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Abstract

Entanglements contribute to fascinating properties of polymers such as viscoelas-

ticity and memory. The most successful model for treating entangled polymers is

the reptation/tube model. Most of the theoretical approaches are based on this

model. Nevertheless, some basic assumptions of the tube theory lack a microscopic

foundation. In this project, we are interested to find out if the tube theory can ade-

quately describe our simulation model, whether the tube theory has to be modified

accordingly, and how to find the parameters of the tube. The model is a Brownian

dynamics simulation of a single chain in an array of obstacles, a grid. The intrachain

interactions are described by the Rouse model and a non-crossability algorithm is

used to prevent the chain from crossing the grid, thereby preserving the topological

constraints. This allows us to study the well entangled systems as compared to melt

simulations. The predictor-corrector algorithm is implemented in the computer sim-

ulation. The simulation preserves the Gaussian statistics of the chains at all time

and length scales. The tube parameters in this model, a, b1D and ζ1D are determined

by several methods and compared with the assumptions of the tube theory.

xxiii



Chapter 1

Introduction

1.1 Introduction

A polymer is a molecule that is composed of repeated structural units, called

monomers, which are connected by covalent chemical bonds. A molecule can con-

sist of hundreds and millions of monomers. Polyethylene, for example, is a long

polymer chain which is formed by synthesizing up to 105 ethylene (CH2 = CH2)

monomers [1].

In manufacturing polymeric materials and commodities, the polymer melts are

subjected to flow. A polymer chain can be considered as a chain of springs and in

such a flow it can stretch, thereby giving rise to the elastic behaviour of the polymeric

fluid. When the polymer molecules overlap sufficiently and are long enough, they

get entangled with each other [2]. This constrains their movement and the material

leading to viscoelastic behaviour. The characteristic of the polymer dynamics such

as relaxation time and the stress of the material are also affected by type and size

of the polymers. Many experiments, computer simulations and theories are trying

to predict these properties.

1
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One of the purposes of computer simulations is that it can bridge the gap between

experimental and theoretical investigations. It also provides a direct connection be-

tween a microscopic model and the observation of experimental quantities [3]. In

addition, with the current development of computer technology, computer simula-

tions can simulate longer chains and time scales. In this project, we use a computer

simulation of a polymer model and study the predictions of the existing theories of

polymer melts.

1.2 Background

Numerous experiments were conducted to study various static and dynamic prop-

erties of polymer chains [4–8]. However, up to now no experiment is able to study

directly the microscopic origin of the effects occurring at macroscale [3]. For this

reason, theories and computer simulations can be used to understand the polymer

properties.

The viscoelastic properties of polymers are unusual and difficult to model. Some

properties arise because of topological interactions that exist between long polymer

chains. These interactions are caused by the fact that chains cannot cross each other,

but are entangled instead. The successful mathematical description for entanglement

is the tube model developed by Edwards. De Gennes introduced ‘reptation’, the

motion of a chain within the confining tube [9–12]. The original tube theory is

simple and has managed to predict some experimental observables, however, it is

not quantitatively valid for mildly entangled polymers [13]. The tube theory was

updated by introducing a tube’s contour length fluctuations (CLF) and constraint

release (CR). These mechanisms require more microscopic foundations of the tube

which are lacking in the original theory [14]. The characteristics of the tube model
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include:

1. The tube model is mean-field approach, coarse grained [15].

2. The tube theory assumes that, at long time and for very entangled chains, the

chain inside the tube moves in one dimension along the tube contour [13].

3. There is no detailed information about the chain inside the tube.

4. Some numerical tube parameters are assumed to be unity, for example the

ratio of the tube diameter to the tube Kuhn length [14].

5. The tube diameter and the number of beads per tube segment are constant

with time.

In addition, the questions regarding the tube theory relevant to this study are:

1. Currently, different experiments or simulations lead to different values of tube

diameter [13,15]. How to obtain the universal tube parameters?

2. How to map the 3D motion of the chain onto its 1D motion inside the tube?

3. Are the chain parameters inside the tube (such as the effective one dimen-

sional friction (ζ1D) and the chain statistical segment length (b1D)) equal to

the unentangled chain?

The microscopic properties of the tube theory can be examined by using a com-

puter simulation. The models can either use coarse graining of the chains and

maintain information about the entanglements or use a one-chain model. In this

study, we focus only on the one-chain model.

