniformly in h > 0, y > g(h), as t→∞,

(a) + (b) ≤ Φhy(t)u(t)Π(g(t))

(
1 +

1

f(y)− h

)
. (3.86)

Recall that in case (ii), the inequality (3.31) implies the inequality (3.30), so we need only prove that (3.86)

holds in case (ii).

Proof for (a), Case (i) Recall the notation (3.13), (3.8). By Lemma 3.7.1, for all h > 0, y > g(h),

ghy (t)/ log(t) ≥ (1 − A−1)g(t)/ log(t) > 1 as t → ∞, so by (3.73), Lemma 3.5.10, and Lemma 3.6.1 with
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H(t) = t−n, for n > 1, uniformly in h > 0, y > g(h), as t→∞,

(a) = P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
ghy (t)

log(t)

1 > t
) (3.73)

≤ P
(
X

(0,
ghy (t)

log(t)
)

t > ghy (t)
)

3.5.10
≤

Φhy(t)

f(y)− h
P
(
X

(0,
ghy (t)

log(t)
)

t > ghy (t)
) 3.6.1
≤

Φhy(t)

f(y)− h
exp ((∗)) t−n, (3.87)

(∗) . t log(tn) t
n

ghy (t)

ghy (t) log(t) Π

(
ghy (t)

log(t)

)
ghy (t)

ghy (t) log(t)

= nentΠ

(
ghy (t)

log(t)

)
. (3.88)

Now, by Lemma 3.7.1 and (3.3), limt→∞ tΠ
(
ghy (t)/ log(t)

)
≤ limt→∞ tΠ ((1− 1/A)g(t)/ log(t)) = 0, uni-

formly in h > 0 and y > g(h), and thus limt→∞(∗) = 0. Then it follows that as t → ∞, uniformly in y and

h, (a) . t−nΦhy(t)/(f(y)− h) ≤ t−1 log(t)−1−εΦhy(t)/(f(y)− h), as required for (3.85).

To show (a) ≤ Φhy(t)u(t)Π(g(t))/(f(y)−h), we split into two cases according to the size of g(t). Fix large

M > 0. By (3.87), for all t > 0 such that g(t) ≤ tM , we have (a) . t−nΦhy(t)/(f(y)−h), and then by choice of

n > 1 large enough that t−n ≤ Π(g(t))2 (which is possible since Π(g(t)) ≥ Π(tM ) = t−αML(tM ) & t−αM/2),

it follows that (a) . Φhy(t)u(t)Π(g(t))/(f(y) − h) for suitable u (i.e. Π(g(t)) ≤ u(t) = o(1) as t → ∞), as

t→∞, uniformly in h > 0, y > g(h), as required for (3.86).

For all t > 0 with g(t) ≥ tM , by Lemma 3.6.1 with H(t) = Π(g(t))2, applying Lemma 3.7.1, as Π is

regularly varying at ∞, uniformly in y, h, as t→∞,

(a)
3.6.1
≤ exp ((∗)) Π(g(t))2, (3.89)

(∗) . t log
(
Π(g(t))−2

)
Π(g(t))−

2
log(t) Π

(
ghy (t)

log(t)

)
ghy (t)

ghy (t) log(t)

3.7.1

. tΠ(g(t))−
2

log(t)
log
(
Π(g(t))−2

)
log(t)

Π

(
g(t)

log(t)

)
.
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Now, note that as t → ∞, for arbitrarily small η > 0, Π(g(t))−2/ log(t) ≤ Π(g(t))−η and log
(
Π(g(t))−2

)
≤

Π(g(t))−η. Since Π(x) = x−αL(x), for L slowly varying at ∞, we have as t→∞,

(∗) . t
1

log(t)
Π

(
g(t)

log(t)

)
Π (g(t))

−2η
= t

1

log(t)
g(t)−(1−2η)α log(t)αL

(
g(t)

log(t)

)
L(g(t))−2η

. tg(t)−(1−2η)αL

(
g(t)

log(t)

)
L(g(t))−2η.

As L is slowly varying, observe that g(t) ≥ tM implies L(g(t)/ log(t)) . (g(t)/ log(t))(1−2η)α/8 . g(t)(1−2η)α/4,

and moreover L(g(t))−2η . g(t)(1−2η)α/4. Then it follows that

(∗) . tg(t)−
(1−2η)α

2 . (3.90)

Choosing M > 4/((1− 2η)α), we get g(t)−(1−2η)α/2 ≤ t−(1−2η)αM/2 ≤ t−2, so limt→∞(∗) = 0. Applying

(3.89) then Lemma 3.5.10, (a) . Π(g(t))2 ≤ Φhy(t)u(t)Π(g(t))/(f(y) − h) as t → ∞, uniformly in h > 0,

y > g(h), for suitable u (i.e. Π(g(t)) ≤ u(t) = o(1) as t→∞), as required for (3.86).

In case (ii), we partition P
(
Og

h
y

t,X
(0,ghy (t))

)
differently to in case (i), which means we have (a′) and (b′) in

place of (a) and (b). For small c ∈ (0, 1),

P
(
Og

h
y

t,X
(0,ghy (t))

)
= P

(
Og

h
y

t,X
(0,ghy (t))

; ∆
cghy (t)

1 > t

)
+ P

(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

1 ≤ t
)

=: (a′) + (b′). (3.91)

Proof for (a′), Case (ii) By (3.73) and Lemma 3.6.1 with H(t) = Π(g(t))2, as t→∞,

(a′)
(3.73)

≤ P
(
X

(0,cghy (t))

t > ghy (t)

)
3.6.1
≤ exp ((∗)) Π(g(t))2, (3.92)

(∗) . t log
(
Π(ghy (t))−2

)
Π(g(t))−2c

cghy (t)

ghy (t)
Π(ghy (t)).
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By Lemma 3.7.1, Π(ghy (t)) . Π(g(t)) as t → ∞, uniformly among y, h. So for arbitrarily small η > 0, as

t→∞, uniformly among h > 0, y > g(h),

(∗) . tΠ(g(t))1−η−2c.

Choosing c, η small enough, it follows from (3.5) that lim supt→∞(∗) = 0, so by Lemma 3.5.10 and (3.92),

(a′) . Π(g(t))2 ≤ Φhy(t)u(t)Π(g(t))/(f(y) − h) uniformly in h > 0, y > g(h), for a suitable choice of u (i.e.

Π(g(t)) ≤ u(t) = o(1) as t→∞), as required for (3.86) in case (ii).

Partitioning (b), Case (i) Now we partition (b) in case (i). Let ∆
(a,b)
m denote the time of our subordinator’s

mth jump of size larger in (a, b), as in (3.10). With β > 1 as in (3.3), for m > 0 such that m > β/(β − 1)

and m > 1/(α(β − 1)), for c ∈ (0, 1) such that 1− (m− 1)c > 0, and for all t large enough that 1/ log(t) ≤ c,

(b) = P
(
Og

h
y

t,X
(0,ghy (t))

; ∆

(
ghy (t)

log(t)
,ghy (t)

)
1 ≤ t

)
= P

(
Og

h
y

t,X
(0,ghy (t))

; ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 ≤ t; ∆

(
ghy (t)

log(t)
,cghy (t)

)
m > t; ∆

cghy (t)

1 > t
)

+ P
(
Og

h
y

t,X
(0,ghy (t))

; ∆

(
ghy (t)

log(t)
,cghy (t)

)
m ≤ t; ∆

cghy (t)

1 > t
)

+ P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

1 ≤ t
)

=: (2A) + (2B) + (2C). (3.93)

Note we do not need to consider (2A) or (2B) in case (ii), since (b′) = (2C).
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Proof for (2A), Case (i) Disintegrating on the value of ∆1 := ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 , as defined in (3.10), which

is exponentially distributed with rate Π(ghy (t)/ log(t))−Π(cghy (t)),

(2A) = P
(
Ocg

h
y

t,X
(0,ghy (t))

; ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 ≤ t; ∆

(
ghy (t)

log(t)
,ghy (t)

)
m > t; ∆

cghy (t)

1 > t
)

=

∫ t

0

P
(
Og

h
y

t,X
(0,ghy (t))

; ∆

(
ghy (t)

log(t)
,cghy (t)

)
m > t; ∆

cghy (t)

1 > t
∣∣∣ ∆1 = s

)
P
(

∆1 ∈ ds
)

≤ Π

(
ghy (t)

log(t)

)∫ t

0

P
(
Og

h
y

t,X
(0,cghy (t))

; ∆

(
ghy (t)

log(t)
,cghy (t)

)
m > t

∣∣∣ ∆1 = s
)
ds.

Now, with ∆k denoting the time of the kth jump of size between ghy (t)/ log(t) and cghy (t), we have

P
(
Og

h
y

t,X
(0,cghy (t))

; ∆

(
ghy (t)

log(t)
,cghy (t)

)
m > t

∣∣∣ ∆1 = s
)

=

m−1∑
k=1

P
(
Og

h
y

t,X
(0,cghy (t))

∣∣∣ ∆1 = s; ∆k+1 > t; ∆k ≤ t
)
P
(

∆k+1 > t; ∆k ≤ t
∣∣∣ ∆1 = s

)
≤
m−1∑
k=1

P
(
Og

h
y

t,X
(0,cghy (t))

∣∣∣ ∆1 = s; ∆k+1 > t; ∆k ≤ t
)
,

and then it follows that

(2A) ≤
m−1∑
k=1

Π

(
ghy (t)

log(t)

)∫ t

0

P
(
Og

h
y

t,X
(0,cghy (t))

∣∣∣ ∆1 = s; ∆k+1 > t; ∆k ≤ t
)
ds.
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Now, by (3.73), given that by time t there are k jumps of size Ji ∈ [ghy (t)/ log(t), cghy (t)], 1 ≤ i ≤ k, we have

X
(0,cghy (t))

t
d
= X

(
0,
ghy (t)

log(t)

)
t + J1 + · · ·+ Jk ≤ X

(
0,
ghy (t)

log(t)

)
t + kcghy (t), and so

(2A)
(3.73)

≤
m−1∑
k=1

Π

(
ghy (t)

log(t)

)∫ t

0

P
(
X

(0,cghy (t))

t > ghy (t)
∣∣∣∆1 = s; ∆k+1 > t; ∆k ≤ t

)
ds

≤
m−1∑
k=1

Π

(
ghy (t)

log(t)

)∫ t

0

P
(
X

(
0,
ghy (t)

log(t)

)
t > (1− kc)ghy (t)

)
ds

=

m−1∑
k=1

Π

(
ghy (t)

log(t)

)
t P
(
X

(
0,
ghy (t)

log(t)

)
t > (1− kc)ghy (t)

)
≤ (m− 1)Π

(
ghy (t)

log(t)

)
t P
(
X

(
0,
ghy (t)

log(t)

)
t > (1− (m− 1)c)ghy (t)

)
.

Now, limt→∞ tΠ(ghy (t)/ log(t)) ≤ limt→∞ tΠ((1− 1/A)g(t)/ log(t)) = 0 by (3.3), uniformly in h > 0, y > g(h)

by Lemma 3.7.1. Applying Lemma 3.6.1 with H(t) = t−2, as ghy (t) ≥ (1− 1/A)g(t), uniformly in h > 0, y >

g(h), as t→∞,

(2A) . P
(
X

(
0,
ghy (t)

log(t)

)
> (1− (m− 1)c)ghy (t)

)
≤ exp ((∗)) t−2, (3.94)

(∗) . t log(t2)t
2

(1−(m−1)c) log(t) Π

(
ghy (t)

log(t)

)
ghy (t)

log(t)(1− (m− 1)c)ghy (t)

=
2

1− (m− 1)c
e

2
1−(m−1)c tΠ

(
ghy (t)

log(t)

)
.

Again using that limt→∞ tΠ(ghy (t)/ log(t)) ≤ limt→∞ tΠ((1−1/A)g(t)/ log(t)) = 0 by (3.3) and Lemma 3.7.1,

it follows that limt→∞(∗) = 0, uniformly among h > 0 and y > g(h), so by Lemma 3.5.10,

(2A) . t−2 . t−1 log(t)−1−ε 3.5.10
≤ t−1 log(t)−1−εΦhy(t)/(f(y)− h)

as t→∞, uniformly in h > 0, y > g(h), as required for (3.85).

Now we prove (2A) ≤ Φhy(t)u(t)Π(g(t)) in case (i). Fixing M > 0, we split into two subsets of t > 0. For

all t > 0 such that g(t) ≤ tM , by (3.94) and Lemma 3.6.1 with H(t) = t−n, uniformly in h > 0, y > g(h), as
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g(t)1/M ≤ t→∞,

(2A)
(3.94)

. P
(
X(0,

ghy (t)

log(t)
) > (1− (m− 1)c)ghy (t)

)
≤ exp ((∗)) t−n,

(∗) . t log(tn)e
n

1−(m−1)cΠ

(
ghy (t)

log(t)

)
ghy (t)

log(t)(1− (m− 1)c)ghy (t)
. tΠ

(
ghy (t)

log(t)

)
,

then by (3.3) and Lemma 3.7.1, it follows that limt→∞(∗) = 0, uniformly among h > 0, y > g(h). Then

choosing n large enough that t−n ≤ Π(g(t))2 (this is possible as Π is regularly varying at ∞ and g(t) ≤ tM ),

by Lemma 3.5.10, (2A) . Π(g(t))2 ≤ Φhy(t)u(t)Π(g(t))/(f(y) − h) as g(t)1/M ≤ t → ∞ for suitable u (i.e.

