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Abstract

The slip-spring model introduced by Likhtman (Macromolecules 38, 6128-6139 (2005)) simulates

a single chain entangled within a polymer melt. Single-chain models such as the slip-spring model

allow the rheology of polymers to be studied without requiring the use of expensive multiple-chain

molecular dynamics simulations. This study investigates the slip-spring model in the context of a

single entanglement and compares it to a two-chain entanglement model. A better understanding

of the mechanisms involved in an entanglement is obtained, through the properties of stress

relaxation and mean squared displacement, but also through analysis of the bead positions and

bond vectors involved. Flaws are identified within the slip-spring model, for which modifications

to the model are suggested, including the addition of a non-isotropic spring-constant and the

replacement of the slip-spring by a slip-chain. This examination of the simple case is carried

out, so that the knowledge gained may be later applied to the multiple-entanglement slip-spring

model.

During the course of this study, the generic polymer simulation (GPS) package was con-

structed by the Reading Theoretical Polymer Physics Group. GPS provides an object-orientated

simulation framework, designed to keep simulations organised and make new simulations faster to

create. An overview of the concepts involved is included in this thesis. Another tool encountered

within this study is maximum likelihood estimation, a statistical technique that, when applied to

polymer models such as the slip-spring model, allows the estimation of model parameters. Such

a fitting is not only useful for finding the best parameters, but also prevents the model flaws

from being obscured by incorrect parameter fitting.
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Notation ix

Notation

δij =


1 ; i = j

0 ; i 6= j

kB Boltzmann constant

T temperature

U potential energy

ξ friction coefficient

m mass

t time

∆t simulation time step

τR Rouse time

τd disentanglement time

b statistical segment

N number of bonds in a chain

H system height, see Fig.3.1

D system width, see Fig.3.1

V volume

k spring-constant

kS slip-spring spring-constant

k̂S tensor slip-spring spring-constant

k̂SC tensor slip-chain spring-constant



Notation x

Notation continued...

h slip-spring height, see Fig.3.21

NS slip-spring strength

{NS} = NS,x, NS,y, NS,z non-isotropic slip-spring strength

{nS} = nS,x, nS,y, nS,z slip-chain spring strength

NSC number of bonds in a slip-chain

ri = (xi, yi, zi) position of bead i

Rij = (Xij , Yij , Zij) bond vector between beads i and j

Fij force on bead i due to bead j

Fi total force on bead i

σ stress tensor

G (t) stress relaxation/correlation function

GA (t) stress auto-correlation of lower chain

GB (t) stress auto-correlation of upper chain

GT (t) stress auto-correlation for both the lower and upper chain

GX (t) stress cross-correlation between the lower and upper chain

g1,mid (t) mean squared displacement of the middle bead

var (x) variance of x
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Chapter 1

Introduction

1.1 Polymers and the role of entanglements

Polymers are long molecules of repeating chemical units, an example being DNA chromosomes,

which are ∼ 10−10m wide and can be up to ∼ 10−2m in length. This difference in length scales

gives polymers unique dynamics compared to regular small molecules, because the polymer chains

become entangled with each other.

Polymer melts

A system of unlinked polymers, above melting temperature, is known as a polymer melt. These

systems demonstrate an important property known as viscoelasticity, where the polymer has

an elastic response for fast deformations, but will demonstrate viscous flow over longer time

scales, allowing it to fill a container. Entanglements within the melt restrict the movement of

the polymer chains and play a key role in the viscoelasticity. In a dense polymer melt, lateral

motion is severely restricted by the presence of the surrounding chains, which means that the

polymer mainly moves along its own length. The motion of a polymer only along its length was

named reptation by Pierre-Gilles de Gennes in 1971 [1]. An entanglement between two polymers

will exist until one of the chains slides out of it by reptation. However, as a polymer slides out
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(a) Adjacent (b) Hooked (c) Looped

Figure 1.1: Diagram showing examples of entanglements

of entanglements, it will slide into new entanglements. Thus, the polymer is always entangled,

but each entanglement has a finite lifetime.

Polymer networks

A system where the polymers are joined by cross-links is known as a polymer network or elas-

tomer. An example of this is rubber bands made from vulcanised rubber. When the elastomer is

relaxed, the chains are slack and thus at their highest state of entropy. When a stretching force is

applied, the elastomer stretches significantly, pulling the chains taut and causing the entropy to

decrease. When this force is released, the chains become slack again and the elastomer returns to

its original shape. The cross-links are crucial to the response of the elastomer to this stretching

force. A greater number of cross-links will decrease the length of polymer segments, and there-

fore increase the restoring force and decrease the relaxation time. Studies have demonstrated

that entanglements between cross-links are also vital for explaining the response of the system,

because they act as extra cross-links [2]. Hence, the ability to understand the mechanisms of

these entanglements is of interest to polymer scientists.

Entanglements

As depicted in Fig.1.1, different levels of interactions can be labelled as entanglements and

there is currently no consensus on what constitutes an entanglement. An entanglement could

correspond to one chain completely looped around another (Fig.1.1c), or be as simple as one
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polymer adjacent to another (Fig.1.1a). One could suggest that adjacent chains are not an

entanglement, but chains hooked around each other are an entanglement (Fig.1.1b). Yet, the

difference between these two cases is just the curvature of the chain; if the hooked case had no

curvature, it would be equivalent to the adjacent case. Thus, one would have to suggest a point

at which the curvature of a chain becomes sufficient enough to constitute an entanglement and

not just an interaction. A recent study by Likhtman, Ponmurugan and Cao [3] states that one

may characterise entanglements by the duration of contacts and the linking number between two

chains, which is related to the curvature of one chain around the other. It was discovered that

the longest lived entanglements had the greatest curvature. This thesis shall examine long-lived

entanglements where one chain hooks around another.

A polymer network can be considered as consisting of circular polymers [2]. Fig.1.2 demon-

strates how a network eventually leads to the creation of circular polymers, which can become

entangled. Circular polymers have a number of different possible forms of entanglement. Neigh-

bouring circles may interact with each other (Fig.1.3a), which would result in a temporary

entanglement, since the two polymers would eventually separate. A second entanglement type

(Fig.1.3b) occurs when two of these circular polymers are entwined together. Such an interaction

Figure 1.2: Diagram showing a polymer network. Polymers are connected by cross-links, and
may also entangle with each other. A sufficiently high density of cross-links will create loops,
which prevent the entanglements from being released.
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(a) Neighbouring (b) Once entwined (c) Twice entwined

Figure 1.3: Diagram showing three of the possible entanglements between two circle polymers

would lead to permanent entanglements. These circles may also entwine with each other more

than once (Fig.1.3c), resulting in twice entwined interactions or greater. This study considers an

entanglement in the case of once entwined chains, so that the entanglements in our model are

permanent.

1.2 Computer simulation

Computer simulation is a vital tool in polymer science. Experiments cannot show exactly what

is happening microscopically within a polymer system, but only deduce the mechanisms from

observable macroscopic properties. In contrast, a computer simulation can be used to set up a

system of polymers with a known configuration and can measure properties on the microscopic

scale. Furthermore, with simulations it is possible to easily test how changing details of the

system affect these properties. There are a number of different equations of motion that are

commonly used for computer simulation. During this study, three of these are used: molecular

dynamics (MD), Monte Carlo (MC) and Brownian dynamics (BD), which are described in the

following sections.
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1.2.1 Brownian motion

Before discussing these equations of motion, the concept of Brownian motion shall be introduced.

Brownian motion is the seemingly random motion of a particle as a result of unobserved smaller

particles. Polymers are often modelled to exist within a solution of smaller particles, so a random

force, FR
i , is included in the equation of motion to represent the net effect of collisions between

the large particle i and smaller particles in the solution,

FR
i =

n∑
j=0

fR
ij (1.1)

where fR
ij is the force due to a collision, with particle j. Using central limit theorem, the proba-

bility distribution of FR
i is known to be a Gaussian distribution, with

〈
FR
i

〉
= 0 and variance v.

This may be expressed by a Wiener process as

FR
i dt =

√
v dWi (t) (1.2)

The stochastic Wiener process is defined such that dWi (t) is not correlated between beads, i, j,

not correlated between Cartesian components, α, β, and not correlated between different points

in time, t, t′. Hence, 〈
Wα
i (t) W β

j

(
t′
)〉

= δijδαβ min
(
t, t′
)

(1.3)

The fluctuation-dissipation theorem establishes a relationship between random forces and

frictional forces [4]. This is a reasonable relationship, since the faster a particle moves in a

particular direction the larger the probability of collisions with other particles occurring on the

forward side of the particle. From this, the variance of a particle moving with Brownian motion

is known to be

v = 2kBTξ (1.4)

and Eq.(1.2) becomes
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FR
i dt =

√
2kBTξ dWi (t) (1.5)

where kB is the Boltzmann constant, T the temperature and ξ the friction coefficient.

1.2.2 Molecular dynamics (MD)

MD simulations aim to completely model the forces involved in the system and are typically

used to model multi-chain polymer models. MD simulations obey Newtonian mechanics with

the equation of motion

mr̈i = FT
i (1.6)

where r̈i = d2ri
dt2

is the acceleration, m is the mass, and FT
i is the total force upon bead i. FT

i is

a sum of forces,

FT
i = Ff

i + FB
i + FNB

i + FR
i (1.7)

combining: the frictional force, Ff
i; the force along bonds, FB

i ; the force between non-bonded

beads, FNB
i ; and Brownian motion, FR

i (Eq.(1.5)). The frictional force is given by

Ff
i = −ξṙi (1.8)

where ṙi is the velocity.

KGMD model

The simplest MD model of a polymer melt, and the one that we will use later in this study,

was created by Kremer and Grest in 1990 [6] and will be referred to as KGMD. This model

has a truncated Lennard-Jones (LJ) potential between all beads and finitely extensible nonlinear

elastic (FENE) springs for bonds.
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(a) Lennard-Jones potential (b) FENE potential plus repulsive LJ potential

Figure 1.4: KGMD bead interaction potentials.

The repulsive LJ force between all beads is given by

FNB
i = −

N∑
j=1, j 6=i

∂ULJ
ij

∂Rij
(1.9)

where Rij = ri − rj and ULJ
ij is the LJ potential,

ULJ
ij (Rij) =


4ε
((

RLJ
Rij

)12
−
(
RLJ
Rij

)6
+ 1

4

)
Rij
RLJ

< 2
1
6

0 otherwise
(1.10)

where ε is the LJ energy and RLJ is the LJ radius. In this study, we shall define our units

such that ε = RLJ = 1. The standard LJ potential, demonstrated in Fig.1.4a, is repulsive for

R
RLJ

< 2
1
6 and attractive for R

RLJ
> 2

1
6 . In the KGMD model only the repulsive potential is

required, so a cut-off distance of R
RLJ

= 2
1
6 is applied. This repulsion becomes very strong as Rij

becomes small and gives beads an excluded volume, which combine in polymer chains to make

them uncrossable, provided the springs hold the beads close enough together.

The force, FB
i , between particles connected by bonds with vectors Rij is a sum of all attached
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bonds. In the case of a bead in the middle of a linear chain, there are two bonded beads and

FB
i = fB

i,i−1 + fB
i,i−1 (1.11)

In the KGMD model

fB
ij = −

∂UFENE
ij

∂Rij
(1.12)

where UFENE
ij is the potential energy of a FENE spring,

UFENE
ij (Rij) =


−1

2kR
2
max ln

(
1−

(
Rij
Rmax

)2
)

Rij < Rmax

∞ otherwise
(1.13)

where k = 30ε/R2
LJ and Rmax = 1.5RLJ is the maximum bond length. The FENE potential in

Eq.(1.13) increases as the distance between beads increases, such that it becomes infinite when

Rij → Rmax, and when combined with the LJ force creates a potential well for the bonds, as

shown in Fig.1.4b.

1.2.3 Brownian dynamics (BD)

The Brownian dynamics equation of motion approximates Eq.(1.6), for the case of large ξ and

small m, where the inertia becomes relatively unimportant and the mr̈ term may be neglected.

Thus FT
i = 0, which leads to the equation of motion

ξṙ = FB + FNB + FR (1.14)

By making this approximation the equation of motion has been simplified to a first order stochas-

tic differential equation. The Rouse model is an example of a model that is commonly simulated

using the BD equation of motion, and is described below.
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Figure 1.5: Diagram of the monomer scale polymer chain model. Each bond has a length Ri, the
angle between each bond is labelled as θi and the rotation of bonds is φi. Each of these degrees of
freedom may have any potential, U , but central limit theorem states that the end-to-end vector
Re will have a Gaussian distribution when the number of bonds is large.

1.2.4 Rouse model

Proposed by Rouse in 1953 [7], the Rouse model is used extensively in polymer dynamics and

during this study. A Rouse chain is composed of massless beads connected by linear springs

[4]. To introduce the Rouse chain, a polymer chain is first considered on a scale such that each

bead is a monomer. As depicted in Fig.1.5, the chain has three main potentials that can be used

to define the model: the bond length potential U (R), angle between bonds U (θ), and rotation

around bonds U (φ). The statistical segment length of this chain, b, is defined by the second

moment of the end to end vector
〈
R2
e

〉
relative to the number of bonds, n,

b2 ≡
〈
R2
e

〉
n

(1.15)

Central limit theorem states that the sum of a random mechanism repeated multiple times will

have a Gaussian distribution, independent of the potentials involved (in this case U (R), U (θ)
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and U (φ)). Thus, the probability distribution of Re takes the form as

P (Re) =
1
Q

exp
(
− 3R2

e

2 〈R2
e〉

)
=

1
Q

exp
(
− 3R2

e

2nb2

)
(1.16)

where Q is such that
´
P (Re) d3Re = 1. If one was to model Re as a linear spring between the

two end beads, with spring constant k and energy

U =
1
2
kR2

e (1.17)

the probability distribution may also be written as a Boltzmann distribution

P (Re) =
1
Q

exp
(
− kR2

e

2kBT

)
(1.18)

By comparing Eq.(1.16) and Eq.(1.18), the spring constant required for replacing the microscopic

chain with a linear spring is found to be

k =
3kBT
nb2

(1.19)

The Rouse model represents this monomer chain as a chain of coarse-grained blobs, such that

one blob represents many beads from the real chain, as depicted by Fig.1.6. Using Eq.(1.19),

these coarse-grained blobs are connected by linear springs to form the Rouse chain. By coarse-

graining the system, calculations are made simpler and simulations are faster. Once the system

has been coarse-grained, the individual monomers are neglected and only the Rouse chain is

modelled. The position vectors of the coarse-grained blobs in this new chain are labelled as

r0, r1, . . . , rN . The statistical segment of this coarse-grained chain relative to the statistical

segment of the previous monomer chain, bm (Eq.1.15), is b2 = nb2m. Thus from Eq.(1.19), the
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Figure 1.6: Diagram of a coarse-grained chain

spring constant in terms of this new statistical segment is

k =
3kBT
b2

(1.20)

The energy of a linear spring and thus each Rouse bond is therefore

Uij =
1
2
k (ri − rj)

2 (1.21)

and the energy of the entire Rouse chain with N bonds is a sum of these bonds,

U =
1
2
k

N∑
i=1

(ri − ri−1)2 (1.22)

The force of each Rouse bond is

fB
ij = − ∂Uij

∂Rij
(1.23)

where Rij = ri − rj . Using Eq.(1.5), Eq.(1.11), Eq.(1.14), Eq.(1.23) and FNB
i = 0, the equation

of motion is obtained,

ξ dri =
3kBT
b2

(ri+1 − 2ri + ri−1) dt+
√

2kBTξ dWi (t) (1.24)
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In order to solve this equation of motion, a transformation to normal modes is made such

that

ri = X0 + 2
N∑
p=1

Xp cos

(
πp
(
i+ 1

2

)
N + 1

)
(1.25)

One can show that this transformation makes Eq.(1.24) a set of independent Ornstein-Uhlenbeck

processes,

dXp = − 1
τp

Xpdt+

√
2kBT
ξp

dWp (1.26)

with

ξp =


2 (N + 1) ξ p > 0

(N + 1) ξ p = 0
(1.27)

and

τp =
ξb2

12kBT
sin−2

(
πp

2 (N + 1)

)
(1.28)

[4, 7]. τp is the relaxation time of Rouse mode, p. For the case p� N and N � 1, this may be

approximated as

τp ≈
ξb2N2

3π2kBT

1
p2

(1.29)

The longest relaxation time is given by p = 1 and is known as the Rouse time,

τ1 = τR ≈
ξb2N2

3π2kBT
(1.30)

and a unit of time τ0 is often defined based on this,

τ0 ≡
τR
N2

=
ξb2

3π2kBT
(1.31)

Since this study considers Rouse chains with fixed end bead positions, it should be noted that
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for the fixed end case the transformation required is

ri = 2
N−1∑
p=1

Xp sin
(
πip

N

)
(1.32)

and

ξp = 2Nξ (1.33)

However, for the limit p� N , Eq.(1.29) and Eq.(1.30) are unchanged.

1.2.5 Monte Carlo (MC)

The MC method makes extensive use of random numbers. Random changes to the system are

made and then accepted or rejected with a probability based on the change in energy, in an

algorithm known as Metropolis acceptance. For example, a polymer model will attempt to make

a random move of a randomly selected bead from position rold to rnew, and have the probability

of this move being accepted given by

P (rold → rnew) =


exp

(
− 1
kBT

(U (rnew)− U (rold))
)

U (rnew)− U (rold) > 0

1 otherwise
(1.34)

In a computer simulation, this probability is used with a random number generator that generates

a number f (t) from a uniform distribution [0 . . . 1]. If P (rold → rnew) > f (t), then the move is

accepted.

1.3 Modelling entanglements

Running a multi-chain molecular dynamics simulation takes a lot of processor time to provide

useful statistics - often such simulations will have to be run for months. An alternative to a

multi-chain model is a single-chain model, which replaces all chains but one in the system with

virtual objects that represent the influence of the other chains. As such, single-chain models
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are not exact replications of the physical system, but rather an attempt to mimic the motion of

a single chain with the use of virtual objects. The core aims of a single-chain model are that

it is simple, fast to simulate and able to reproduce experimental results with as few arbitrary

parameters as possible. Many single-chain models have been proposed in the attempt to find the

best possible model, two of which relate to this project: the tube model and the slip-link model.

1.3.1 Random Walk

Before introducing the tube model, it is useful to introduce the random walk. A random walk

has steps with vectors, Ri, of random length and direction, such that 〈Ri〉 = 0 and
〈
R2
i

〉
= b2.

These vectors are uncorrelated with each other, such that 〈Ri ·Rj〉 = 〈Ri〉 · 〈Rj〉 = 0 for i 6= j.

A chain composed of n of these random steps will have an average end-to-end vector

〈Re〉 =

〈
n∑
i=1

Ri

〉
=

n∑
i=1

〈Ri〉 = 0 (1.35)

The second moment of the end-to-end vector is

〈
R2
e

〉
=

〈
n∑
i=1

n∑
j=1

Ri ·Rj

〉

=
n∑
i=1

〈
R2
i

〉
+

n∑
i=1

n∑
j=1, j 6=i

〈Ri ·Rj〉

=
n∑
i=1

b2 +
n∑
i=1

n∑
j=1, j 6=i

〈Ri〉 · 〈Rj〉

= nb2 (1.36)

which is the definition for b , the statistical segment length, as previously defined in (1.15).

1.3.2 Tube model

To calculate the entropy of a chain, the ability to calculate the number of possible chain con-

formations is required. In a multi-chain model, this cannot be done due to changing topological
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Figure 1.7: Diagram of the tube model. The chain is drawn as a black line with the other
polymers in the melt represented perpendicular to the plane the chain is on. The tube is shaded
blue and contains a line representing the primitive path.

constraints caused by the other chains. The tube model, introduced by Edwards in 1967 [10],

represents a single chain in such a way that the entropy can be calculated. To demonstrate the

construction of the tube model, consider the chain in Fig.1.7. It exists on a plane with other

chains intersecting the plane, so that they are considered as individual points. The approxima-

tion that the other chains do not move is made by assuming that their motion is slower than the

reptation of the chain. Constraints nearest to the mean path of the chain are used to construct a

tube-like region. The diameter of this tube, labelled a, depends on the density of the constraining

points. The line within the tube-like region is called the primitive chain and is the shortest curve

with the same topology as the real chain relative to the entanglements with other chains. The

primitive chain is approximately a random walk with Z sections of length a and contour length

L = Za (1.37)
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As a random walk, the mean squared end-to-end vector is known to be

〈
R2
e

〉
= Za2

= La (1.38)

However, the primitive chain represents the real chain with mean squared end-to-end vector

〈
R2
e

〉
= Nb2 (1.39)

where N is the number of bonds and b the statistical segment length. The end-to-end vector of

the real chain must be equal to the end-to-end vector of the primitive chain, so the tube segment

length is defined as

a ≡ Nb2

L
(1.40)

Equation of motion

The motion of the primitive chain ignores the small fluctuations of the chain, instead focusing

upon the more significant reptation motion. This motion is easy to compute because the entire

chain either moves forward one step or backward one step. Hence, the position of a bead at time

t+ ∆t, where ∆t is the simulation time step, is given by

ri (t+ Dt) =
1 + z(t)

2
ri+1 (t) +

1− z (t)
2

ri−1 (t) (1.41)

where z (t) specifies the direction of movement of the chain, either +1 or −1 [8]. At the end

of the chain, the beads act differently; there is no tube to move into, so a new tube segment is

created with random vector v (t) from the last bead, where |v (t)| = a. Therefore, the equations
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of motion for the end beads are

r0 (t+ Dt) =
1 + z (t)

2
r1 (t) +

1− z (t)
2

(r0 (t) + v (t)) (1.42)

rN (t+ Dt) =
1 + z(t)

2
(rN (t) + v (t)) +

1− z (t)
2

rN−1 (t) (1.43)

During its motion, the chain will slide out of the end of the tube to create new sections of tube

and the old sections of the tube are forgotten. Eventually, the entire original tube orientation

will be forgotten and replaced by a new tube. The lifetime of the middle segments is significantly

longer than that of the end segments, and the time taken for all of the original segments to be

forgotten is known as the disentanglement time, τd.

The original tube model had only a single relaxation method, reptation. Subsequent to this

original incarnation, many amendments have been made to improve comparison to experimental

results. As part of these modifications, two additional relaxation mechanisms were introduced:

contour length fluctuations and constraint release. One of the tube theory’s initial assumptions

was that the primitive chain has a fixed length, L; contour length fluctuations challenges this

assumption. Fluctuations in the real chain cause the length of the primitive chain to vary over

time, and were discovered to be important for reproducing the dynamical effects and predicting

τd [11]. Because the length of the primitive chain varies in addition to reptation, the chain has a

second mechanism of sliding out of entanglements. Hence, td is smaller than the original model

predicted, especially when the number of segments is not very large. Another assumption was

that all other chains are frozen in time, which is not the case. Constraint release considers the

case of existing topological constraints being removed, due to the reptation of other chains. This

means that the primitive chain does not only move along its length by reptation, but that the

shape of the path also changes. There are different ways of modelling this, one of which is by

allowing the primitive chain to move in a slow Rouse like motion [12].
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Criticisms of the tube model

The single chain structure factor, S (k, t), is an experimentally measured property of a material

that contains information about the structure of a polymer. In an experiment, photons or

neutrons are scattered off a material and the function S (k, t) is the intensity of the scattered

wave with the vector k. Random walk statistics and neutron-spin echo experiments show that

this function should be a Debye function, but it has been demonstrated that the function for the

tube model is significantly different and has up to a 50% discrepancy [21]. This was acknowledged

by Doi and Edwards in their formulation of the model [8]. Mapping the one-dimensional Rouse

motion of the primitive chain reptation into three-dimensional space causes this discrepancy.

Other issues include the experimentally observed properties of the storage modulus, G′ (ω),

and loss modulus, G′′ (ω). These functions are calculated from the strain of a material given

when a stress is applied with frequency ω. G′ (ω) is the elastic component representing the

storage of energy, whilst G′′ (ω) represents the loss of energy through heat transfer from the

material acting as a viscous liquid. Whilst the tube model is able to model these properties for

a monodisperse system, it struggles to reproduce them for bidisperse and branched polymers.

Different incarnations and modifications are made to the model to improve the fit in these

cases, but these modifications are not consistent with each other and cannot be easily compared.

Furthermore there is not a single model that can represent all experimental setups. The slip-link

model was created in an attempt to improve upon this situation.

1.3.3 Slip-link models

The concept of the slip-link model has existed for a long time; however, the more recent versions

are based upon the slip-link model described by Doi and Edwards [13]. This model is similar to

the tube model, where the tube is replaced with a number of virtual slip-link objects fixed in

space. The chain is free to move along its length by reptation, but is forced through these slip-

links, in order to represent the topological restrictions applied by entanglements. Like the tube

model, there have been many subsequent variations of the slip-link model proposed by various
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Figure 1.8: Diagram of the Hua-Schieber slip-link model

research groups. Some of the most recent slip-link model variants are presented in the following

sections, followed by a critical summary.

Hua-Schieber slip-link model

The Hua-Schieber (HS) model [14], depicted in Fig.1.8, has a primitive-chain composed of Z + 1

sections joined at Z slip-links. The position of the ith slip-link is specified by ri. The number of

monomers in each section, i, is ni, but the positions of these beads are not considered. Instead,

the simulation is evolved in respect to the one-dimensional position of each bead along the chain

contour length, sj , relative to an arbitrarily chosen point along the contour length. The equation

of motion for this system is

ξ
dsj
dt

= FBj + FRj + FEVj (1.44)

where ξ is the friction coefficient of the beads. FBj + FRj are the forces of a one-dimensional

Rouse chain, where FBj is the force due to springs and FRj is a random Brownian force. Finally,

FEVj is an excluded volume force that prevents beads from passing through each other in the

chain.
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Figure 1.9: Diagram of the Doi-Takimoto slip-link model

If the number of beads in the first or last section becomes zero, then the slip-link for that

section is destroyed. Constraint release occurs when this mechanism is triggered. Standard

practice is to run multiple independent chains simultaneously, in order to average the results. In

this model, whenever a slip-link is destroyed by reptation in one chain, another slip-link from

the ensemble of other chains is selected. If this selected link is older than the one that is being

destroyed, then the constraint is assumed to have been released and is destroyed also. New

slip-links are created when the number of beads in an end section exceeds a critical value. This

new slip-link is created at a random vector with a fixed length from the previous slip-link.

Doi-Takimoto slip-link model - dual slip-link model

The HS model applied constraint release when slip-links were destroyed on other chains. The

Doi-Takimoto (DT) model [16], depicted in Fig.1.9, improves upon the HS model by explicitly

pairing the slip-links when they are created. When a slip-link is constructed, a counterpart is
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added to another random chain in the middle of a random section. Each of these pairs represents

an entanglement between two chains. Both of the paired slip-links are destroyed when either of

the two chains slide out of one of the slip-links. Hence, the statistical character of the constraint

release is directly determined by the other chains.