In the tube theory, the tube length is defined as the primitive path. However,

this definition is unclear (see section 3.2, for discussion). The method for generating
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primitive path follows essentially the idea by Edwards in identifying the shortest

path for each chain without violating the topological constraints. Some well known

algorithms have been developed to determine the primitive path. These include

‘annealing’ method, lattice Monte Carlo with adapting annealing method, shortest

multiple disconnected path approach (Z-code) [16–20] and the contour reduction

topological analysis approach (CReTA) [20–22]. However, these methods are com-

plex and sometimes their results are inconsistent.

In order to represent the entanglement, we require uncrossability algorithm to

prevent the chain from crossing the constraint. Briels and collaborators have pro-

posed the TWENTANGLEMENT algorithm whereby the bond is allowed to bend

between the bonded beads [23,24]. This approach introduces a lot of computational

overhead [22]. Larson and co-workers use a different approach, by computing the

distance between two bonds and imposing a short-range repulsive force as a function

of this distance [25–27]. A smaller time step is required to prevent the beads from

being pushed far away from the reminder of the chains when they become too close

to each other [25]. In this project, we use a simple optimised geometry algorithm

and implement a step potential which we hope will speed-up the simulation and

allow us to study longer chains.

1.3 Motivation

In order to study microscopic properties of the tube theory, we have developed a

simple computer simulation. The simulation is simple because it is based on a single

chain model, with the Rouse chain inside stationary constraints. The constraints

have zero volume and are modelled by a regular array of cubic lattice obstacles (in

three-dimensional case). It would be interesting to study the details of the theory
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which are addressed in section 1.2 by using this simple model.

The advantage of this model is that only one extra parameter is introduced,

namely the grid spacing, g. The contour length fluctuations (CLF) and longitudinal

relaxation due to redistribution of beads inside the tube are presented naturally in

this model. More complex polymer architectures such as branched polymers are

easily incorporated and no extra parameters are needed to be introduced.

1.4 Aim and objectives

The aim of this project is to find clear evidence of the static and dynamic properties

of the tube from a more microscopic origin by means of computer simulations. Once

established, we want to find out if the tube theory can adequately describe our

simulation model, whether it needs to be modified to describe our model and how

to find the parameters of the tube.

The detailed objectives of this project are:

1. To develop a computer simulation of entangled polymer chains by using a

single chain model and implement an uncrossability check.

2. To obtain the tube parameters by using static and dynamic analysis of the

linear chain and to establish a mapping between the tube and the grid model.

3. To observe the contributions of the tube parameters towards the static and

dynamic properties of the entangled chain.

1.5 Polymer chain

At a molecular scale, a polymer chain is formed by connecting monomers with each

other via a chemical bond, usually of covalent nature. The bond orientations are
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different for each monomer unit. However, if the chain is divided into N subchains

of a uniform λ number of monomers with λ >> 1, then vectors ri connecting two

consecutive junction points become independent from each other (see Fig. 1.1 ) [28,

29]. The junction points are presented as massless beads of {Ri} = (R0, . . .RN+1)

R
0

r
0 R

1

r
1

r
N

R
N+1

Figure 1.1: A large circle represents a massless bead and the connecting bond vectors
are presented by the black arrows

and the bond vectors are {ri} = (r0, . . . rN). The average end-to-end vector of the

chain 〈Re〉 is given by [1, Eq. 5.5]:

〈Re〉 = 〈RN −R0〉 (1.1a)

=
N−1∑
i=0

〈ri〉 (1.1b)
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The 〈Re〉 in Eq. 1.1b is zero because of the isotropic properties of the chain. Thus

the chain size can be estimated by:

R̂e =
〈
R2
e

〉1/2
(1.2)

where 〈R2
e〉 =

∑N−1
i,j=0 〈ri · rj〉 and 〈ri · rj〉 = 〈|r2

i |〉 δij where δij = 1 if i = j and

δij = 0 otherwise, thus 〈
R2
e

〉
= N

〈∣∣r2
i

∣∣〉 (1.3)

The average root-mean square (RMS) bond vector b3D is defined as:

b3D =
〈∣∣r2

i

∣∣〉1/2
(1.4)

thus

R̂e =
√
Nb3D (1.5)

The ensemble average 〈. . .〉, is averaging either many different chains or over all

the possible conformations of one chain. Eq. 1.5 shows that the size of the chain

depends on the b3D. The definition of Kuhn length is [1, 30]

lk =
〈R2

e〉
Lc

(1.6)

where Lc is the contour length of the chain. If we assume that Lc = Nb3D, then

lk = b3D.