Π(g(t)) ≤ u(t) = o(1) as t→∞), uniformly in h > 0, y > g(h), as required for (3.86).

For all t > 0 for which g(t) ≥ tM , by (3.94) and Lemma 3.6.1 with H(t) = Π(g(t))2, uniformly in h > 0, y >

g(h), as g(t)1/M ≥ t→∞,

(2A)
(3.94)

. P
(
X(0,

ghy (t)

log(t)
) > (1− (m− 1)c)ghy (t)

)
≤ exp ((∗)) Π(g(t))2, (3.95)

(∗) . t log(Π(g(t))−2)Π(g(t))−
2

(1−(m−1)c) log(t)

Π
( ghy (t)

log(t)

)
ghy (t)

log(t)(1− (m− 1)c)ghy (t)

. t log(Π(g(t))−2)Π(g(t))−
2

(1−(m−1)c) log(t)

Π
( ghy (t)

log(t)

)
log(t)

.

As Π is regularly varying at ∞, Π(x) = x−αL(x), for L slowly varying at ∞. Observe that for each η > 0,

as t → ∞, Π(g(t))−2/((1−(m−1)c) log(t)) ≤ Π(g(t))−η = g(t)αηL(g(t))−η, and moreover for all large enough t,

log(Π(g(t))−2) = log(g(t)2αL(g(t))−2) ≤ g(t)αηL(g(t))η.
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Then by Lemma 3.7.1, uniformly in h > 0, y > g(h), as g(t)1/M ≥ t→∞,

(∗) . tg(t)2αη
Π
( ghy (t)

log(t)

)
log(t)

3.7.1

. tg(t)2αη
Π
( g(t)

log(t)

)
log(t)

= tg(t)−(1−2η)α log(t)α−1L

(
g(t)

log(t)

)
. tg(t)−(1−2η)α log(t)α−1g(t)

(1−2η)α
2 log(t)−

(1−2η)α
2

≤ tg(t)−
(1−2η)α

2 . (3.96)

Now, g(t) ≥ tM , so tg(t)−(1−2η)α ≤ t1−(1−2η)αM/2, so taking M > 2/((1−2η)α), limt→∞(∗) = 0, uniformly in

y, h. Then by (3.95) and Lemma 3.5.10, it follows tha (2A)≤Π(g(t))2.Φhy(t)u(t)Π(g(t))/(f(y)−h) as t→∞,

for suitable u (i.e. Π(g(t)) ≤ u(t) = o(1) as t→∞), uniformly in h > 0, y > g(h), as required for (3.86).

Proof for (2B), Case (i) Disintegrating on the value of ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 , which is exponentially distributed

with parameter Π
(
ghy (t)/ log(t)

)
−Π(cghy (t)) ≤ Π

(
ghy (t)/ log(t)

)
, using that P(Ot) ≤ P(Os) for s ≤ t,

(2B) = P
(
Og

h
y

t,X
(0,ghy (t))

; ∆

(
ghy (t)

log(t)
,cghy (t)

)
m ≤ t; ∆

cghy (t)

1 > t
)

≤ Π

(
ghy (t)

log(t)

)∫ t

0

P
(
Og

h
y

t,X
(0,ghy (t))

; ∆

(
ghy (t)

log(t)
,cghy (t)

)
m ≤ t; ∆

cghy (t)

1 > t
∣∣ ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 = s

)
ds

≤ Π

(
ghy (t)

log(t)

)∫ t

0

P
(
Og

h
y

t,X
(0,cghy (t))

; ∆

(
ghy (t)

log(t)
,cghy (t)

)
m ≤ t

∣∣ ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 = s

)
ds

≤ Π

(
ghy (t)

log(t)

)∫ t

0

P
(
Og

h
y

s,X
(0,cghy (t))

; ∆

(
ghy (t)

log(t)
,cghy (t)

)
m ≤ t

∣∣ ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 = s

)
ds,
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By (3.72), Og
h
y
s and Og

h
y

s− are interchangeable. Observe that given ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 = s, the event Og

h
y

s−,X(0,ghy (t))

is independent of ∆

(
ghy (t)

log(t)
,cghy (t)

)
m , and moreover P(Os,X(0,x)) ≤ P(Os), so that

(2B) ≤ Π

(
ghy (t)

log(t)

)∫ t

0

P
(
Og

h
y

s−,X(0,cghy (t))
; ∆

(
ghy (t)

log(t)
,cghy (t)

)
m ≤ t

∣∣ ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 = s

)
ds

= Π

(
ghy (t)

log(t)

)∫ t

0

P
(
Og

h
y

s−,X(0,cghy (t))

∣∣ ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 = s

)
P
(

∆

(
ghy (t)

log(t)
,cghy (t)

)
m ≤ t

∣∣ ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 = s

)
ds

= Π

(
ghy (t)

log(t)

)∫ t

0

P
(
Og

h
y

s−,X(0,ghy (t)/ log(t))

)
P
(

∆

(
ghy (t)

log(t)
,cghy (t)

)
m ≤ t

∣∣ ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 = s

)
ds

≤ Π

(
ghy (t)

log(t)

)∫ t

0

P
(
Og

h
y
s

)
P
(

∆

(
ghy (t)

log(t)
,cghy (t)

)
m ≤ t

∣∣ ∆

(
ghy (t)

log(t)
,cghy (t)

)
1 = s

)
ds

≤ Π

(
ghy (t)

log(t)

)
P
(

∆

(
ghy (t)

log(t)
,cghy (t)

)
m−1 ≤ t

)∫ t

0

P
(
Og

h
y
s

)
ds ≤ Π

(
ghy (t)

log(t)

)
P
(

∆
ghy (t)

log(t)

m−1 ≤ t
)∫ t

0

P
(
Og

h
y
s

)
ds.

Now, since ∆
ghy (t)

log(t)

1 is exponentially distributed with parameter Π
(
ghy (t)/ log(t)

)
,

P
(

∆
ghy (t)

log(t)

m−1 ≤ t
)
≤ P

(
∆

ghy (t)

log(t)

1 ≤ t
)m−1

=
(

1− e−tΠ
(
ghy (t)

log(t)

))m−1

≤ tm−1Π

(
ghy (t)

log(t)

)m−1

,

so recalling the notation in (3.14), by Lemma 3.7.1, uniformly in y, h as t→∞,

(2B) ≤ Π

(
ghy (t)

log(t)

)m
tm−1Φhy(t)

3.7.1

. Π

(
g(t)

log(t)

)m
tm−1Φhy(t). (3.97)

Recall Π(x) = x−αL(x) for L slowly varying at ∞, so by Potter’s theorem (Theorem A.4.2), for arbitrarily

small δ > 0, as t→∞,

Π

(
g(t)

log(t)

)
= log(t)αg(t)−αL(g(t))

L
(
g(t)

log(t)

)
L(g(t))

. log(t)α+δΠ(g(t)). (3.98)
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Similarly, defining gβ(t) := g(t)/ log(t)β , for β > (1 + α)/(2α+ α2) > 1 as in (3.3),

Π

(
g(t)

log(t)

)
= log(t)αg(t)−αL (gβ(t))

L
(
g(t)

log(t)

)
L(gβ(t))

. log(t)α(1−β)+δβΠ(gβ(t)). (3.99)

Applying (3.98) to Π(g(t)) and (3.99) to Π(g(t))m−1, then by (3.3), as t→∞,

(2B) . log(t)mα+mδ−(m−1)αβ+δ(β−1)(m−1)Π(g(t))Π(gβ(t))m−1tm−1Φhy(t)

(3.3)

≤ log(t)mα+mδ−(m−1)αβ+δ(β−1)(m−1)Π(g(t))Φhy(t).

Now, for β as in (3.3), m > β/(β − 1), so mα − (m − 1)αβ < 0, choosing δ > 0 small enough, we conclude

(2B) ≤ u(t)Π(g(t))Φhy(t) as t → ∞, for suitable u (i.e. log(t)mα+mδ−(m−1)αβ+δ(β−1)(m−1) ≤ u(t) = o(1) as

t→∞), uniformly among h > 0, y > g(h), as required for (3.86) in case (i).

Now we prove that (2B) . t−1 log(t)−1−εΦhy(t). With gβ(t) = g(t)/ log(t)β , by (3.97) and (3.99), for arbi-

trarily small δ > 0, as t→∞, uniformly in y, h,

(2B) ≤ Π

(
g(t)

log(t)

)m
tm−1Φhy(t) . log(t)mα(1−β)+mδΠ(gβ(t))mtm−1Φhy(t).

By (3.3), Π(gβ(t)) ≤ t−1, and so (2B) . t−1 log(t)mα(1−β)+mδΦhy(t) as t → ∞. Finally, our choice of m

ensures that mα(1− β) < −1, so choosing δ small enough, we can conclude that for some ε > 0, as t→∞,

(2B) . t−1 log(t)−1−εΦhy(t)/(f(y)− h) uniformly in h > 0, y > g(h), as required for (3.85) in case (i).

Partitioning (2C) = (b′) Now we continue with the proof for cases (i) and (ii) in tandem. Recall that

(2C) = (b′) in case (ii). Define p∗(t) := 1− log(t)−γ for γ := (1−α)/(2 +α) in case (i) or γ := 1 in case (ii).
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Let ∆
(a,b)
2 denote the time of our subordinator’s second jump of size in (a, b). Then we partition:

(2C) = P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

1 ≤ t
)

= P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

1 ≤ t; ∆
(p∗(t)ghy (t),ghy (t))

1 ≤ t
)

+ P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

2 ≤ t; ∆
(p∗(t)ghy (t),ghy (t))

1 > t

)
+ P

(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

1 ≤ t; ∆
(cghy (t),ghy (t))

2 > t; ∆
(p∗(t)ghy (t),ghy (t))

1 > t

)
=: (2Ca) + (2Cb) + (2Cc). (3.100)

Now we will prove (2Ca) ≤ Φhy(t)u(t)Π(g(t)) for cases (i) and (ii) together, and then we will prove that

(2Ca) . t−1 log(t)−1−εΦhy(t) in case (i) (recall we only need (2Ca) ≤ Φhy(t)u(t)Π(g(t)) in case (ii)).

Proof for (2Ca) As c ∈ (0, 1) is fixed, c < 1− log(t)−γ = p∗(t) for all large enough t, and so

(2Ca) = P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
(p∗(t)ghy (t),ghy (t))

1 ≤ t
)
.

Disintegrating on the value of ∆
(p∗(t)ghy (t),ghy (t))

1 , which is exponentially distributed with rate parameter

Π(p∗(t)ghy (t))−Π(ghy (t)), then by (3.73) and the independence as in (3.74), it follows that

(2Ca) ≤
[
Π
(
p∗(t)ghy (t)

)
−Π

(
ghy (t)

)] ∫ t

0

P
(
Og

h
y

t,X
(0,ghy (t))

∣∣∣ ∆
(p∗(t)ghy (t),ghy (t))

1 = s

)
ds

(3.74)

≤
[
Π
(
p∗(t)ghy (t)

)
−Π

(
ghy (t)

)] ∫ t

0

P
(
Og

h
y

s,X
(0,p∗(t)ghy (t))

)
ds

≤
[
Π
(
p∗(t)ghy (t)

)
−Π

(
ghy (t)

)]
Φhy(t).

By Lemma 3.7.1, Π(ghy (t)) . Π(g(t)) uniformly across y, h, so we can write

(2Ca) ≤ Π
(
ghy (t)

)(Π
(
p∗(t)ghy (t)

)
Π
(
ghy (t)

) − 1

)
Φhy(t) . Π (g(t))

(
Π
(
p∗(t)ghy (t)

)
Π
(
ghy (t)

) − 1

)
Φhy(t). (3.101)
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As limt→∞ p∗(t) = 1 and Π is CRV at∞ in both cases, limt→∞Π(p∗(t)ghy (t))/Π(ghy (t)) = 1. Now, ghy (t) & g(t)

uniformly in h > 0, y > g(h), by Lemma 3.7.1, so by (3.101), (2Ca) ≤ Φhy(t)u(t)Π(g(t)) for suitable u

satisfying
Π
(
p∗(t)ghy (t)

)
Π
(
ghy (t)

) − 1 ≤ u(t) = o(1) as t→∞,

uniformly in h > 0, y > g(h), as required for (3.86) in cases (i) and (ii).

Now we prove (2Ca) . t−1 log(t)−1−εΦhy(t)(1 + 1/(f(y) − h)) in case (i). As Π is regularly varying at ∞,

Π(x) = x−αL(x) for L slowly varying at ∞, and by (3.101), as t→∞, uniformly in h > 0, y > g(h),

(2Ca) . Π (g(t))

(
Π
(
p∗(t)ghy (t)

)
Π
(
ghy (t)

) − 1

)
Φhy(t) = Π (g(t))

(
p∗(t)−αL(p∗(t)ghy (t))

L(ghy (t))
− 1

)
Φhy(t).