However, unlike the NS model, the DT model does not store the one-dimensional position of

individual beads sj ; instead it is assumed that all beads are equally spaced between slip-links,

whose positions are fixed in space. This means that the middle sections of the chain can be

ignored and only the end sections are considered. Two effects change the length of the end

segments. Firstly, reptation is applied randomly with the equation of motion

ds =
√

2dc dW (t) (1.45)

where the diffusion constant is

dc =
a2

3π2τ0Z
(1.46)

The random movement ds can be either positive or negative and modifies the length of the end

segments s1 and s2, such that s2 is increased when the length of s1 decreases and vice versa. The

second effect applied to the chain is contour length fluctuations; the total length, L, fluctuates

with the equation

dL = − 1
tR

(L (t)− Leq) dt+
√

2dL dW (t) (1.47)

which has a restorative term that encourages the chain to return to the equilibrium length Leq

and a random fluctuation with diffusion coefficient dL.

Masubuchi slip-link model - primitive chain network model

The DT model recognised that one chain may be used to determine the constraint release dy-

namics of another by explicitly pairing slip-links. However, there is an ambiguity about the

location of the paired slip-link. This is resolved in the more involved Masubuchi model [17]. The
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Figure 1.10: Diagram of the Masubuchi slip-link model

slip-link that joins two chains must have the same point in space for both chains, as illustrated

in Fig.1.10.

The number of beads in each section is varied with the equation of motion

(
ξb
a0

n0

)
dni
dt

= Fni + FRi (1.48)

where ξb is the friction coefficient of a bead and n0
a0

is the average bead density of the entire

chain. This equation represents the one-dimensional reptation, where FRi is a random force and

Fni =
3kBT
b2

(
Ri+1

ni+1
− Ri−1

ni−1

)
(1.49)

is the force of beads in neighbouring segments, where ni is the number of beads and Ri is the

length of section i. An end section is destroyed if the number of beads within it is less than half

the average number of beads in a segment, and a new segment is constructed when the segment
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has one and a half times the average number of beads in a segment. When constructing a new

slip-link at the end of a chain, a list of all other segments from other chains that are within a

certain range of this end segment is generated. One of these segments is chosen and a slip-link

is added to both the middle of the selected segment and at the middle of the end segment that

was too long.

Another important advance in the Masubuchi model is the addition of thermal motion for

slip-links. The equation of motion of these slip-links is

ξs
dri
dt

= FE
i + Fo

i + FR
i (1.50)

where ξs is the friction coefficient of the slip-link and FE
i is the elastic force due to the four chains

connected to the slip-link, i. As such,

FE
i =

3kBT
b2

∑
j

Rj

nj
(1.51)

where the summation is over the four connected sections, with vectors Rj and nj beads. The

second force Fo
i is an osmotic term, such that sections repel the slip-link with a force proportional

to the bead density of that section. This results in an approximately constant bead density. The

final force, FR
i , is a random motion force. Thermal motion of entanglement points is an important

addition to the model, one that is also present in the slip-spring model, described in section 1.3.4.

Nair-Schieber slip-link model - consistently unconstrained Brownian slip-link model

(CUBS)

The Nair-Schieber (NS) model [18], illustrated in Fig.1.11, also allows slip-links to move in space,

but only due to constraint release, not to represent the fluctuations of the entanglement points in

the melt. As such, the NS model has no shared constraint release between chains or destruction



1.3 - Introduction: Modelling entanglements 24

Figure 1.11: Diagram of the Nair-Schieber slip-link model

of middle slip-links. Instead, the slip-links have the equation of motion

dri = − Nea
2

12kBT τCR
i

(
∂F
∂ri

)
T,{nj},{rj 6=i}

dt+

√
Nea2

6τCR
i

dWi (t) (1.52)

where a is the average bond length of the real chain and Ne is the number of real chain bonds

per entanglement. The free energy, F , is the sum of the free energy of each section

F = Fe (n1) +
Z−1∑
i=2

Fs (ni) + Fe (nZ) (1.53)

The free energy of a middle section is given by

Fs (ni) =
3kBT
2a2

〈n〉
ni

(ri − ri+1)2 +
3kBT

2
log
(

2πni
3

)
(1.54)
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and the free energy of an end section is given by

Fe (ni) = −kBT
2

log (ni) (1.55)

as derived in [19]. The time scale of this constraint release motion is controlled by the parameter

τCR
i for each slip-link.

The equation of motion for the individual beads is the same as for the HS model, but the

approach taken towards the construction and destruction of chain ends is a new one. Unlike the

previous models, the NS model creates and destroys end segments with a probability, rather than

when it reaches a critical value. This probability is derived from a balance condition dependent

on the number of beads in the section. The probability of a chain end being destroyed is given

by

Pd (ni) =
1

〈n〉2 τK

√
3 〈n〉
ni

(1.56)

and the construction of a new end by

Pc (ni) =
1

〈n〉2 τK

√
3 (ni − 1)
ni 〈n〉

(1.57)

where the Kuhn segment time, tK = τe/ 〈Z〉2, is fit from the characteristic time of chain relax-

ations, τe, and the number of slip-links, Z.

Summary

The modern slip-link model improves upon the tube model, but once again different versions exist,

which have focused upon the different methods of constraint release. A study by Masubuchi and

Watanabe in 2008 [15] compared the results of these different methods of constraint release,

and demonstrated that the NS model’s method of constraint release is inferior to the method of

pairing slip-links used by the DT and Masubuchi models; since the NS model overestimates the

values of G′ (ω) and G” (ω) at intermediate time. This conclusion was confirmed by Schieber in
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[20].

Another mechanism that has not been properly resolved is the fluctuation of the entanglement

point. Slip-links are assumed to be fixed in space in the HS and DT models, and while the NS

model introduced slip-links with motion, this was only applied to reproduce constraint release.

Only the Masubuchi model has slip-link positions that fluctuate with forces from the attached

segments and Brownian motion. As a result, the NS and DT models have poor agreement with

high frequency modes, where G′ (ω) significantly underestimates experimental values [15]. Com-

pared to these models, the Masubuchi model with fluctuating slip-link positions demonstrates

better agreement with experiment.

However, the issues encountered with the structure factor observed with the tube model have

not been addressed. The primitive chain’s reptation is still a one-dimensional Rouse motion,

mapped onto three-dimensional space. The slip-spring model below addresses this problem.

1.3.4 Slip-spring model

The focus of this study is the slip-spring model, as proposed by Likhtman in 2005 [21], and

based upon the slip-tube model of Rubinstein and Panyukov created in 2002 [22]. In the slip-

spring model, the slip-links are attached to fixed points in space by linear springs, known as

slip-springs, as illustrated in Fig.1.12. Much like the Masubuchi model, the movement of the

slip-links represents the motion of the entanglement point, due to the motion of the surrounding

chains. Another major difference with the slip-spring model is that beads within the chains are

explicitly modelled, whereas previous models focused on the slip-link positions and the number of

beads between them. This makes the slip-spring model less coarse-grained than previous models,

and allows smaller time scales to be investigated. The explicit knowledge of bead positions also

makes all physical observables easily available.
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Figure 1.12: Diagram of the slip-spring model
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Parameters

In this model, the positions of beads are labelled as ri, where i is the bead index, and there

are N bonds connecting N + 1 beads. There are Z slip-springs per chain, labelled from j = 1

to j = Z. Their slip-links may only exist on top of chain beads, where mj specifies the bead

that the jth slip-link is currently at. The anchoring point of the jth slip-spring is denoted as aj .

Furthermore, as demonstrated in Fig.1.12, anchoring points are not chosen to be on the mean

path, but rather represent the direction the entanglement is pulling the chain.

Energy

Since the chain is a Rouse chain (section 1.2.4), it is a series of linear springs with total energy

UC =
1
2
k

N∑
i=1

(ri − ri−1)2 (1.58)

where

k =
3kBT
b2

(1.59)

The strength of the slip-springs is represented by the parameter NS , which represents the number

of chain bonds that have the same strength as the slip-spring when connected in series. Thus,

the energy of a slip-spring is

US
j =

k

2NS

(
rmj − aj

)2 (1.60)

and exerts a force

FS
j = − k

NS

(
rmj − aj

)
(1.61)

on bead mj . The energy of the entire system is given by

U =
k

2

N∑
i=1

(ri − ri−1)2 +
k

2NS

Z∑
j=1

(
rmj − aj

)2 (1.62)
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and has equation of motion

ξdri =
3kBT
b2

(ri+1 − 2ri + ri−1) dt+
√

2kBTξ dWi (t) +
k

NS

Z∑
j=1

δi,mj
(
aj − rmj

)
dt (1.63)

The first two terms in Eq.(1.63) are the equation of motion for a Rouse chain (Eq.(1.24)) and

the final term applies to beads with a slip-link present.

Slip

Slip in the model represents the reptation-like motion of the chain past an entanglement. In

previous slip-link models, the chain would slide smoothly through the slip-link, because the slip-

links were fixed in space and the position of the beads were not modelled. In the slip-spring

model, the beads have known positions, which greatly increases the complexity, because one

must ensure the chain always passes through the slip-link position. The solution to this problem

is to allow the slip-link to move to the beads, instead of applying the topological constraint to

the beads. At each time step in the slip-spring simulation, the slip-link has the possibility of

slipping along the chain to the next bead in the chain. The direction of the slip is chosen by a

random function, ζk (t), which is either −1 or +1. The change in energy due to the proposed

slip is therefore given by

∆Uj (ζj (t)) = USS
j (mj) − USS

j (mj + ζj (t))

=
k

2NS

(
aj − rmj

)2 − k

2NS

(
aj − rmj+ζj(t)

)2
(1.64)

The change in slip-link index is accepted or rejected by the Metropolis algorithm as described in

section 1.2.5. The original model considered the slip-link existing anywhere along the length of

the chain, but the method of discrete jumps between beads, first implemented by Müller [24], is

equally valid and far simpler.
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Constraint release

Constraint release is added to the slip-spring model using the same mechanism used in the

Doi-Takimoto slip-link model. When slip-links are created, they are explicitly paired to other

slip-links. When a slip-link reaches an end bead, mk → 0 or mk → N , the chain is said to have

reptated out of the entanglement and that slip-link is destroyed along with the paired slip-link.

However, unlike the DT model, new slip-links are not created based upon the length of an end

section. To ensure the average density of slip-links is maintained, a new pair of slip-links is

created whenever a pair is removed. This new slip-link pair is created with one slip-link on the

end section of a random chain and the other on any random location in another chain.

Results

The slip-spring model has taken the best parts of the previous tube and slip-link models. As

such, the intermediate time of G′ (ω) and G′′ (ω) fits well to experimental data [21], since the

DT constraint release is used. The high frequency modes of G′ (ω) are also in agreement with

experimental data [21], because the slip-links may move in space as they do in the Masubuchi

model. The slip-spring model improves upon these models further, by considering the position of

beads and allowing them to have three-dimensional motion. The previous models had a structure

factor that violated random-walk statistics, due to the beads moving with a one-dimensional

Rouse motion, and this difference in the slip-spring model fixes this.

1.4 Motivation for this study

In 1943, Flory and Rehner [25] considered analytically a single cell of a polymer network. This

cell consisted of a cross-link connected to four bonded neighbours, as illustrated in Fig.1.13a.

The neighbouring cross-links were assumed to be fixed at their average positions, located at the

corners of a tetrahedron. In 1977, Graessley and Pearson [2] considered analytically the Flory

network cell again, but used a slip-link instead of a central cross-link, in order to compare an
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entanglement with a cross-link. The slip-link, as depicted in Fig.1.13b, is an older version of the

slip-links that have been discussed in section 1.3.3, where it is a hoop through which both chains

have to pass.

Today, there is a far greater computational power available, which allows this study to run

polymer simulations, as described in chapter 2, rather than just analytical models. As such, the

two-chain model (Fig.1.13c) is constructed, for which a detailed description is given in section

3.1.7. This is compared to the slip-spring model, where there is only one chain and has a

single slip-spring representing the single entanglement (Fig.1.13d). A detailed description of

this model is given in section 3.2. By comparing the slip-spring model to the two-chain model,

this project aims to demonstrate how well the slip-spring model can reproduce the static and

dynamic properties of the single entanglement case, using both macroscopic and microscopic

properties. Where discrepancies are discovered, chapter 4 of this project suggests improvements

to the slip-spring model that can be made. Whilst this study considers the simplest mapping of

the multi-chain system onto a single-chain model, the aim is for the techniques and suggestions

proposed to be developed further after this study and applied to the more general case of the

full multi-entanglement slip-spring model (section 1.3.4).

Furthermore, this project demonstrates how parameter estimation can be done using the

statistical technique of maximum likelihood, as discussed in chapter 5. This method is based

purely on the probability distribution of beads, rather than fitting the parameters of a model to

particular properties. By having a method that fits the model to the bead positions observed in a

multi-chain simulation, the maximum likelihood method finds parameters without bias towards

specific properties and does not obscure flaws in the model.
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Previous models:

(a) Flory and Rehner (b) Graessley and Pearson

Models used within this study:

(c) Two-chain single entanglement (d) Slip-spring

Figure 1.13: Single cell network models
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Chapter 2

Methods

2.1 Observables

2.1.1 Correlators and time correlation functions

Observables are properties of the system that are measured during the simulation. In this study,

the majority of observations use time correlation functions, which are the average of the product

of a function at two different times,

CAA (t) = 〈A (t)A (0)〉 = lim
tf→∞

1
tf − t

ˆ (tf−t)

0
A(t+ τ)A(τ) dτ (2.1)

where tf is the final time of simulation [26]. When t = 0 the two values of A are equal and

therefore fully correlated and give the second moment of A,

CAA (0) = 〈A (0)A (0)〉 =
〈
A2
〉

(2.2)

In the limit t → ∞ the two measurements are completely uncorrelated and produce the first

moment of A squared,

CAA (∞) = 〈A (∞)A (0)〉 = 〈A (∞)〉 〈A (0)〉 = 〈A〉2 (2.3)
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Figure 2.1: Bead position in a random walk

The amplitude of the correlation function and the difference between these is the variance of A

CAA (0)− CAA (∞) =
〈
A2
〉
− 〈A〉2 = var (A) (2.4)

A stochastic process as a function of time provides very little insight about the dynamics of a

system, as demonstrated by Fig.2.1. The time correlation function can be used instead to obtain

more information, using the fluctuation-dissipation theorem, which connects the relaxation of a

system to correlations between fluctuations occurring at different times [26, 27, 28]. For example,

the stress relaxation modulus of an isotropic system can be expressed as correlation function of

stress at time τ and t+ τ ,

G (t) =
V

kBT
〈σαβ (t+ τ)σαβ (τ)〉

α, β = x, y, z

α 6= β
(2.5)

where V is the volume, σαβ is a component of the stress tensor and the average
〈〉

applies the

integral over τ in Eq.(2.1) [4]. The stress relaxation may be calculated from measurements of

the system relaxing after a deformation, as the name suggests, but the fluctuation-dissipation

theorem means that, by measuring the time correlation function of the stress tensor, the stress



2.1 - Methods: Observables 35

relaxation modulus can be calculated from a system without deforming it.

Correlators in computer simulations

To calculate a time correlation function in a simulation, the integral in Eq.(2.1) is approximated

as a summation of nt time steps of size ∆t,

CAA (t) = 〈A (t)A (0)〉 ' 1
nt

nt∑
i=0

A (t+ i∆t)A (i∆t) ; nt =
(tf − t)

∆t
(2.6)

A typical simulation would record the function A (t) during the simulation and write it to file.

Only after the simulation is completed, is Eq.(2.6) calculated. The major drawback of this is

the amount of storage memory required for the output file, which limits the number of obser-

vations that may be recorded. The University of Reading Polymer Physics Group has its own

programming objects called correlators, which improves upon this situation greatly [29]. Rather

than calculating the correlation function after the simulation, the correlation function is cal-

culated as the data is obtained. Thus, when a new value is observed, it is compared with all

previous observations to calculate A (t)A (0), where the latest observation is A (0) and A (t) is

the observation a time t ago. When this is done for every observation and averaged, Eq.(2.6) is

obtained. However, this would have greatly increased the amount of run-time memory required

to impossible levels. This is where the correlators become clever.

Time correlation functions are normally plotted on a logarithmic scale. This means that the

correlator object does not need to calculate CAA (t) for all available t. Instead the correlator uses

an array of queue objects to create a non-linear scale. Illustrated in Fig.2.2, these queues shift

all values one place every time a new value is added, such that the final value is forgotten, but

every two values added are averaged and passed to the next queue object in the array. Because

of this, the nth queue is only given 1 value for every 2n−1 values added to the 1st queue. Thus, a

non-linear storage of past observations is created, with increased averaging as t increases, so no

past observations are completely forgotten.
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Figure 2.2: Diagram of the correlator object, indicating insertion, shifting and averaging of
values (grey). Also shown are the combinations of elements used for calculation of the correlation
function (blue). Only two queue structures are depicted in this diagram, but many more are
used within simulations. Each queue structure repeats the operations demonstrated here, such
that the nth correlator obtains new a value every 2(n−1) values added to the 1st correlator.

The correlation function, CAA (t), is calculated from this structure with the same non-linear

scale. Using Fig.2.2 for reference, a new value in the 1st queue is compared with the values in

cell 1.5, 1.6, 1.7, 1.8 to obtain the correlation function at t = 4∆t, 5∆t, 6∆t, 7∆t; a new value

in the 2nd queue is compared with 2.5, 2.6, 2.7, 2.8 to obtain t = 8∆t, 10∆t, 12∆t, 14∆t; and

continuing for later queues. These are averaged with the results calculated when previous values

were added to the correlator object to obtain the correlation function, CAA (t). This method is

more efficient on memory and provides a more accurate correlation function, than the standard

method, for the same simulation time.

2.1.2 Stress, σ, and the stress relaxation function, G (t)

The stress property shall be considered in relation to a single Rouse chain, consisting of N bonds

connecting N + 1 beads. Beads in this chain are labelled with the position vectors r0, r1, . . . rN ,

where the end beads r0 and rN are fixed in space. For this chain, the microscopic expression for
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the stress tensor is

σαβ = − 1
V

N∑
i=1

Rαi,i−1 F
β
i,i−1 (2.7)

where V is the volume of the system, Ri,i−1 is a bond vector and Fi,i−1 is the force along the

bond,

Ri,i−1 = ri − ri−1 (2.8)

Fi,i−1 =
∂Ui,i−1

∂Ri,i−1
= −kRi,i−1 (2.9)

where Ui,i−1 is given by Eq.(1.21). Thus, the diagonal components of the stress tensor, which

are of most interest to this study, are given by

σγγ =
k

V

N∑
i=1

(
rγi − r

γ
i−1

)2 (2.10)

where γ = x, y, z and k is given by Eq.(1.20).

The first moment of stress for a Rouse chain with fixed end beads is given by

〈σγγ〉 =

´
σγγ exp

(
− U
kBT

)
d3r1 . . . d3rN−1

´
exp

(
− U
kBT

)
d3r1 . . . d3rN−1

(2.11)

which averages over all bead positions, where d3ri = drxi dryi drzi and U is given by (1.22) to

produce

〈σγγ〉 =

´
k
∑N

i−1

(
rγi − r

γ
i−1

)2 exp
(
− k

2kBT

∑N
i=1 (ri − ri−1)2

)
d3r1 . . . d3rN−1

´
exp

(
− k

2kBT

∑N
i=1 (ri − ri−1)2

)
d3r1 . . . d3rN−1

(2.12)
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To integrate this, the three-dimensional integral

ˆ ∞
−∞

(r̃γ)p e−ar̃
2
d3r̃ =


(2q−1)!!

(2a)q
(
π
a

) 3
2 ; p = 2q

0 ; p = 2q + 1
(2.13)

is used, where p, q are integers and !! is the double factorial defined as

(2q − 1)!! =
q∏
i=1

(2i− 1) (2.14)

In order to use Eq.(2.13) the exponential in Eq.(2.12) must be first transformed to have the form

e−ar̃
2 . To do this the transformation r→ r̃ is applied, such that

ar2 − b · r + c = a

(
r− b

2a

)2

− b2

4a
+ c

= ar̃2 − C (2.15)

where r̃ = r− b
2a . When Eq.(2.12) is integrated the result

〈σγγ〉 =
kBT

V
(N − 1) +

k

V

(
rγN − r

γ
0

)2
N

(2.16)

is obtained. The first term is stress from thermal fluctuations, where each vibrating bead con-

tributes kBT
V in accordance with equipartition theorem, and the second term is due to the stretch

between the fixed beads.

The second moment of stress can be found in a similar way

〈
(σγγ)2

〉
=

´
(σγγ)2 exp

(
− U
kBT

)
d3r1 . . . d3rN−1

´
exp

(
− U
kBT

)
d3r1 . . . d3rN−1

(2.17)

This integral is more complicated because the stress is squared and therefore generates cross
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terms, but the results in

〈
(σγγ)2

〉
=
k2
BT

2

V 2
(N − 1) (N + 1) +

2
V 2

kBT (N − 1) k

(
rγN − r

γ
0

)2
N

+
k2

V 2

(
rγN − r

γ
0

)4
N2

(2.18)

Stress relaxation function, Gαβ (t)

The stress relaxation function for the anisotropic system is given by

Gαβ (t) =
V

kBT
〈σαβ (t)σαβ (0)〉 (2.19)

where α, β = x, y, z and V is the volume, which is defined in this study as

V =
N − 1
c

(2.20)

where c is the number of non-fixed beads per unit volume. Thus, the relaxation of a diagonal

component of the stress tensor is given by

Gγγ (t) =
(N − 1)
c kBT

〈σγγ (t)σγγ (0)〉 (2.21)

For the limit t→ 0, Eq.(2.2) and Eq.(2.18) give

Gγγ (0) =
(N − 1)
c kBT

〈
σ2
γγ

〉
= ckBT (N + 1) + 2ck

(xN − x0)2

N
+

ck2

kBT (N − 1)
(xN − x0)4

N2
(2.22)

Similarly for the limit t→∞, Eq.(2.3) and Eq.(2.16) lead to

Gγγ (∞) =
(N − 1)
c kBT

〈σγγ〉2

= ckBT (N − 1) + 2ck
(xN − x0)2

N
+

ck2

kBT (N − 1)
(xN − x0)4

N2
(2.23)
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The amplitude of the stress relaxation function is therefore simply

Gγγ (0)−Gγγ (∞) = 2ckBT (2.24)

In simulations

During a simulation, σαβ is measured using Eq.(2.7) every time step and submitted to the corre-

lator object, previously described, to calculate Gαβ (t). The stress is also split into contributions

from different objects in the system, such that, in the two-chain simulation (Fig.1.13c), the stress

contribution from the lower chain can be analysed separately from the stress contribution from

the upper chain. This allows the system to be investigated in greater detail.

2.1.3 Mean and variance of beads and bonds

The mean and variance of beads and bonds are vital in understanding the mechanisms of the sys-

tem that result in the macroscopic properties, such as stress. When comparing with experimental

data these properties can rarely be used, because most experiments only observe macroscopic

properties. However, when comparing different simulations these properties are easily obtained

and provide the best indication of where the simulations differ.

The mean vector position of beads, 〈ri〉 and the mean vector of bonds 〈Ri〉, where bond

vectors are given by Ri,i−1 = ri − ri−1, are easily understood properties. The covariance tensor

of the vector ri is given by

cαβ (ri) =
〈(

rαi −
〈
rαi

〉)(
rβi −

〈
rβi

〉)〉
(2.25)

[30]. During this study, the variances of individual components of ri and Ri are considered

separately and are given by

var (rγi ) = cγγ (ri) (2.26)

such that
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var (rγi ) =
〈

(rγi − 〈r
γ
i 〉)

2
〉

=
〈

(rγi )2
〉
−
〈
rγi

〉2

(2.27)

var (Rγi ) =
〈

(Rγi − 〈R
γ
i 〉)

2
〉

=
〈

(Rγi )2
〉
−
〈
Rγi

〉2

(2.28)

Relation to the average stress, 〈σγγ〉

The average stress of the diagonal components is given by Eq.(2.10). This can be expressed in

terms of bonds and expanded by Eq.(2.28) to produce

〈σγγ〉 =
k

V

N∑
i=1

〈(
Rγi,i−1

)2
〉

=
k

V

N∑
i=1

〈
Rγi,i−1

〉2
+
k

V

N∑
i=1

var
(
Rγi,i−1

)
(2.29)

Hence, by studying the mean positions and variances of the bonds, one is able to assess why the

stress in one model is not equal to the stress in another.

2.1.4 Mean squared displacement of beads, g1,i (t)

The bead mean squared displacement function,

g1,i (t) =
〈

(ri (t)− ri (0))2
〉

(2.30)

expresses the second moment of the distance the bead i moved during time t [4]. If we consider

g1,i (t) for t→∞, expand and apply Eq.(2.2) and Eq.(2.3),

g1,i (∞) =
〈

(r (0))2
〉

+
〈

(r (∞))2
〉
− 2 〈r (∞) · r (0)〉

= 2
〈
r2
〉
− 2 〈r〉2

= 2
∑

γ=x,y,z

cγγ (r) (2.31)
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the trace of the covariance is obtained. Thus, the static values of g1,i (∞) and g1,i (0) = 0 do not

provide any new information; instead it is the dynamics between these limits which are of most

interest, as is now demonstrated for the single Rouse chain.

Single Rouse chain

In this study the displacement of the middle bead is used,

g1,mid (t) ≡ g1,N
2

(t) (2.32)

as plotted for a single Rouse chain with fixed end beads in Fig.2.3. It is an interesting plot

for polymers because three regimes are observed. Initially, (a) the motion of the individ-

ual beads is observed. Because beads move as a random walk, it is observed that g1,i (t) =〈
(ri (t)− ri (0))2

〉
∼ t in this regime. After τ0 = τR/N

2 (b), the beads feel the influence of the

rest of the chain and g1,i (t) ∼ t0.5. This motion is known as Rouse motion. It is this regime that

is of most interest to this study as it is dependent on the interactions within the polymer and will

differ for different models. To emphasise the detail g1,mid (t) /t0.5 is also plotted, such that Rouse

motion appears as a constant value. The final regime (c) occurs after τR and represents the chain

moving as a whole. If the chain did not have fixed beads, the motion would be proportional to t,

as the entire polymer would move like a single coarse-grained blob. Since the two end beads of

this Rouse chain are fixed, a constant value is observed instead, which indicates the point where

the middle bead starts to realise that it is connected to the fixed bead points.