1.6 The Gaussian chain

On a global level, a polymer chain can be modelled by a Gaussian chain. If λ (in

section 1.5) is large enough, then the distance between two consecutive beads is
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Gaussian distributed and the λ monomers can be presented by a harmonic spring

with spring constant, k = 3kBT
b23D

with kB is Boltzmann’s constant and T is the

absolute temperature. The prefactor of the constant is chosen so that the average

square of the bond length is
〈
(Ri+1 −Ri)

2〉 = b2
3D, when in thermal equilibrium.

One of the main properties of the Gaussian chain is that the average square distance

for any two beads i and j along the chain can be expressed as [31, Eq.1.31]:

〈
(Ri −Rj)

2〉 = |i− j| b2
3D (1.7)

from Eq. 1.7, we introduce a function [32]

d(s) =
1

N − s+ 1

N−s∑
i=0

〈
(Ri+s −Ri)

2〉
s

(1.8)

where s is the chemical distance, |i− j|. For the Gaussian chain, function d(s) is

constant and equals to b2
3D.

Although the Gaussian chain is easy to solve analytically as compared to other

models, it only describes the statics of polymer chains. This project also involves

the dynamics of polymer chains, thus another suitable model is required.

1.7 The Rouse model

The dynamics of the polymer chain can be modelled by the Rouse model [33]. The

properties of the model are [9, 34]:

1. A Gaussian chain, where the bonded force on bead Ri is the total forces from

its neighbours in the same chain. This local potential is assuming that the

excluded volume interactions are screened out.

2. Brownian motion. When a bead moves in a solvent, it will feel friction forces
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and random forces due to collisions with the solvent molecules. These forces

contribute to the random dynamics of the beads similar to the Brownian mo-

tion. In a solvent, hydrodynamic interactions are also present but in a melt of

chains they are mostly screened out [35,36].

The stochastic differential equations (SDE) for each bead along the Rouse chain is

ζ3D
dR0

dt
=

3kBT

b2
3D

(R1 −R0) + f0(t), if i = 0 (1.9a)

ζ3D
dRi

dt
=

3kBT

b2
3D

(Ri−1 − 2Ri + Ri+1) + fi(t), if 0 < i < N (1.9b)

ζ3D
dRN

dt
=

3kBT

b2
3D

(RN−1 −RN) + fN(t), if i = N (1.9c)

The relation between the random forces and the friction coefficient is given by the

fluctuation-dissipation theorem which leads to the expression:

〈fi,α(t)fj,β(t′)〉 = 2kBTζ3Dδijδαβδ(t− t′) (1.10)

With α, β being the Cartesian coordinates. We also neglected any inertial effects.

These equations (eqs. 1.9a, 1.9b and 1.9c) can be analytically solved by using normal

modes.

1.7.1 Normal modes

The normal modes describe the relative segment motion of the Rouse chain and are

associated with the internal motion of the chain. The Cartesian coordinate of the

beads can be transformed into a normal coordinate by

Xp =
1

N + 1

N∑
i=0

Ricos

(
πp
(
i+ 1

2

)
N + 1

,

)
p = 0, 1, .... (1.11)
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The backward transformation of Eq. 1.11 is given as:

Ri = X0 + 2
N∑
p=1

Xpcos

(
πp(i+ 1/2)

N + 1

)
(1.12)

Eqs. 1.9a, 1.9b and 1.9c in normal modes is

ζp3D

∂Xp

∂t
= −kpXp + fp (1.13)

With 〈fp,α(t)fq,β(t′)〉 = 2kBTζ
p
3Dδpqδαβδ(t − t′), where ζp3D = 2(N + 1)ζ3D and kp =

24kBT (N+1)

b23D
sin2

(
πp

2(N+1)

)
. The dynamics of the mode is independent from each other

with its relaxation time τp. The zeroth mode, p = 0 represent the motion of the

centre of mass of the chain. It will be treated differently, where ζ0
3D = (N + 1)ζ3D

and k0 = 0. The τp for other modes are given as:

τp =
ζp3D

kp
=
ζ3Db

2
3D

12kBT
sin−2

(
πp

2(N + 1)