By Lemma 3.7.1, ghy (t) & g(t) uniformly in y > g(h), h > 0, as t→∞. Applying Potter’s theorem (Theorem

A.4.2) to L(p∗(t)ghy (t))/L(ghy (t)), for arbitrarily small δ > 0, uniformly in y > g(h), h > 0, as t→∞,

(2Ca) .
(
p∗(t)−α−δ − 1

)
Π(g(t))Φhy(t)

=
((

1− log(t)−γ
)−α−δ − 1

)
Π(g(t))Φhy(t) ≤ log(t)−γ

1− log(t)−γ
Π(g(t))Φhy(t),

where the last inequality holds since if α+ δ < 1 and x ∈ (0, 1), then (1− x)−α−δ − 1 ≤ x/(1− x). Now, for

β as in (3.3), gβ(t) := g(t)/ log(t)β , applying Potter’s theorem to Π(g(t))/Π(gβ(t)), we get by (3.3) that for

arbitrarily small τ > 0, Π(g(t)) . Π(gβ(t)) log(t)−αβ+βτ ≤ t−1 log(t)−αβ+βτ as t→∞. Then observing that

limt→∞(1− log(t)−γ) = 1, it follows that uniformly in y, h, as t→∞,

(2Ca) . t−1 log(t)−γ−αβ+βτΦhy(t).

Note that β > (1 + 2α)/(2α+α2) implies that γ = (1−α)/(2 +α) > 1−αβ, so we may choose τ sufficiently

small that −γ − αβ + βτ < −1− ε < −1. Then it follows that as t→∞, uniformly among h > 0, y > g(h),

(2Ca) . t−1 log(t)−1−εΦhy(t) ≤ t−1 log(t)−1−εΦhy(t)(1 + 1/(f(y)− h)), as required for (3.85) in case (i).
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Proof for (2Cb), Case (i) First we prove (2Cb) . t−1 log(t)−1−εΦhy(t) in case (i). Disintegrating on the

value of ∆
(cghy (t),ghy (t))

1 , which is exponentially distributed with rate Π(cghy (t)) − Π(ghy (t)), by independence

and by (3.72),

(2Cb) = P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

2 ≤ t; ∆
(p∗(t)ghy (t),ghy (t))

1 > t

)
≤ P

(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

2 ≤ t
)

≤ Π
(
cghy (t)

) ∫ t

0

P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

2 ≤ t
∣∣∣ ∆

(cghy (t),ghy (t))

1 = s

)
ds

≤ Π
(
cghy (t)

) ∫ t

0

P
(
Og

h
y

s,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

2 ≤ t
∣∣∣ ∆

(cghy (t),ghy (t))

1 = s

)
ds

= Π
(
cghy (t)

) ∫ t

0

P
(
Og

h
y

s,X
(0,ghy (t))

∣∣∣∆(cghy (t),ghy (t))

1 = s

)
P
(

∆
(cghy (t),ghy (t))

2 ≤ t
∣∣∣ ∆

(cghy (t),ghy (t))

1 = s

)
ds

(3.72)

≤ Π
(
cghy (t)

)
P
(

∆
(cghy (t),ghy (t))

1 ≤ t
)∫ t

0

P
(
Og

h
y
s

)
ds ≤ Π

(
cghy (t)

)
P
(

∆
cghy (t)

1 ≤ t
)∫ t

0

P
(
Og

h
y
s

)
ds.

Recall for L slowly varying at ∞, Π(x) = x−αL(x). Observe P
(
∆
cghy (t)

1 ≤ t
)

= 1− e−tΠ(cghy (t)) ≤ tΠ(cghy (t)),

so by (3.14) and Lemma 3.7.1, uniformly in h > 0, y > g(h), as t→∞,

(2Cb)
(3.14)

≤ Π
(
cghy (t)

)2
tΦhy(t)

3.7.1

. Π(g(t))2tΦhy(t) (3.102)

= g(t)−2αL(g(t))2tΦhy(t) = log(t)−2αβ

(
g(t)

log(t)β

)−2α

L

(
g(t)

log(t)β

)2
L(g(t))2

L
(

g(t)
log(t)β

)2 tΦ
h
y(t)

= log(t)−2αβΠ

(
g(t)

log(t)β

)2
L(g(t))2

L
(

g(t)
log(t)β

)2 tΦ
h
y(t).

By Potter’s theorem (Theorem A.4.2), for arbitrarily small δ > 0, as t→∞,

(2Cb) . log(t)−2αβΠ

(
g(t)

log(t)β

)2

log(t)2βδtΦhy(t).
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It follows by (3.3) that Π
(
g(t)/ log(t)β

)2
. t−2 as t→∞, and hence

(2Cb) . log(t)−2αβ log(t)2βδt−1Φhy(t).

Now, one can verify that 2αβ > 1 by (3.3). Then taking δ small enough that 2αβ − 2βδ ≥ 1 + ε > 1, it

follows that (2Cb) . t−1 log(t)−1−εΦhy(t), uniformly in y, h, as required for (3.85) in case (i).

Now we show (2Cb) ≤ Φhy(t)u(t)Π(g(t)) in cases (i) and (ii) together. By (3.102), since limt→∞ tΠ(g(t)) = 0

by (3.3) or (3.5) for cases (i) and (ii) respectively, uniformly in h > 0, y > g(h), as t→∞,

(2Cb) . Π(g(t))2tΦhy(t) = o(1)×Π(g(t))Φhy(t),

so (2Cb) ≤ Φhy(t)u(t)Π(g(t)) for suitable u (i.e. Π(g(t))t ≤ u(t) = o(1) as t → ∞), uniformly in y, h, as

required for (3.86).

Partitioning (2Cc) By the definition (3.8), disintegrating on the value of ∆c,p∗

1 := ∆
(cghy (t),p∗(t)ghy (t))

1 , which

is exponentially distributed with rate Π(cghy (t)) − Π(p∗(t)ghy (t)) ≤ Π(cghy (t)), by (3.72), (3.73), and Lemma

3.7.1, uniformly in h > 0, y > g(h), as t→∞,

(2Cc) = P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

1 ≤ t; ∆
(cghy (t),ghy (t))

2 > t; ∆
(p∗(t)ghy (t),ghy (t))

1 > t

)
≤ Π(cghy (t))

∫ t

0

P
(
Og

h
y

t,X
(0,ghy (t))

; ∆
(cghy (t),ghy (t))

2 > t; ∆
(p∗(t)ghy (t),ghy (t))

1 > t
∣∣∆c,p∗

1 = s
)
ds

(3.73)

≤ Π(cghy (t))

∫ t

0

P
(
Og

h
y

s,X
(0,cghy (t))

; X̂
(0,cghy (t))

t−s +X
(0,cghy (t))

s− > (1− p∗(t))ghy (t)
∣∣∆c,p∗

1 = s
)
ds

(3.72)
= Π(cghy (t))

∫ t

0

P
(
Og

h
y

s,X
(0,cghy (t))

; X̂
(0,cghy (t))

t−s +X
(0,cghy (t))

s− > (1− p∗(t))ghy (t)
)
ds

3.7.1

. Π(g(t))

∫ t

0

P
(
Og

h
y

s,X
(0,cghy (t))

; X̂
(0,cghy (t))

t−s +X
(0,cghy (t))

s− > (1− p∗(t))ghy (t)
)
ds,
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where X̂ is an independent copy of X, and we use that the jump at time s has size at most p∗(t)ghy (t). Recall

that 1− p∗(t) = log(t)−γ . Then partitioning according to the event
{
X

(0,cghy (t))

s− > ghy (t)/(2 log(t)γ)
}

and its

complement,

(2Cc) . Π(g(t))

∫ t

0

P

(
Og

h
y

s,X
(0,cghy (t))

; X̂
(0,cghy (t))

t−s >
ghy (t)

2 log(t)γ

)
ds

+ Π(g(t))

∫ t

0

P

(
Og

h
y

s,X
(0,cghy (t))

; X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ

)
ds

=: (S) + (S∗). (3.103)

Next we will bound (S), then later we will split up (S∗) into two more pieces.

Proof for (S), Case (i) As X̂ is an independent copy of X, we can write

(S) = Π(g(t))

∫ t

0

P
(
Og

h
y

s,X
(0,cghy (t))

)
P

(
X

(0,cghy (t))

t−s >
ghy (t)

2 log(t)γ

)
ds

≤ Π(g(t))P

(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ

)
Φhy(t). (3.104)

Since Π is regularly varying at ∞, applying Potter’s theorem (Theorem A.4.2) to Π(g(t))/Π(g(t)/ log(t)β),

for β as in (3.3) and for arbitrarily small τ > 0, by (3.3), as t→∞,

(S) . Π

(
g(t)

log(t)β

)
log(t)−αβ+τβP

(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ

)
Φhy(t) (3.105)

. t−1 log(t)−αβ+τβP

(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ

)
Φhy(t). (3.106)

Now, we will show that there exists ε > 0 such that uniformly among h > 0, y > g(h), as t→∞,

P

(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ

)
. log(t)−1−ε+αβ−τβ . (3.107)
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Then it follows from (3.106) and (3.107) that

(S) .
Φhy(t)

t log(t)1+αβ
≤

Φhy(t)

t log(t)1+ε
≤

Φhy(t)

t log(t)1+ε

(
1 +

1

f(y)− h

)
,

as t→∞, uniformly among h > 0, y > g(h), as required for (3.85) in case (i).

Moreover, it follows by (3.104) and (3.107) that for suitable u (i.e. log(t)−1−ε+αβ−τβ ≤ u(t) = o(1), as

t→∞), we have (S) ≤ Φhy(t)u(t)Π(g(t)) as t→∞, uniformly in y, h, as required for (3.86) in case (i).

Now, to prove (3.107), we set M := γ + 2/(2 + α) = (3− α)/(2 + α), and partition as follows

P

(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ

)

= P
(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ
; ∆

ghy (t)

log(t)M

1 ≤ t
)

+ P
(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ
; ∆

ghy (t)

log(t)M

1 > t
)

=: (Q) + (Q′). (3.108)

Then as ∆

ghy (t)

log(t)M

1 is exponentially distributed with rate Π(ghy (t)/ log(t)M ), we can bound

(Q) ≤ P
(

∆

ghy (t)

log(t)M

1 ≤ t
)
≤ 1− e−tΠ(ghy (t)/ log(t)M ) ≤ tΠ

(
ghy (t)

log(t)M

)
.

By Lemma 3.7.1 and (3.3), applying Theorem A.4.2 to Π(g(t)/ log(t)M )/Π(g(t)/ log(t)β), it follows that for

arbitrarily small κ > 0, uniformly in h > 0, y > g(h), as t→∞,

(Q)
3.7.1

. tΠ

(
g(t)

log(t)M

)
A.4.2

. tΠ

(
g(t)

log(t)β

)
log(t)−α(β−M)+κ(β−M)

(3.3)

. log(t)−α(β−M)+κ(β−M),

and then in order for (3.107) to hold, we need −α(β −M) + κ(β −M) ≤ −1− ε+ αβ − τβ, so taking κ, τ, ε

small enough, we need −α(β−M) < −1 +αβ, that is, (3−α)/(2 +α) = M < 2β− 1/α. This is indeed true

since β > (1 + 2α)/(2α+ α2), from which it follows that

2β − 1

α
> 2

1 + 2α

2α+ α2
− 1

α
=

2 + 4α− 2− α
2α+ α2

=
3

2 + α
>

3− α
2 + α

= M,
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and the desired bound for (Q) holds. Next we bound (Q′). By Lemma 3.6.1 with H(t) = log(t)−1−ε+αβ−τβ ,

(Q′) = P
(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ
; ∆

ghy (t)

log(t)M

1 >t
)
≤ P

(
X

(
0,

ghy (t)

log(t)M

)
t >

ghy (t)

2 log(t)γ

) 3.6.1
≤ exp((∗)) log(t)−1−ε+αβ−τβ ,

(∗) . t log(log(t)1+ε−αβ+τβ) log(t)[1+ε−αβ+τβ]2 log(t)γ−MΠ

(
ghy (t)

log(t)M

)
2 log(t)γ−M .

Now, for η > 0 small enough that η < M − γ, observe that since M > γ, as t→∞,

(∗) . t log(t)
η
2 log(t)

η
2 Π

(
ghy (t)

log(t)M

)
log(t)γ−M ≤ tΠ

(
ghy (t)

log(t)M

)
.

Now, recall M = (3− α)/(2 + α), β > (1 + 2α)/(2α+ α2), and α < 1. Then

β >
1 + 2α

2α+ α2
=

1
α + 2

2 + α
>

3

2 + α
>

3− α
2 + α

= M,

so M < β, and it follows by Lemma 3.7.1 and (3.3) that uniformly in h > 0, y > g(h), as t→∞,

(∗)
3.7.1

. tΠ

(
g(t)

log(t)M

)
≤ tΠ

(
g(t)

log(t)β

)
(3.3)
= o(1),

so the desired bounds for (Q) and (Q′) are proven, and the proof of (3.107) is complete.