In simulations

Similar to a correlation function, the mean squared displacement averages over two different

points in time. As such, the correlator objects in our simulations are applicable to g1,mid (t), and

at each time step, the position of the middle monomer is given to the mean squared displacement

correlator object.
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(a)

(b)

Figure 2.3: Mean squared displacement for the middle bead in a single Rouse chain with fixed
ends. Single chain parameters are N = 16 and (rN − r0) = (10, 0, 0).
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2.2 Generic polymer simulation (GPS)

Within the Reading Theoretical Polymer Physics Group, there were multiple research projects

with each member running their own simulation program. These programs were developed sep-

arately, so taking components from one project to another was far more time consuming than

necessary. Furthermore, because the simulations were written independently, the observable out-

puts were incompatible. This meant that, whilst the same properties were often produced by

multiple programs, each program would name and normalise it differently, which made compar-

ison between programs awkward. GPS was developed as a solution to these issues.

Developed by Likhtman, Palmer, Cao and Vorselaars, the main aim of GPS is to be a pro-

gramming environment that allows common code to be reused by many projects. This should

create a situation where a common set of observables can be activated for any project, indepen-

dent of the particular model. Having this common set of observables should allow the comparison

of data from different models directly. In GPS, creating new models is easier, since there is com-

mon code already available for the common models and equations of motion. This also reduces

the amount of programming knowledge required by a new user starting their first model. An-

other design consideration, was that GPS must be fast to run. Many simulations take weeks

or months, so even a 10% increase in efficiency is important. To create GPS the programming

language C++ was used, because of its familiarity to most users, but also its speed at performing

numerical calculations and the general availability of compilers on many systems.

Overview

Fig.2.4 is an overview of the GPS program; boxes are classes and arrows show the direction

that information flows. To prevent circular referencing, these arrows should only flow in a single

direction. A key feature of the design is that the model unit does not know anything about the

analysis unit and vice versa. This means that the model and analysis classes are independent

and different models may use the same analysis objects, or the same model may be run with
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Figure 2.4: Overview of the GPS program design, including the public interfaces of each unit.
Arrows indicate the flow of information.
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different analysis objects.

The global variables unit acts as the method of communication between the model and the

analysis classes. The variables stored here are common to many models, including the simulation

clock with the time parameter, t. The most important variables stored here are the position of

beads r and the latest force applied to them f. These values are stored as arrays of a vector

type, known as tp3, which stores the x, y, z vector components, but also has an associated set of

appropriate operators. Access to these arrays can be done in the form of a loop over all beads,

but it is often the case that a loop over all beads in a single chain is preferred within a loop

over all chains. For this purpose, the array chains exists. Each chain object stores the starting

index and number of beads in that chain, which can be used to construct a loop over the beads.

The array beadschain is the inverse of this array, where each bead index provides a chain index

to which the bead belongs. In addition to this, there are bead types. Types allow polymers to

be distinguished from each other, but also allow each type to have a different chain length and

force potential parameters. The types have parameters that allow the looping of beads by type.

The array of these types is bTypes, and the array beads is the inverse of this, linking each bead

to a particular type. The stress values of the system are also stored within this class. The model

calculates the stress values, which are then stored in the arrays chainstress and beadstress so

that the analysis object may access the data.

The main unit of the program contains the code that controls the simulation loop. When

the program is run, the system parameters are parsed from an input file, which are then used to

populate global variables and construct the model and analysis objects. The input file is simple to

construct and an example can be found in Fig.2.5. An additional method of supplying parameters

is also available on the command line, as demonstrated in Fig.2.6, which is commonly used when

calling batch jobs, where a user requires each job in the batch to have a different parameter value.

Once the units have been constructed using the input parameters, the model’s CreateConf()

function is used to position all the beads in the system. After which main() starts the simulation

loop. Each loop calls the Step() function of the model, which evolves the simulation by moving
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Figure 2.5: Example input file for GPS.

gps myModel.ini -dt 0.012 -xi 2

Figure 2.6: Example command line instruction for GPS.
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the beads and calculating the stress in the system. Following this the Observe() function of the

analysis object is called to analyse the new system state. The simulation analysis is saved to a

file during the simulation, but infrequently, as it is an expensive operation. The frequency that

the output file should be written is controlled by the parameter freq in the analysis class. The

program will repeat this loop, increasing the simulation time, t, by the time step, dt, until the

maximum time, tmax, is reached.

2.2.1 Model classes

The model classes in the program contain the code to control how the simulation evolves at each

time step. Models are modular, which means that at run-time the user specifies which model to

use. The design concept of the model classes that the models should inherit from each other, as

demonstrated in Fig.2.7 where double lines indicate the inheritance of classes. A base model class

contains the interface and common functions that all models inherit. Having a shared interface

between all models is important, because it allows the main code to treat all models in exactly the

same way, no matter how much they might differ internally. The three functions to be called by

the main code are the constructor, CreateConf() and Step(). The constructor is a function called

when an object is created; typically its role is to create any arrays required and to initialise all

variables. CreateConf() stands for “create conformation” and is used to give the initial positions

to beads before the main loop is started. Step() is the heart of the model and is called every time

step. This function depends upon the model, but will generally calculate new bead positions and

stress values. Normally in this process, forces are calculated to determine how the beads should

move. Since calculating forces is a common function to most models, the CalculateBondedForces()

and CalculateNonBondedForces() functions are defined in the base class, making them available

to all models. The bonded forces function loops over just the bonded particles and the non-

bonded forces function performs a loop over all pairs of beads. These functions take a force

function as a parameter, so they can be applied to most situations by changing the force function

without having to edit the base functions. The force functions are declared in the force and
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Figure 2.7: Diagram of the relationship between the files comprising the model unit. Single lines
indicate one class being used by another and double lines indicate inheritance from another class.
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energy unit, a sample of which can be seen in Fig.2.7. The function CalculateForces() collects

any CalculateBondedForces() and CalculateNonBondedForces() function calls, such that a model

may have more than one type of force in action. A new model that wants to change the default

force calculations can override just the CalculateForces() function, so that it does not need to

know how the more complex CalculateBondedForces() and CalculateNonBondedForces() work

internally. An example is shown in Fig.2.8, where the CalculateForces() function has been

overridden to apply a linear spring force along bonds and a Lennard-Jones force between all

beads. These lines of code are simple but powerful.

The next tier of models inheriting from the base model are the different equations of motion

(EoM) and were implemented by Likhtman and Cao. Three examples of these are shown in

Fig.2.7: molecular dynamics, Monte Carlo and Brownian dynamics. These EoM base models

define the crucial functions that the models in their family require. This involves creating code

for the Step() function, which may be split into multiple model specific functions, allowing a user

inheriting from the model to modify individual sub-functions without having to rewrite the entire

Step(). As an example, the Monte Carlo EoM works by generating random movements and then

testing to see whether this movement will be accepted by a Metropolis algorithm, as discussed

in section 1.2.5. This family’s Step() function has a sub-function Accept(), which is used to

determine whether or not to keep this movement. Accept() calculates the change in energy and

applies the Metropolis algorithm. Descendants of this family base model will typically override

the Accept() function to change the potentials applied between beads, but will not touch the rest

of the Step() function.

The most complicated EoM model is molecular dynamics (MD), as described in section

1.2.2. This model implements a Verlet list, which is a tool used to ignore negligible non-bonded

interactions [5]. The code to construct and maintain this list is not something the user wants

to repeat every time they make a new model, so instead the code for the Verlet list is in the

family base model that other MD models inherit from. If a new model wants to change which

beads are added to the Verlet list and are allowed to interact with each other, only the function
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Figure 2.8: Example code for a model in GPS, inheriting from the MD family. The functions
CreateConf(), AddToVerletListCondition() and CalculateForces() have been overridden from the
MD model family base.
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AddToVerletListCondition() needs to be overridden, not the entire Verlet code. An example is

shown in Fig.2.8, where the function has been overridden to only allow beads within the same

chain to interact.

To add a virtual object, such as a slip-spring, into a model, the user should create a slip-

spring object within their own model and then override the CalculateForces() function to add

code that applies forces produced by the slip-spring object. Furthermore, a more complex slip-

spring model can inherit from this slip-spring model, allowing the slip-spring code to be reused.

Reusing common code for models keeps them short and easier to read.

2.2.2 Observable classes

A simulation may have many observables as discussed in section 2.1. These observables are sep-

arate objects, which can be added to analysis objects as required. The analysis and observable

classes were developed by Palmer and Likhtman. As depicted in Fig.2.9, there are a number

of observable base classes, which define the interfaces and establishes the common functions

and variables. These base classes create the complex storage locations and key functions that a

user-created observable can inherit from. The base class function init() is used for initialising

the observable, providing the crucial parameters such as its name, output frequency and nor-

malisation; the function calc() uses the variables found in the global variables unit to perform

a calculation and add the result to the appropriate data structure; and the output functions

output(i,*s) and output2header(*s) are used to report the results back to analysis object.

An observable, such as mean squared displacement, inherits from the base class most suitable

for storing its data. The Observable class can store a single value, whilst the ObservableArray

class stores data in a multiple columned table; the ObservableCorr class is the most complicated,

as it uses the correlator class described in section 2.1.1. Mean squared displacement uses the

ObservableCorr class, as shown in Fig.2.10. The complicated correlator code is hidden and only

a few lines of code are required. The first line of the class specifies the correlator type, in this

case a diffusion correlator. The init() statement names the observable “g1mid”, specifies “nc”
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Figure 2.9: Diagram of the relationship between the objects comprising the observable unit.
Single lines indicate one class being used by another and double lines indicate inheritance from
another class. The dashed double lines indicate that MyObservable could inherit from any one
of the observable objects.
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Figure 2.10: Example code of an observable in GPS. This example calculates the mean squared
displacement of the middle monomer.
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correlator objects (one for each chain), sets the normalisation to “1.”, and specifies the frequency

that the observable is calculated. The calc() function obtains the position of the middle bead and

then is added to the correlator by the function c.add(), which calls the complicated correlator

calculation and storage.

The other important functions output(i,*s) and output2header(*s) are not normally over-

written by the user. The output2header(*s) function is used for single value outputs such as

found in the Observable class; while output(i,*s) is used for passing data intended for row i to

the analysis class. When the Observable or ObservableArray classes calculate a new value, it

is added to the existing values and the integer nadd is increased. When outputting, the sum

of values is divided by nadd in order to produce the average value. With the ObservableCorr

class, multiple correlators are created. These are chosen dependent on the property; for mean

squared displacement there is one correlator created per chain. When outputting, the results

of the separate correlators are averaged together. All of these observables also use the norm

parameter to normalise the results before output.

2.2.3 Analysis classes

The analysis class is used for collecting and managing the observables in the simulation. The

class controls on which time steps observables perform their calculations and then collates the

results of all the observables to create a single output file. A number of interface functions are

available, including AddObservable(), Observe() and Save(), as depicted in Fig.2.11. The analysis

class contains an array of pointers to observable objects, and the AddObservable() function is

used to create and collect these observables. The Observe() function is called every time step

by the main code and loops over all observables that have been added to the analysis object,

calling the Calc() function for each. The Save() function saves the results of the observables

to a single output file, by calling each of the observables in turn requesting their component

of each row of the file. Having written the results to file, the analysis object will also write to

the screen using the function screen_print(), which shows the current simulation time and a
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Figure 2.11: Diagram of the relationship between the objects comprising the analysis unit.
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Figure 2.12: Example code of an analysis object in GPS. The AddObservable() function is used
to add observables to the list of observables to be executed by the analysis object.

measure of the number of cycles per millisecond that the simulation is performing, so the user

may judge the progress of the program. None of this analysis code is expected to be modified by

the user. Instead, the user is expected to either use an existing analysis class, or create a new one

that inherits from the base analysis class. This descendant analysis object defines a constructor,

as demonstrated in Fig.2.12, which consists of a number of AddObservable() statements, each

adding a new observable to the analysis. By doing this, the user can create a set of observables

to apply to their project and can reuse this set of observables for multiple models.

2.2.4 Comparison to another polymer simulation program

A commonly used polymer simulation package is LAMMPS, Large-scale Atomic/Molecular Mas-

sively Parallel Simulator [31, 32], which is also written in C++ and designed to be usable for

many different simulations, but is restricted to MD models. To run LAMMPS, the user must

provide an input file of parameters and second input file for the polymer initial positions and

bonds. The first input file has an extensive number of options, allowing the MD simulation to be
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configured massively. However, the number of options is so large that it is difficult to know what

is available and how to apply it. In contrast, GPS has a simpler input file and provides the user

with the tools to create their own model in the code that defines the specifics of the simulation.

This allows a GPS user much greater flexibility than LAMMPS. The second input file of bead

positions, has to be generated prior to a LAMMPS simulation, whilst the model classes within

the GPS program specify how they will generate the bead positions at the start of the simulation.

LAMMPS and GPS have been designed to fulfill different requirements. LAMMPS has a large

number of existing models and options, using the MD equation of motion; while GPS is designed

to run a wider range equations of motion and allows the user to create and modify models by

adding new code to the program. LAMMPS does provide the possibility of adding new code, but

incorporating our correlator objects into the code was not possible without major modifications,

because correlators are an evolving observable rather than an instantaneous calculation that can

be output. The design of GPS means that the user has the control and flexibility to add new

models and observables that require extra variables and code to be added to the simulation, such

as slip-springs and correlators.

2.2.5 Usage and future prospects of GPS

GPS is currently in use by the majority of the members of the Theoretical Polymer Physics

Group at the University of Reading. Development of the model and observable library has

continued with the input of the whole group, which means that GPS has a large collection of

pre-made content. Within this project, the modular characteristics of GPS were especially useful

for studying the different two-chain models in section 3.1.7. By inheriting from existing models,

new two-chain models were created with a minimal amount of new code. In addition, the analysis

used by the models was shared by all of the two-chain and slip-spring models, which made the

all results directly comparable.
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Chapter 3

Main models

3.1 Two-chain simulation

In order to study the slip-spring model reproducing a single entanglement, an appropriate en-

tanglement model is required, for which the two-chain model is used, as illustrated in Fig.3.1.

This model consists of two Rouse chains with the ends fixed in space to represent cross-links in

a polymer network, as discussed in section 1.4. The parameters of the model are: the number

of bonds, N ; the horizontal separation of anchor beads in the same chain, D; and the vertical

separation of anchor beads in different chains, H. The beads are given initial positions as shown

in Fig.3.1 and the simulation is run for 10tR before taking any observations, so that the two

chains relax to equilibrium state. The equation of motion for the chains are given by Eq.(1.24)

plus a rejection condition to prevent the chains from being able to cross.

3.1.1 Entanglement by rejection

The rejection routine for detecting chain crossing is called every time a new bead position is

generated and tests each bond that is affected by the move. Using Fig.3.2 for reference, the bond

vector BA becomes BC as the bead at position A moves to C in the simulation time step, such

that the bond must sweep across the area of the triangle ABC. The rejection routine tests for a
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crossing of this triangle by each bond LM in the other chain. The routine begins by determining

the point P where vector LM intersects the plane defined by the three points ABC, as depicted

in Fig.3.2a. Hence,

P = L + αLM (3.1)

where α is the fractional distance along the vector LM where the plane intersects. This can be

calculated as

α =
n · LB
n · LM

(3.2)

where n is the normal to the plane ABC. Only if 0 < α < 1 does the vector LM intersect

the plane defined by ABC and the routine moves onto the next stage. Otherwise, the bond

cannot intersect the triangle and the routine moves onto the next bond. The next stage finds

Figure 3.1: Diagram of the two-chain model
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(a) (b)

Figure 3.2: Diagrams of the rejection routine. Six points are labelled: old bead position, A;
neighbouring bead position, B; new bead position, C; intersection bond vector, LM; intersection
point, P.

the position of the intersection point P, expressed as a sum of the vectors BA and BC using

the weightings w and v, such that

BP = wBA + vBC (3.3)

as demonstrated in Fig.3.2b. These weightings can be found as

w =
(BP×BA)z

nz
(3.4)

v =
(BP×BC)z

nz
(3.5)

If the conditions w > 0, v > 0 and w + v < 1 are true, then the intersection point is within the

triangle and chains must have crossed, therefore the move A→ C is rejected.

When a bead movement is rejected, a new bead movement is generated using the equation

of motion with a different random Brownian force, which is also tested for intersections. This is

repeated until a movement is generated that does not cause the chains to cross. When using this

rejection method, the beads should be moved in a random order, which is generated by creating

an array of all the bead indices and then shuffling it every time step. Whilst all beads are moved



3.1 - Main models: Two-chain simulation 62

within the same time step, the rejection algorithm can only be applied to one bead at a time and

must respond to the new position of beads that have previously passed the rejection test. This

means that the first bead to be moved in the chain may do so using the current positions of the

other beads in the same chain, but the last bead in the chain will be using all the new positions.

There is a bias introduced by always moving the beads in the same order. For example, if the

upper chain moves away from the lower chain, the first bead in the lower chain is most able to

take advantage of that new space available. Performing the bead movements in a random order,

ensures that such artefacts are not present when averaged over many loops.

With a small time step, ∆t, the Brownian motion dominates the equation of motion and the

average distance moved by each bond is proportional to
√

∆t. The number of bead movement

attempts rejected during the simulation should therefore also be proportional to
√

∆t. Plotted in

Fig.3.3 is the percentage of bead movements that were rejected during two-chain simulations as

a function of ∆t, where it is indeed observed that this relationship is true for small ∆t. However,

it is observed that for ∆t & 0.001 the relationship changes and the number of rejections increases

due to other effects. In order to prevent these effects creating artefacts in the simulation, we will

use ∆t = 0.001 in our simulations.

3.1.2 Predictor-corrector method

When a computer simulation computes the equations of motion, it cannot use an infinitely small

time step. Instead an acceptable error tolerance is selected and a time step, ∆t, is chosen to

provide the appropriate degree of accuracy. Fig.3.4a demonstrates how the error in a property,

such as the second moment of stress,
〈
σ2
〉
, will decrease with smaller values ∆t in a standard

Brownian dynamics simulation. However, while a smaller ∆t will reduce the error in the simu-

lation, it also restricts the maximum simulation time that can be reached within the duration of

the simulation, so there is a desire to increase the degree of accuracy of the simulation without

having to reduce ∆t. The simplest form of integration is the Euler method, where the equation
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(a)

(b)

Figure 3.3: Percentage of bead movements that were rejected by the entanglement routine for
simulation with time step, ∆t. Model parameters are N = 16, H = 10 and D = 10. (Predictor
corrector integration for the two-chain model is described in section 3.1.2).
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of motion

ξ dri =
3kBT
b2

(ri+1 − 2ri + ri−1) dt+
√

2kBTξ dWi (t) (3.6)

is discretised as

ξ (ri (t+ ∆t)− ri (t)) =
3kBT
b2

(ri+1 (t)− 2ri (t) + ri−1 (t)) ∆t+
√

2kBTξ∆t gi (t) (3.7)

where gi (t) is a random vector with each component obeying Gaussian distribution with zero

average and variance 1. A better method of integration is the predictor-corrector method (PC),

which takes the force at time t

Fi (t) =
3kBT
b2

(ri+1 (t)− 2ri (t) + ri−1 (t)) (3.8)

to calculate a predicted position for time t+ ∆t

rPi (t+ ∆t) = ri (t) +
1
ξ
Fi (t) ∆t+

√
2kBTξ∆tgi (t) (3.9)

for all beads, i. Then using this, calculates the force at t+ ∆t

Fi (t+ ∆t) =
3kBT
b2

(
rPi+1 (t+ ∆t)− 2rPi (t+ ∆t) + rPi−1 (t+ ∆t)

)
(3.10)

which is known as the corrector. By using the average force between t and t+∆t, the PC method

is able to get a better estimate of ri (t+ ∆t). This is calculated from rPi (t+ ∆t) by

ri (t+ ∆t) = rPi (t+ ∆t) +
1
2ξ

(Fi (t+ ∆t)− Fi (t)) ∆t (3.11)

The error of a simulation using a PC method is demonstrated in Fig.3.4, where it is observed

that the PC method has a quadratic convergence towards the true value, such that the error

ε ∼ ∆t2.
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(a) Euler integration

(b) Predictor-corrector integration (c) Predictor-corrector integration

Figure 3.4: Convergence for a Brownian dynamics simulation
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1. For each bead:

(a) Calculate bond forces based on old positions

(b) Generate random force

(c) Calculate predicted position

2. For each bead in a random order:

(a) Calculate bond forces based on predicted positions

(b) Calculate corrected positions

(c) If movement caused chains to cross:

i. Generate new random force
ii. Calculate new predicted position using original bond forces from 1(a) and new

random force
iii. Go to 2(a)

3. Make observations

4. Go to 1

Figure 3.5: Algorithm of a predictor-corrector Brownian dynamics model with rejection routine

When using PC integration, the rejection method must be handled slightly differently than

with the Euler integration. The pseudo-code algorithm for this simulation time step is written

in Fig.3.5. First, predicted positions are calculated for every bead. Then, in a random order,

the corrector force and new position is calculated for each bead, at which point the rejection

algorithm is called to check the new position for topological violations. If the rejection algorithm

rejects the new position, then the predicted position is recalculated with a new random force

before the corrector force and new position are recalculated and retested. This is repeated until

a new bead position is accepted. When the predicted position of a bead is changed to reflect a

new random force, a problem occurs; any beads calculating their corrector force after this bead,

use the new predicted position, but any beads calculated prior to this bead will have used the

old predicted position. This introduces a small error in the PC method, but the recalculation of

all previous beads would be less efficient than using Euler integration.

In Fig.3.6 the convergence of
〈
σ2
〉
for the two-chain model is shown and it may be observed

that the rejection algorithm has had a derogatory effect on the PC method. As before, there is a
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(a) Euler integration

(b) Predictor-Corrector integration (c) Predictor-Corrector integration

Figure 3.6: Convergence for the two-chain model

linear convergence with ∆t for the Euler integration, but the PC method no longer demonstrates

a convergence simply proportional to ∆t2, because the rejections produce a linear convergence,

which dominates for small ∆t. Despite this, the accuracy of the PC method remains much better

than the Euler integration and is used within this study.

3.1.3 Mean and variance of bead positions

The properties of the two-chain model will now be examined with reference to two other models,

as depicted in Fig.3.7. One is a single non-interacting chain with fixed ends, identical to the
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Figure 3.7: Diagram of the two-chain model and two other reference models: the single chain
and the four-arm-star. Side views are depicted in the top row and overhead views are shown in
the bottom row.
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(a) (b)

(c)

Figure 3.8: Mean position of each bead, where the bead number is expressed as a fraction along
the chain, s = i

N . Parameters are N = 16, H = 10 and D = 10.

lower chain from the two-chain model with N bonds; the other is a four-arm-star polymer model

where each arm has 1
2N bonds. The four ends of the star are fixed in space at identical positions

to those of the two-chain model. The middle bead of the four-arm-star model, can be regarded

as a join between the middle bead of the lower chain and the middle bead of the upper chain.

The mean bead positions are plotted in Fig.3.8. In the single-chain model, the beads are

only stretched in the x-direction and are equally distributed between the two fixed beads. In

the four-arm-star polymer, the beads are also equally distributed, but have additional stretch

in the z-direction towards the middle bead. The two-chain model displays important differences
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(a) x-direction (b) y-direction

(c) z-direction

Figure 3.9: Variance of each bead position, where the bead number is expressed as a fraction
along the chain, s = i

N . Parameters are N = 16, H = 10 and D = 10.

from these two models. In the x-direction, the beads are nearly equally distributed between the

two fixed beads, but it is observed that the entanglement slightly repels beads, causing a greater

separation of beads near the centre of the chain. The z-direction has a stretch similar to the

four-armed-star model. However, the force stretching the chain in the z-direction is not only

applied to the middle bead, but also neighbouring beads as the entanglement slides along the

chain. Each of the beads directly affected by the entanglement form a dome shape in Fig.3.8c,

while beads near the edge of the chain are not affected by the entanglement and form straight

lines with an equal average spacing.
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In Fig.3.9 it is observed that the variance of each bead is dependent on the neighbouring

beads. The outer-most beads have fixed positions and as such have zero variance. The further

beads get away from these fixed beads, the higher the variance becomes. In the single-chain

model, the middle bead has the greatest variance, while in the four-arm-star model, the middle

bead is bonded to four neighbours and has a lower variance for the middle bead, which leads to

a lower variance in neighbouring beads.

Due to the entanglement in the two-chain model, different Cartesian components are coupled

and the variances are different. In the x-direction, the shape resembles the single-chain model,

but the magnitude of the variance is lower, similar to the four-arm-star model. The same

is observed in the y-direction. The entanglement restricts the motion of beads, by limiting the

distance beads may move in certain directions, but the entanglement slides easily along the chain

in these directions sharing the restriction with a range of beads. In the z-direction, the presence

of the entanglement has a restrictive effect on the middle bead much like that observed in the

four-arm-star model and the slide of the entanglement does not act in a way that minimises the

energy of the chain in this direction, as it did in the x- and y-directions. However, it is observed

that the amplitude for some beads is greater than that of the single-chain model. Since the single

chain model has no restrictions at the centre of the chain, the variance in the two-chain model

must have been increased by the entanglement. This can be explained by the entanglement

sliding along the chain. When the entanglement is acting on one section of the chain, the beads

experience a force in the z-direction. When the entanglement slides away that force is removed

and the beads relax to having an equal bead spacing between neighbouring sections. It is this

pull and release by the entanglement that results in a variance higher than even the single-chain

model.

3.1.4 Mean squared displacement, g1,mid (t)

The mean squared displacement of the middle bead, g1,mid (t), plotted in Fig.3.10, describes how

far the middle bead moves on average over a time, t. As discussed in section 2.1.4, the value of
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(a)

(b)

Figure 3.10: Mean squared displacement of the middle bead g1,mid (t). Parameters are N = 16,
H = 10 and D = 10.
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g1,mid (∞) reproduces the results for variance, and therefore the single-chain model has a higher

value than the four-arm-star. It is observed that the middle bead in the four-arm-star model

moves slower than the middle bead in the single-chain model, because in the four-arm-star model

it is bonded to twice as many beads; the two-chain model is intermediate to these two cases.

3.1.5 Stress relaxation functions

The simulation results for the diagonal components of the stress relaxation function are plotted

in Fig.3.11, along with the function (Gγγ (t)−Gγγ (∞)). This function provides an extra insight

into the dynamics of the system especially when 〈σ〉 is different for each model. At t = 0, it is

observed that (Gxx (0)−Gxx (∞)) and (Gyy (0)−Gyy (∞)) are the same for all three models,

but relax at a different rates. It is observed in Fig.3.11b and Fig.3.11d that the four-arm-star

model demonstrates faster relaxation than the single-chain model. In the single-chain model,

the slowest relaxation time is τS ∼ N2 (Eq.(1.30)). In the four-arm-star model the arms have

1
2N beads each and therefore a relaxation time of 1

4τS , while the connecting bead at the centre

of the star is bonded to four beads and therefore has a relaxation time of 1
2τS , which produces

the relaxation time observed that is faster than the single-chain model. In the two-chain model,

Gxx (t) acts initially as a four-armed-star model, but later demonstrates a relaxation speed similar

to the single-chain, as the chain may slide past the entanglement point. Gyy (t) acts more like

the four-arm-star model at all times, because the other chain in the entanglement hooks around

the chain.