)
p = 1, 2, . . . N (1.14)

The longest relaxation time, occurring at p = 1, is known as the Rouse time,

a characteristic time when the polymer molecule diffuses a distance of order of its

size [30]:

τR ≡ τ1 =
ζ3Db

2
3D

12kBT
sin−2

(
π

2(N + 1)

)
(1.15a)

≈ ζ3Db
2
3DN

2

3π2kBT
, for N >> 1 (1.15b)

The shortest relaxation time

τN =
ζ3Db

2
3D

12kBT
sin−2

(
πN

2(N + 1)

)
≈ ζ3Db

2
3D

12kBT
(1.16)
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which approximately 2.5 times larger than

τ0 =
ζ3Db

2
3D

3π2kBT
(1.17)

In the following sections, all the measurable properties will be given in general

terms of normal mode amplitudes and will be evaluated explicitly for the Rouse

model. In the following calculations and computer simulations, we used unit of

dimension where kBT = 1, b3D = 1 and ζ3D = 1.

1.8 Mean square displacement of beads

A useful quantity traditionally measured in molecular dynamics is the monomer

mean square displacement, g1(t). In this project, we studied the mean squared dis-

placement of the middle bead, g1,mid(t), because its analytical treatment is quite sim-

ple compared to other beads along the chain and it reduces the chain ends effects of

the bead’s motion [37]. The g1,mid(t) is defined as g1,mid(t) ≡
〈
(RN/2(t)−RN/2(0))2

〉
and its analytical expression is [9]

g1,mid =
6kBT

(N + 1) ζ3D
t+

b23D

N + 1

N∑
p=2,even

sin−2

(
πp

2 (N + 1)

)[
1− exp

(
− t

τp

)]
(1.18)

In the limit of a very long chain, N >> 1, g1,mid(t) shows three regimes. The

first regime occurs at very short times, t < τN and depends on microscopic details

of its potentials. The second and third regimes are universal and depend on the τR

and the chain length which is shown in Fig. 1.2 for N = 16, 32, 64 and 128:
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0 . 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0
1

1 0

�R ( N 4 )�R ( N 3 )�R ( N 2 )

 N 1 = 1 6
 N 2 = 3 2
 N 3 = 6 4
 N 4 = 1 2 8

g 1,m
id(t)/

t1/2

t

�R ( N 1 )

Figure 1.2: The g1,mid(t) for the Rouse model that is normalised by t1/2, shows
a plateau region as predicted by expression 1.19. The plots are for N =
16, 32, 64, 128.

g1,mid(t) ≈



6kBT
ζ3D

t, t ≤ τN

2b2
3D

√
3t
π
, τN ≤ t ≤ τR

6kBT
(N+1)ζ3D

t, t ≥ τR

(1.19)

1.9 Stress relaxation

1.9.1 Macroscopic viscosity and stress tensor

The viscoelastic behaviour of a polymer melt can be examined in two different ways;

the linear or the non-linear regime [38]. In this study, we limit our study to the linear

regime only. For small enough deformation (infinitesimal deformation) or sufficiently

slow rate (infinitesimal rate of deformation) the response of the subsystem is linear

and causal. Linear means the response to two arbitrary perturbations are linear

superpositions of the individual responses (Boltzmann’s superposition principle) and
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the causal means the current response (the observable at actual time t) is only

influenced by the shear in the past t′, t′ ≤ t.

In a stepwise shear experiment, the polymer is initially at rest and at time t = 0

is given a small strain γ0. The ratio of the shear stress σ and the γ0 is given by the

stress relaxation G(t) as follows:

G(t) =
σ(t)

γ0

(1.20)

Another experiment is by using a small sinusoidal deformations with the angular

frequency, ω which measures the steady state response of the material. The mea-

sured properties are the dynamic storage G′(ω) and the loss modulus G′′(ω). Their

relationship with G(t) are [39]

G′(ω) = ω

∫ ∞
0

G(t)sin(ωt)dt (1.21)

G′′(ω) = ω

∫ ∞
0

G(t)cos(ωt)dt (1.22)

1.9.2 Maxwell model

The Maxwell model is a mechanical model for viscoelastic materials. In this model,

a transient deformation γ(t) applied to a material is distributed between the defor-

mation of the elastic γe(t) and viscous elements γv(t):

γ(t) = γe(t) + γv(t) (1.23)

In the Maxwell model, G(t) in the shear experiment has a simple exponential decay

of

G(t) = G0exp

(
− t
τ

)
(1.24)
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with τ the relaxation time of the viscoelastic liquid. The G(t = 0), denoted by G0 is

known as the instantaneous modulus. In practice, a material can often be described

by sum of individual Maxwell modes [2]:

G(t) =
m∑
i

Giexp

(
− t

τi

)
(1.25)

where Gi and τi are the amplitude and the relaxation time of the mode number i

where m is the maximum number of Maxwell modes.