Proof for (S), Case (ii) To show (S) ≤ Φhy(t)u(t)Π(g(t)) in case (ii), we show the probability in (3.104)

converges to 0 as t→∞, uniformly in h > 0, y > g(h). Splitting the probability up as in (3.108) with M = 2,

we first bound (Q). By Lemma 3.7.1, Theorem A.4.6 and (3.5), uniformly in h > 0, y > g(h), as t→∞,

(Q) = P
(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ
; ∆

ghy (t)

log(t)M

1 ≤ t
)
≤ P

(
∆

ghy (t)

log(t)M

1 ≤ t
)

= 1− e
−tΠ

(
ghy (t)

log(t)M

)
≤ tΠ

(
ghy (t)

log(t)M

)

3.7.1

. tΠ

(
g(t)

log(t)M

)
= tΠ(g(t))

Π
(

g(t)
log(t)M

)
Π(g(t))

A.4.6

. tΠ(g(t))

(
g(t)

log(t)M

)−1

Π(g(t))−1
= tΠ(g(t)) log(t)M . t1+εΠ(g(t)),
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for ε > 0 as in (3.5), so (Q) . t1+εΠ(g(t)) = o(1) as t → ∞ by (3.5). Now, to bound (Q′), by Lemma 3.6.1

with H(t) = log(t)−1, recalling that M = 2 and γ = 1 in case (ii),

(Q′) = P
(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ
; ∆

ghy (t)

log(t)M

1 >t
)
≤ P

(
X

(
0,

ghy (t)

log(t)M

)
t >

ghy (t)

2 log(t)γ

) 3.6.1
≤ exp((∗)) log(t)−1,

(∗) . t log(log(t)) log(t)2 log(t)−1

Π

(
ghy (t)

log(t)M

)
2 log(t)−1.

Now, log(log(t)) . log(t)1/2 and log(t)2 log(t)−1

. log(t)1/2 for all large enough t, so by Lemma 3.7.1, Theorem

A.4.6 and (3.5), uniformly in h > 0, y > g(h), as t→∞,

(∗) . tΠ

(
ghy (t)

log(t)M

)
≤ tΠ

(
ghy (t)

log(t)M

)
3.7.1

. tΠ

(
g(t)

log(t)M

)

= tΠ(g(t))
Π
(

g(t)
log(t)M

)
Π(g(t))

A.4.6

. tΠ(g(t))

(
g(t)

log(t)M

)−1

Π(g(t))−1
= tΠ(g(t)) log(t)M . t1+εΠ(g(t))

(3.5)
= o(1),

for ε > 0 as in (3.5), so (Q′) . log(t)−1 = o(1) as t → ∞, uniformly in y > g(h), h > 0, and hence the

probability in (3.104) converges to 0 as t → ∞, uniformly in y, h, and therefore (S) ≤ Φhy(t)u(t)Π(g(t)) as

t→∞, for suitable u satisfying

P

(
X

(0,cghy (t))

t >
ghy (t)

2 log(t)γ

)
≤ u(t) = o(1) as t→∞,

uniformly in y > g(h), h > 0, and so (S) is suitably bounded in case (ii), as required for (3.86).
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Partitioning (S∗), Case (i) Now we partition (S∗) in case (i). For γ = (1− α)/(2 + α) and δ := 1 + γ,

write gδ(t) := g(t)/ log(t)δ. Recall the notation in (3.9). Partitioning according to ∆
gδ(t)
1 > s and ∆

gδ(t)
1 ≤ s,

(S∗) = Π(g(t))

∫ t

0

P

(
Og

h
y

s,X
(0,cghy (t))

; X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ

)
ds

= Π(g(t))

∫ t

0

P

(
Og

h
y

s,X
(0,cghy (t))

; X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ
; ∆

gδ(t)
1 ≤ s

)
ds

+ Π(g(t))

∫ t

0

P

(
Og

h
y

s,X
(0,cghy (t))

; X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ
; ∆

gδ(t)
1 > s

)
ds

=: (S∗1 ) + (S∗2 ). (3.109)

Proof for (S∗1), Case (i) Disintegrating on the value of ∆
gδ(t)
1 , which is exponentially distributed with

parameter Π(gδ(t)), by (3.72) and (3.14),

(S∗1 ) ≤ Π(g(t))Π(gδ(t))

∫ t

0

∫ s

0

P
(
Og

h
y

s,X
(0,cghy (t))

;X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ
∣∣∆gδ(t)

1 = v
)
dvds

≤ Π(g(t))Π(gδ(t))

∫ t

0

∫ t

0

P
(
Og

h
y

v,X
(0,cghy (t))

;X
(0,cghy (t))

t >
ghy (t)

2 log(t)γ
∣∣∆gδ(t)

1 = v
)
dvds

= Π(g(t))Π(gδ(t))

∫ t

0

∫ t

0

P
(
Og

h
y

v,X(0,gδ(t)) ;X
(0,cghy (t))

t >
ghy (t)

2 log(t)γ
∣∣∆gδ(t)

1 = v
)
dvds

(3.72)

≤ tΠ(g(t))Π(gδ(t))

∫ t

0

P
(
Og

h
y

v,X(0,gδ(t))

)
dv

(3.14)

≤ tΠ(g(t))Π(gδ(t))Φ
h
y(t). (3.110)

As Π is regularly varying at ∞ of index α, applying Potter’s theorem (Theorem A.4.2) to Π(g(t))/Π(gβ(t))

and Π(gδ(t))/Π(gβ(t)), with gβ(t) := g(t)/ log(t)β and β as in (3.3), for arbitrarily small τ > 0, as t→∞,

(S∗1 ) . tΠ(gβ(t))2 log(t)−αβ−α(β−δ)+βτ+(β−δ)τΦhy(t),

Now, by (3.3), limt→∞ tΠ(gβ(t)) = 0, so as t→∞,

(S∗1 ) . t−1 log(t)−αβ−α(β−δ)+βτ+(β−δ)τΦhy(t).
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Now, δ = 1 + γ = 1 + (1− α)/(2 + α), and β > (1 + 2α)/(2α+ α2), from which we can deduce

−αβ − α(β − δ) = −2αβ + α

(
1 +

1− α
2 + α

)
< −2

(
1 + 2α

2 + α

)
+ α

(
3

2 + α

)
=
−2− 4α+ 3α

2 + α
= −1,

so taking τ small enough, we conclude that there exists ε > 0 such that (S∗1 ) . t−1 log(t)−1−εΦhy(t) as t→∞,

uniformly among h > 0, y > g(h), as required for (3.85) in case (i).

To show (S∗1 ) ≤ Φhy(t)u(t)Π(g(t)), one can verify that for each α ∈ (0, 1) and for β > 1 as in (3.3),

δ = 1 +
1− α
2 + α

=
3

2 + α
<

1
α + 2

2 + α
=

1 + 2α

2α+ α2
< β.

Thus limt→∞ tΠ(gδ(t)) ≤ limt→∞ tΠ(gβ(t)) = 0 by (3.3). Then by (3.110), for suitable u (i.e. satisfying

tΠ(gδ(t)) ≤ u(t) = o(1) as t → ∞), uniformly in y > g(h), h > 0 as t → ∞, we conclude that (S∗1 ) .

tΠ(g(t))Π(gδ(t))Φ
h
y(t) ≤ u(t)Π(g(t))Φhy(t), as required for (3.86) in case (i).

Proof for (S∗2), Case (i) Note for gδ(t) := g(t)/ log(t)δ, by Lemma 3.7.1, for all h > 0, y > g(h), and for

all large enough t, gδ(t) ≤ cghy (t), so as t→∞,

(S∗2 ) = Π(g(t))

∫ t

0

P

(
Og

h
y

s,X
(0,cghy (t))

; X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ
; ∆

gδ(t)
1 > s

)
ds

= Π(g(t))

∫ t

0

P

(
Og

h
y

s,X(0,gδ(t)) ; X
(0,gδ(t))
s− >

ghy (t)

2 log(t)γ
; ∆

gδ(t)
1 > s

)
ds

≤ Π(g(t))

∫ t

0

P

(
X

(0,gδ(t))
s− >

ghy (t)

2 log(t)γ

)
ds ≤ tΠ(g(t))P

(
X

(0,gδ(t))
t >

ghy (t)

2 log(t)γ

)
. (3.111)

For gβ(t) := g(t)/ log(t)β , with β as in (3.3), applying Potter’s theorem (Theorem A.4.2) to Π(g(t))/Π(gβ(t)),

for arbitrarily small τ > 0, as t→∞, by Lemma 3.7.1,

(S∗2 ) . tΠ(gβ(t)) log(t)−αβ+τβP

(
X

(0,gδ(t))
t >

ghy (t)

2 log(t)γ

)
3.7.1
≤ tΠ(gβ(t)) log(t)−αβ+τβP

(
X

(0,gδ(t))
t >

(1−A−1)g(t)

2 log(t)γ

)
.
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Applying Lemma 3.6.1 with H(t) = 1/(t log(t)1+ε−αβ), ε > τβ, then by (3.3) and Lemma 3.5.10, uniformly

in h > 0, y > g(h) by Lemma 3.7.1, as t→∞,

(S∗2 )
3.6.1

. tΠ(gβ(t)) log(t)−αβ+τβ exp((∗)) 1

t log(t)1+ε−αβ
(3.3)
= o(1)× exp((∗)) 1

t log(t)1+ε−τβ

3.5.10
≤ o(1)× exp((∗)) 1

t log(t)1+ε−τβ
Φhy(t)

f(y)− h
, (3.112)

(∗) . t log
(
t log(t)1+ε−αβ) (t log(t)1+ε−αβ) 2 log(t)γ−δ

1−A−1 Π(gδ(t)) log(t)γ−δ.

Now, if limt→∞(∗) = 0, then we get (S∗2 ) . t−1 log(t)−1−εΦhy(t)/(f(y)− h). Indeed,

(∗) . t log
(
t log(t)1+ε−αβ) (t log(t)1+ε−αβ) 2 log(t)γ−δ

1−A−1 Π(gδ(t)) log(t)γ−δ

= tΠ(gδ(t))t
2 log(t)γ−δ

1−A−1 log
(
t log(t)1+ε−αβ) log(t)

(1+ε−αβ)
2 log(t)γ−δ

1−A−1 +γ−δ
.

Now, δ > γ, so limt→∞ log(t)γ−δ = 0, and for arbitrarily small κ > 0, as t→∞,

(∗) . tΠ(gδ(t))t
2 log(t)γ−δ

1−A−1 log
(
t log(t)1+ε−αβ) log(t)(1+ε−αβ)κ+γ−δ.

As t → ∞, log(t log(t)1+ε−αβ) . log(t). Applying Potter’s theorem (Theorem A.4.2) to Π(gδ(t))/Π(gβ(t)),

for β as in (3.3) and arbitrarily small c > 0, as t→∞,

(∗) . tΠ(gβ(t))t
2 log(t)γ−δ

1−A−1 log(t)1+(1+ε−αβ)κ−(β−δ)α+(β−δ)c+γ−δ.

Recalling γ − δ = −1, t
2 log(t)γ−δ

1−A−1 = e
2 log(t)1+γ−δ

1−A−1 = e
2

1−A−1 . Then since limt→∞ tΠ(gβ(t)) = 0 by (3.3), using

that 1 + γ − δ = 0, as t→∞,

(∗) . log(t)1+(1+ε−αβ)κ−(β−δ)α+(β−δ)c+γ−δ = log(t)(1+ε−αβ)κ−(β−δ)α+(β−δ)c. (3.113)
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Now, δ < β, so −(β − δ)α < 0. Choosing κ, c small enough that the exponent in (3.113) is negative,

we get limt→∞(∗) = 0. Then by (3.112), it follows that uniformly in h > 0 and y > g(h), as t → ∞,

(S∗2 ) . t−1 log(t)−1−εΦhy(t)/(f(y)− h), as required for (3.85) in case (i).

To prove (S∗2 ) ≤ Φhy(t)u(t)Π(g(t))/(f(y) − h), applying Lemma 3.7.1 and Lemma 3.6.1 with H(t) =

1/(t log(log(t))) to (3.111), as t→∞, uniformly in h > 0, y > g(h),

(S∗2 )
(3.111)

. tΠ(g(t))P
(
X

(0,gδ(t))
t >

(1−A−1)g(t)

2 log(t)γ

)
3.6.1
≤ Π(g(t))

log(log(t))
exp ((∗)) ,

(∗) . t log (t log(log(t))) (t log(log(t)))
2 log(t)γ−δ

(1−A−1) Π(gδ(t)) log(t)γ−δ.

Recall 1 + γ − δ = 0. As t log(log(t)) . t2 for all large enough t, as t→∞,

(∗) . t log(t)1+γ−δt
4 log(t)γ−δ

1−A−1 Π(gδ(t)) = te
4(1−A−1) log(t)1+γ−δ

1−A−1 Π(gδ(t)) = te
4(1−A−1)

1−A−1 Π(gδ(t)).

Now, since δ < β, by (3.3), limt→∞ tΠ(gδ(t)) ≤ limt→∞ tΠ(gβ(t)) = 0, and hence limt→∞(∗) = 0, so that for

suitable u (i.e. 1/ log(log(t)) ≤ u(t) = o(1) as t→∞), (S∗2 ) ≤ Φhy(t)u(t)Π(g(t))/(f(y)− h), uniformly among

h > 0, y > g(h) as t→∞, as required for (3.86), and the proof of Lemma 3.5.3 is complete in case (i).

Partitioning (S∗), Case (ii) In case (ii), we partition (S∗) differently. Recall the notation in (3.9).