In Fig.3.11f it is found that the two-chain and the four-arm-star models have a larger value

of (Gzz (t)−Gzz (∞)) at t = 0, than the single-chain model, and take noticeably longer to relax.

This is due to a second, slower relaxation that can also be observed in Fig.3.11e. The source of

this second relaxation is explained during the analytical calculations for the cross-correlations

below.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Diagonal components of the stress relaxation tensor. Parameters are N = 16,
H = 10 and D = 10.
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3.1.6 Stress cross-correlation functions

The total stress of the system is a sum of the lower half of the system (A) and the upper half of

the system (B), such that

σT (t) = σA (t) + σB (t) (3.12)

In Fig.3.7 the N bonds that constitute the lower half of the system are coloured blue and the

upper half green. The correlation function of the total stress is

GT (t) =
〈(
σA (t) + σB (t)

) (
σA (0) + σB (0)

)〉
=

〈
σA (t)σA (0)

〉
+ 2

〈
σA (t)σB (0)

〉
+
〈
σB (t)σB (0)

〉
= GA (t) + 2GX (t) +GB (t) (3.13)

where GX (t) =
〈
σA (t)σB (0)

〉
=
〈
σB (t)σA (0)

〉
is the cross-correlation function between the

lower and upper chains. The cross-correlation describes how the value of stress in one chain

is affected by the stress in the other chain at a time t previously. From this point on, the

correlation of a function with itself shall be known as the auto-correlation, where GA (t) is the

auto-correlation of σA (t) and GT (t) is the auto-correlation of σT (t).

In Fig.3.12, the auto-correlation functions of the lower chain and the total stress are con-

sidered. For the four-armed-star model, GTγγ (t) demonstrates an equal relaxation time for all

components, which is equal to that of GAxx (t) and GAyy (t), but a slower relaxation time is ob-

served for GAzz (t). A similar effect is observed with the two-chain model, although the coupling

of components means that GTγγ (t) and GAγγ (t) are not exactly equal for γ = x, y, z. It is curious

that GTzz (t) relaxes faster than GAzz (t). Eq.(3.13) implies that the relaxation of GXzz (t) must

cancel out with the relaxation in GAzz (t) for this to happen. To demonstrate that this is the

case Fig.3.13 plots 1
4G

T
zz (t), GAzz (t) = GBzz (t) and GXzz (t), where it is observed that the slowest

relaxation of GAzz (t) and GXzz (t) are equal and opposite.
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(a) Four-arm-star total (b) Two-chain total

(c) Four-arm-star lower chains (d) Two-chain lower chain

Figure 3.12: Auto-correlation of the four-arm-star and the two-chain models, for the lower half
of the system, GAγγ (t), and the sum of all components, GTγγ (t). Parameters are N = 16, H = 10,
D = 10.
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(a) Four-arm-star

(b) Two-chain

Figure 3.13: Exploration of the function GTzz (t) = 2GAzz (t) + 2GXzz (t), where the final relaxation
of GAzz (t) cancels out with the relaxation of GXzz (t). Parameters are N = 16, H = 10, D = 10.



3.1 - Main models: Two-chain simulation 78

Figure 3.14: Diagram of the single bead four-arm-star model

Analytical calculations

To illustrate how this occurs, a simplified four-arm-star model is considered analytically, where

each arm only has only a single bond with spring-constant k. There is a single moving bead in

this system, which has position vector r, as depicted in Fig.3.14. The equation of motion for this

bead is given by

dr =
k

ξ
(A1 + A2 + B1 + B2 − 4r) dt+

√
2kBT
ξ

dW (t)

This is an Ornstein-Uhlenbeck process,

dr = −1
τ
r dt+

√
2dc dW (t) (3.14)

where the diffusion constant is dc = kBT
ξ and the characteristic time is τ = ξ

4k . As an Ornstein-

Uhlenbeck process, the first two moments of the bead position at a time, t, after a deformation

are known to be

〈r (t)〉 = 〈r〉 e−
t
τ (3.15)
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and

〈r (t) · r (s)〉 = var (r0) e−
t+s
τ + dcτ

(
e
s−t
τ − e−

s+t
τ

)
(3.16)

The lower half of this system is defined as bonds A1 to r and r to A2, and the upper half as the

bonds B1 to r and r to B2. The stresses of these are given by

σAγγ (t) = k (rγ (t)−Aγ1)2 + k (rγ (t)−Aγ2)2 (3.17)

σBγγ (t) = k (rγ (t)−Bγ
1 )2 + k (rγ (t)−Bγ

2 )2 (3.18)

from which it is possible to find the auto- and cross-correlations of the system as a function of

time, t. The details can be found in appendix A, while just the results are presented here.

The xx-components of the stress correlation functions are given by

GAxx (t) =
1
2
kBT

V
e−

2t
τ +

1
4
kBT

V
+

1
2
k

V
D2 +

1
4

k2

kBT V
D4 (3.19)

GBxx (t) =
1
2
kBT

V
e−

2t
τ +

1
4
kBT

V
(3.20)

GXxx (t) =
1
2
kBT

V
e−

2t
τ +

1
4
kBT

V
+

1
4
k

V
D2 (3.21)

GTxx (t) = 2
kBT

V
e−

2t
τ +

kBT

V
+
k

V
D2 +

1
4

k2

kBT V
D4 (3.22)

Only the first terms of these correlation functions depends on t and have the form c1 exp
(
− t
τ ′

)
,

where τ ′ is the relaxation time. In terms of the Ornstein-Uhlenbeck characteristic time, τ , this

relaxation time is τ ′xx = 1
2τ . The zz-components of the stress correlation functions are

GAzz (t) =
1
2
kBT

V
e−

2t
τ +

k

V
H2e−

t
τ +

1
4
kBT

V
+

1
2
k

V
H2 +

1
4

k2

kBT V
H4 (3.23)

GBzz (t) = GAzz (t) (3.24)
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GXzz (t) =
1
2
kBT

V
e−

2t
τ − k

V
H2e−

t
τ +

1
4
kBT

V
+

1
2
k

V
H2 +

1
4

k2

kBT V
H4 (3.25)

GTzz (t) = 2
kBT

V
e−

2t
τ +

kBT

V
+ 2

k

V
H2 +

k2

kBT V
H4 (3.26)

While these functions are similar to their xx-component counterparts, GAzz (t) in Eq.(3.23) and

GXzz (t) in Eq.(3.25) contain a previously unseen term, ±kH2e−
t
τ . This term has the longest

relaxation time of the entire system, and is equal to the Ornstein-Uhlenbeck characteristic time

τ ′zz = τ , which is twice that of the xx-component counterparts. This accounts for the delay in

stress relaxation observed in both the four-arm-star model and the two-chain model. This occurs,

because the zz-component functions have 2nd order terms 〈z (t) z (0)〉, whilst other directions only

have 4th order terms
〈
x2 (t)x2 (0)

〉
. As can be seen in appendix A, these 2nd order terms come

from Eq.(A.23), the expansion of

〈
σAzz (t)σAzz (0)

〉
=
k2

V 2

〈(
2
(
z (t)− H

2

)2
)(

2
(
z (0)− H

2

)2
)〉

(3.27)

which cancels out in the xx-component, Eq.(A.23),

〈
σAxx (t)σAxx (0)

〉
=
k2

V 2

〈((
x (t)− D

2

)2

+
(
x (t) +

D

2

)2
)((

x (0)− D

2

)2

+
(
x (0) +

D

2

)2
)〉

(3.28)

Stress cross-correlation functions from simulations

Simulation results for the stress cross-correlation functions are plotted in Fig.3.15 for the four-

arm-star model and the two-chain model, where we once again use the original four-arm-star

model with arms of length N
2 . The amplitudes of cross-correlations observed in GXxx (t) and

GXyy (t) are very small, indicating there is little correlation between the lower chain and the upper

chain in the two-chain model. The little correlation observed could possibly be a systematic error,

but is more likely to be the cross-correlation predicted by Eq.(3.21) in the case of one bond per

arm. It is expected for the case of 1
2N bonds per arm that the amplitude of the correlation
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(a) Four-arm-star (b) Two-chain

(c) Four-arm-star (d) Two-chain

(e) Four-arm-star (f) Two-chain

Figure 3.15: Stress cross-correlation functions, GXγγ (t), of the four-arm-star model and the two-
chain model. Parameters are N = 16, H = 10, D = 10.
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is smaller, but it is unknown why the amplitude is the exact value observed in Fig.3.15a and

Fig.3.15c. There is much greater cross-correlation in GXzz (t), where the function increases with

t via the second term in Eq.(3.25), indicating anti-correlation.

3.1.7 Alternative: molecular dynamics two-chain simulation

Applying repulsive forces between chains is an alternative to using the rejection algorithm to

prevent chains from crossing in the two-chain simulation. Here we investigate whether the

rejection method produces the same results as the repulsion method, which is the more realistic

model of the entanglement. In order to create a repulsion model, the potentials from the Kremer-

Grest molecular dynamics model (KGMD) are used, because they are specifically designed to

enforce uncrossability between chains (section 1.2.2). Hence, the new MD two-chain simulation

has FENE springs and LJ potentials for bonds and a purely repulsive LJ potential between beads

in opposing chains. The BD simulation allowed chains to pass through themselves, so this new

MD simulation also allows chains to pass through themselves by not applying the LJ potential

between beads of the same chain, except along bonds where it is required to balance the strong

attractive FENE force. Fig.3.16, shows the two-chain simulations used within this study: the

original BD two-chain simulation is (a) and this new simulation is (b).

The repulsive MD simulation was created so that the method of rejection could be compared

to a method of repulsion. In order to test this properly, a qualitatively similar model is required

for rejection; one that uses the same potential along bonds, but uses rejection rather than repul-

sion between chains. The ideal type simulation to do this is a Monte Carlo (MC) simulation, as

described in section 1.2.5, because the rejection routine can be incorporated seamlessly. Move-

ment each time step is generated as a random vector per bead and accepted with a probability

based upon the change in energy, so any move that causes the two chains to cross can be treated

as an infinite increase in energy. This MC simulation is (c) on Fig.3.16. A final simulation,

(d), was also created for comparison, using the MC equation of motion, but incorporating the

repulsive LJ force from the MD simulation.
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Figure 3.16: Simulations used within this section.

a) BD: Linear bonds + rejection b) MD: FENE + LJ bonds + LJ repulsion

c) MC: FENE + LJ bonds + rejection d) MC: FENE + LJ bonds + LJ repulsion

Mean bead positions

Since the potentials of simulations (b) and (d) are equal (Fig.3.16), the static properties we

shall now examine are also equal. Therefore, only simulations (b) and (c) shall be compared; a

MD repulsion simulation and a MC rejection simulation. The mean positions of the beads are

plotted in Fig.3.17 for multiple values of H, the vertical stretch of the system. These range from

H = −4 to H = 15, where H = −4 corresponds to chains that are barely in contact with each

other and H = 15 corresponds to the chains that are strongly entangled. In the z-direction, the

repulsion model has a higher middle bead than the rejection model, which indicates that the two

chains in the rejection model are closer to each other at the point of entanglement. This is to

be expected, since repulsion creates an excluded volume around each chain, leading to a higher

average position. This may be corrected in the rejection simulation by adjusting the parameter

H to make
〈
zN/2

〉
equal in both simulations. In the x-direction, it is observed that the beads

are not equally spaced. The entanglement has pushed the central beads outwards towards their

anchoring beads, but the repulsion model has pushed its beads significantly further out than
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(a) Rejection (b) Repulsion

(c) Rejection (d) Repulsion

Figure 3.17: Mean bead positions for a repulsive molecular dynamics simulation and a Monte
Carlo simulation with entanglement by rejection. Each is plot for a range of vertical stretch, H.
Other parameters are N = 16 and D = 10.
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the rejection model. This, similar to the z-direction, is because of the excluded volume effect.

However, unlike the excluded volume in the z-direction, this effect cannot be overcome with a

slight shift in parameters.

Variance of bead positions

The variance of the bead positions is plotted in Fig.3.18. The difference between rejection

and repulsion appears to have little effect on the y- and z-direction variance, but a qualitative

difference is clearly evident in the x-direction, particularly for large system heights, H. Increasing

H stretches the system in the z-direction, making the entanglement stronger and more localised

around the middle bead. In the MC rejection simulation, this reduces the variance and creates

a dip in var (xi) around the central beads. This is also observed in the repulsion simulation,

but a second more striking effect occurs. The central-most beads have increased bead variance

that rises out of the previous dip. The method of entanglement by rejection is passive and

only effects the chain when an illegal move is attempted, whilst the repulsion method actively

repels the chain. It appears that when the entanglement slides along the chain, applying and

removing the force to different sections of the chain, causes an increase in variance, similar to

that observed in section 3.1.3. This means that entanglement by rejection is missing certain

effects in the x-direction.

Stress relaxation functions

In Fig.3.19, the stress relaxation functions of the MC rejection simulation (Fig.3.16(b)) and

the MC repulsion simulation (Fig.3.16(d)) are compared. This plot does not include the MD

simulation, because it demonstrates ballistic motion at early time that is not captured by the

MC or BD simulations. Therefore, it is easier to compare the two MC simulations, than to

compare MD with MC. In order to provide the fairest possible comparison between the rejection

and repulsion MC simulations, the rejection simulation has a larger system stretch, H, such that〈
zN/2

〉
is equal for both models. In Fig.3.19a and Fig.3.19c, it is observed that the static values
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(a) Rejection: x-direction (b) Repulsion: x-direction

(c) Rejection: y-direction (d) Repulsion: y-direction

(e) Rejection: z-direction (f) Repulsion: z-direction

Figure 3.18: Variance of bead positions for a repulsive molecular dynamics simulation and a
Monte Carlo simulation with entanglement by rejection. Each is plot for a range of vertical
stretch, H. Other parameters are N = 16 and D = 10.
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(a) (b)

(c) (d)

Figure 3.19: Cross-correlation functions of two MC simulations. One with entanglement by
rejection and another with a repulsive potential between chains. Parameters are N = 32, H = 7,
D = 14.
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disagree between the the rejection and repulsion simulations, but such a issues can be overcome

by a shift in parameters. Importantly, the dynamics of the two simulations in Fig.3.19b and

Fig.3.19d are the same and no extra artefacts have been generated by the rejection method.

Molecular dynamics two-chain simulation summary

Despite the rejection method having flaws, it is still used extensively in this study, because the

largest time step that can be used in the repulsive two-chain simulation is 100 times smaller than

that of the rejection two-chain simulation due to the of strong repulsive forces. Consequently,

simulating the repulsive model requires orders of magnitude more time to achieve the same final

simulation time. The differences in static properties between rejection and repulsion can be

mostly compensated for by system parameters which take excluded volume into account, and

most importantly, the dynamics are the same for both of the entanglement methods.

3.1.8 Stress from interactions between chains

Using the molecular dynamics two-chain simulation, it is possible to measure the stress contribu-

tion from interactions between chains; the auto-correlation of which is shown in Fig.3.20a. The

auto-correlation function of stress due to the interactions between chains, Ginter
zz (t), is negligible

compared to the stress contributions from bonds in the same chain, Gintra
zz (t) (Fig.3.20b); for

our parameters Ginter
zz (t) ∼ 10−7Gintra

zz (t). Furthermore, the auto-correlation function of stress

from all contributions involving the lower chain, GAzz (t), displays no noticeable difference from

Gintra
zz (t). Hence, it is concluded that contribution to stress due to interactions between chains

is negligible for this study. A similar conclusion was obtained in [33] from observations of a

many chain MD simulation. The benefit of this is two-fold. Firstly, it allows the use of the

rejection simulation, which is significantly faster to simulate. Secondly, it removes the need

to calculate the cross-correlations of σinter
γγ (t) with σintra

γγ (t) in order to obtain GAγγ (t). Such

cross-correlations would be challenging to reproduce in the slip-spring model, which has no mea-

surement of σinter
γγ (t).
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(a)

(b)

Figure 3.20: Auto-correlation functions of stress due to interactions between chains, Ginter
zz (t);

compared to stress contribution from the forces along bonds alone, Gintra
zz (t) and due to all

stress contributions involving the chain including forces between chains, GAzz (t). Parameters are
N = 16, H = 10, D = 10.
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3.2 Slip-spring model

The slip-spring model used in this study retains the lower chain of the two-chain model, but

replaces the upper chain and rejection routine with a slip-spring anchored at rA, as illustrated

in Fig.3.21. The bead positions in the chain are denoted by ri and the fixed beads of the chain

are referred to as rB = r0 and rC = rN . The slip-spring is a single linear spring, one end of

which has a fixed position, rA, while the other end shares the position of bead j in the Rouse

chain. The slip-spring’s fixed anchor position, rA, is know to be central in the x- and y-axes due

to symmetry, and is a height, h, above the lower chain’s fixed beads, such that

rA =
rB + rC

2
+ k̂h (3.29)

Figure 3.21: Diagram of the slip-spring model. The polymer chain has two fixed beads at(
−D

2 , 0, 0
)
and

(
D
2 , 0, 0

)
. A slip-spring anchored at the point (0, 0, h) applies a force to bead j

equal to that of a chain with NS bonds.
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where k̂ = (0, 0, 1). The slip-spring acts upon bead rj as a linear spring with a slip-spring

strength equivalent to a chain of NS bonds. The spring-constant for bonds in the Rouse chain

is given by

k =
3kBT
b2

(3.30)

therefore the spring-constant of the slip-spring is

kS =
k

NS
=

3kBT
b2NS

(3.31)

The slip-spring model is a single slip-spring version of the multiple-slip-spring model described

in section 1.3.4, so the energy of the system is given by

U =
N∑
i=1

3kBT
2b2

(ri − ri−1)2 +
3kBT
2b2NS

(rA − rj)
2 (3.32)

and the equation of motion for bead i in the chain is

ξ dri =
3kBT
b2

(ri+1 − 2ri + ri−1) dt+
√

2kBTξ dWi (t) + δij
3kBT
b2NS

(rA − rj) dt (3.33)

where the slip-link acts on bead j and thus the last term is the force applied by the slip-spring

to the bead at index i = j.

3.2.1 Slip

Slip is a vital part of the model. As described for the multiple entanglement slip-spring model

(section 1.3.4), the slip-link will attempt to move one position along the chain in either direction

on every simulation time step. In order to ensure that the slip-link is not lost in this single

chain model, the slip-link is forbidden from being on the fixed end beads, such that 0 < j < N .

However, the Monte Carlo mechanism for slip is in contrast to the Brownian Dynamics equation

of motion of the Rouse chain. An alternative method of slip would have the slip-link obeying
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one-dimensional Brownian Dynamics along the chain and allowing the slip-link to exist on the

bonds between beads, but a previous investigation found that the Monte Carlo method produces

the same results and is simpler and faster to compute.

To validate the slip method used in the slip-spring model, Fig.3.22 compares the position of

the entanglement in the two-chain simulation to the slip-link position in the slip-spring model. In

the two-chain simulation, the position of the entanglement is sampled every time a bead position

is rejected. Since the actual rejection occurred because of a bond crossing another bond, the

rejection is attributed to whichever bond caused the rejection to occur. For the slip-spring, the

position of the slip-link is stored every time step, during a simulation with parameters chosen to

approximately reproduce the statics and dynamics of the two-chain simulation. It is observed in

Fig.3.22 that the slip-link samples the chain with the same probability density as the two-chain

entanglement, both of which are Gaussian. This validates the use of the slip mechanism.

3.2.2 Analytical calculations

Probability density function

The probability density of the bead positions in a slip-spring model with fixed slip-link position,

j, is given by

Pj ({ri} , rA, NS) =
1

Qj (rA, NS)
exp

(
− 3

2b2

(
N∑
i=1

(ri − ri−1)2 +
(rA − rj)

2

NS

))
(3.34)

where Qj (rA, NS) is the partition function,

Qj (rA, NS) =
ˆ

exp

(
− 3

2b2

(
N∑
i=1

(ri − ri−1)2 +
(rA − rj)

2

NS

))
d3r1 . . . d3rN−1 (3.35)

where d3r = dx dy dz. In order to integrate Qj (rA, NS), the slip-spring model can be broken

down into three Rouse chains joined at the slip-link bead as illustrated in Fig.3.23. The partition
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(a)

(b)

Figure 3.22: Comparing the probability density of entanglement position observed in the two-
chain simulation to the probability density of slip-link positions in the slip-spring model simula-
tion. The slip-spring model uses values of NS and h that give the best fit to stress relaxation as
discussed in section 3.2.3. Both models use the parameters N = 16, H = 10, D = 10. The bead
number is expressed as a fraction along the chain, s = i

N . The probability density is plotted
against a Gaussian distribution.
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function of each Rouse chain with fixed ends is known to be

Z (r0, rn, n) =
ˆ

exp

(
− k

2kBT

n∑
i=1

(ri − ri−1)2

)
d3r1 . . . d3rn−1

=
(

1
n

) 3
2
(

2πkBT
k

) 3
2

(n−1)

exp

(
− k

2kBT
(rn − r0)2

n

)

=
(

1
n

) 3
2
(

2πb2

3

) 3
2

(n−1)

exp

(
− 3

2b2
(rn − r0)2

n

)
(3.36)

(appendix B), where k = 3kBT
b2

. By setting n = 1 and k = kS (Eq.(3.31)), the slip-spring’s

partition function is

ZS (rA, rj , NS) = exp

(
− 3

2b2
(rA − rj)

2

NS

)
(3.37)

It can also be shown that the partition function for two chains joined end-to-end is

Z (rB, rC , N1 +N2) =
ˆ

Z (rB, rj , N1) Z (rC , rj , N2) d3rj (3.38)

Figure 3.23: The slip-link model with a fixed slip-link position can be considered as three chains
joined at bead j. Two Rouse chains span from rB to rj with with j bonds, and from rj to rC
with N − j bonds. The slip-spring spans from rA to rj as a single bond, but with strength NS .
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where the connecting bead rj is mobile. Using these equations, the partition function is found

to be

Qj (rA, NS) =
ˆ

ZS (rA, rj , NS) Z (rB, rj , j) Z (rC , rj , N − j) d3rj

=
(

2πb2

3

) 3
2

(N−2)( 1
j (N − j)

) 3
2

ˆ
exp

(
− 3

2b2

(
(rA − rj)

2

NS
+

(rB − rj)
2

j
+

(rC − rj)
2

N − j

))
d3rj

=
(

2πb2

3

) 3
2

(N−1)( 1
j (N − j)

) 3
2
(

1
NS

+
1
j

+
1

N − j

)− 3
2

exp

− 3
2b2

(
(rA−rB)2

NS j
+ (rA−rC)2

NS (N−j) + (rB−rC)2

j (N−j)

)
1
NS

+ 1
j + 1

N−j

 (3.39)

where the integral ˆ
exp

(
−ar2 + b · r

)
d3r =

(π
a

) 3
2 exp

(
b2

4a

)
has been used. (This integral and similar Gaussian integrals can be found in appendix B).

Probability density of slip-link bead position

Using the partition function, Eq.3.39, it is possible to calculate the average position of the middle

bead,

〈rj〉 =
´

rj ZS (rA, rj) Z (rB, rj , j) Z (rC , rj , N − j) d3rj
Qj (rA, NS)

=
rA
NS

+ rB
j + rC

N−j
1
NS

+ 1
j + 1

N−j
(3.40)

The variance of this bead is b2

3

(
1
NS

+ 1
j + 1

N−j

)−1
, because bead j is attached to chains with

effective spring-constant k
j and k

N−j , and a slip-spring with spring-constant k
NS

. Using the mean
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and variance, the Gaussian probability density of rj is

Pj (rj , rA, NS) =
1
N

exp
(
− 3

2b2

(
1
NS

+
1
j

+
1

N − j

)
(rj − 〈rj〉)2

)
(3.41)

where

N =
ˆ

exp
(
− 3

2b2

(
1
NS

+
1
j

+
1

N − j

)
(rj − 〈rj〉)2

)
d3rj

=
(

2πb2

3

) 3
2
(

1
NS

+
1
j

+
1

N − j

)− 3
2

(3.42)

is the normalisation such that ˆ
Pj (rj , rA,NS) d3rj = 1 (3.43)

Average stress, 〈σj,γγ〉, for the slip-spring model with fixed slip-link position

Using Fig.3.23 to consider the slip-spring model as three Rouse chains, it is possible to use the

stress of a single Rouse chain, Eq.(2.16), to calculate the stress contribution from the entire

chain in the slip-spring model. Only the contribution from the chain and not the slip-spring is

considered, because including the slip-spring would add additional stress to the system that is

not observed in the entanglement model; it has previously been demonstrated that the stress

contribution due to the entanglement is negligible in the two-chain model (section 3.1.8). To

obtain 〈σj,γγ〉, the stress of a Rouse chain with j bonds between fixed beads rB and rj is added

to the stress of a Rouse chain with N − j bonds between rj and rC . In order to account for

the movement of the slip-link bead, this is then integrated over the probability density of rj ,

Eq.(3.41). Hence,

〈σj,γγ〉 =
1
V

ˆ
Pj (rj , rA, NS)

kBT (N − 2) + k

(
rγB − r

γ
j

)2

j
+ k

(
rγC − r

γ
j

)2

N − j

 d3rj

(3.44)
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This is integrated using the integral Eq.(2.13) to obtain

〈σj,γγ〉 =
kBT

V
(N − 2) +

kBT

V

(
1
j

+
1

N − j

)(
1
NS

+
1
j

+
1

N − j

)−1

+
k

V

(
rγB −

〈
rγj

〉)2

j
+
k

V

(
rγC −

〈
rγj

〉)2

N − j
(3.45)

The same technique may also be used to find the average stress from the slip-spring object,

〈
σSj,γγ

〉
=

kBT

V

1
NS

(
1
NS

+
1
j

+
1

N − j

)−1

+
k

V

1
NS

(
rγA −

〈
rγj

〉)2
(3.46)

Similarly
〈
σ2
γγ

〉
can be calculated, but this requires the calculation of cross terms between σB,γγ

and σC,γγ , where σB is the stress of the chain from bead rB to rj , and σC from bead rC to rj .

σB,γγ and σC,γγ are for Rouse chains with fixed rj and therefore are uncorrelated, such that we

may write

〈
σ2
j,γγ

〉
=
ˆ

Pj (rj , rA, NS)
〈

(σB,γγ + σC,γγ)2
〉

d3rj

=
ˆ

Pj (rj , rA, NS)
(〈
σ2
B,γγ

〉
+2 〈σB,γγ〉 〈σC,γγ〉+

〈
σ2
C,γγ

〉)
d3rj (3.47)
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Using Eq.(2.16) and Eq.(2.18), the average stress squared for a slip-spring system, where the

slip-link is fixed to bead number j, is given by

〈
σ2
j,γγ

〉
=

k2
BT

2

V 2

N (N − 2) + 2 (N − 2)
1
j + 1

N−j
1
Ns

+ 1
j + 1

N−j
+ 3

(
1
j + 1

N−j
1
Ns

+ 1
j + 1

N−j

)2


+2
1
V 2

kBT (N − 2) k


(
rγB −

〈
rγj

〉)2

j
+

(
rγC −

〈
rγj

〉)2

N − j


+2

1
V 2

kBT
k

1
Ns

+ 1
j + 1

N−j

(rγB − rγC)2
j (N − j)

+ 3


〈
rγj

〉
− rγB
j

+

〈
rγj

〉
− rγC

N − j

2


+
k2

V 2


(
rγB −

〈
rγj

〉)2

j
+

(
rγC −

〈
rγj

〉)2

N − j


2

(3.48)

Probability distribution of slip

Using the partitions function of each slip-link position for the fixed case, Eq.(3.39), it is possible

to express the probability of the slip-link being on bead j, given the slip-spring parameters rA

and NS ,

P (j, rA, NS) =
Qj (rA, NS)∑N−1

j′=1 Qj′ (rA, NS)
(3.49)

To add slip to a property calculated for a fixed slip-spring position, the property should be

summed over all j, with each j weighted by P (j, rA, NS). For example, the probability density

of bead positions {ri} with the slip-link fixed at j, Eq.(3.34), can be used in conjunction with
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Eq.(3.49) to obtain the probability density of {ri} with slip,

P ({ri} , rA, NS) =
N−1∑
j=1

P (j, rA, NS) Pj ({ri} , rA, NS)

=
N−1∑
j=1

Qj (rA, NS)∑N
j′=0Qj′ (rA, NS)

exp
(
− 3

2b2

(∑N
i=1 (ri − ri−1)2 + (rA−rj)

2

NS

))
Qj (rA, NS)

=

∑N
j=0 exp

(
− 3

2b2

(∑N
i=1 (ri − ri−1)2 + (rA−rj)

2

NS

))
∑N

j′=0Qj′ (rA, NS)
(3.50)

Average stress, 〈σγγ〉, for the slip-spring model with the slip mechanism

Using Eq.(3.49), the average stress of the slip-spring model is

〈σγγ〉 =
N−1∑
j=1

Pj (rA, NS) 〈σj,γγ〉 (3.51)

which is plotted in Fig.3.24 as a function of slip-spring strength, NS , for a number of different

slip-spring lengths, h. Fig.3.24d splits 〈σxx〉 into the thermal fluctuation contribution to stress

and the stress due to stretch. The stress due to fluctuations is given by the first two terms of

Eq.(3.45). In the limit NS → ∞, the slip-spring becomes infinitely weak and the chain has a

contribution of kBT
V from the slip-link bead’s thermal fluctuations, such that it is equivalent to

an unentangled Rouse chain. In the limit NS → 0, the slip-spring becomes infinitely strong and

the position of the slip-link bead is fixed at rj = rA. In this case, the second term of Eq.(3.45)

becomes zero, and the stress is equal to two separate Rouse chains with bead j not contributing

to the thermal fluctuations. If Eq.(3.46) is considered, it can be seen that the virtual slip-

spring object acquires the stress contribution belonging to the slip-spring bead as NS increases,

such that bead j contributes kBT
V to the total stress independent of NS in accordance with the

equipartition theorem.

The stretch term is also interesting. In 〈σzz〉, the stress due to stretch increases with slip-

spring strength and h, simply because the chain is being stretched towards the slip-spring anchor
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(a) (b)

(c) (d) Individual contributions to 〈σxx〉 for h = 0

Figure 3.24: Average stress contribution from the chain in the slip-spring model as a function of
NS for multiple h values. Parameters are N = 16, H = 10 and D = 10.
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at rA. This is not the case for 〈σxx〉, which decreases with h. This effect can be explained by

slip. Stress is added to the chain by the slip-spring deforming the distribution of beads away

from their unentangled positions,

〈
rSingle
i

〉
= rB +

i

N
(rC − rB) (3.52)

Since
〈
xi
〉
−
〈
xSingle
i

〉
= 0, the stress due to stretch is at a minimum. The probability distribution

of slip, P (j, rA, NS), is dependent on the vector position of the anchoring point, rA = (0, 0, h),

such that increasing h causes the probability distribution to narrow. Therefore, the position of

beads further from the middle bead are less likely to be sampled by the slip-link and deform

less. In the x-direction, the average position of the middle bead is equal to the anchoring point

of the slip-spring,
〈
xN/2

〉
= xA, which means a very strong slip-spring does not affect

〈
xN/2

〉
as

it did in the z-direction. Thus, the effects of P (j, rA, NS) dominate and 〈σxx〉 decreases with

increasing h.

3.2.3 Parameter finding using Gγγ (0) and Gγγ (∞)

Using results from a two-chain simulation in conjunction with these analytical calculations, it is

possible to find the point in parameter space where the slip-spring model reproduces the stress

relaxation properties of the two-chain simulation. Plotted in Fig.3.25 are the best NS and h

combinations to fit

Gγγ (0) =
V

kBT
〈σγγ〉2 (3.53)

and

Gγγ (∞) =
V

kBT

〈
σ2
γγ

〉
(3.54)

for γ = x, y, z, where V = N−1
c . The shaded areas indicate where the value is within 1% of the

amplitude, (Gγγ (0)−Gγγ (∞)), from the target value of Gγγ (t). t = 0 is shown by backward

slashes and t = ∞ by forward slashes. These two shaded areas always overlap for Gxx (t) and
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Figure 3.25: Best NS values as a function of h for multiple stress relaxation properties. Shaded
areas indicate the best NS to within 1% of the amplitude. Gγγ (0) is shown as backward slashes
and Gγγ (∞) by forward slashes. For Gxx (t) and Gyy (t) these areas overlap. Parameters are
N = 16, H = 10 and D = 10.
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Gyy (t), which means that when the value for t = 0 is fit to the two-chain simulation, t =∞ will

also fit the two-chain results. The widths of the shaded areas indicate the dependence upon NS ,

which controls the spring strength. Gyy (t) has a wide area, because it has the least dependence

on NS , while Gzz (t) has very little shaded area, because it is strongly affected by NS . The width

of Gzz (0) and Gzz (∞) are so thin in Fig.3.25 that they appear simply as single lines.

It is observed that, at h ≈ 23, it is possible to find a point where there is a good fit between the

models for both Gxx (t) and Gyy (t), but not Gzz (t). There are no points found where all three

diagonal components agree with each other. Furthermore, the values of Gzz (0) and Gzz (∞)

do not always overlap with each other; instead they diverge as h increases. To investigate

this further, (Gzz (0)−Gzz (∞)), is included on the graph. Unlike Gxx (t) and Gyy (t), the

amplitude of Gzz (t) is strongly affected by NS . In the slip-spring model, the direction in which

the entanglement is distorting the chain is most important, therefore the parameters that result

in the best fit of Gzz (t) are preferred. This occurs where the shaded areas for Gzz (0), Gzz (∞)

and (Gzz (0)−Gzz (∞)) overlap. In Fig.3.25, where N = 16, H = 10 and D = 10, the optimum

parameters are h = 10.89 and NS = 4.20.

3.2.4 Simulation results of stress relaxation functions

Using parameters obtained in the previous section, Gγγ (t) is plotted for the simulation of the

slip-spring model in Fig.3.26 against the results from a two-chain simulation. The models differ

for the static values of Gxx (t) and Gyy (t), as predicted by the parameter fitting method, but

nevertheless their amplitudes are equal. From equations Eq.(3.45) and Eq.(3.48), we know that

Gyy (0)−Gyy (∞) =
N − 1
c kBT

(
〈σj,yy〉2 −

〈
σ2
j,yy

〉)
=

2ckBT
N − 1

N − 2 +

(
1
j + 1

N−j
1
Ns

+ 1
j + 1

N−j

)2
 (3.55)
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(a) (b)

(c)

Figure 3.26: Comparison of two-chain model with the slip-spring model simulation for Gγγ (t).
Parameters are N = 16, H = 10, D = 10, h = 10.89 and NS = 4.20.
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where y0 = yN = 〈yj〉 and there is no slip mechanism. In the limit of N → ∞, this amplitude

reduces to

lim
N→∞

(Gyy (0)−Gyy (∞)) = 2ckBT (3.56)

as observed in the graph. For Gxx (t), the stretch does play a role, but as Fig.3.26a demonstrates,

this does not have a significant effect on the amplitude. Gzz (t) is more interesting; the slip-spring

model has a secondary relaxation similar to the two-chain simulation, but the relaxation time

is significantly shorter in the slip-spring model. After testing a range of other parameters, it

appears that it is impossible to fully reproduce the dynamics of Gzz (t) with the current slip-

spring model. The off-diagonal stress components are considered in Fig.3.27. These also indicate

faster relaxation with the slip-spring model than the two-chain simulation. Any solution that

corrects the delay in the relaxation of Gzz (t) will probably rectify the relaxation of the off-

diagonal components as well. Such a solution is presented in section 4.2.

3.2.5 Mean bead positions

As described in section 2.1.3, the mean and variance of beads and bonds can explain the effects

observed in properties such as Gγγ (t). For the best fit of the model to the two-chain model, the

mean and variances should be as closely matched as possible. The mean position of the beads in

the system are plotted in Fig.3.28. The domed shape of 〈zi〉 is produced by the slip of the slip-

spring model, since without slip the model would be a three-armed-star, which has straight mean

paths between the anchors and rj . The domed shape is the same for both the slip-spring and

two-chain models, which indicates that the slip-spring strength and slip probability distribution

in the slip-spring model are well matched to the force and dynamics of the entanglement in the

two-chain model.

When the mean positions in the x-direction are examined closely, a discrepancy is observed



3.2 - Main models: Slip-Spring Model 106

(a) (b)

(c)

Figure 3.27: Comparison of two-chain model with the slip-spring model simulation for off-
diagonal components of the stress relaxation. Parameters are N = 16, H = 10, D = 10,
h = 10.89 and NS = 4.20.
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(a) (b)
〈
x̄i
〉

=
〈
xi
〉
−
〈
xSingle
i

〉

(c) (d)

Figure 3.28: Mean position of each bead, where the bead number is expressed as a fraction along
the chain, s = i

N . Plotted in Fig.3.28b is the unentangled x-direction positions subtracted from
the entangled model’s x-direction positions. Parameters are N = 16, H = 10, D = 10, h = 10.89
and NS = 4.20.
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in Fig.3.28a, which is made clearer when plotted as

〈
x̄i
〉

=
〈
xi
〉
−
〈
xSingle
i

〉
(3.57)

where
〈
xSingle
i

〉
is given by Eq.(3.52), such that

〈
x̄i
〉
is the displacement of the bead from its

unentangled position. It is observed that, while the two-chain simulation pushes beads away

from the middle bead, the slip-spring pulls beads towards the slip-spring anchoring point. This

discrepancy is difficult to address, since it challenges the nature of the slip-spring model, which

is based on a purely attractive linear spring. A bulky slip-chain model, introduced in section 4.3,

will attempt to address this and is discussed further in section 6.6.

3.2.6 Variance of bead positions

The variances of bead positions are plotted in Fig.3.29. In the two-chain model, the variances

are influenced by the entanglement and in the slip-spring model by the slip-spring. Fig.3.29d

plots var (zi) for a three-arm-star, representing the slip-spring model with no slip mechanism.

The presence of the third arm reduces the variance of the middle bead compared to that of a

single unentangled chain, which in turn reduces the variance of the neighbouring beads. The

same effect is also noticed in the two-chain and slip-spring models. However, var (zi) is higher

for the slip-spring model, than the three-arm-star, as was similarly observed when the two-chain

model was compared to the four-arm-star model in section 3.1.3. This was attributed to the

application and removal of the entanglement, which is supported here by the observation that

the slip-spring creates the same effect with the application and removal of the slip-spring as it

slips from bead to bead.

In Fig.3.29a it is observed that var (xi) and var (yi) are much more like the single-chain model

than var (zi), because the slip-link slips more easily in these directions, which reduces the effects

of the slip-spring on the chain. Furthermore, Fig.3.29b and Fig.3.29c indicate that the slip-spring

may be too strong in the x- and y-directions, causing var (xi) and var (yi) to be lower for the
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(a) slip-spring simulation (b)

(c) (d)

Figure 3.29: Variance from the mean position for each bead, where the bead number is expressed
as a fraction along the chain, s = i

N . Parameters are N = 16, H = 10, D = 10, h = 10.89 and
NS = 4.20.
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Figure 3.30: Probability density of bond lengths for the two-chain simulation and the slip-spring
model. Parameters are N = 16, H = 10, D = 10, h = 10.89 and NS = 4.20.

slip-spring model than the two-chain model. It is suggested that the fit would improve in these

directions if the slip-spring was weaker and NS larger. Indeed the parameter fitting in Fig.3.25

also indicated that a larger value of NS is required to fit 〈σxx〉 and 〈σyy〉.

3.2.7 Mean and variance of bond vectors

Fig.3.30 plots the probability density of bond lengths in the system, and it is observed that the

slip-spring model agrees well with the two-chain simulation. However, Fig.3.31 shows that these

bond lengths are not uniformly distributed and that the two models differ in the x-direction. In

the two-chain simulation, the x-component of bond vectors increase near the middle bead, but

in the slip-spring model, bonds decrease in length near the middle bead, as was observed from

the bead positions. Despite this discrepancy, the stress relaxation (Fig.3.26a) is not too different

between the two models. By analysing the bond vectors with respect to Eq.(2.29), it is clear

why this occurs. The stress is dependent on the sum
∑N

i=1 〈Xi,i−1〉2, independent of the order
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(a) (b)

Figure 3.31: Average vector of each bond, where the bond number is expressed as a fraction
along the chain, s =

(
ibond + 1

2

)
/N . Parameters are N = 16, H = 10, D = 10, h = 10.89 and

NS = 4.20.

of bonds, so that both models may produce similar 〈σxx〉.

Stress in Eq.(2.29) also involves a sum of the variances of bond vectors, which are plotted in

Fig.3.32. The two-chain model has a peak in var (Xi), which is not reproduced by the slip-spring

model. It is this difference which is responsible for 〈σxx〉 being greater in the two-chain model;

the same is observed in the y-direction. However, the variance of the z-component does have a

peak around the middle bead in both models. The increase in bond variance can be explained by

slip, as was done previously for the bead variance. This is supported by comparing Fig.3.32c to

Fig.3.32d, where the probability density of slip-link position has the same width as the increase

in bond variance.

3.2.8 Mean squared displacement, g1,mid (t)

In Fig.3.33, g1,mid (t) /t0.5 is examined for the slip-spring model. As described in section 2.1.4, a

constant value of this function indicates Rouse motion. It is observed that the middle bead in the

slip-spring model moves faster than the same bead in the two-chain simulation at intermediate

time. To investigate this further, the individual components are displayed in Fig.3.34. Whilst
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(a) (b)

(c) (d) Probability density of slip-link position

Figure 3.32: Variance from the average vector for each bond, where the bond number is expressed
as a fraction along the chain, s =

(
ibond + 1

2

)
/N . Parameters are N = 16, H = 10, D = 10,

h = 10.89 and NS = 4.20.
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Figure 3.33: Mean squared displacement of the middle bead, g1,mid (t) /t0.5. Parameters are
N = 16, H = 10, D = 10, h = 10.89 and NS = 4.20.

the x- and y-components are not exactly the same for the two models, they are relatively good

fits compared to the z-direction, where the middle bead moves significantly faster in the slip-

spring model. This might explain why a delay in the stress relaxation, Gzz (t), was not properly

modelled by the slip-spring model in Fig.3.26a. It is possible that a modification to the slip-

spring model that slows the middle bead in the z-direction, will also provide a delay in Gzz (t)

that will improve both these properties. In section 4.2, such a modification is presented.

3.2.9 Summary

Using analytical calculations, a search was performed for the best pair of slip-spring parameters

that reproduces the two-chain simulation. However, when the parameters are selected to fit

the z-direction stress relaxation function, Gzz (t), the other two diagonal components, Gxx (t)

and Gyy (t), differ somewhat from those in the two-chain simulation. Equally, if the parameters

are adjusted to fit Gxx (t) and Gyy (t), then Gzz (t) does not fit. It was observed that this was
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(a) x-direction (b) y-direction

(c) z-direction

Figure 3.34: Mean squared displacement for individual components. Parameters are N = 16,
H = 10, D = 10, h = 10.89 and NS = 4.20.
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due to lower average bond variance in the x- and y-directions, an issue that will be addressed

with a non-isotropic model in section 4.1. The dynamics of Gzz (t) have also demonstrated

a discrepancy between the two models; the slip-spring model fails to show the same delay in

the stress relaxation that was observed in the two-chain simulation. As well as this, the mean

squared displacement dynamics indicated that the middle bead moves in the z-direction faster in

the slip-spring model than in the two-chain simulation. The slip-chain model provides a solution

to both these discrepancies as will be shown in section 4.2. Finally, it has been observed in

the x-component of the bead and bond positions that beads are pulled towards the middle of

the system in the slip-spring model, rather than pushed away from the entanglement as in the

two-chain model. A possible solution to this problem is presented in section 4.3.
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Chapter 4

Modifications to the slip-spring model

4.1 Non-isotropic slip-spring model

It has been observed that the two-chain entanglement acts differently in each direction. In the

x-direction, the lower chain can slide through the entanglement; in the y-direction, the upper

chain hooks around the lower chain restricting its movement, forcing a section of the lower chain

to follow the movement of the upper chain; and in the z-direction, the entanglement both hooks

around the chain and stretches it. Hence, the entanglement applies a different effective force

in each direction. It was originally assumed that the slip-spring would be able to reproduce

the entanglement’s different strengths, since the slip-spring vector is shortest in the x- and y-

directions, giving a smaller force in these directions, as required. However, it was seen in the

previous chapter that this alone does not simultaneously fit Gγγ (t) for γ = x, y, z. Since it was

demonstrated in Fig.3.25 that different values of NS allow different components of the stress

relaxation to fit the two-chain model results, a suggested solution is to make the slip-spring

spring-constant non-isotropic.

Previously the potential energy of the slip-spring was given by

US =
1
2
kR2

A,j (4.1)
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Figure 4.1: Diagram of the non-isotropic slip-spring model with the new slip-spring spring con-
stant k̂S

where RA,j = rA − rj . With the non-isotropic slip-spring this becomes

US =
1
2
RA,j k̂SRA,j

=
1
2

(XA,jkS,xxXA,j +XA,jkS,xyYA,j + . . .+ ZA,jkS,zzZA,j) (4.2)

where RA,j = (XA,j , YA,j , ZA,j) and k̂S is a tensor spring-constant. Since, the system is sym-

metric in the x- and y-directions, the transformations X → −X and Y → −Y should have no

effect on the energy, but in Eq.(4.2) terms like XA,jkS,xyYA,j , XA,jkS,xzZA,j and YA,jkS,xzZA,j

change sign with this transformation. Thus, the off-diagonal components of the spring-constant

tensor must be zero, and the new spring-constant tensor is written as

k̂S =


k

NS,x
0 0

0 k
NS,y

0

0 0 k
NS,z

 (4.3)
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where the slip-spring strength parameter, NS , becomes a set of three values

{NS} = NS,x, NS,y, NS,z (4.4)

This new model with its four parameters is illustrated in Fig.4.1. The energy of this system is

U =
1
2

(
k

N∑
i=1

(ri − ri−1)2 + (rj − rA)T k̂S (rj − rA)

)

=
k

2

(
N∑
i=1

(ri − ri−1)2 +
(xj − xA)2

NS,x
+

(yj − yA)2

NS,y
+

(zj − zA)2

NS,z

)
(4.5)

and has the equation of motion

ξ dri = k (ri+1 − 2ri + ri−1) dt+
√

2kBTξ dWi (t) + δij k̂S (rA − rj) dt (4.6)

4.1.1 Analytical calculations

Because the energy of the system has changed, the partition function of the slip-spring object

(Eq.(3.37)) is now

ZS (rA, rj , {NS}) = exp
(
−1

2
(rj − rA)T k̂S (rj − rA)

)
= exp

(
−1

2

(
k (xj − xA)2

NS,x
+
k (yj − yA)2

NS,y
+
k (zj − zA)2

NS,z

))
(4.7)

This modifies the partition function of the whole slip-spring system (Eq.(3.39)), which is now

Qj (rA, {NS}) =
ˆ

ZS (rA, rj , {NS}) Z (rB, rj , j) Z (rC , rj , N − j) d3rj

=
ˆ

d3rj

(
1

j (N − j)

) 3
2
(

2πkBT
k

) 3
2

(N−2)

exp

(
− 1

2kBT

(
(rj − rA)T k̂S (rj − rA) +

k (rj − rB)2

j
+
k (rj − rC)2

N − j

))
(4.8)
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where each component of rj provides a factor

ˆ
dxj exp

(
− 1

2kBT

(
k (xj − xA)2

NS,x
+
k (xj − xB)2

j
+
k (xj − xC)2

N − j

))

=

√
2π
k

(
1
j

+
1

N − j
+

1
NS,x

)−1

exp

(
− 1

2kBT

(
k (xj − xA)2

NS,x
+
k (xj − xB)2

j
+
k (xj − xC)2

N − j

))
(4.9)

to produce

Qj (rA, {NS}) =
(

1
j (N − j)

) 3
2
(

2πkBT
k

) 3
2

(N−1)

1√(
1
j + 1

N−j + 1
NS,x

) exp

−
(
k(xB−xC)2

j·(N−1) + k(xA−xB)2

NS,x·j + k(xA−xC)2

NS,x·(N−j)

)
2kBT

(
1
j + 1

N−j + 1
NS,x

)


1√(
1
j + 1

N−j + 1
NS,y

) exp

−
(
k(yB−yC)2

j·(N−1) + k(yA−yB)2

NS,y ·j + k(yA−yC)2

NS,y ·(N−j)

)
2kBT

(
1
j + 1

N−j + 1
NS,y

)


1√(
1
j + 1

N−j + 1
NS,z

) exp

−
(
k(zB−zC)2

j·(N−1) + k(zA−zB)2

NS,z ·j + k(zA−zC)2

NS,z ·(N−j)

)
2kBT

(
1
j + 1

N−j + 1
NS,z

)

(4.10)

The changes to the partition function also result in a new slip-link position probability distribu-

tion (Eq.3.49) given by

P (j, rA, {NS}) =
Qj (rA, {NS})∑N−1

j′=1 Qj′ (rA, {NS})
(4.11)

As was done previously for the slip-spring model this partition function is used to calculate the

average position of the slip-link while attached to bead j

〈xj〉 =
xA
NS,x

+ xB
j + xC

N−j
1

NS,x
+ 1

j + 1
N−j

(4.12)
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〈yj〉 =
yA
NS,y

+ yB
j + yC

N−j
1

NS,y
+ 1

j + 1
N−j

(4.13)

〈zj〉 =
zA
NS,z

+ zB
j + zC

N−j
1

NS,z
+ 1

j + 1
N−j

(4.14)

It is found that the average position is now dependent upon its own component of {NS}. The

same is found for Eq.(3.44) and Eq.(3.48), which are now

〈σj,γγ〉 =
kBT

V
(N − 2) +

kBT

V

1
j + 1

N−j
1

NS,γ
+ 1

j + 1
N−j

+
k

V

(
rγB −

〈
rγj

〉)2

j
+
k

V

(
rγC −

〈
rγj

〉)2

N − j
(4.15)

and

〈
σ2
j,γγ

〉
=

(kBT )2

V 2

N (N − 2) + 2 (N − 2)
1
j + 1

N−j
1

NS,γ
+ 1

j + 1
N−j

+ 3

(
1
j + 1

N−j
1

NS,γ
+ 1

j + 1
N−j

)2


+2
1
V 2

kBT k (N − 2)


(
rγB −

〈
rγj

〉)2

j
+

(
rγC −

〈
rγj

〉)2

N − j


+2

1
V 2

kBT
k

1
NS,γ

+ 1
j + 1

N−j

(rγB − rγC)2
j (N − j)

+ 3


〈
rγj

〉
− rγB
j

+

〈
rγj

〉
− rγC

N − j

2


+
k2

V 2


(
rγB −

〈
rγj

〉)2

j
+

(
rγC −

〈
rγj

〉)2

N − j


2

(4.16)

We note here that, although stress moments
〈
σγγ

〉
and

〈
σ2
γγ

〉
with fixed j depend only on the

corresponding NS,γ , the slip couples all components through Eq.(4.11). Therefore, 〈σxx〉, for

example, will depend on NS,y and NS,z as well as NS,x.
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4.1.2 Parameter finding

With these analytical solutions for the diagonal components of the stress tensor, it is once

again possible to find the best parameters for the slip-spring model. However, this model has

four parameters and while a graph was the best method to investigate parameter space for two

parameters, a system with four parameters is not as simple to visualise. Instead, a minimisation

technique is used to find the best point in parameter space. The technique used in this study

was Nelder–Mead downhill simplex minimisation [34]. The height of the slip-spring, h, and the

non-isotropic strength of the slip-spring, {NS}, were adjusted to minimise the function

∑
γ=x,y,z

(〈
σTC
γγ

〉
−
〈
σSS
γγ

〉)2

+
∑

γ=x,y,z

(√〈(
σTC
γγ

)2〉−√〈(σSS
γγ

)2〉)2

(4.17)

where σTC is the stress tensor for the two-chain simulation and σSS is the stress tensor for the

slip-spring model.

Using this method, a two chain simulation with parameters N = 16, H = 10 and D = 10

was fit to a non-isotropic slip-spring model, producing the parameter set h = 10.89, NS,x = 8.48,

NS,y = 9.85, NS,z = 4.20. Previously, the parameters of the original slip-spring model were

h = 10.89 and NS = NS,γ = 4.20. The parameters have remained the same in the z-direction,

but have changed in the x- and y-directions. NS,x and NS,y have significantly increased in value,

weakening the slip-spring in those directions, as expected.

4.1.3 Parameters and dependence on entanglement strength

This minimisation technique was also used to obtain slip-spring parameters for a range of two-

chain models with different system heights, H. The system height represents the strength of the

entanglement as discussed in section 1.1. Fig.4.2a demonstrates that when the system is stretched

in the z-direction, the slip-spring height minus a constant, h− 1.1, is also stretched affinely, such

that H → λH when (h− 1.1)→ λ (h− 1.1), where λ is the deformation coefficient. A constant

must be added to h because the rejection routine causes a separation between the two chains
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even when H = 0. The graphs for NS,γ suggest that these three parameters remain constant

during a deformation of system height for an intermediate level of stretch. This is promising for

the model because it implies that the parameters do not have to be modified when the system is

deformed. It is found that NS,z ≈ 4, which is significant because this corresponds to the effective

spring strength of two chains of length 8 as found in the four-arm-star approximation of the

two-chain simulation, when N = 16. However, it is found that NS,x ≈ NS,y ≈ 9, which does

not have a simple explanation, apart from that it is due to the chain being to slide through the

entanglement more easily in these directions.