Partitioning according to ∆
1
2 cg

h
y (t)

1 > s and ∆
1
2 cg

h
y (t)

1 ≤ s,

(S∗) = Π(g(t))

∫ t

0

P

(
Og

h
y

s,X
(0,cghy (t))

; X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ

)
ds

= Π(g(t))

∫ t

0

P

(
Og

h
y

s,X
(0,cghy (t))

; X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ
; ∆

1
2 cg

h
y (t)

1 ≤ s

)
ds

+ Π(g(t))

∫ t

0

P

(
Og

h
y

s,X
(0,cghy (t))

; X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ
; ∆

1
2 cg

h
y (t)

1 > s

)
ds

=: (S∗∗1 ) + (S∗∗2 ). (3.114)
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Proof for (S∗∗1 ), Case (ii) Disintegrating on the value of ∆
1
2 cg

h
y (t)

1 , by Lemma 3.7.1 and (3.72), as t→∞,

(S∗∗1 ) ≤ Π(g(t))Π

(
1

2
cghy (t)

)∫ t

0

∫ s

0

P
(
Og

h
y

s,X
(0,cghy (t))

;X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ
∣∣∆ 1

2 cg
h
y (t)

1 = v
)
dvds

3.7.1

. Π(g(t))2

∫ t

0

∫ s

0

P
(
Og

h
y

v,X
(0,cghy (t))

∣∣∆ 1
2 cg

h
y (t)

1 = v
)
dvds

(3.72)
= Π(g(t))2

∫ t

0

∫ s

0

P
(
Og

h
y

v,X
(0, 1

2
cghy (t)

)
dvds

≤ tΠ(g(t))2

∫ t

0

P
(
Og

h
y
v

)
dv

. tΠ(g(t))2Φhy(t).

Now, limt→∞ tΠ(g(t))=0 by (3.5), and so (S∗∗1 )≤ Φhy(t)u(t)Π(g(t)) for suitable choice of the function u (i.e.

tΠ(g(t)) ≤ u(t) = o(1) as t→∞), uniformly in h > 0, y > g(h) as t→∞, as required for (3.86) in case (ii).

Proof for (S∗∗2 ), Case (ii) Recalling the notation (3.9), (3.13), and the definition in (3.8),

(S∗∗2 ) = Π(g(t))

∫ t

0

P

(
Og

h
y

s,X
(0,cghy (t))

;X
(0,cghy (t))

s− >
ghy (t)

2 log(t)γ
; ∆

1
2 cg

h
y (t)

1 > s

)
ds

≤ tΠ(g(t))P

(
X

(0, 12 cg
h
y (t))

t >
ghy (t)

2 log(t)γ

)
.

By Lemma 3.6.1 with H(t) = 1/(t log(log(t))), uniformly in y, h by Lemma 3.7.1,

(S∗∗2 ) .
Π(g(t))

log(log(t))
exp ((∗)) ,

(∗) . t log(t log(log(t))) (t log(log(t)))
c

4 log(t)γ Π

(
1

2
cghy (t)

)
c

4 log(t)γ
.
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For each arbitrarily small η > 0, as t → ∞, log(t log(log(t)))≤ tη and (t log(log(t)))
c/(4 log(t)γ)≤ tη. As Π is

O-regularly varying at ∞, by Lemma 3.7.1,

(∗) . t1+2ηΠ

(
cghy (t)

2

)
1

log(t)γ

. t1+2ηΠ (g(t)) .

Now, limt→∞ t1+εΠ(g(t)) = 0 by (3.5), so taking η < ε/2, it follows by Lemma 3.5.10 that (S∗∗2 ) ≤

Φhy(t)u(t)Π(g(t))/(f(y) − h) as t → ∞, for suitable u (i.e. 1/ log(log(t)) ≤ u(t) = o(1) as t → ∞), uni-

formly in h > 0, y > g(h), as required for (3.86) in case (ii), and the proof of Lemma 3.5.3 is complete.

Remark 3.7.2. One can verify that the above choices of γ and δ are chosen in an optimal way to ensure

β can be as small as possible while the proof of Lemma 3.5.3 still holds, thus giving as much generality as

possible in case (i).

3.8 Proof of Lemma 3.5.7

Proof of Lemma 3.5.7. Let Tg(h) denote the time when X first passes above the level g(h), and let S
∆
g(h)
1

be

the size of X’s first jump of size larger than g(h). For each y > K, where K > 0 is a large, fixed constant,

P (Xh ∈ g(h)dy;Oh) = P
(
Xh ∈ g(h)dy;XTg(h)

≤ g(h)y

2
;Oh

)
+ P

(
Xh ∈ g(h)dy;XTg(h)

>
g(h)y

2
;S

∆
g(h)
1

<
g(h)y

2
;Oh

)
+ P

(
Xh ∈ g(h)dy;XTg(h)

>
g(h)y

2
;S

∆
g(h)
1
≥ g(h)y

2
;Oh

)
=: σ1

h(dy) + σ2
h(dy) + σ3

h(dy). (3.115)

We will bound P (Xh ∈ g(h)dy;Oh) by bounding these 3 terms separately.



Chapter 3: Markov Processes with Constrained Local Time 127

Upper Bound for σ1
h(dy) We shall disintegrate on the values of Tg(h) and XTg(h)

. Observe by (3.6) that

P(Oh;Tg(h) ∈ ds) = P(Os;Tg(h) ∈ ds), so that we can apply (3.72) and the independent increments property,

with the notation P(Xt ∈ dx) = ft(x)dx, to yield

σ1
h(dy) =

∫ h

s=0

∫ y
2

w=1

P
(
Xh ∈ g(h)dy;XTg(h)

∈ g(h)dw;Tg(h) ∈ ds;Oh
)

=

∫ h

0

∫ y
2

1

fh−s(g(h)(y − w))g(h)dyP
(
XTg(h)

∈ g(h)dw;Tg(h) ∈ ds;Oh
)
.

Now, g(h)(y − w) > g(h)y/2 > g(h) + x0 ≥ g(h − s) + x0, for all large enough h, with x0 as in Definition

3.4.5, so (3.4) applies to fh−s(g(h)(y − w)). Applying (3.59), since y − w ≥ y/2 and L is slowly varying at

∞, uniformly in y > K by (Theorem A.4.1), as h→∞,

σ1
h(dy)

(3.4)

.
∫ h

0

∫ y
2

1

(h− s)u(g(h)(y − w))g(h)dyP
(
XTg(h)

∈ g(h)dw;Tg(h) ∈ ds;Oh
)

(3.59)

.
∫ h

0

∫ y
2

1

(h− s)
g(h)α

(y − w)−1−αL(g(h)(y − w))dyP
(
XTg(h)

∈ g(h)dw;Tg(h) ∈ ds;Oh
)

.
∫ h

0

∫ y
2

1

h

g(h)α
L(g(h))

L(g(h))
y−1−αL

(
g(h)y

2

)
dyP

(
XTg(h)

∈ g(h)dw;Tg(h) ∈ ds;Oh
)

. y−1−αL (g(h)y)

L(g(h))
dy
hL(g(h))

g(h)α

∫ h

0

∫ y
2

1

P
(
XTg(h)

∈ g(h)dw;Tg(h) ∈ ds;Oh
)

≤ y−1−αL (g(h)y)

L(g(h))
dy hΠ(g(h)) P (Oh)

(3.3)
= o(1)× y−1−αL (g(h)y)

L(g(h))
P(Oh)dy, (3.116)

where, recalling g(h)−αL(g(h)) = Π(g(h)), the last step follows by (3.3).

Simplifying the Expressions for σ2
h(dy) and σ3

h(dy) Recall the notation (3.9), and that

σ2
h(dy) + σ3

h(dy) = P(Xh ∈ g(h)dy;XTg(h)
> g(h)y/2;Oh).

Choosing K > 4, we have g(h)y/2 > 2g(h) for y > K. As Tg(h) is the first passage time above g(h), if

XTg(h)
> 2g(h), then X crosses g(h) by a jump larger than g(h), so since Tg(h) ≤ ∆

g(h)
1 , Tg(h) = ∆

g(h)
1 .

Then since Xt < g(h) for all t < Tg(h), it follows that XTg(h)− = X
∆
g(h)
1 − < g(h), as X has càdlàg sample
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paths, almost surely. Moreover, if Oh holds, then X crosses g(h) by time h, so ∆
g(h)
1 = Tg(h) ≤ h. Thus:

{
XTg(h)

>
g(h)y

2
;S

∆
g(h)
1

<
g(h)y

2
;Oh

}
⊆
{

∆
g(h)
1 ≤ h;X

∆
g(h)
1 − < g(h);S

∆
g(h)
1

<
g(h)y

2
;Oh

}
, (3.117)

and therefore we can bound σ2
h(dy) by

σ2
h(dy) = P

(
Xh ∈ g(h)dy;XTg(h)

>
g(h)y

2
;S

∆
g(h)
1

<
g(h)y

2
;Oh

)
≤ P

(
Xh ∈ g(h)dy; ∆

g(h)
1 ≤ h;X

∆
g(h)
1 − <g(h);S

∆
g(h)
1

<
g(h)y

2
;Oh

)
. (3.118)

For the event in σ3
h(dy), we have S

∆
g(h)
1
≥ g(h)y/2, and so the reverse analogous inclusion to (3.117) holds

too, that is, if ∆
g(h)
1 ≤ h, X

∆
g(h)
1 − < g(h), S

∆
g(h)
1
≥ g(h)y/2, and Oh hold, then we have

XTg(h)
= X

∆
g(h)
1
≥ X

∆
g(h)
1
−X

∆
g(h)
1 − = S

∆
g(h)
1

> g(h)y/2,

and therefore σ3
h(dy) satisfies

σ3
h(dy) = P

(
Xh ∈ g(h)dy;XTg(h)

>
g(h)y

2
;S

∆
g(h)
1
≥ g(h)y

2
;Oh

)
= P

(
Xh ∈ g(h)dy; ∆

g(h)
1 ≤ h;X

∆
g(h)
1 − < g(h);S

∆
g(h)
1
≥ g(h)y

2
;Oh

)
. (3.119)
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Upper Bound for σ2
h(dy) By (3.118) and (3.74), disintegrating on the values of ∆

g(h)
1 , X

∆
g(h)
1 −, and

S
∆
g(h)
1

, by independence of increments and the Markov property, with P(Xt ∈ dx) = ft(x)dx,

σ2
h(dy)

(3.118)

≤ P
(
Xh ∈ g(h)dy; ∆

g(h)
1 ≤ h;X

∆
g(h)
1 − < g(h);S

∆
g(h)
1

<
g(h)y

2
;Oh

)
(3.74)

=

∫ h

s=0

∫ 1

w=0

∫ y
2

v=0

P
(
Xh ∈ g(h)dy; ∆

g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;

S
∆
g(h)
1
∈ g(h)dv;Os

)
=

∫ h

0

∫ 1

0

∫ y
2

0

fh−s(g(h)(y − w − v))g(h)dy

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;S

∆
g(h)
1
∈ g(h)dv;Os

)
(3.74)

=

∫ h

0

∫ 1

0

∫ y
2

0

fh−s(g(h)(y − w − v))g(h)dy

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;S

∆
g(h)
1
∈ g(h)dv;Oh

)
.

Note y − w − v > y/3 > K/3 for w ≤ 1, v ≤ y/2. So as h→∞, g(h)(y − w − v) ≥ g(h− s) + x0, so we can

apply (3.4), and we can apply (3.59) too. Now, g(h)−αL(g(h)) = Π(g(h)) for L slowly varying at ∞, so by
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(3.3), uniformly in y > K by the uniform convergence theorem (Theorem A.4.1), as h→∞,

σ2
h(dy)

(3.4)

.
∫ h

0

∫ 1

0

∫ y
2

0

(h− s)u(g(h)(y − w − v))g(h)dy

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;S

∆
g(h)
1
∈ g(h)dv;Oh

)
(3.59)

.
∫ h

0

∫ 1

0

∫ y
2

0

(h− s)L(g(h)(y − w − v))

g(h)α(y − w − v)1+α
dy

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;S

∆
g(h)
1
∈ g(h)dv;Oh

)
.

∫ h

0

∫ 1

0

∫ y
2

0

(h− s)
g(h)αy1+α

L(g(h)y)dy

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;S

∆
g(h)
1
∈ g(h)dv;Oh

)
≤ hL(g(h))

g(h)α

∫ h

0

∫ 1

0

∫ y
2

0

y−1−αL(g(h)y)

L(g(h)
dy

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;S

∆
g(h)
1
∈ g(h)dv;Oh

)
(3.3)
= o(1)×

∫ h

0

∫ 1

0

∫ y
2

0

y−1−αL(g(h)y)

L(g(h)
dy

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;S

∆
g(h)
1
∈ g(h)dv;Oh

)
≤ o(1)× y−1−αL(g(h)y)

L(g(h))
P(Oh)dy. (3.120)

Upper Bound for σ3
h(dy) Disintegrating on the values of ∆

g(h)
1 , X

∆
g(h)
1 − and S

∆
g(h)
1

, observing that

Xh ∈ g(h)dy implies X
∆
g(h)
1 −+S

∆
g(h)
1
≤ g(h)y, then applying (3.74), independence of increments, the Markov

property, and Lemma 3.5.9, it follows that uniformly among y > K as h→∞, with P(Xt ∈ dx) = ft(x)dx,

σ3
h(dy) =

∫ h

s=0

∫ 1

w=0

∫ y−w

v= y
2

P
(
Xh ∈ g(h)dy; ∆

g(h)
1 ∈ ds;

X
∆
g(h)
1 − ∈ g(h)dw;S

∆
g(h)
1
∈ g(h)dv;Oh

)
3.74
=

∫ h

0

∫ 1

0

∫ y−w

y
2

fh−s(g(h)(y − w − v))g(h)dyP
(
S

∆
g(h)
1
∈ g(h)dv

)
× P

(
∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Os

)
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=

∫ h

0

∫ 1

0

∫ y−w

y
2

fh−s(g(h)(y − w − v))g(h)dyP
(
S

∆
g(h)
1
∈ g(h)dv

)
× P

(
∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Os

)
3.5.9

.
∫ h

0

∫ 1

0

∫ y−w

y
2

fh−s(g(h)(y − w − v))g(h)dy v−1−αL(g(h)v)

L(g(h))
dv

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Os

)
≤
∫ h

0

∫ 1

0

∫ y−w

y
2−w

fh−s(g(h)(y − w − v))g(h)dy v−1−αL(g(h)v)

L(g(h))
dv

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Os

)
(3.74)

=

∫ h

0

∫ 1

0

∫ y−w

y
2−w

fh−s(g(h)(y − w − v))g(h)dy v−1−αL(g(h)v)

L(g(h))
dv

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
.