For small and negative values of H, the two chains are not strongly entangled. With enough

separation and H < 0, the two chains should not interact at all. When this occurs, it is

expected that all components of {NS} become infinite, corresponding to the slip-spring having

no effect on the chain. In Fig.4.2 it is found that the change in behaviour occurs earlier than

this. Furthermore, the point where this occurs depends on direction, validating the need for a

different NS per direction. The two-chain model is considered to explain this behaviour. As H

decreases, the hooking between the two chains is reduced and beads have much more freedom to

move in the x- and y-directions; Fig.1.1a demonstrates this situation. This results in NS,x and

NS,y approaching infinity earlier than NS,z, which remains strong, because the presence of the

other chain still causes repulsion between the two entangled chains. With further separation the

slip-spring will also become weaker in the z-direction, eventually becoming infinitely weak when

the two chains are no longer interacting.

For H → ∞ it was predicted that the slip-link would be permanently on the middle bead,

since h had become large, and NS,γ should remain constant. Yet, it is observed in Fig.4.2 that

at H > 20 the values of NS,x and NS,y increase. This could be due to the rejection method

generating artifacts as H becomes too large, which causes the number of rejections to become

extreme. This would then cause the fitting method to produce inaccurate parameter values,

because the two-chain simulation it is fitting to is inappropriate.



4.1 - Modifications to the slip-spring model: Non-Isotropic Slip-Spring 123

(a) (b)

(c) (d)

Figure 4.2: Slip-spring parameters as a function of two-chain simulation height. The system has
parameters N = 16, D = 10. Noise on the graphs is due to statistical errors in the two-chain
simulation data target values provided to the minimisation method.
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4.1.4 Stress relaxation functions

As expected from the analytical calculations, stress relaxation function graphs for the diagonal

components in Fig.4.3 have good agreement between the two-chain simulation and the non-

isotropic slip-spring model. The non-isotropic model values for Gxx (t) and Gyy (t) agree with

the two-chain simulation at t = 0 and t = ∞, where they previously did not for the original

slip-spring model; the dynamics of Gxx (t) and Gyy (t) are also in agreement. For Gzz (t) there is

a good fit for Gzz (0) and Gzz (∞), as there was before in the original isotropic slip-spring model,

but the model still relaxes faster than the two-chain simulation.

4.1.5 Variance of bead and bond vectors

In Fig.4.4 it is observed that the non-isotropic model has increased variance of bead positions

in the x- and y-directions, since the slip-spring strength has been made weaker in these two

directions. This has made the variance closer to that of the two-chain simulation, but it is still

not a perfect match. In both directions the variance is slightly too high and in the x-direction

the distribution of the variance is different for the central four beads.

In Fig.4.5 the variance of bonds in the x- and y-directions is plotted. These graphs show that,

with increased NS in the x- and y-directions, the non-isotropic model, rather than increasing

the bond variance at the centre of the chain, has increased the variance of all bonds. This made

the value of 〈σxx〉 equal by changing
∑N

i=1 var (Xi,i−1) in Eq.(2.29), but did not do so by fitting

individual bonds to the two-chain simulation. To understand why this occurred, consider a single

unentangled Rouse chain. The energy of a single chain is given by the sum of its bonds,

USingle ({ri}) =
1
2
k (r0 − r1)2 +

1
2
k (r1 − r2)2 + . . .+

1
2
k (rn−1 − rn)2

⇒ USingle ({Rij}) =
1
2
kR2

0,1 +
1
2
kR2

1,2 + . . .+
1
2
kR2

n−1,n (4.18)

where Rij = ri − rj . Hence, the probability density of bead positions can be expressed in terms
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(a) (b)

(c)

Figure 4.3: Stress relaxation functions of the diagonal components of the stress tensor. Param-
eters are N = 16, H = 10, D = 10. In the slip-spring model h = 10.89 and NS = 4.20. In the
non-isotropic slip-spring model h = 10.89, NS,x = 8.48, NS,y = 9.85, NS,z = 4.20.
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of individual bonds,

P Single ({Rij}) =
1
N

exp
(
−USingle ({Rij})

kBT

)
=

1
N

exp
(

k

2kBT
R2

0,1

)
exp

(
k

2kBT
R2

1,2

)
. . . exp

(
k

2kBT
R2
n−1,n

)
(4.19)

which is a product of the probability density of each bond

P (Rij) =
1
Nij

exp
(

k

2kBT
R2
ij

)
(4.20)

where N and Nij are normalisation are such that

ˆ
P (Rij) d3Rij = 1 (4.21)

N =
∏
ij

Nij (4.22)

(a) x-direction (b) y-direction

Figure 4.4: Variance of position for each bead, where the bead number is expressed as a fraction
along the chain, s = i

N . Parameters are N = 16, H = 10, D = 10. In the slip-spring model
h = 10.89 and NS = 4.20. In the non-isotropic slip-spring model h = 10.89, NS,x = 8.48,
NS,y = 9.85, NS,z = 4.20.
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(a) (b)

(c) (d) Probability density of slip

Figure 4.5: Variance from the average vector for each bond, where the bond number is expressed
as a fraction along the chain, s =

(
ibond + 1

2

)
/N . In the non-isotropic model NS,x and NS,y

are larger than NS in the slip-spring model. Parameters are N = 16, H = 10, D = 10. In the
slip-spring model h = 10.89 and NS = 4.20. In the non-isotropic slip-spring model h = 10.89,
NS,x = 8.48, NS,y = 9.85, NS,z = 4.20.
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These probability densities are independent from each other, which means the variance of bonds

are independent from each other and thus equal in an unentangled chain. Despite the presence

of an additional force on bead j, the probability densities of each bond within the lower chain

are still equal. The value of this variance can be calculated from 〈σγγ〉. In the y-direction, where

the average stretch term is zero, the relationship between stress and variance is known from

Eq.(2.29) to be

〈σyy〉 =
k

V

n∑
i=1

var (Yi,i−1) (4.23)

where Yij = yi − yj . Because the average length of the bonds is equal in the y-direction,∣∣Y Single
∣∣ = |Yi,i−1| and

〈
σSingle
yy

〉
=

k

V
N var

(
Y Single

)
(4.24)

The average stress for the unentangled chain is also given by Eq.(2.16),

〈
σSingle
yy

〉
=

kBT

V
(N − 1) (4.25)

Thus, the combination of Eq.(4.24) and Eq.(4.25) creates an equation for the variance of bonds

in terms of the number of bonds in the chain, N ,

var
(
Y Single

)
=
kBT

k

(N − 1)
N

(4.26)

where k = 3kBT
b2

.

Using the stress for a slip-spring model with no slip, Eq.(4.15), with Eq.(4.24), an equation

for the variance of each bond in a slip-spring model with no slip is constructed,

var
(
Y no slip

)
=

b2

3N

(
N − 2 +

1
j + 1

N−j
1

Ns,y
+ 1

j + 1
N−j

)
(4.27)
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Figure 4.6: Variance of bond vectors in a single direction, for a range of slip-spring strengths in
a slip-spring model with no slip mechanism. The variance is equal for all bonds in all directions.
The analytical function is given by (4.27). Parameters are N = 16, j = 8.

where j is the bead index to which the slip-link is permanently fixed. In Fig.4.6 this function is

confirmed by comparing it to simulation data for the same model. Hence, changing the strength

of the third arm (slip-spring) affects the variance of all chain bonds equally, no matter where

the arms are connected. Because of this, the slip-spring model adds a variance to all bonds

proportional to NS , independent of the bead that the slip-link is on. But a second effect is also

applied to individual bonds by the slip, as observed in Fig.4.5, causing peaks in variance around

the central beads, especially in var (Zi), which has been demonstrated in section 3.2.6 to be

due to the slip applying and removing a deformation. It is still observed that the entanglement

in the two-chain model caused higher variance peaks than the slip-spring model, even with the

non-isotropic model. It is likely that the two-chain simulation has a higher peak variance because

the chain does not just slide along the chain as the slip-link does, but the two chains can also

separate and break contact. This mechanism of two chain separation provides another method

of force removal that would result in additional variance. Unable to replicate this, the slip-spring

model increases the variance of every bond using Eq.(4.27), by increasing NS,x and NS,y, such

that
∑N

i=1 var (Yi,i−1) is the same for both the slip-spring and the two-chain simulation. This
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is why the two models differ. Without changing the fundamental way that the model works, it

would appear that this effect can not be exactly reproduced by the slip-spring model.

4.1.6 Summary

The non-isotropic slip-spring model replaces the scalar spring constant of the slip-spring with

a tensor spring-constant. This makes the spring strength parameter, NS , a set of parameters,

{NS} = NS,x, NS,y, NS,z. With this modification, analytical calculations and a minimisation

technique were used to find the best parameters to fit the model to values of
〈
σγγ

〉
and

〈
σ2
γγ

〉
obtained from a two-chain simulation. This indicated increased values of NS,x and NS,y were

required. With the parameters now adjusted to fit all the static values of Gγγ (t), the slip-spring

stress relaxation functions, Gxx (t) and Gyy (t) were great fits to the two-chain model. However,

the variance of bonds in this model are still different to the two-chain simulation. The two-chain

simulation has a mechanism whereby the two chains can separate, which is not reproduced in the

slip-spring model. This effect results in a higher variance on the central bonds and can not be

reproduced by the slip-spring model. The non-isotropic model compensates for this by increasing

the variance of all bonds uniformly. While not a perfect solution, this fulfills the aim of a model,

which is to simplify the original two-chain situation, but still reproduce the important properties

such as stress.

4.2 Slip-chain model

Comparing the slip-spring model to the two-chain model has indicated that beads in the slip-

spring model move too fast in the z-direction, the direction in which the system is stretched by

the entanglement. The non-isotropic model was unable to solve this problem by changing the

parameters of the slip-spring model. It is therefore necessary to add a new physical mechanism

to the model, one which can slow the motion of the beads in the z-direction. A possible option is

to change the slip-spring into a slip-chain (Fig.4.7). Rather than having a single bond connecting
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Figure 4.7: The slip-chain model replaces the spring from the slip-spring model, with a Rouse
chain composed of NSC bonds. Each bond in the slip-chain has the strength {nS}, such that
NS,γ = NSC nS,γ .
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the slip-link to its anchor without any extra friction, this new model has a Rouse chain connecting

the slip-link to the anchor, which adds friction to the motion of the slip-link. The beads within

this slip-chain have equal friction to the beads in the polymer chain, and the total strength of

the slip-chain is equal to that of the previous slip-spring. Hence,

NS,γ = NSC nS,γ ; γ = x, y, z (4.28)

and

k̂SC =


k

nS,x
0 0

0 k
nS,y

0

0 0 k
nS,z

 ; k =
3kBT
b2

(4.29)

where NSC is the number of slip-chain bonds and nS is the strength of each individual slip-chain

bond.

The equation of motion for the system is now in two parts, one describing the motion of the

beads within the polymer chain

ξ dri = k (ri+1 − 2ri + ri−1) dt+
√

2kBTξ dWi (t) + δij k̂SC (sNSC−1 − rj) dt (4.30)

and one describing the motion of the beads within the slip-chain, which have position vectors

sm,

ξ dsm = k̂SC (sm+1 − 2sm + sm−1) dt+
√

2kBTξ dWm (t) (4.31)

for 1 < m < NSC . The anchoring point of the slip-chain is labelled as m = 0, such that s0 = rA,

and the slip-link is sNSC = rj . The energy of the slip-chain model is given by

U =
N∑
i=1

3kBT
2b2

(ri − ri−1)2 +
NSC∑
m=1

1
2

(sm − sm−1)T k̂SC (sm − sm−1) (4.32)

Because the energy is now a sum of slip-chain bonds, the partition function for the non-isotropic
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slip-spring Eq.(4.7) becomes a partition function for a Rouse chain Eq.(3.36),

ZSC (rA, rj , {NS} , NSC) =
(

1
Nsc

) 3
2

((
2πkBT
k

)3 NS,xNS,yNS,z

N3
SC

) 1
2

(Nsc−1)

exp

(
− 1

2kBT

(
k (xj − xA)2

NS,x
+
k (yj − yA)2

NS,y
+
k (zj − zA)2

NS,z

))
(4.33)

Thus, the partition function for the entire slip-chain model is

Qj (rA, NS , NSC) =
ˆ

Zsc ZA ZB d3rj

=
(

1
NSC j (N − j)

) 3
2
(

2πkBT
k

) 3
2

(N−1)
((

2πkBT
k

)3 NS,xNS,yNS,z

N3
SC

) 1
2

(Nsc−1)

1√(
1
j + 1

N−j + 1
NS,x

) exp

−
(
k(xB−xC)2

j·(N−1) + k(xA−xB)2

NS,x·j + k(xA−xC)2

NS,x·(N−j)

)
2kBT

(
1
j + 1

N−j + 1
NS,x

)


1√(
1
j + 1

N−j + 1
NS,y

) exp

−
(
k(yB−yC)2

j·(N−1) + k(yA−yB)2

NS,y ·j + k(yA−yC)2

NS,y ·(N−j)

)
2kBT

(
1
j + 1

N−j + 1
NS,y

)


1√(
1
j + 1

N−j + 1
NS,z

) exp

−
(
k(zB−zC)2

j·(N−1) + k(zA−zB)2

NS,z ·j + k(zA−zC)2

NS,z ·(N−j)

)
2kBT

(
1
j + 1

N−j + 1
NS,z

)
 (4.34)

The partition function is involved in the probability distribution of the slip-link,

P (j, rA, {NS} , NSC) =
Qj (rA, {NS} , NSC)∑N
j′=0Qj′ (rA, {NS} , NSC)

(4.35)

but factors involving NSC are independent of j and subsequently cancel out, so the probability

distribution does not change. This means that the model has not changed the static values of

Gγγ (0) and Gγγ (∞), whilst providing a new parameter to control the dynamics.



4.2 - Modifications to the slip-spring model: Slip-chain model 134

All simulations
N 16
H 10
D 10

Slip-chain
h 10.89

NS,x 8.48
NS,y 9.85
NS,z 4.20

Figure 4.8: Parameters for the simulations in this chapter.

4.2.1 Mean squared displacement, g1,mid (t)

As described previously, the slip-spring model allowed the slip-spring to move too fast in the

z-direction. In Fig.4.9 g1,mid (t) /t0.5 is examined for a range of NSC values (when NSC = 1 the

slip-chain model is identical to the non-isotropic slip-spring model). In Fig.4.9a it is observed

that movement of the middle bead decreases at intermediate time as NSC increases, and a value

of NSC = N = 16 has the best fit of the slip-chain model to the two-chain simulation. The other

three graphs in Fig.4.9 display g1,mid,γ (t) /t0.5 for γ = x, y, z. All components show signs of the

middle bead being slowed with increasing values of NSC . In the z-direction this reduction in

speed is greatest, as required. Once again, NSC = N = 16 is found to be the best parameter for

all components. It is reasonable to find that reproducing the effects of the upper chain from the

two-chain simulation, requires a slip-chain with a similar number of bonds as the chain.

4.2.2 Stress relaxation functions

Fig.4.10 considers Gzz (t) for a range of NSC values, and it is observed that NSC can be used to

increase the longest relaxation time. This longest relaxation time was explained in section 3.1.6,

where it was shown analytically that Gzz (t) has an additional relaxation not present in Gxx (t)

or Gyy (t). Eq.(3.23) and Eq.(3.19) indicate that the additional stress relaxation in Gzz (t) can

be separated from the stress relaxation present in all components. To examine this additional

relaxation time, we define the function Hγγ (t) such that

(Gγγ (t)−Gγγ (∞)) = (Gyy (t)−Gyy (∞)) + (Hγγ (t)−Hγγ (∞)) (4.36)
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(a) Total (b) x-direction

(c) y-direction (d) z-direction

Figure 4.9: g1,mid (t) /t0.5, mean squared displacement of middle bead divided by t0.5. Parameters
are given in the table Fig.4.8.
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Figure 4.10: Gzz (t) for the slip-chain model, for multiple NSC values. Parameters are given in
the table Fig.4.8.
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where Gyy (t)−Gyy (0) represents the relaxation that is common to all γ. In Fig.4.11, Gyy (t)−

Gyy (∞) and Hzz (t)−Hzz (∞) are compared, displaying that only Hzz (t) depends on NSC . It is

known that the relaxation time of a Rouse chain is dependent on the number of bonds within the

chain, τR = N2b2ξ
3π2kBT

, so it is not unreasonable to discover that the relaxation time of the slip-chain

model is dependent upon NSC in this longest relaxation. Fig.4.11 confirms that NSC = N = 16

provides the best reproduction of the relaxation time.

Fig.3.27 showed that the off-diagonal components Gxz (t) and Gyz (t) in the slip-spring model

do not have the same relaxation time as their counterparts in the two-chain simulation. These

properties are plot for the slip-chain model in Fig.4.12, where it is observed that NSC ≈ N = 16

fits the properties better than the slip-spring model. There are still slight differences observed,

but these are minor.

4.2.3 Stress cross-correlation functions

So far the slip-chain model has been developed to improve the dynamics of the lower chain as an

individual entity. One might assume the two-chain simulation can be thought of as the sum of

two slip-chain models, as illustrated by Fig.4.13. Whilst this is true for the energy, it is not true

for the stress correlations, because the stress correlation function for the entire model involves

cross-correlation, Eq.(3.13). A paper by Ramirez et. al. [35] demonstrated that the total stress

can still be considered as two parts as long as both parts include the cross-correlation function,

GTαβ (t) =
(
GAαβ (t) +GXαβ (t)

)
+
(
GXαβ (t) +GBαβ (t)

)
= GTAαβ (t) +GTBαβ (t) (4.37)

Therefore, the total stress correlation function can be split into the lower half, GTAαβ (t), and the

upper half, GTBαβ (t). However, the slip-spring model does not have two chains to cross-correlate
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(a) (Gyy (t)−Gyy (∞)) = (Gzz (t)−Gzz (∞))− (Hzz (t)−Hzz (∞))

(b) Hzz (t)−Hzz (∞)

Figure 4.11: The zz-component stress relaxation is expressed as the yy-component plus an addi-
tional relaxation function, Eq.(4.36). Parameters are given in the table Fig.4.8.
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(a) Gxz (t) (b) Gyz (t)

Figure 4.12: Relaxation of the off-diagonal components of the stress tensor. Parameters are given
in the table Fig.4.8.

Figure 4.13: The two chains of the two-chain simulation can be modelled by the sum of two
slip-spring models
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in order to calculate

GXαβ (t) =
〈
σAαβ (t)σBαβ (0)

〉
(4.38)

where σA (t) is the stress contribution of the lower chain and σB (t) is the stress of the upper

chain. Instead the slip-chain object must provide σBαβ (t). This poses a problem because the

slip-spring object is distinctly different from the upper chain by design. One major factor is that

the upper chain in the two-chain model contributes stress from bead fluctuations (Eq.(3.45)), but

the stress of the slip-spring object (Eq.(3.46)) lacks these fluctuations because it has no beads

to fluctuate. With the introduction of the slip-chain model, we have introduced new slip-chain

beads that fluctuate in space, which makes the average stress of the slip-chain

〈
σSCj,γγ

〉
=

kBT

V
(NSC − 1) +

kBT

V

1
NS,γ

(
1

NS,γ
+

1
j

+
1

N − j

)−1

+
k

V NS,γ

(
rγA −

〈
rγj

〉)2
(4.39)

which is more similar to that of the polymer chain. Hence, it is possible to control the stress

in the virtual slip-chain object by discrete increments, with the parameter NSC . In Fig.4.14,

NSC = 13 is shown to provide the closest match between the slip-chain’s
〈
σSCzz

〉
and the two-

chain’s
〈
σBzz
〉
. Note that the value is not N , as required to best match the delay in relaxation

already compared. This is due to differences between the slip-chain object and the upper chain

that it replaced. For example, the slip-chain is connected to the lower chain by a slip-link at the

end bead, whereas the upper chain is entangled at a varying position around the central beads.

Using cross-correlations to calculate GTAzz (t), plotted in Fig.4.15, it is confirmed that NSC = 16

is significantly worse than NSC = 13.

In Fig.4.16 it is observed that, while setting the parameter NSC = 13 has made GXzz (∞)

comparable between the models, GXxx (∞) and GXyy(∞) have not been fit well. This is because of

the differences between the slip-chain and the upper chain. For example, in the y-direction the
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Figure 4.14: Average stress of the slip-chain object,
〈
σSCzz

〉
, as a function of NSC . The horizontal

dashed line indicates the average stress of the upper chain from the two-chain simulation,
〈
σBzz
〉
.

NSC must be an integer and NSC = 13 shows the best match between the two-chain simulation
and the slip-chain object. Parameters are given in the table Fig.4.8.

Figure 4.15: GTAzz (t) for different values of NSC . Parameters are given in the table Fig.4.8.
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(a) Two-chain (b) Slip-chain NSC = 13

(c) Two-chain (d) Slip-chain NSC = 13

(e) Two-chain and slip-chain NSC = 13 (f) Slip-spring NSC = 1

Figure 4.16: Cross-correlation functions between upper and lower chains in the two-chain simu-
lation; and lower chain with the slip-chain object in the slip-chain model. Parameters are given
in the table Fig.4.8.
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(a) Two-chain (b) Slip-chain

(c) Two-chain (d) Slip-chain

Figure 4.17: Total stress auto-correlation functions, GTγγ (t) = GTAγγ (t) +GTBγγ (t), plotted as the
function Gγγ (t)−Gγγ (∞). Parameters are given in the table Fig.4.8.

two-chain model has symmetry between the lower and upper chain, such that GXxx (t) = GXyy (t),

whilst the slip-chain object has zero average stretch in the horizontal directions. The amplitude

of GXzz (t) also demonstrates a discrepancy between the two models due to the configurational

differences between the slip-chain and the upper chain. Comparing Fig.4.16e to Fig.4.16f it is

found that the slip-chain’s cross-correlation amplitude is not dependent on NSC , but is slightly

larger than the amplitude of the function observed for the two-chain model. However, despite

these discrepancies, the slip-chain model is a significant improvement over the slip-spring model.

The total stress auto-correlation function is the observable measured experimentally, rather



4.3 - Modifications to the slip-spring model: Bulky-slip-chain model 144

than the cross-correlation. In section 3.1.6 it was demonstrated that the relaxation of the cross-

correlation cancels out with the slowest relaxation of Gzz (t). Therefore, GTγγ (t) − GTγγ (∞) in

Fig.4.17a and Fig.4.17b is equal for all three components, γ = x, y, z. In Fig.4.17c for the two-

chain model the relaxation time of GTAγγ (t), as defined in Eq.(4.37), is shown to be equal for all

γ. However, Fig.4.17d displays that this is not the case for γ = z in the slip-chain model, which

appears to relax faster than any other component. In Fig.4.18 the final point of relaxation for

GTAzz (t) is displayed and it is found that the slip-spring simulation undershoots, unlike the two-

chain simulation. An undershoot indicates that the chain encountered a point where it became

more relaxed than it is when the system has minimal potential energy. Such a situation is able to

occur because the minimum level of stress in the lower chain does not correspond to the lowest

energy state of the entire system, but instead the stress of the lower chain is lowest when it is

least stretched in the z-direction. A further investigation of a three-arm-star model, equivalent to

having the slip-link fixed upon only one bead, observed no sign of an undershoot, which indicates

that the undershoot is caused by the slip mechanism. However, it is unknown how the slip-link

is causing this effect and why this undershoot is not also demonstrated by the two-chain model,

where the dynamics of the entanglement should be analogous to the dynamics of the slip-link.

4.2.4 Summary

The slip-chain model was designed to address the additional stress relaxation time observed in

Gzz (t), which was not correctly reproduced by the slip-spring model. The slip-chain replaced the

single spring in the slip-spring model with a Rouse chain. Such a simulation would take longer to

run, but adjusting the number of bonds in the slip-chain allows the delay in stress relaxation to be

controlled. This additional parameter also allowed the cross-correlation between chain stress and

slip-spring stress to be a better fit in the zz-direction, but all of the cross-correlation functions

were not matched exactly. The total stress, GTAzz (t), is a fit better with the slip-chain model,

than with the previous slip-spring model. The best reproduction of the two-chain entanglement

simulation in this study so far is found when fitting the parameter NSC , so that
〈
σSCzz

〉
≈
〈
σzz
〉
.
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(a) Two-chain

(b) Slip-chain NSC = 13

Figure 4.18: Total stress auto-correlation function of the lower section, GTAzz (t) = GAzz (t) +
GXzz (t). Parameters are given in the table Fig.4.8.
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(a) Two-chain entanglement (b) Slip-spring

Figure 4.19: Diagram of entanglement forces within the two-chain simulation and the slip-spring
modelling of the forces.

4.3 Bulky-slip-chain model

In Fig.3.28b it was observed that the slip-spring model fails to reproduce the bead positions in the

x-direction. The slip-spring applies a force to every bead pulling it towards an anchoring point

above the chain, while the entanglement modelled in the two-chain simulation repels the beads

from the entanglement position, as illustrated in Fig.4.19. This ultimately means that beads in

both models experience an equivalent force in the z-direction, but in the x-direction the slip-

spring is frequently acting in the wrong direction. A solution is to consider the entanglement as

consisting of two forces. First, a force that attracts a bead towards the centre of the second chain’s

anchors. Second, a repulsive force that repels the other beads away from the entanglement. The

bulky-slip-chain model mimics this by using the slip-chain to provide the entanglement’s pull, and

applying a new repulsive force between the two beads adjacent to the slip-link, as demonstrated

in Fig.4.20.

This section is a proof-of-concept study of the bulky-slip-chain model, with a force only

applied in the x-direction. The potential of this repulsive force is chosen to be

Ub = −kbb (xj+1 − xj−1) (4.40)
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with a spring-constant kb, such that the bulky forces are

Fb,j−1 =
(
− ∂Ub
∂xj−1

,− ∂Ub
∂yj−1

,− ∂Ub
∂zj−1

)
= (−kbb, 0, 0) (4.41)

Fb,j+1 =
(
− ∂Ub
∂xj+1

,− ∂Ub
∂yj+1

,− ∂Ub
∂zj+1

)
= (kbb, 0, 0) (4.42)

where r = (x, y, z). The equation of motion for this new model is therefore

ξ dri = k (ri+1 − 2ri + ri−1) dt+
√

2kBTξ dWi (t)

+δi,j k̂SC (sNSC−1 − rj) dt

−δi,j−1 kbbdt + δi,j+1 kbbdt (4.43)

Figure 4.20: Diagram of the bulky-slip-chain model
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Figure 4.21: Two-chain simulations used within this study.

a) BD: Linear bonds + rejection b) MD: FENE + LJ bonds + LJ repulsion

c) MC: FENE + LJ bonds + rejection d) MC: FENE + LJ bonds + LJ repulsion

e) BD: Linear bonds + LJ repulsion

4.3.1 Modified two-chain simulation

In section 3.1.7 different versions of the two-chain simulation were compared. It was demon-

strated that the two-chain simulation with rejection had some differences from the more realistic

simulation with repulsion between chains, but most of these effects could be corrected for by

a slight shift in parameters. However, one of the discrepancies that could not be corrected for

was an increased bead position variance in the x-direction (Fig.3.18). Since, the bulky-slip-chain

model is attempting to perfect the reproduction of the x-direction properties of the entanglement,

it is worth comparing it with an improved two-chain simulation that uses repulsion to prevent

the chains from crossing.

The diagram in Fig.4.21 depicts the simulations used in this study so far, along with their

equation of motion and force potentials. The two-chain simulation that has been used for the

majority of this study is simulation (a), and the new two-chain simulation we introduce now is
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(e). This new simulation is identical to the current two-chain simulation, except that a repulsive

Lennard-Jones force is applied between the opposite chains - within each chain the forces are

unchanged. The equation of motion for this model is given by

ξri = FB
i dt + FNB

i dt + FR
i dt (4.44)

with the forces from the previous two-chain model

FB
i dt = −k (ri+1 − 2ri + ri−1) dt (4.45)

FR
i dt =

√
2kBTξ dWi (t) (4.46)

and introduces the non-bonded Lennard-Jones force

FNB
i dt =

N∑
j=0

FLJ (uj − ri) (4.47)

FLJ (R) =
24ε
σ2

R
(( σ

R

)8
− 2

( σ
R

)14
)

(4.48)

where u represents beads in the opposite chain, labelled u0, . . . ,uN .

Adding the repulsion between chains has slightly modified most of the properties. Mainly

because the beads are stretched further in the z-direction and repelled further in the x-direction

(see section 3.1.7). This has not changed the ability of the slip-spring model to reproduce most of

the properties of the two-chain simulation, but merely requires the model parameters to be fit to

the new simulation values. However, an important difference between the two-chain simulations

is demonstrated in var (xi), where the old rejection simulation has a fairly rounded shape, but

the repulsion simulation observes a sharp peak for the centre beads, as can be seen later in

Fig.4.24a and Fig.4.24b. Much like the variances observed in the z-direction, this increase in

variance is caused by the application and removal of a force to beads. Previously this effect was

not as strong in the x-direction because the other chain is not felt unless a rejection takes place,
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All simulations
N 16
H 10
D 10

Slip-chain / Bulky-slip-chain
h 12.62

NS,x 2
NS,y 26
NS,z 5.12
NSC 13

Figure 4.22: Parameters for the simulations in this chapter. The slip-chain model is equivalent
to a bulky-slip-chain model with kb = 0.

but with the repulsive two-chain simulation, the effect of the other chain is felt more often.

4.3.2 Mean bead positions

Displayed on Fig.4.23 is the new bulky-slip-chain model, for a range of kb values, compared with

the new repulsive two-chain model (Fig.4.21e). It is observed that the bulky force creates the

repulsion away from the entanglement as required, such that
〈
xi
〉
is opposite to the previous

slip-chain model. Larger values of kb increase the amplitude of
〈
xi
〉
and it is discovered that

kb = 2.0 will provide the best match to the repulsive two-chain simulation. The parameter NS,x

can be used to provide the correct width of this plot, and NS,x = 1.0 is used in Fig.4.23 to provide

the width displayed. However, we note that this makes the slip-spring significantly stronger than

before.

4.3.3 Variance of bead positions

The variances of bead positions in the slip-chain model are a fairly good match to the values in the

rejection two-chain simulation (Fig.4.21a), as demonstrated in Fig.4.24a. However, it was noted

that there appears to be a narrowing peak around the middle bead, that was not captured by the

slip-chain model. With the new repulsive two-chain model (Fig.4.21e) the narrowing around the

middle bead forms a more distinct peak, as observed in Fig.4.24b. Since the repulsive two-chain

simulation is more realistic than the rejection simulation, it is important that the bulky-slip-

chain model reproduces the peak observed in the repulsive simulation, rather than the shape of
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Figure 4.23:
〈
xi
〉

=
〈
xi
〉
−
〈
xSingle
i

〉
, the average bead position in the x-direction relative to

the unentangled case. The bead number, i, is expressed as a fraction along the chain, s = i
N .

Parameters are given in the table Fig.4.22.

(a) (b)

Figure 4.24: Bead position variance in the x-direction. The bead number is expressed as a
fraction along the chain, s = i

N . Parameters are given in the table Fig.4.22.
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(a) (b)

Figure 4.25: Mean and variance of bond vectors in the x-direction. The bond number is expressed
as a fraction along the chain, s =

(
ibond + 1

2

)
/N . Parameters are given in the table Fig.4.22. The

two-chain simulation is shown as symbols, and the slip-chain and bulky-slip-chain simulations as
lines.

the rejection simulation, which it does for kb = 2.0. It is also observed that increasing kb has the

effect of increasing the variance of the central beads, which agrees with the idea that this peak

is caused by the application and removal of the repulsive force as the slip-link samples different

beads. This is the same mechanism that has been observed for var (zi) previously and discussed

in section 3.2.6.

4.3.4 Mean and variance of bond vectors

The mean bond vectors, plotted in Fig.4.25a, show that, analogous to the mean bead positions,

without the repulsive bulky force the slip-chain model compressed bonds in the centre of the chain

rather than stretching them. With the repulsive force, the bulky-slip-chain model stretches the

central bonds, which matches the two-chain simulation.

In the x-direction bond variance, the slip-chain model demonstrates a worrying discrepancy

(Fig.4.25b), where the slip-chain produces a nearly insignificant peak in variance around the

central bonds, whilst the central bonds of the two-chain simulation demonstrated a distinct

peak. The repulsive two-chain simulation makes this peak larger, but it is observed that the
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bulky-slip-chain model can create the peak required and is able to control the amplitude with kb,

where kb ≈ 2.0 provides the best results for comparison to the two-chain simulation, which is the

same value that has been found for all properties considered so far. However, it is observed that

the best value is slightly below 2.0 and the shape of the bulky-slip-chain line is slightly wider

than that of the two-chain simulation.

4.3.5 Stress relaxation functions

Gxx (t) is strongly affected by kb, more than by NS,x. It is observed in Fig.4.26a that kb = 2.07

provides the best match for Gxx (t), which is close to the parameter value required to match the

properties fitted already, but not exact due to the difference in width for var (Xi) observed above.

Since the energy is dependent on kb, the probability distribution of the slip-link and therefore

Gyy (t) and Gzz (t) also indicate a slight dependence on kb. However, this dependence is so weak

that it cannot be observed in Fig.4.26b and Fig.4.26c.

Gzz (t) is still a good fit to the new repulsive two-chain simulation with the correct values of

h and NS,z. However, whilst Gyy (t) could be fit to the rejection two-chain simulation results,

the repulsion two-chain model has a higher average stress that cannot be matched by adjusting

NS,y. Fig.4.27 demonstrates why this occurs. Previously, the non-isotropic slip-spring model

corrected for a lack of a peak bond variance, by increasing the variance of all bonds uniformly

(Fig.4.5b), but the repulsive two-chain simulation has a much larger peak variance than the

rejection simulation and cannot be corrected by reducing NS,y in this way. It is possible that

a bulky repulsive force suitably applied in the y-direction would provide the variance required,

in the same way it did for var (Xi). However, the bulky potential, U (Xij), defined in Eq.(4.40)

is dependent on the sign of Xij , which makes it only applicable for a large stretch between the

chain anchors, D = xN − x0, such that the direction in which the force should act is known. In

the y-direction there is no stretch, y0 = yN , which means that a bulky potential

Ub = −kbb ((xj+1 − xj−1) + (yj+1 − yj−1)) (4.49)
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(a)

(b) (c)

Figure 4.26: Stress auto-correlation functions. In (b) and (c) all kb values collapse onto the same
line. Parameters are given in the table Fig.4.22.
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Figure 4.27: Variance of bond vectors in the y-direction. The bond number is expressed as a
fraction along the chain, s =

(
ibond + 1

2

)
/N . Parameters are given in the table Fig.4.22. The

two-chain simulations are shown as symbols, and the slip-chain and bulky-slip-chain simulations
as lines.

would not be appropriate, since Yij < 0 has a lower energy than Yij > 0, which violates the

symmetry of the system. A future study of this model shall search for a more sophisticated

potential that may be applied to all Cartesian components.

4.3.6 Summary

The bulky-slip-chain model is a proof-of-concept model for correcting the x-direction properties of

the slip-spring model. The original slip-spring model attracted beads towards the entanglement

point, whilst the two-chain model repelled them in the x-direction. Using a simple constant force

repelling the two beads adjacent to the slip-link, the bulky-slip-chain model has been able to

reproduce the x-direction mean bead positions and bond vectors of the two-chain model, as well

as improve upon the variance of beads and bonds. In this bulky-slip-chain model, Gxx (t) and

Gzz (t) match the two-chain model, but Gyy (t) does not, because there is a lack of y-direction

variance of bonds. It is possible that, with a more advanced potential, the bulky force may be

applied to all directions. This could allow var (Yi) and Gyy (t) to be fit correctly, as was done in
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the x-direction, but the current potential used is not appropriate to be used in the y-direction.
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Chapter 5

Maximum likelihood estimation

During this study, parameters of the slip-spring models have been fit to the two-chain simulation

through comparison of specific properties. However, in doing so we have implemented a bias

towards the properties that are most interesting to this study. This is most clear in section

3.2.3, where the parameters chosen are clearly dependent on preference. Since chapter 3 was

most interested in properties in the z-direction, the parameters were chosen so that Gzz (t) was

best fit, rather than Gxx (t) and Gyy (t). Maximum likelihood estimation (MLE) is a statistical

tool that can be used for obtaining model parameters, given observations of a common set of

variables. In this study, the full set of observables shared by all models are the instantaneous

positions of all beads in the lower chain {ri} = (r1, . . . , rn−1).

5.1 Estimation of parameters

The probability of observing the nk independent observations, {ri}1 , {ri}2 , . . . {ri}nk , given a

slip-spring model with parameters θ is

P
(
{ri}1 , {ri}2 , . . . {ri}nk |θ

)
=

nk∏
k=1

P ({ri}k |θ) (5.1)
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P ({ri} |θ) is the probability distribution of bead positions {ri}, from a single observation, given

the model parameters θ. This can be obtained from the Boltzmann distribution, such that

P ({ri} |θ) =
1

Q (θ)
exp

(
−U ({ri} , θ)

kBT

)
(5.2)

where U ({ri} , θ) is the energy of the system for the observation {ri} and model parameters.

Q (θ) is the partition function found from the condition

ˆ
P ({ri} |θ) d3r1 . . . d3rN−1 = 1 (5.3)

The advantage that the slip-spring models have over some other polymer models, is that U ({ri}k , θ)

is known exactly.

The aim of MLE is to find the most probable set of parameters θ given the observations.

Hence,

θ = arg max
θ

(
P
(
{ri}1 , {ri}2 , . . . {ri}nk |θ

))
(5.4)

But, the actual probability values are of no consequence, so the logarithm of Eq.(5.1) divided by

the number of observations may be used to get the likelihood function

L
(
{ri}1 , {ri}2 , . . . {ri}nk , θ

)
=

1
nk

nk∑
k=1

ln (P ({ri}k |θ))

= − ln (Q (θ)) − 1
nk

nk∑
k=1

U ({ri}k , θ)
kBT

(5.5)

This function is sometimes easier to calculate. Using this, the best parameters for the model are

given by

θ = arg max
θ

(
L
(
{ri}1 , {ri}2 , . . . {ri}nk , θ

))
(5.6)
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5.2 Collection of observations, {ri}1 , {ri}2 , . . . {ri}nk

When collecting observations of bead positions, one must consider the frequency of observations.

When taken too frequently, observations show a dependence upon each other, which reduces the

effectiveness of each new observation, because information from the last observation is repeated.

Observations that are taken every τR are almost independent of each other, but have the disad-

vantage of requiring a longer simulation time to obtain the same number of observations. It is

important to balance both the frequency of observation and the number of observations that are

possible to be taken during the time allotted for the simulation, in order to use processor time

effectively. The time taken to gather observations is significantly longer than the time taken to

calculate MLE with the observations after the simulation; a simulation of the two-chain model

will take days to obtain the observations, whilst the parameter fitting afterwards will be on the

scale of tens of minutes. Hence, it is of interest to optimise the frequency of observations.

A short investigation was undertaken, the results of which are plotted in Fig.5.1. In this

investigation a measure of the error in the MLE calculation was constructed. The MLE calcula-

tion was run for a reasonably small number of observations, nk = 40, 80, ..., 1600, but repeated

100 times or more, and the standard deviations of the estimated values for the parameter NS

were taken as the error for each value of nk. This was done for data collected every τR and

every 1
10τR, which is plotted in Fig.5.1a as a function of 1√

nk
. It is observed that the results for

observations every τR approaches zero slightly faster than the data collected every 1
10τR, which

is an indication that the observations made in the second case are not completely independent.

In Fig.5.1b the error is plotted against 1√
t
, where t is the final simulation time. In this plot it

is observed that data collected every 1
10τR approaches zero faster than data collected every τR,

because 10 times as many observations are made in the same period of time, despite each one

being slightly less effective. However, this is only a sample of two observation frequencies and

it is anticipated that this trend will not continue. If observations are taken too frequently, the
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(a) Error in the NS parameter against 1√
nk

, where nk is the number
of observations used in the MLE calculation.

(b) Error in the NS parameter against 1√
t/τR

, where t is the final

simulation time.

Figure 5.1: Reduction of error in MLE with increasing numbers of observations and simulation
time.
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effectiveness of each observation will eventually become so much worse that the error will con-

verge slower as the frequency of observations is increased. In this study, observations are taken

every 1
10τR, with nk = 200 000 observations obtained from multiple simulations. It is useful to

note that, because the observations are independent, separate simulations can be used to obtain

the observations, allowing the time taken to scale with the number of computers available.

5.3 MLE for the slip-spring models

The likelihood function is now applied to the slip-spring model, where P ({ri} , rA, NS) is given

by Eq.(3.50). In Fig.5.2, the likelihood function (Eq.(5.5)) is plotted as a contour map over

the two parameters h and NS , where the slip-spring has anchor point rA = (0, 0, h) and spring

constant kS = k/NS . It is observed that there is a steep drop in likelihood when the slip-spring

becomes too strong and a similar drop when the slip-spring anchoring point is too close to the

chain. Between these drops there is a ridge of high likelihood. Further investigation, in Fig.5.3,

plots the most likely value of NS as a function of h, as well as the likelihood value associated with

these parameters. This indicates that small values of NS are very unlikely. This is a reasonable

conclusion to reach, since basic observation of the two-chain model does not indicate a static

point in the simulation box through which both chains slide. Instead the entanglement point

fluctuates through space. This is in direct contrast with the slip-link models of Hua-Schieber

and Doi-Takimoto discussed in section 1.3.3. In these models the slip-links are fixed in space,

which is equivalent to NS → 0.

In Fig.5.4 the analytical fitting of the slip-spring parameters, seen previously in Fig.3.25, is

compared to the MLE ridge seen in Fig.5.3. The MLE results closely follow those of Gzz (t),

which is not unexpected since to obtain
〈
zN/2

〉
, the slip-spring must provide sufficient force in the

z-direction. It is observed that the point where the MLE results intercept the best parameters

line for Gzz (t) occurs at the same point where the Gzz (t) best parameters line intercepts the

(Gzz (0)−Gzz (∞)) parameters line; this point is h = 10.89. However, the MLE ridge is not flat
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Figure 5.2: Contour map of likelihood values for the slip-spring model. Two-chain model param-
eters are N = 16, D = 10 and H = 10.

Figure 5.3: Most likely values of NS as a function of h, for the slip-spring model. Plotted on the
right axis is the likelihood value for these parameters. The maximum likelihood value occurs at
h = 11.9, as indicated by the dashed line. Two-chain model parameters are N = 16, D = 10 and
H = 10.
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Figure 5.4: Analytical fitting of slip-spring parameters from Fig.3.25 combined with the MLE
ridge from Fig.5.3. Lines for Gxx (t) and Gyy (t) do not cross the other lines within the displayed
parameter space and are omitted. Two-chain model parameters are N = 16, D = 10 and H = 10.

and the maximum value identified by MLE is h = 11.9. The reason for this can be explained

using Fig.3.25, where it is observed that Gxx (t) and Gyy (t) would be best matched with a larger

value of h ≈ 24. MLE has identified the parameters best for the model, which favours Gzz (t),

but has not completely ignored Gxx (t) and Gyy (t). Hence, the value found is slightly larger

than is best for Gzz (t).

The MLE parameter fitting was also applied to the non-isotropic model, the results for which

can be found in Fig.5.5. It is observed that the values for h and NS,z are in agreement with the

analytical fitting, whilst NS,x and NS,y are not. The difference in NS,x values is likely due to the

issues highlighted in Fig.3.28b, where the bead positions are known to be wrong, despite giving

the correct stress value. This caused a conflict with MLE, resulting in a different value from the

analytical fitting to Gxx (t). The difference found in NS,y is relatively small. Fig.4.4b shows that

in the y-direction the analytical fitting provided a bead position variance that was too large.

Hence, when fitting NS,y the MLE method selected a smaller value, resulting in a better fit of

var (yi), but worse Gyy (t). Once again, this fits the model to what is actually happening with
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Slip-spring model Best fit of stress moments MLE value
h 10.89 11.93
NS 4.20 4.95

Non-isotropic model Best fit of stress moments MLE value
h 10.89 10.91

NS,x 8.48 4.32
NS,y 9.85 7.32
NS,z 4.20 4.20

Figure 5.5: MLE parameters for the slip-spring model and the non-isotropic slip-spring model.
The best fit of stress moments, Gγγ (0) and Gγγ (∞) are found by comparing simulation results
of the two-chain model against analytical calculations of the slip-spring model. The two-chain
model parameters are N = 16, D = 10 and H = 10.

the beads, rather than fitting the property of most interest.

5.4 MLE for a multiple entanglement slip-spring model

MLE can also be applied to the multiple entanglement slip-spring model, for which we now

present the partition function. To construct this partition function, a number of equations from

section 3.2.2 are required. The partition function of a single Rouse chain constructed from n

beads with fixed ends at rA and rB is known from Eq.(3.36) as

Z (rA, rB, n) =
(

1
n

) 3
2
(

2kBTπ
k

) 3
2

(n−1)

exp

(
− k

2kBT
(rA − rB)2

n

)
(5.7)

The partition function for a slip-spring with spring-constant kS is similarly given by Eq.(3.37)

as

ZS (rA, rB, kS) = exp
(
− kS

2kBT
(rA − rB)2

)
(5.8)
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Figure 5.6: Diagram of the multiple slip-spring model

It is known from Eq.(5.9) that the combination of two of these chains, where the connecting

bead is no longer fixed, is

Z1 (rA, rC , nA, nC) =
ˆ

Z (rA, r, nA) Z (r, rC , nC) d3r (5.9)

Z2 (rA, rC , nA, kS) =
ˆ

Z (rA, r, nA) ZS (r, rC , kS) d3r (5.10)

Using the above equations, the partition function of the multiple entanglement slip-spring

model does not need to consider the individual N bonds and N+1 beads. Instead the system can

be broken down into M Rouse chains between M − 1 slip-link positions, as depicted in Fig.5.6.

In this section, the beads with slip-links attached are labelled r1 to rM−1, and the fixed beads

at the end of the chain are r0 and rM . The number of beads within a section of chain rm−1 to

rm is labelled as Nm, where m = 1, . . . ,M . In order to permit slip-links to occupy the same

bead, the number of slip-springs attached to bead m is labelled as Jm, and the total number of

slip-springs in the system is

NSlip−Springs =
M−1∑
m=1

Jm (5.11)
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The anchoring points of these slip-springs are labelled as am,j , where j = 1, . . . , Jm is the index of

each slip-spring attached to slip-link m. The spring-constants of each of these beads are labelled

as

km,j =
k

NS,m,j
(5.12)

where k is the spring constant for a bond in the Rouse chain, and the spring strength NS is

allowed to be different for each slip-spring.

The partition function of each Rouse chain is given by Z (rm−1, rm, Nm) and each slip-spring

as ZS (rm,am,j , km,j). To obtain the partition function for the entire system without the slip

mechanism, Qfixed, these chains are connected by Eq.(5.9) and Eq.(5.10). Hence,

Qfixed (r0, rM ,M, {Jm} , {Nm} , {am,j} , {km,j})

=
ˆ  M∏

m=1

Z (rm−1, rm, Nm)
M−1∏
m=1

Jm∏
j=1

ZS (rm,am,j , km,j)

 d3r1 . . . d3rM−1

(5.13)

This equation may be integrated in matrix notation using

Qfixed = λ exp (−αC)
ˆ

exp (−α (Aijrirj −Biri)) d3r1 . . . d3rM−1

= λ exp (−αC)
(

1
detA

(π
α

)M−1
) 3

2

exp
(α

4
BTA−1B

)
(5.14)

(as demonstrated in appendix B), where λ is given by the product of the prefactors from

Z (rm−1, rm, Nm) in Eq.(5.13), such that

λ =
M∏
m=1

((
1
Nm

) 3
2
(

2kBTπ
k

) 3
2

(Nm−1)
)

=

(
M−1∏
m=1

1
Nm

) 3
2 (2kBTπ

k

) 3
2

(N−M)

(5.15)
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(ZS (rm,am,j , km,j) has no prefactors). The components α, A, B, C are given by the expansion

of the terms inside the exponential: α is a scalar constant,

α =
1

2kBT
(5.16)

A is a symmetric (M − 1)× (M − 1) tri-diagonal matrix of scalars, where

Ai,i =
k

Ni
+

k

Ni+1
+

Ji∑
j=1

ki,j

Ai,i+1 = − k

Ni+1
(5.17)

B is a 1× (M − 1) matrix of position vectors,

B =



2k r0
N1

+ 2
∑J1

j=1 k1,j a1,j

2
∑J2

j=1 k2,j a2,j

2
∑J3

j=1 k3,j a3,j

...

2k rM
NM

+ 2
∑JM−1

j=1 kM−1,j aM−1,j


(5.18)

and C is a scalar,

C =
k r2

0

N1
+
k r2

M

NM
+
M−1∑
m=1

J∑
j=1

km,j a
2
m,j (5.19)

This partition function can be used with the MLE routine and Eq.(5.5) to estimate the set of

parameters {km,j} and {am,j} for a multiple slip-spring model with no slip mechanism, using

observations from a single chain within a MD polymer melt simulation.

In order to test the MLE fitting, it has been used to reproduce the parameters of a slip-spring

model with fixed slip-link indices (Fig.5.7a). There was a single spring-constant used for all the

slip-springs in this test, which was known by the MLE routine. Only the anchor positions had to

be fitted (which required 24-dimensional minimisation for the 8 slip-links used) and there were no
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(a) Before MLE

(b) After MLE

Figure 5.7: A slip-spring model with 8 entanglements was used to generate a collection of ob-
servations for the MLE function. The MLE function was then tasked with fitting a collection of
anchor positions (minimisation in 24-dimensional space). Regular-sized green spheres are slip-
spring anchors, while large black spheres are MLE estimated positions. The chain in the screen
shots is a snapshot of the bead positions at a single time step.
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approximate positions supplied to the fitting, so the method began with all anchor points at the

origin. It is observed in Fig.5.7b that, after MLE fitting, the estimated anchor points (large black

spheres) overlap with the real anchoring points from Fig.5.7a. The slip-springs connecting the

anchor points to the chain are also included on this image for both real and estimated anchoring

points, but due to the accuracy of the parameter estimation, these are very close or overlapping.

This is a model without the slip mechanism, such that M , {Nm} and {Jm} are constants.

In order to implement the slip mechanism, a summation over all possible slip-link positions is

required, similar to Eq.(3.49) for the single entanglement model. In this case it would involve a

sum of NNSlip−Spring partition functions (one for each combination of slip-link positions), which

would be a monumental task even for today’s computational abilities. The current challenge of

applying the MLE function to the multiple entanglement slip-spring model, is to simplify the

calculation of the partition function.

5.5 Summary

Using MLE, it is possible to find parameters for any model with known probability distribution,

as has been done for the slip-spring models. The MLE fitting uses the actual position of the

beads to find the best parameters, without a bias towards desired properties. This resulted

in some disagreement between analytical fitting and MLE fitting for the slip-spring models.

Since MLE fitting obtains the best parameters for the model, any disagreement with analytical

fitting is due to flaws in the model. This is not a bad thing and is useful for identifying such

flaws. For example, when comparing the non-isotropic slip-spring model parameter estimates,

it was observed that h, NS,z were estimated accurately, whilst NS,x disagreed significantly from

analytical fitting of Gxx (t). This highlighted the largest flaw in the model, which is known to be

the distribution of beads in the x-direction. Previous parameter fitting was able to make Gxx (t)

equal to that of the two-chain simulation, but did so only by ignoring the motion of the beads,

which obscured the flaw in the model. Hence, MLE fitting can be used, not only as a useful tool
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for finding parameters, but also as a tool for highlighting areas of the model that require further

improvement.
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Chapter 6

Discussion and future directions

6.1 Dependence on system stretch

It has been demonstrated that the slip-spring model represents a single entanglement in great

detail and was found to be an accurate model for stress relaxation, as was calculated from fluctua-

tions using fluctuation-dissipation theorem. Deformation and dependence on system stretch has

not been thoroughly investigated, although a limited study was done using the non-isotropic

slip-spring model in section 4.1.3; through parameter finding to fit 〈σγγ〉 and
〈
σ2
γγ

〉
it was

demonstrated that the anchor position should deform affinely as the system height, H, is in-

creased. Also, for a moderately strong entanglement, it was found that the spring strength of

(a) Adjacent (b) Hooked

Figure 6.1: Diagrams of a weak entanglement (adjacent) and of a strong entanglement (hooked),
as originally discussed in section 1.1. The difference between them is the curvature of the chains,
controlled in the two-chain model by the system stretch, H.
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the slip-spring can be kept constant during this deformation. However, it was found that if the

entanglement becomes weak, the spring-strength must change non-isotropically.

When the entanglement becomes weaker, the spring strengths also become weaker, eventually

becoming infinitely weak for unentangled chains. However, it was noticed that the entanglement

strength in the x- and y-directions become weak much sooner, than in the z-direction. This is

because the system becomes akin to two adjacent chains as depicted in Fig.6.1a as opposed to

the hooked case as shown in Fig.6.1b. When two chains are adjacent to each other, there is still a

topological constraint between the chains, which requires a slip-spring force away from the other

chain (z-direction), but there is little constraint perpendicular to this (x- and y-directions), which

requires the slip-spring to be much weaker in these directions. The original isotropic slip-spring

model would not have been able to reproduce these weak entanglement effects accurately; it is

only the non-isotropic slip-spring model that is able to model this effect correctly.