Now, as y/3 ≤ y/2 − 1 ≤ y/2 − w ≤ v ≤ y, applying the uniform convergence theorem (Theorem A.4.1) to

L(g(h)v)/L(g(h)y), uniformly in y > K as h→∞,

σ3
h(dy) . y−1−αL(g(h)y)

L(g(h))
dy

∫ h

0

∫ 1

0

∫ y−w

y
2−w

fh−s(g(h)(y − w − v))g(h)dv (3.121)

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
.

Changing variables to u = g(h)(y − w − v), uniformly in y > K, as h→∞,

σ3
h(dy) . y−1−αL(g(h)y)

L(g(h))
dy

∫ h

0

∫ 1

0

∫ g(h)y
2

0

fh−s(u)du

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
= y−1−αL(g(h)y)

L(g(h))
dy

∫ h

0

∫ 1

0

P
(
Xh−s ≤

g(h)y

2

)
× P

(
∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
≤ y−1−αL(g(h)y)

L(g(h))
dy

∫ h

0

∫ 1

0

P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
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= y−1−αL(g(h)y)

L(g(h))
dyP

(
∆
g(h)
1 ≤ h;X

∆
g(h)
1 − < g(h);Oh

)
(3.122)

≤ y−1−αL(g(h)y)

L(g(h))
P (Oh) dy. (3.123)

Conclusion of Upper Bound By (3.115), (3.116), (3.120), and (3.123), we conclude, as required for the

upper bound in (3.58), that uniformly in y > K, as h→∞,

P(Xh ∈ g(h)dy;Oh) . y−1−αL(g(h)y)

L(g(h))
P(Oh)dy. (3.124)

Now we will prove the lower bound on P (Xh ∈ g(h)dy;Oh).

Proof of Lower Bound Now, fixing y0 > 0, for all y > K, as h→∞,

P (Xh ∈ g(h)dy;Oh) ≥ P
(
Xh ∈ g(h)dy; ∆

g(h)
1 ≤ h− 1;X

∆
g(h)
1 − < g(h);

g(h)y

2
≤ S

∆
g(h)
1
≤ g(h)y − y0;Oh

)
.

(3.125)

Disintegrating on the values of ∆
g(h)
1 , X

∆
g(h)
1 −, and S

∆
g(h)
1

, applying the Markov property, noting that by

(3.74), the measures P(∆
g(h)
1 ∈ ds;Oh) and P(∆

g(h)
1 ∈ ds;O

∆
g(h)
1

) are equivalent for each s ≤ h, with

P(Xt ∈ dx) = ft(x)dx,

(3.125)
(3.74)

=

∫ h−1

s=0

∫ 1

w=0

∫ y− y0
g(h)
−w

v= y
2

P
(
Xh ∈ g(h)dy; ∆

g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;

S
∆
g(h)
1
∈ g(h)dv;O

∆
g(h)
1

)
(3.74)

=

∫ h−1

0

∫ 1

0

∫ y− y0
g(h)
−w

v= y
2

fh−s(g(h)(y − w − v))g(h)dyP
(
S

∆
g(h)
1
∈ g(h)dv

)
× P

(
∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
.
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Applying Lemma 3.5.9, noting h − s ≥ 1, y/2 < 2y/3 − w, v � y, and L(g(h)v) � L(g(h)y) uniformly in

y > K as h→∞ by the uniform convergence theorem (Theorem A.4.1), it follows that uniformly in y > K

as h→∞,

(3.125)
3.5.9

&
∫ h−1

0

∫ 1

0

∫ y− y0
g(h)
−w

v= y
2

fh−s(g(h)(y − w − v))g(h)dyv−1−αL(g(h)v)

L(g(h))
dv

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
&
∫ h−1

0

∫ 1

0

∫ y− y0
g(h)
−w

v= 2y
3 −w

fh−s(g(h)(y − w − v))g(h)dyy−1−αL(g(h)y)

L(g(h))
dv

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
.

Changing variables to u = g(h)(y − w − v), noting that y/3 > 1 for all y > K and that h− s ≥ 1,

(3.125) & y−1−αL(g(h)y)

L(g(h))
dy

∫ h−1

0

∫ 1

0

∫ g(h)y
3

u=y0

fh−s(u)du

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
= y−1−αL(g(h)y)

L(g(h))
dy

∫ h−1

0

∫ 1

0

[
P
(
Xh−s ≤

g(h)y

3

)
− P (Xh−s ≤ y0)

]
× P

(
∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
≥ y−1−αL(g(h)y)

L(g(h))
dy

∫ h−1

0

∫ 1

0

[P (Xh ≤ g(h))− P (X1 ≤ y0)]

× P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
.

Now, with X(0,g(h)) again denoting the process with no jumps bigger than g(h) as in (3.8),

P (Xh ≤ g(h)) = P(X
(0,g(h))
h ≤ g(h))P(∆

g(h)
1 > h) = P(X

(0,g(h))
h ≤ g(h))e−hΠ(g(h)),

and since limh→∞ hΠ(g(h)) = 0 by (3.3), by Markov’s inequality (Theorem A.2.1), as h→∞,

P (Xh ≤ g(h))
(3.3)∼ P(X

(0,g(h))
h ≤ g(h)) ≥ 1−

E[X
(0,g(h))
h ]

g(h)
≥ 1−

h
∫ g(h)

0
Π(x)dx

g(h)
.
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Now, by (3.3) and Karamata’s theorem (Theorem A.4.3), as h→∞, we have

P (Xh ≤ g(h)) & 1− hg(h)Π(g(h))

g(h)
= 1− hΠ(g(h))

(3.3)∼ 1.

Then since P(X1 ≤ y0) = constant < 1, taking y0 sufficiently large that P (Xh ≤ g(h)) − P(X1 ≤ y0) & 1

uniformly, we get that uniformly in y > K as h→∞,

(3.125) &
L(g(h)y)

L(g(h))
y−1−αdy

∫ h−1

s=0

∫ 1

w=0

P
(

∆
g(h)
1 ∈ ds;X

∆
g(h)
1 − ∈ g(h)dw;Oh

)
=
L(g(h)y)

L(g(h))
y−1−αdyP

(
∆
g(h)
1 ≤ h− 1;X

∆
g(h)
1 − < g(h);Oh

)
. (3.126)

Proof by Contradiction Step Now we assume for a contradiction that

lim inf
h→∞

P
(

∆
g(h)
1 ≤ h− 1;X

∆
g(h)
1 − < g(h);Oh

)
P(Oh)

= 0. (3.127)

As ∆
g(h)
1 is exponentially distributed with rate Π(g(h)), ∆

g(h)
1 must have a decreasing probability density

function, and so by Lemma 3.5.1, as h→∞,

P
(

∆
g(h)
1 ∈ [h− 1, h];X

∆
g(h)
1 − < g(h);Oh

)
≤ P

(
∆
g(h)
1 ∈ [h− 1, h]

)
≤ P

(
∆
g(h)
1 ≤ 1

)
= 1− e−Π(g(h)) ≤ Π(g(h))

3.5.1∼ P(Oh)

Φ(h)

(3.34)
= o(1)× P (Oh) ,

since limh→∞ Φ(h) =∞ by (3.34), so it follows that (3.127) holds if and only if

lim inf
h→∞

P
(

∆
g(h)
1 ≤ h;X

∆
g(h)
1 − < g(h);Oh

)
P(Oh)

= 0. (3.128)
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By (3.115), (3.116), (3.120), and (3.122), we get that (3.128) implies, along a subsequence of h, as h→∞,

P (Xh ≥ Kg(h);Oh) =

∫ ∞
K

P(Xh ∈ g(h)dy;Oh)

=
[(
o(1)× P(Oh)

)
+ P

(
∆
g(h)
1 ≤ h;X

∆
g(h)
1 − < g(h);Oh

)] ∫ ∞
K

y−1−αL(g(h)y)

L(g(h))
dy

(3.128)
= o(1)× P(Oh)

∫ ∞
K

y−1−αL(g(h)y)

L(g(h))
dy.

Now, changing variables from y to u = g(h)y,

P (Xh≥Kg(h);Oh) = o(1)× g(h)αP(Oh)

L(g(h))

∫ ∞
Kg(h)

u−1−αL(u)du.

As L is slowly varying at ∞, applying Theorem A.4.4 to
∫∞
Kg(h)

u−1−αL(u)du, as h→∞,

P (Xh ≥ Kg(h);Oh) . o(1)× g(h)αP(Oh)

L(g(h))
(Kg(h))−αL(Kg(h)) = o(1)× P(Oh). (3.129)

But considering the subevent {∆g(h)
1 = ∆

Kg(h)
1 ≤ h;Oh} ⊆ {Xh ≥ Kg(h);Oh}, disintegrating on the value

of ∆
g(h)
1 , and applying the Markov property,

P (Xh ≥ Kg(h);Oh) ≥ P
(

∆
g(h)
1 = ∆

Kg(h)
1 ≤ h;Oh

)
=

∫ h

0

P
(

∆
g(h)
1 = ∆

Kg(h)
1 ∈ ds;Oh

)
=

∫ h

0

P
(

∆
g(h)
1 ∈ ds;S

∆
g(h)
1
≥ Kg(h);Os,X(0,g(h))

)
=

∫ h

0

P
(
Os,X(0,g(h)) ; ∆

g(h)
1 ∈ ds

)
P
(
S

∆
g(h)
1
≥ Kg(h)

)
=

Π(Kg(h))

Π(g(h))

∫ h

0

P
(
Os,X(0,g(h)) ; ∆

g(h)
1 ∈ ds

)
=

Π(Kg(h))

Π(g(h))

∫ h

0

P
(
Oh; ∆

g(h)
1 ∈ ds

)
=

Π(Kg(h))

Π(g(h))
P
(
Oh; ∆

g(h)
1 ≤ h

)
.
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Now, disintegrating on the value of ∆
g(h)
1 , by (3.74), (3.72), and Lemma 3.5.1, as h→∞,

P(Oh; ∆
g(h)
1 ≤ h) =

∫ h

0

P(Oh; ∆
g(h)
1 ∈ ds) (3.74)

=

∫ h

0

P(Os; ∆
g(h)
1 ∈ ds)

(3.72)
=

∫ h

0

P(Os)Π(g(h))e−Π(g(h))sds ∼ Π(g(h))Φ(h)
3.5.1∼ P(Oh),

so as h→∞,

P (Xh ≥ Kg(h);Oh) ≥ Π(Kg(h))

Π(g(h))
P (Oh) ∼ K−αP(Oh), (3.130)

because Π is regularly varying at∞, so the inequality (3.129) contradicts (3.130), and therefore it follows that

lim infh→∞ P
(
∆
g(h)
1 ≤ h;X

∆
g(h)
1 − < g(h);Oh

)
/P(Oh) > 0. Then by (3.126), uniformly in y > K as h→∞,

P(Xh ∈ g(h)dy;Oh) & y−1−αL(g(h)y)

L(g(h))
P (Oh) dy,

as required for the lower bound in (3.58), so the proof of Lemma 3.5.7 is complete.

3.9 Proofs of Auxiliary Lemmas

Lemma 3.5.5 In case (i), for the function ρ as defined in (3.15), lim inft→∞ ρ(t) ≥ 0.

Proof of Lemma 3.5.5. Recall from (3.15) and (3.77) that

ρ(t) =
1

Φ(t)

[
P(Ot; ∆

g(t)
1 > t)−Π(g(t))2

∫ t

0

∫ s

0

P(Ov)e−Π(g(t))vdvds

]
.

If ρ(t) ≤ 0, then as for all t > 1, Φ(t) ≥ Φ(1) = constant > 0, for all t > 1,

|ρ(t)| ≤ Π(g(t))2

Φ(t)

∫ t

0

∫ s

0

P(Ov)e−Π(g(t))vdvds

≤ tΠ(g(t))2

Φ(t)

∫ t

0

P(Ov)e−Π(g(t))vdv ≤ t2Π(g(t))2

Φ(t)
. t2Π(g(t))2.



Chapter 3: Markov Processes with Constrained Local Time 137

Now, limt→∞ tΠ(g(t)) = 0 by (3.3), so it must be the case that lim inft→∞ ρ(t) ≥ 0, as required.