6.2 Slip-spring model for the case of NS → 0, where slip-links are

fixed in space

A recent paper by Schieber and Horio [36] stated that “the plateau modulus for the elastic slip-

link model [slip-spring model] was unchanged in the rigid limit. The presence of elasticity in the

slip-links would lead only to a change in the shape of the relaxation modulus, but not its height”.

This contradicts the concept of the slip-spring model and suggests that the slip-links should be

fixed in space, which in our model corresponds to NS → 0. Our study used maximum likelihood

estimation to predict the best pair of parameters for the slip-spring model (section 5.3) and

observed that NS → 0 is extremely unlikely. Such a finding is corroborated by consideration

of the two-chain simulation, since no fixed point in space - through which both chains must

always pass - is observed; instead the point of the entanglement has its own motion as two chains

fluctuate.

A slip-spring model deformed affinely, should find that the slip-spring anchors are deformed
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affinely as confirmed in section 4.1.3, but the slip-links attached to the end of the slip-springs

are deformed sub-affinely [22]. (I.e. the z-position of the slip-link does not undergo the trans-

formation z → λz when the deformation H → λH is applied to the system.) As such the height

of the plateau modulus should be dependent on the strength of the slip-springs. If the model

was defined with the slip-spring anchors at the average position of the slip-link, then an affine

deformation of slip-links may be observed, but this is not how the slip-spring model should be

applied; the slip-springs should pull the chain away from its unentangled mean path as described

in section 1.3.4 and depicted in Fig.1.12.

6.3 Dual-slip-chain model

The slip-chain model delayed the relaxation of σzz (t), but also allowed the cross-correlation

of stress, GXzz (t), to be better described. However, the cross-correlation function is calculated

between the lower chain and the slip-spring virtual object, which is not ideal. It is only because

the slip-chain modification provides a mechanism to add extra stress into the slip-spring object,

that GXγγ (t) can be adjusted to fit the two-chain model. Yet, this mechanism cannot fit all stress

components simultaneously and, unlike the non-isotropic spring-constant, the number of beads

in the slip-chain cannot be different in each direction.

A modification can be suggested for future work that improves upon the slip-chain model even

further and should allow all GXγγ (t) to be fit. This improvement would introduce a second slip-

chain to the model, where both slip-chains share the same slip-link, but have different anchoring

points. The anchoring positions of this model would be defined as

rA1 = ( 1
2hx , 1

2hy , hz )

rA2 = ( −1
2hx , −1

2hy , hz )
(6.1)

to add stretch in the x- and y-directions, allowing the stretch term of
〈
σSlip−chain
γγ

〉
to be ad-

justed, in order to fit all the cross-correlation components, where
〈
σSlip−chain
γγ

〉
is calculated from
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Eq.(4.39). Further improvement could also be added to such a model by allowing beads to be

exchanged between the two slip-chains in a slip style mechanism such that

NSC = NSC,1 (t) +NSC,2 (t) (6.2)

This would make the dual-slip-chain model more similar to the two-chain model than any other

slip-spring model considered so far. However, one must be conscious when suggesting additional

modifications to a model to make sure that it does not become too complex. A common criticism

of the tube model is that too many modifications to the model have made it cumbersome to use.

6.4 Computational costs of model modifications and the slip-

chain model

In the slip-chain modification (section 4.2) extra beads are added to the slip-spring to slow the

middle bead motion, allowing the relaxation of σzz (t) to be delayed to fit to the two-chain

model. However, one must stress that such a solution comes at a cost. The slip-chain increased

the number of beads in the simulation by NSC ∼ N . This means that there are approximately

twice as many beads to move in each simulation step and results in the computation of each

time step taking twice as long (excluding time taken for calculating observed properties). The

non-isotropic slip-spring model does not result in a significant increase in computational costs,

but has its own challenges involved in parameter fitting for the multiple entanglement case.

6.5 Expansion to the case of melts

The aim of this study was to investigate a single entanglement in the simplest model of a polymer

network, in order to identify how well the slip-spring model reproduces the static and dynamic

properties. When studying the simplest case, flaws in the model were identified and addressed,

with the aim of eventually applying the knowledge gained to the full multiple slip-spring model of
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Figure 6.2: Sample of entanglements observed in a polymer melt MD simulation [3]
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a polymer melt. A recent study by Likhtman, Ponmurugan and Cao [3] has developed a technique

of identifying entanglements in MD simulations by persistent contacts and the linking number

between two chains. As such, it is now possible to get a clear picture of the entanglements within

a polymer melt, which may be used to justify the model of the simplest entanglement used. A

sample of these images are collated in Fig.6.2. In these images the chains are mean paths - the

beads’ positions averaged over a period of time, which smooths the chain without completely

averaging out the temporary entanglements. Fig.6.2 is of interest to this study, because it allows

the types of entanglement to be identified: sub-figure (a) is a clear example of the style of

entanglement studied with the two-chain model, whilst in (h) the chains are completely looped

around each other, and in (j) the two chains are twisted around each other. Importantly, the two-

chain model style of entanglement dominates. Hence, the modifications developed in comparison

to the two-chain model, should be beneficial to the multiple entanglement slip-spring model.

When applying the modifications, the slip-chain model adds the extra parameter for the num-

ber of bonds in each slip-chain, which may be fit in the multiple entanglement model based upon

the average number of chain bonds between slip-links. The non-isotropic model also adds new pa-

rameters, namely the scalar spring strength became a set of strengths: {NS} = NS,x, NS,y, NS,z.

These are more difficult to fit in the multiple entanglement slip-spring model, because each en-

tanglement has a different orientation. Maximum likelihood estimation may be used to fit {NS}

for each entanglement, as described in section 5.4. The non-isotropic model may also be imple-

mented by defining a spring-constant dependent on the current orientation of the chain bonds

adjacent to the slip-link. This would require only three spring strengths to be defined for the

entire chain and applied to each entanglement relative to the current orientation, such that NS,x

is always applied in the direction that the chain is stretched by the outermost bonds and NS,z

is always applied in the primary direction that the entanglement distorts the chain. Further re-

search is required on applying the non-isotropic slip-spring model to entanglements with variable

orientation.
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6.6 Entanglements within a solvent and the bulky-slip-chain model

The bulky-slip-chain model (section 4.3) repels the beads adjacent to the slip-link, in order to

reproduce a repulsion observed in the two-chain model. However, it can be argued that this

repulsion might not be required if the chain was surrounded by a solvent or polymer melt.

Within such a system, it is possible that the interaction with the surrounding solvent would

apply a pressure opposing the repulsion of the chain beads away from the entanglement point

in all directions. In order to test whether or not this is the case, one should run a two-chain

simulation with an explicit solvent. If the net effect is that beads are attracted towards the slip-

link, then the non-isotropic slip-spring model is likely to be capable of reproducing the average

bead positions.
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Chapter 7

Conclusions

A simple model of a single polymer entanglement in a network has been considered (Fig.7.1),

similar to the case studied analytically by Graessley and Pearson [2]. By investigating this

simple case, this study examined the ability of the slip-spring model to reproduce the static and

dynamic properties of an entanglement, which will potentially lead to a better understanding

of the multiple entanglement case and suggested possible improvements to the model. In this

study, the following properties were considered:

• Stress auto-correlation function (statics): The original slip-spring model is able to

reproduce Gγγ (0) and Gγγ (∞) of the entanglement, where γ = x, y, z, but not simultane-

ously with one common set of parameters. To address this, the slip-spring spring-constant

was replaced by a tensor, creating the non-isotropic slip-spring model.

• Stress auto-correlation function and mean squared displacement of the middle

bead (dynamics): The slip-spring model reproduced the dynamics of Gxx (t) and Gyy (t)

accurately, but Gzz (t) was observed to relax faster for the slip-spring model than the two-

chain simulation (the orientation of the entanglement is given by Fig.7.1). Furthermore,

g1,mid (t) indicated that the middle bead in the slip-spring model moved too fast in the

z-direction at intermediate time. Therefore, the slip-chain model added extra beads along
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(a) Two-chain (b) Slip-spring

Figure 7.1: Main models used within this study

the slip-spring object to slow the bead motion, which improved the fit of g1,mid (t) and

delayed the relaxation of Gzz (t).

• Stress cross-correlation function: The slip-spring model is poor at reproducing cross-

correlations, since the virtual slip-spring object is significantly different from the polymer

chain that it replaced. The slip-chain model provided a parameter suited for approximately

addressing the discrepancy, allowing a better fit of GXzz (t), but not GXxx (t) and GXyy (t).

• Average bead positions: The slip-spring model reproduces the average bead positions

in the z-direction accurately. This is not a trivial task, since the mean path of the chain

is sensitive to the way the entanglement slides along the chain, producing a curved shape.

With the best parameter set forGzz (t), the slip mechanism of the slip-spring model samples

the chain with the same distribution as the two-chain model’s entanglement, allowing an

accurate reproduction of the z-direction average bead positions.

• Variance of beads and bond vectors: It was demonstrated that the z-direction variance

increases for those beads and bonds due to the entanglement. This is because the repeated
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application and removal of an entanglement to a section of chain causes the variance of

that section to increase. Since the slip mechanism is equivalent to the entanglement sliding

along the chain, the slip-spring model was able to reproduce the same effect. However,

the x- and y-direction variance of bond vectors do not have a peak in variance around the

middle bonds created by the slip-spring, despite this effect being observed in the two-chain

simulation. It is suspected that this is due to an increased repulsion by the entanglement

model that is not fully reproduced by the slip-spring. The bulky-slip-chain model was able

to address this discrepancy.

The slip-spring model does a reasonable job of reproducing the statics and dynamics of an

entanglement, but nevertheless this can be improved upon by implementing the non-isotropic,

slip-chain and bulky modifications. However, these modifications increase the complexity and the

number of unknown parameters in the model. Thus, a tool like maximum likelihood estimation

(MLE) is helpful for finding the model parameters. Furthermore, MLE is recommended for any

model with known bead probability distribution, since it fits the model parameters based on

observed bead motion from a multi-chain simulation, rather than fitting a desired property and

is therefore free of bias.
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Appendix A

Stress correlation functions for a simple

four-arm-star model

To explain the relation between the cross-correlation and auto-correlations of a two-chain model

in Fig.3.13, a simple four-arm-star model is considered, where each arm is a single linear spring,

with spring constant, k = 3kBT
b2

. The end of each arm is fixed in space and joined at a central

bead, r = (x, y, z), as illustrated in Fig.A.1. The equation of motion for the central bead is

dr =
k

ξ
((A1 − r) + (A2 − r) + (B1 − r) + (B2 − r)) dt+

√
2kBT
ξ

dW (t)

=
k

ξ
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H
2

− 4r

 dt+

√
2kBT
ξ

dW (t)

= −4k
ξ

r dt+

√
2kBT
ξ

dW (t) (A.1)

This is an Ornstein-Uhlenbeck process,

dr = −1
τ
r dt+

√
2dc dW (t) (A.2)
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Figure A.1: Diagram of the single bead four-arm-star model

To map the model onto this process, the diffusion constant dc = kBT
ξ and the characteristic time

τ = ξ
4k . Because the model is an Ornstein-Uhlenbeck process the first two moments at a time,

t, after a deformation are known to be

〈r (t)〉 = 〈r〉 e−
t
τ (A.3)

〈r (t) · r (s)〉 = var (r) e−
t+s
τ + dcτ

(
e
s−t
τ − e−

s+t
τ

)
(A.4)〈

r2 (t)
〉

= dcτ + (var (r)− dcτ) e−
2t
τ (A.5)

In the four-arm-star model the average position of the central bead is known to be the centre

of the model, which defined such that 〈r〉 = 0. The variance of the central bead position at
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equilibrium can therefore be calculated from Eq.(A.4),

var (r) =
〈
r2
〉
−
〈
r
〉2

= lim
t→∞

〈
r2 (t)

〉
= dcτ (A.6)

With these equations it is possible to find the stress correlation functions,

GAγγ (t) =
V

kBT

〈
σAγγ (t)σAγγ (0)

〉
(A.7)

GBγγ (t) =
V

kBT

〈
σBγγ (t)σBγγ (0)

〉
(A.8)

GXγγ (t) =
V

kBT

〈
σAγγ (t)σBγγ (0)

〉
(A.9)

GTγγ (t) =
V

kBT

〈
σTγγ (t)σTγγ (0)

〉
(A.10)

where σA is the stress contribution from the bonds connecting A1 to r and r to A2

σAγγ (t) =
k

V
(rγ (t)−Aγ1)2 +

k

V
(rγ (t)−Aγ2)2 (A.11)

σB the stress contribution from the upper bonds connecting B1, r and B2

σBγγ (t) =
k

V
(rγ (t)−Bγ

1 )2 +
k

V
(rγ (t)−Bγ

2 )2 (A.12)

and

σT = σA + σB (A.13)

is the total stress in the system.

The xx-component, γ = x

Substituting Eq.(A.11) into Eq.(A.7) one obtains
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kBT V

k2
GAxx (t) =

V 2

k2

〈
σAxx (t)σAxx (0)

〉
=

〈((
x (t)− D

2

)2

+
(
x (t) +

D

2

)2
)((

x (0)− D

2

)2

+
(
x (0) +

D

2

)2
)〉

= 4
〈
x2 (t)x2 (0)

〉
+ 2D2

〈
x2
〉

+
1
4
D4 (A.14)

where Eq.(A.6) gives 〈
x2
〉

= dcτ =
1
4
kBT

k
(A.15)

and using Wick’s theorem the first term of Eq.(A.14) is expanded to obtain

〈
x2 (t)x2 (0)

〉
= 2 〈x (t)x (0)〉2 +

〈
x2
〉2 (A.16)

where we know from Eq.(A.4) that

〈x (t)x (0)〉 = dcτe
− t
τ + dcτ

(
e−

t
τ − e−

t
τ

)
= dcτe

− t
τ

=
1
4
kBT

k
e−

t
τ (A.17)

Hence,

GAxx (t) =
1
2
kBT

V
e−

2t
τ +

1
4
kBT

V
+

1
2
k

V
D2 +

1
4

k2

kBT V
D4 (A.18)

Similarly we can find

GBxx (t) =
1
2
kBT

V
e−

2t
τ +

1
4
kBT

V
(A.19)
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Using Eq.(A.11) and Eq.(A.12) in Eq.(A.9), the cross correlation is

kBT V

k2
GXxx (t) =

V 2

k2

〈
σAxx (t)σBxx (0)

〉
=

〈((
x (t)− D

2

)2

+
(
x (t) +

D

2

)2
)(

2x2 (0)
)〉

= 4
〈
x2 (t)x2 (0)

〉
+D2

〈
x2
〉

= 8 〈x (t)x (0)〉2 + 4
〈
x2
〉2 +D2

〈
x2
〉

GXxx (t) =
1
2
kBT

V
e−

2t
τ +

1
4
kBT

V
+

1
4
k

V
D2 (A.20)

Using the above correlation functions the correlation function for the entire system is

GTxx (t) = GAxx (t) + 2GXxx +GBxx (t)

= 2
kBT

V
e−

2t
τ +

kBT

V
+
k

V
D2 +

1
4

k2

kBT V
D4 (A.21)

The longest relaxation time of these correlation functions, τ ′xx, is given by the term e
− t
τ ′xx , such

that

τ ′xx =
τ

2
(A.22)

The yy-component, γ = y

By symmetry the yy-component will relax in exactly the same way as the xx-component, except

there will be a rotation about the z-axis such that GAyy (t) = GBxx (t) and GByy (t) = GAxx (t).
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The zz-component, γ = z

First we write the auto-correlation for the lower chain, using Eq.(A.11) and Eq.(A.7), as before,

kBT V

k2
GAzz (t) =

V 2

k2

〈
σAzz (t)σAzz (0)

〉
=

〈(
2
(
z (t)− H

2

)2
)(

2
(
z (0)− H

2

)2
)〉

= 4
〈
z2 (t) z2 (0)

〉
− 4H

〈
z2 (t) z (0)

〉
− 4H

〈
z (t) z2 (0)

〉
+4H2 〈z (t) z (0)〉+ 2H2

〈
z2
〉
− 2H3 〈z〉+

1
4
H4 (A.23)

Compared to Eq.(A.14) there is a subtle change in that both chains are now anchored at the same

position A1,z = A2,z = −H
2 . As a consequence, we now have third moment terms

〈
z2 (t) z (0)

〉
,

which are known to be zero by symmetry. Hence,

kBT V

k2
GAzz (t) = 4

〈
z2 (t) z2 (0)

〉
+ 4H2 〈z (t) z (0)〉+ 2H2

〈
z2
〉

+
1
4
H4 (A.24)

This is equivalent to Eq.(A.14) apart from the new second term, 4H2 〈z (t) z (0)〉. Using Eq.(A.17)

this term may be written as

4H2 〈z (t) z (0)〉 = H2kBT

k
e−

t
τ (A.25)

to get the auto-correlation function

GAzz (t) =
1
2
kBT

V
e−

2t
τ +

k

V
H2e−

t
τ +

1
4
kBT

V
+

1
2
k

V
H2 +

1
4

k2

kBT V
H4 (A.26)

This new term gives the new longest relaxation time, τ ′A,zz = τ , which means that the stress

relaxes twice as slow in the z-axis than in the x- and y-axes. The auto-correlation function of

the upper chain can be seen to be equal to the auto-correlation function of the lower chain by

symmetry, GBzz (t) = GAzz (t). However, the cross-correlation shows something interesting. Using
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Eq.(A.11), Eq.(A.12) and Eq.(A.9) the function is

kBT V

k2
GXzz (t) =

V 2

k

〈
σAzz (t)σBzz (0)

〉
=

〈(
2
(
z (t)− H

2

)2
)(

2
(
z (0) +

H

2

)2
)〉

= 4
〈
z2 (t) z2 (0)

〉
− 4H2 〈z (t) z (0)〉+ 2H2

〈
z2
〉

+
1
4
H4 (A.27)

which is identical to Eq.(A.24), except the sign on the second term has changed. Hence,

GXzz (t) =
1
2
kBT

V
e−

2t
τ − k

V
H2e−

t
τ +

1
4
kBT

V
+

1
2
k

V
H2 +

1
4

k2

kBT V
H4 (A.28)

When the total stress auto-correlation is calculated

GTzz (t) = 2GAzz (t) + 2GXzz

= 2
kBT

V
e−

2t
τ +

kBT

V
+ 2

k

V
H2 +

k2

kBT V
H4 (A.29)

the longest relaxation time found in the auto- and cross-correlations has been exactly cancelled

out. Hence the relaxation time of the total stress in all directions is τ
2 , faster than the auto- and

cross-correlations in the z-direction which has a relaxation time of τ . The is analogous to the

effect observed in Fig.3.13 for the more complicated two-chain model.
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Appendix B

List of Gaussian integrals

Gaussian integrals of the form
´

exp
(
−ax2

)
dx

For a scalar x: ˆ ∞
−∞

exp
(
−ax2

)
dx =

(π
a

) 1
2 (B.1)

For a vector, r, of dimension d:

ˆ
exp

(
−ar2

)
ddr =

(π
a

) d
2 (B.2)

Generalised for integrating by n vectors, ddr1 . . . ddrn, using matrix notation:

ˆ
exp

(
−Aijrirj

)
ddr1 . . . ddrn =

(
πn

detA

) d
2

(B.3)

where A is a n× n matrix of scalars.
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Gaussian integrals of the form
´

exp
(
−α
[
ax2 − bx

])
dx

For a scalar x: ˆ ∞
−∞

exp
(
−α

[
ax2 − bx

])
dx =

( π
αa

) 1
2 exp

(
αb2

4a

)
(B.4)

For vectors, r and b, of dimension d:

ˆ
exp

(
−α

[
ar2 − b · r

])
ddr =

( π
αa

) d
2 exp

(
αb2

4a

)
(B.5)

Matrix notation for integrating by ddr1 . . . ddrn−1:

ˆ
exp (−α (Aijrirj −Biri + C)) ddr1 . . . ddrn

=
(

1
detA

(π
α

)n) d
2

exp
(α

4
BTA−1B − αC

)
(B.6)

where A is a n × n matrix of scalars, B is a n × 1 vector of vectors with dimension d, and C a

constant. In the above we use Einstein notation, such that when an index variable appears more

than once in the same term a summation over all possible values is implied. Therefore

Bixi =
n∑
i=1

Bixi (B.7)

and

Aijxixj =
n∑
i=1

n∑
j=1

Aijxixj (B.8)

Example: Partition function of a Rouse chain with fixed ends

Eq.(B.6) can be used to obtain Eq.(3.36), the partition function for a Rouse chain with fixed end

beads, r0 and rn. The integral has the form

Q =
ˆ

exp

(
− 3

2b2

n∑
i=1

(ri − ri−1)2

)
ddr1 . . . ddrn−1
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After expanding the terms within the exponential it can be seen that α, A, B and C are

α =
3

2b2

A =



2 −1 0

−1 2 −1
. . .

. . . . . . −1

0 −1 2


; detA = n

B =



r0

0
...

0

rn



C = r2
0 + r2

n

Hence

Q =
ˆ

exp

(
− 3

2b2

n∑
i=1

(ri − ri−1)2

)
ddr1 . . . ddrn−1

=

(
1
n

(
2πb2

3

)n−1
) d

2

exp

(
− 3

2b2
(rn − r0)2

n

)

Gaussian integrals of the form
´
x exp

(
−α
[
ax2 − bx

])
dx

For a scalar x:

ˆ ∞
−∞

x exp
(
−α

[
ax2 − bx

])
dx =

b

2a

( π
αa

) 1
2 exp

(
αb2

4a

)
(B.9)
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For vectors, r and b, of dimension d:

ˆ
r exp

(
−α

[
ar2 − b · r

])
ddr =

b
2a

( π
αa

) d
2 exp

(
αb2

4a

)
(B.10)

Gaussian integrals of the form
´
x2 exp

(
−ax2

)
dx

For a scalar x: ˆ ∞
−∞

x2 exp
(
−ax2

)
dx =

1
2a

(π
a

) 1
2 (B.11)

For a vector, r, of dimension d:

ˆ
r2 exp

(
−ar2

)
ddr =

d

2a

(π
a

) d
2 (B.12)

For the special case of a single component rγ squared and multiplied by a Gaussian involving

the vector r: ˆ
(rγ)2 exp

(
−ar2

)
ddr =

1
2a

(π
a

) d
2 (B.13)

These integrals and those below do not have an appropriate equation for Gaussians of the

form exp
(
−ax2 + bx

)
, but this can be overcome by using a change of variables that allows the

Gaussian to be written as exp
(
−ax̃2 + C

)
. This change of variables is

x̃ = x− b

2a
(B.14)

C = − b
2

4a
(B.15)

such that

ax2 − bx = a

(
x− b

2a

)2

− b2

4a

= ax̃2 + C (B.16)
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Since dx̃
dx = 1, the differential for x̃ is simply

dx̃ = dx (B.17)

With this change of variables it is possible to use Eq.(B.1) to obtain Eq.(B.4).

Gaussian integrals of the general form
´
xp exp

(
−ax2

)
dx

For a scalar x:

ˆ ∞
−∞

xp exp
(
−ax2

)
dx =


(2q−1)!!

(2a)q
(
π
a

) 1
2 ; p = 2q

0 ; p = 2q + 1
(B.18)

where p, q are integers and !! is the double factorial defined as

(2q − 1)!! =
q∏
i=1

(2i− 1) (B.19)

For the special case of (rγ)p multiplied by a Gaussian involving the vector r:

ˆ
(rγ)p e

(
−ar2

)
ddr =


(2q−1)!!

(2a)q
(
π
a

) d
2 ; p = 2q

0 ; p = 2q + 1
(B.20)
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Gaussian integral over n elements, multiplied by 2w elements

For the situation where the Gaussian exp
(
−αAijxixj

)
is multiplied by 2w individual elements,

xk, indexed k1, k2, . . . k2w, and integrated over all xi the following integral is useful:

ˆ
xk1xk2 . . . xk2w exp (−Aijxixj) dx1 . . . dxn

=
(

1
detA

(π
α

)n) 1
2 1

2w w!α

∑
ψ∈S2w

(
A−1

)
kψ(1)kψ(2)

(
A−1

)
kψ(3)kψ(4)

. . .
(
A−1

)
kψ(2w−1)kψ(2w)

(B.21)

where ψ is a permutation of {1, ..., 2w} and
∑

ψ∈S2w
is the summation over all pair combinations

of {1, ..., 2w}, producing w copies of A−1 [37]. This result is analogous to Wick’s theorem, in

which, for w = 2,

∑
ψ∈S2w

〈
xψ(1)xψ(2)

〉 〈
xψ(3)xψ(4)

〉
= 〈x1x2〉 〈x3x4〉+ 〈x1x3〉 〈x2x4〉+ 〈x1x4〉 〈x2x3〉

Example: Calculating 〈∆xa∆xb〉 for a multiple slip-spring chain model for M−1

entanglements

Consider a slip-spring model with M − 1 slip-springs with strength NS and slip-link positions

ri. There are M chain segments in this system with Ni beads in each segment, as illustrated

in Fig.B.1. In this model slip-links are fixed to beads and do not slip, such that the Cartesian

components are decoupled and may be considered individually. The deviation from the average

bead position in the x-direction is given by ∆xi = xi − xi, such that the energy of the system

may be written as

U =
k

2
Aij∆xi∆xj + kBT C
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Figure B.1: Diagram of the slip-spring model

where

k =
3kBT
b2

A is a symmetric (M − 1)× (M − 1) tri-diagonal matrix of scalars,

Ai,i =
1
Ni

+
1

Ni+1
+

1
NS

Ai,i+1 = − 1
Ni+1

and C is a constant. Therefore, 〈∆xa∆xb〉 may be written as

〈∆xa∆xb〉 =
´

∆xa∆xb exp (−αAij∆xi∆xj + C) d∆x1 d∆x2 . . . d∆xM−1´
exp (−αAij∆xi∆xj + C) d∆x1 d∆x2 . . . d∆xM−1

=
I1

I2

where

α =
k

2kBT
=

3
2b2
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I1 is integrated first, using Eq.(B.21), where ∆xk1 = ∆xa, ∆xk2 = ∆xb and w = 1, such that

∑
ψ∈S2N

(
A−1

)
kψ(1)kψ(2)

= A−1
ab

Thus,

I1 =
ˆ

∆xa∆xb exp (−αAij∆xi∆xj + C) d∆x1 d∆x2 . . . d∆xM−1

=
(

1
detA

(π
α

)M−1
) 1

2

exp (C)
1

2α
A−1
ab

I2 may be similarly integrated using Eq.(B.6),

I2 =
ˆ

exp (−αAij∆xi∆xj + C) d∆x1 d∆x2 . . . d∆xM−1

=
(

1
detA

(π
α

)M−1
) 1

2

exp (C)

Substituting back into 〈∆xa∆xb〉 = I1
I2

it is found that

〈∆xa∆xb〉 =
1

2α
A−1
ab =

1
3
b2A−1

ab

Hence, 〈
∆rαa∆rβb

〉
=

1
3
b2A−1

ab δαβ
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