Lemma 3.5.6 In case (i), for t0(y) as defined in (3.22), uniformly in h > 0, y > g(h), and t ∈ (t0(y),∞],

∫ t

t0(y)

(
Π(g(s+ h)− y)−Π(g(s))

)
ds . yf ′(y)Π(y).

Proof of Lemma 3.5.6. Recall that Π(x) = x−αL(x) for L slowly varying at ∞, so as Π is non-increasing,

for large N > 0, using that t0(y) ≥ f(Ay),

∫ t

t0(y)

(Π(g(s+ h)− y)−Π(g(s)))ds ≤
∫ t

t0(y)

(Π(g(s)− y)−Π(g(s)))ds (3.131)

≤
∫ ∞
f(Ay)

(Π(g(s)− y)−Π(g(s)))ds =

∫ ∞
f(Ay)

(
L(g(s)− y)

(g(s)− y)α
− L(g(s))

g(s)α

)
ds

=

∫ ∞
f(Ay)

L(g(s)− y)

(g(s)− y)α

(
1−

(
g(s)− y
g(s)

)α
L(g(s))

L(g(s)− y)

)
ds

=

∫ ∞
f(Ay)

L(g(s)− y)

(g(s)− y)α

(
1−

(
g(s)− y
g(s)

)α+N
g(s)NL(g(s))

(g(s)− y)NL(g(s)− y)

)
ds.

Now, A > B − 1, and xNL(x) is non-decreasing in x for x > B in case (i), so it follows that

(3.131) ≤
∫ ∞
f(Ay)

L(g(s)− y)

(g(s)− y)α

(
1−

(
g(s)− y
g(s)

)α+N
)
ds.

One can verify 1− (1− y/g(s))α+N . y/g(s), uniformly in y > 0, s > f(Ay), and therefore

(3.131) .
∫ ∞
f(Ay)

L(g(s)− y)

(g(s)− y)α
y

g(s)
ds.

As g(s)− y ≥ (1−A−1)g(s) for s > f(Ay), and Π(x) = x−αL(x) is non-increasing,

(3.131) . y

∫ ∞
f(Ay)

L((1−A−1)g(s))

g(s)1+α
ds. (3.132)
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Applying the uniform convergence theorem (Theorem A.4.1) to the slowly varying function L, substituting

u = g(s), as uf ′(u)Π(u) is decreasing, we conclude that uniformly in y > 0 (and so also uniformly in

h > 0, y > g(h)),

(3.131) . y

∫ ∞
f(Ay)

L(g(s))

g(s)1+α
ds = y

∫ ∞
Ay

L(u)

u1+α
f ′(u)du = y

∫ ∞
Ay

u−2uf ′(u)Π(u)du

≤ Ay2f ′(Ay)Π(Ay)

∫ ∞
Ay

u−2du =
1

2
yf ′(Ay)Π(Ay) . yf ′(y)Π(y).

Lemma 3.5.8 In case (i), for δ > 0 small enough that 0 < f(0) < f(δ) < 1, uniformly for all h > 0 and

y > g(h+ f(δ)),

qh(y) � Φhy(f(Ay)) exp

(
−
∫ f(Ay)

1

Π(g(s))ds

)
.

Proof of Lemma 3.5.8. First recall that by Theorem 3.4.18,

qh(y)=
Φhy(t0(y))

Φ(1)
lim
t→∞

exp

(∫ t

t0(y)

(
Π(ghy (s))+ρhy(s)

)
ds−

∫ t

1

(
Π(g(s))+ρ(s)

)
ds

)
.

Now, by (3.30) in Lemma 3.5.3, uniformly in h > 0, y > g(h),

∣∣∣∣∣
∫ ∞
t0(y)

ρhy(s)ds

∣∣∣∣∣ .
∫ ∞
t0(y)

1

s log(s)1+ε

(
1 +

1

f(y)− h

)
ds,

and 1/(f(y) − h) ≤ 1/f(δ) < ∞ since y ≥ g(h + f(δ)), and thus
∫∞
t0(y)

ρhy(s)ds is bounded uniformly in

h > 0, y > g(h + f(δ)). Moreover, by Remark 3.5.4, we have
∫∞

1
ρ(s)ds < ∞. For y > g(h + f(δ)) > δ,

f(Ay) > f(Aδ), so taking A sufficiently large if necessary, t0(y) := f(Ay) ∨ f(1 + 2/A) = f(Ay), then by

Lemma 3.5.6, lim supt→∞
∫ t
f(Ay)

(Π(ghy (s))−Π(g(s)))ds <∞, and so we have uniformly in h > 0, y > g(h),

qh(y) . Φhy(f(Ay)) exp

(
−
∫ f(Ay)

1

Π(g(s))ds

)
.
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For the converse inequality, as Π is non-increasing, for y > g(h) (so f(y) > h),

∫ t

f(Ay)

(Π(g(s))−Π(g(s+ h)− y))ds ≤
∫ t

f(Ay)

(Π(g(s))−Π(g(s+ h)))ds

=

∫ t

f(Ay)

Π(g(s))ds−
∫ t+h

f(Ay)+h

Π(g(s))ds ≤
∫ f(Ay)+h

f(Ay)

Π(g(s))ds

≤ hΠ(g(f(Ay))) ≤ hΠ(y) ≤ f(y)Π(y).

Then as y > g(h+ f(δ)) > δ and limy→∞ f(y)Π(y) = 0 by (3.3) (recall f−1 = g), we conclude that

qh(y) � Φhy(f(Ay)) exp

(
−
∫ f(Ay)

1

Π(g(s))ds

)
.

Lemma 3.5.9 For a subordinator and a function g = f−1 as in case (ia), let S
∆
g(h)
1

denote the size of its

first jump of size greater than g(h). Then there exists h0 > 0 such that uniformly for all h > h0 and v > 1,

P
(
S

∆
g(h)
1
∈ g(h)dv

)
=

Π(g(h)dv)

Π(g(h))
� L(g(h)v)

L(g(h))
v−1−αdv.

In particular there is x0 ∈ (0,∞) so that for all x > x0, with Π(dx) = u(x)dx,

u(x) � x−1Π(x) = L(x)x−1−α. (3.133)

Proof of Lemma 3.5.9. In case (ia), with Π(dx) = u(x)dx, u(x) has bounded decrease and bounded increase

(see Definition A.4.5), and as Π is regularly varying at ∞ with index −α ∈ (−1, 0) in case (i), it follows

that Π has positive increase and bounded increase (see Definition A.4.5). Thus we can apply Theorem A.4.9,

yielding that xu(x) � Π(x) for all sufficiently large x, so

Π(g(h)dv)

Π(g(h))
=
u(g(h)v)g(h)dv

Π(g(h))
� Π(g(h)v)g(h)dv

g(h)vΠ(g(h))
= v−1−αL(g(h)v)

L(g(h))
dv.
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Lemma 3.5.10 Recall the notation (3.14) , (3.22). If h > 0, y > g(h), and t ≥ f(Ay), for A > 3∨ (B − 1),

then Φhy(t) ≥ f(y)− h.

Proof of Lemma 3.5.10. For t ≥ f(Ay), A > 3 ∨ (B − 1), as f is increasing,

t ≥ f(Ay) ≥ f(y) ≥ f(y)− h.

For y > 0, y > g(h), and s ≤ f(y)− h, we have ghy (s) = g(s+ h)− y ≤ g(f(y))− y = 0, so

P
(
Og

h
y
s

)
= P

(
Xu ≥ ghy (u),∀u ≤ s

)
≥ P (Xu ≥ 0,∀u ≤ s) = 1,

and we conclude, as required, that

Φhy(t) =

∫ t

0

P
(
Og

h
y
s

)
ds ≥

∫ f(y)−h

0

P
(
Og

h
y
s

)
ds = f(y)− h.

Lemma 3.6.1 Let (Xt)t≥0 be a subordinator satisfying the assumptions in case (i) or (ii). Then there

exists a constant C > 0, which depends only on the law of X, such that for all t > 0, A(t) ∈ (1,∞), B(t) > 0,

and H(t) ∈ (0, 1),

P
(
X

(0,A(t))
t > B(t)

)
≤ exp

(
Ct log

(
1

H(t)

)
H(t)−

A(t)
B(t) Π(A(t))

A(t)

B(t)

)
H(t). (3.134)
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Proof of Lemma 3.6.1. By Markov’s inequality (Theorem A.2.1), with λ = log(1/H(t))/B(t),

P
(
X

(0,A(t))
t > B(t)

)
= P

(
eλX

(0,A(t))
t ≥ eλB(t)

)
≤ E

[
eλX

(0,A(t))
t

]
e−λB(t) = exp

(
t

∫ A(t)

0

λeλx(Π(x)−Π(A(t)))dx

)
H(t)

≤ exp

(
t
log(1/H(t))

B(t)
eλA(t)

∫ A(t)

0

Π(x)dx

)
H(t)

= exp

(
t
log(1/H(t))

B(t)
H(t)−

A(t)
B(t)

∫ A(t)

0

Π(x)dx

)
H(t). (3.135)

Now, by Theorem A.4.8, which applies as Π has lower index β(Π) > −1 in cases (i) and (ii), there exists

C ′ > 0 such that for all A(t) > 1,

∫ A(t)

0

Π(x)dx ≤
∫ 1

0

Π(x)dx+ C ′Π(A(t))A(t). (3.136)

Now, consider the lower order µ(Π) := lim infx→∞ log(Π(x))/ log(x), which by Theorem A.4.7 satisfies

µ(Π) ≥ β(Π) > −1, so that lim infx→∞ log(Π(x))/ log(x) > 1, which implies that lim infx→∞ xΠ(x) > 0,

so that uniformly among A(t) > 1, we have
∫ 1

0
Π(x)dx . A(t)Π(A(t)), and (3.134) follows immediately from

(3.135) and (3.136), as required.

Lemma 3.7.1 Recalling (3.12) and (3.22), if t > t0(y), then for all y, h > 0, we have ghy (t) ≥ (1− 1/A) g(t).

Proof of Lemma 3.7.1. By (3.22), t > t0(y) ≥ f(Ay). As g = f−1 is increasing, we conclude that

ghy (t) =

(
g(t+ h)

g(t)
− y

g(t)

)
g(t) ≥

(
1− y

g(t)

)
g(t) ≥

(
1− y

g(f(Ay))

)
g(t) = (1−A−1)g(t).
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3.10 Extensions

In case (i), the boundary at which the conditioned process is transient/recurrent is found in Proposition

3.4.15, but we only cover a small class of functions for which the conditioned process is recurrent. In cases (i)

and (ii), the tail function Π satisfies limt→∞ tΠ(g(t)) = 0, but Proposition 3.10.1 applies in the case where

limt→∞ tΠ(g(t)) =∞. This lies on the recurrent side of the boundary between I(f) <∞ and I(f) =∞, so

the Markov process should be recurrent under the law Q.

The equation (3.137) is much harder to handle than the corresponding equation (3.18), but if one is able

to replicate the steps between (3.18) and (3.20) to find a suitably tractable expression analogous to (3.20),

then this should lead to a broad set of results for the recurrent case. Moreover, it can be verified that the

precise asymptotic result [47, Theorem 2.2] for the density P (Xt ∈ dx) can be utilised in this case, but not

when limt→∞ tΠ(g(t)) = 0.

Proposition 3.10.1. For a subordinator, if limt→∞ tΠ(g(t)) =∞, then as t→∞,

P (Ot) ∼ P
(
Ot; ∆

g(t)
1 ≤ t

)
= Π(g(t))

∫ t

0

P(Os)e−(t−s)Π(g(t))ds. (3.137)

Proof of Proposition 3.10.1. As ∆
g(t)
1 is exponentially distributed with rate Π(g(t)),

P (Ot) = P
(
Ot; ∆

g(t)
1 ≤ t

)
+ P

(
Ot|∆g(t)

1 > t
)
e−tΠ(g(t)).

Now, P
(
Ot|∆g(t)

1 > t
)
≤ P(Ot), and limt→∞ e−tΠ(g(t)) = 0, so as t → ∞, P (Ot) ∼ P

(
Ot; ∆

g(t)
1 ≤ t

)
, as

required for the first claim of Proposition 3.10.1.

For the second claim, recall the notation introduced in (3.8). Disintegrating on the value ∆
g(t)
1 ,

P
(
Ot; ∆

g(t)
1 ≤ t

)
=

∫ t

0

P
(
Ot|∆g(t)

1 = t1

)
Π(g(t))e−t1Π(g(t))dt1

= Π(g(t))

∫ t

0

P
(
Ot1,X(0,g(t))

)
e−t1Π(g(t))dt1.



Now, partitioning according to the size of ∆
g(t)
1 , we can rewrite the above integrand as

P
(
Ot1,X(0,g(t))

)
e−t1Π(g(t)) = P(Ot1 ; ∆

g(t)
1 > t1) = P (Ot1)− P

(
Ot1 ; ∆

g(t)
1 ≤ t1

)
.

Disintegrating again on the value of ∆
g(t)
1 , it follows that

P
(
Ot; ∆

g(t)
1 ≤ t

)
= Π(g(t))

∫ t

0

P (Ot1) dt1 −Π(g(t))

∫ t

0

P
(
Ot1 ; ∆

g(t)
1 ≤ t1

)
dt1

= Π(g(t))

∫ t

0

P (Ot1) dt1 −Π(g(t))2

∫ t

0

∫ t1

0

P
(
Ot2,X(0,g(t))

)
e−t2Π(g(t))dt1dt2.

One can repeat this procedure to deduce that for all n ∈ N,

P
(
Ot; ∆

g(t)
1 ≤ t

)
=

n−1∑
k=1

(−1)k−1Π(g(t))k
∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

P(Otk)dtk · · · dt2dt1 (3.138)

+ (−1)n−1Π(g(t))n
∫ t

0

· · ·
∫ tn−1

0

P(Otk,X(0,g(t)))e−tnΠ(g(t))dtn · · · dt1. (3.139)

The contribution in (3.139) tends to 0 as n→∞ since

lim
n→∞

| (3.139) | ≤ lim
n→∞

Π(g(t))n
∫ t

0

· · ·
∫ tn−1

0

dtn · · · dt1 = lim
n→∞

(tΠ(g(t)))n

n!
= 0.

It follows by the same argument that the sum in (3.138) is absolutely convergent as n→∞, and so

P
(
Ot; ∆

g(t)
1 ≤ t

)
=

∞∑
k=1

(−1)k−1Π(g(t))k
∫ t

0

· · ·
∫ tk−1

0

P(Otk)dtk · · · dt1

=

∞∑
k=1

(−1)k−1Π(g(t))k
∫ t

0

P(Os)
(t− s)k−1

(k − 1)!
ds.
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Interchanging the order of summation and integration, we conclude that

P
(
Ot; ∆

g(t)
1 ≤ t

)
= Π(g(t))

∫ t

0

P(Os)
∞∑
k=1

(−1)k−1Π(g(t))k−1 (t− s)k−1

(k − 1)!
ds

= Π(g(t))

∫ t

0

P(Os)e−(t−s)Π(g(t))ds.

If one can replicate the steps between (3.18) and (3.20) to help understand the new equation (3.137),

then for any process satisfying limt→∞ tΠ(g(t)) =∞, the law of the conditioned process can be studied using

the argument as in (3.17), under some regularity conditions. This would allow us to study a large class of

cases in which the conditioned process is recurrent, complementing our results in case (i) and case (ii).
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Appendix

A.1 Supplementary Figures

N(t, δ)− ta(δ)

t
1
2 b(δ)

d→ N (0, 1), the CLT result in Theorem 2.2.1

⇑ (Lemma 2.3.1)

lim
δ→0

U(δ)
7
3

σ2
δ

= 0

⇑ (Lemma 2.3.9)

lim inf
δ→0

[
P
(
X̃δ

(1+α)U(δ) ≤ δ
)

+ P
(
X̃δ

(1−α)U(δ) ≥ δ
)]

> 0

⇑ (Lemma 2.3.12)

lim sup
δ→0

tR(λδ) <∞

⇑ (Lemma 2.3.5)

lim sup
δ→0

δλδ <∞

⇑ (Proof of Theorem 2.2.1)

lim inf
δ→0

I(2δ)

I(δ)
> 1, the imposed regularity condition

Figure A.1: Chain of sufficient conditions used to prove Theorem 2.2.1

146



Appendix 147

P(Ot)

(a1) (a2) (a3)

(3A) (3B) (3C)

(J1) (J2)

Figure A.2: Structure of the proof of Lemma 3.5.1
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P(Og
h
y

t )

(a) (b)

(2A) (2B) (2C)

(2Ca) (2Cb) (2Cc)

(S) (S∗)

(S∗1 ) (S∗2 )

Figure A.3: Structure of the proof of Lemma 3.5.3, case (i)
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P(Og
h
y

t )

(a′) (b′)

(2Ca) (2Cb) (2Cc)

(S) (S∗)

(S∗∗1 ) (S∗∗2 )

Figure A.4: Structure of the proof of Lemma 3.5.3, case (ii)
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A.2 Key Inequalities

Theorem A.2.1. (Markov’s Inequality, [69, Lemma 3.1])

For each random variable X taking values in [0,∞), such that E[X] > 0, for all r > 0, we have

P(X > r) ≤ E[X]

r
.

Theorem A.2.2. (Chebyshev’s Inequality, [69, Lemma 3.1])

For each random variable X taking values in [0,∞), such that E[X2] <∞, for all r > 0, we have

P(|X − E[X]| > r) ≤ Var(X)

r2
.

A.3 Key Theorems in Measure Theory

Theorem A.3.1. (Dominated Convergence Theorem, [69, Theorem 1.21])

Consider measurable functions f, g, fn, gn, n ∈ N, on a measure space (Ω,A, µ). Let |fn(x)| ≤ gn(x) for

all x ∈ Ω, n ∈ N, and moreover let limn→∞ fn(x) = f(x) and limn→∞ gn(x) = g(x) for all x ∈ Ω. If

limn→∞
∫

Ω
gn(x)µ(dx) =

∫
Ω
g(x)µ(dx), then

lim
n→∞

∫
Ω

fn(x)µ(dx) =

∫
Ω

f(x)µ(dx).

Theorem A.3.2. (Fubini’s Theorem, [69, Theorem 1.27])

Consider sigma-finite measure spaces (S,S, µ) and (T, T , ν) with product space (S × T,S × T , µ ⊗ ν). For

each measurable function f : S × T → [0,∞) such that
∫
S×T |f(s, t)|(µ⊗ ν)(ds, dt) <∞, we have

∫
S

∫
T

f(s, t)µ(ds)ν(dt) =

∫
T

∫
S

f(s, t)ν(ds)µ(dt)
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Lemma A.3.3. (Moments and Tails Lemma, [69, Lemma 2.4])

For each random variable X, and for all m > 0, we have

E[Xm] =

∫ ∞
0

mym−1P(X > y)dy.

Lemma A.3.4. (Borel-Cantelli Lemma, [69, Theorem 2.18])

Consider measurable events An, n ∈ N on a probability space (Ω,A,P). If
∑∞
n=1 P(An) <∞ then

P (infinitely many of the events An, n ∈ N occur) = 0.

A.4 Results on Regularly Varying Functions and Related Functions

Theorem A.4.1. (Uniform Convergence Theorem, [21, Theorem 1.2.1])

If L is a slowly varying function, then limx→∞ L(λx)/L(x) = 1, uniformly among λ in each compact subset

of (0,∞).

Theorem A.4.2. (Potter’s Theorem [21, Theorem 1.5.6])

If L is a slowly varying function, then for each A > 1 and δ > 0, there exists K > 0 such that for all x, y ≥ K,

L(x)

L(y)
≤ Amax

{
xδ

yδ
,
yδ

xδ

}
.

Theorem A.4.3. (Karamata’s Theorem, [21, Prop. 1.5.8])

For each slowly varying function L, with K > 0 large enough that L is locally bounded on [K,∞), for all

α > −1, as x→∞, ∫ x

K

yαL(y)dy ∼ xα+1L(x)

α+ 1
.

Theorem A.4.4. (Alternative Version of Karamata’s Theorem, [21, Prop 1.5.10])

If L is a slowly varying function, then for all p < −1, the integral
∫∞
x
ypL(y)dy converges (for x > 0), and

lim
x→∞

xp+1L(x)∫∞
x
ypL(y)dy

= −p− 1.
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Definition A.4.5. (Bounded Increase, Bounded Decrease, and Positive Increase, [21, p71])

The lower index, β(h), of a function h : R → R is the supremum of β ∈ R for which there exists C > 0

so that for all Λ > 1, h(λx)/h(x) ≥ (1 + o(1))Cλβ, uniformly in λ ∈ [1,Λ], as x→∞, see [21, p68].

The upper index, α(h), of a function h : R→ R is the infimum of α ∈ R for which there exists C ′ > 0 so

that for all Λ > 1, h(λx)/h(x) ≤ (1 + o(1))C ′λα, uniformly in λ ∈ [1,Λ], as x→∞, see [21, p68].

The function h has bounded increase if α(h) <∞.

The function h has bounded decrease if β(h) > −∞.

The function h has positive increase if β(h) > 0.

Theorem A.4.6. (Potter’s Theorem for Bounded Increase/Decrease, [21, Prop 2.2.1])

If the function u has bounded increase, then for each p > α(u), there exist constants C1, C2 > 0 such that for

all y ≥ x ≥ C1,

u(y)

u(x)
≤ C2

yp

xp
,

and if the function u has bounded decrease, then for each q < β(u), there exist constants C ′1, C
′
2 > 0 such

that for all y ≥ x ≥ C ′1,
u(y)

u(x)
≥ C ′2

yq

xq
.

Theorem A.4.7. (Relationship Between Lower Order and Lower Index, [21, Prop 2.2.5])

For a function f : R→ [0,∞), the lower order, defined as µ(f) := lim infx→∞ log(f(x))/ log(x), satisfies

µ(f) ≥ β(f).

Theorem A.4.8. (Karamata’s Theorem for Positive Increase, [21, Prop 2.6.1(b)])

If f is positive, locally integrable on [K,∞) for K > 0, and has positive increase (see Definition A.4.5), then

lim inf
x→∞

f(x)∫ x
K
s−1f(s)ds

> 0.
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Theorem A.4.9. (O-Version of Monotone Density Theorem, [21, Prop 2.10.3])

Let u : [0,∞) → R be eventually positive, with bounded increase or bounded decrease. Defining the function

U(x) :=
∫ x

0
u(y)dy, if U has bounded increase and positive increase, then as x→∞,

U(x) � xu(x).
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arXiv:1804.08393v2, 2018.

[84] Kyprianou, A., Schoutens, W., and Wilmott, P. Exotic option pricing and advanced Lévy models. John
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[120] Wang, L. and Pötzelberger, K. Boundary crossing probability for Brownian motion and general bound-

aries. J. Appl. Probab., 34(1):54–65, 1997.

[121] Watson, H. and Galton, F. On the probability of the extinction of families. The Journal of the

Anthropological Institute of Great Britain and Ireland, 4:138–144, 1875.

[122] Westwater, M. On Edwards’ model for long polymer chains. Comm. Math. Phys., 72(2):131–174, 1980.

[123] Xiao, Y. Random fractals and Markov processes. Fractal Geometry and Applications: A Jubilee of

Benoit Mandelbrot, 2:261–338, 2004.

[124] Yakymiv, A. On the asymptotics of the density of an infinitely divisible distribution at infinity. Theory

Probab. Appl., 47(1):114–122, 2003.



Bibliography 164

[125] Yano, K., Yano, Y., and Yor, M. Penalising symmetric stable Lévy paths. J. Math. Soc. Japan,

61(3):757–798, 2009.

[126] Yano, K., Yano, Y., and Yor, M. Penalisation of a stable Lévy process involving its one-sided supremum.
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Glossary of Notation

Real Numbers

bxc Floor function

dxe Ceiling function

x ∨ y max{x, y}

x ∧ y min{x, y}

∼ Strong asymptotic equivalence, f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1

. Weak asymptotic bound, f(x) . g(x) if lim supx→∞ f(x)/g(x) <∞

& Weak asymptotic bound, f(x) & g(x) if lim supx→∞ g(x)/f(x) <∞

� Weak asymptotic equivalence, f(x) � g(x) if f(x) . g(x) and f(x) & g(x)

∆δ(dx) Dirac measure, unit point mass at δ

β(f) Lower index of f , see Definition 3.3.3(3)

Lévy Processes

Ψ Characteristic exponent

φ Laplace exponent

d Linear drift of the process

Π(dx) Lévy measure

Π(x) Tail of the Lévy measure,
∫∞
x

Π(dx)

I(δ) Integrated tail function, I(δ) :=
∫ δ

0
Π(x)dx

Xt− Left limit, lims↑tXs

∆x
1 Time of the first jump of size greater than x

∆
(a,b)
1 Time of the first jump of size between a and b
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Functions

Γ(x) Gamma function

ghy (t) Augmented version of g(t), ghy (t) := g(t+ h)− y

gδ(t) Rescaled version of g(t), g(t)/ log(t)δ

Lévy Processes - Chapter 2

Tδ First passage time above the level δ

T(δ,∞) First passage time above the level δ

U(δ) Renewal function, U(δ) := E[Tδ]

N(t, δ) Minimal number of boxes of length at most δ needed to cover the range up to time t

M(t, δ) Number of boxes in a mesh of side length δ which intersect with the range up to time t

(X̃δ
t )t≥0 Process with δ-shortened jumps

φ̃δ(dx) Laplace exponent of X̃δ
t

Π̃δ(dx) Lévy measure of X̃δ
t

L(t, δ) New box-counting scheme, L(t, δ) := 1
δ X̃

δ
t

Lévy Processes - Chapter 3

Ot Event upon which we condition, Ot := {Xs ≥ g(s), 0 ≤ s ≤ t}

Og
h
y

t Augmented version of Ot, O
ghy
t := {Xs ≥ ghy (s), 0 ≤ s ≤ t}

P(·) Original probability measure

Q(·) Conditioned weak limit measure, Q(·) := limt→∞ P(·|Ot)

ρ(t) Error term, ρ(t) := P (Ot) /Φ(t)−Π(g(t))

ρhy(t) Error term, ρhy(t) := P(Og
h
y

t )/Φhy(t)−Π(ghy (t))

Φ(t) Integral of P(Os), Φ(t) :=
∫ t

0
P(Os)ds

Φhy(t) Integral of P(Og
h
y
s ), Φhy(t) :=

∫ t
0
P(Og

h
y
s )ds
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