1.9.3 Microscopic expressions for the viscosity and stress

tensor

The stress tensor σαβ of the molecular model is defined as [9, Eq. 3.134]:

σαβ = − 1

V

N∑
i=0

〈
Rα
i F

β
i

〉
(1.26)

where Fi is the total force acting on bead i and V is the volume in which the σ is

calculated and the Greek indices denote their Cartesian components.

In this project, we do not apply any deformation and the G(t) is determined

by using the fluctuation-dissipation theorem. The fluctuations that occur naturally

in the Rouse model can be used to evaluate the stress relaxation. The fluctuation-

dissipation theorem relates the shear relaxation to a time correlation of the stress

tensor [24,35]:

G(t) =
V

kBT
〈σxy(t+ τ)σxy(τ)〉 (1.27)
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1.9.4 Calculation for the Rouse model

Referring to definition of the stress tensor Eq. 1.26 and the normal modes Eq. 1.12,

we obtained:

σαβ =
3kBT

V b2
3D

N−1∑
i=0

(
Rα
i+1(t)−Rα

i (t)
)(

Rβ
i+1(t)−Rβ

i (t)
)

(1.28a)

=
24(N + 1)kBT

V b2
3D

N∑
p=1

Xα
p (t)Xβ

p (t)sin2

(
πp

2(N + 1)

)
(1.28b)

Upon substituting this stress tensor into Eq.1.27, G(t) is as follows:

G(t) =
kBTNc

V

N∑
p=1

N∑
q=1

Cpq(t) (1.29)

with

Cpq(t) =

〈
Xx
p (t)Xy

p (t)Xx
q (0)Xy

q (0)
〉〈

X2
p

〉 〈
X2
q

〉 (1.30)

Here Nc is the number of independent chains in the system. This equation can be

simplified as:

G(t) =
kBTc

N + 1

N∑
p=1

exp

(
−2t

τp

)
(1.31)

with c is the number of monomers per unit volume, c = NNc

V
. Eq. 1.31 indicate

three regimes:

G̃(t) ≈


1− 12kBT

ζ3Db
2
3D
t, t ≤ τN√

ζ3Db
2
3D

24πkBT
1
t
, τN ≤ t ≤ τR

1
N

exp
(
− 2t
τR

)
, t ≥ τR

(1.32)

where G̃(t) = G(t)
kBTcb

and cb = NNc/V is the number of density of bonds.

The first and second regimes are independent from the chain length. Fig. 1.3(a)

shows the G(t) for the Rouse model with various chain lengths. The second and
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Figure 1.3: The stress relaxation, G(t) for the Rouse model withN = 16, 32, 64, 128
are shown in Fig. 1.3(a) and the scaling of G′(ω) and G′′(ω) are in Fig. 1.3(b).

third regimes, as predicted by Eq. 1.32, are clearly visible. The first regime occurs

in a very short time scale thus a smaller time step is required to observe this region.

Fig. 1.3(b) shows G′(ω) and G′′(ω) as predicted by the Rouse model.

1.10 The tube model

The tube model for a single rubber strand with crosslinks located at its ends was

introduced by Edwards [40]. In a rubber, the strands cannot cross each other and

will form topological constraints. These constraints confine a test strand in a tube-

like region if the strands are long enough. The diameter of the tube is independent

of the length of the strand and is determined by its local conditions.

De Gennes implemented the tube model for uncross-linked polymer melts by

introducing the dynamics of the tube, called ‘reptation’ [11, 12]. At times longer

than the equilibration, time of the chain inside the tube τe, one does not need to

distinguish between the tube and the chain. The stress relaxation of the chain and

other quantities are computed from the tube evolution equations.
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Doi and Edwards introduced the ‘primitive path’, the shortest path connecting

the chain’s ends with the same topology as its tube [9]. The physical meaning of

this path is that at an earlier time, the chain’s centre of mass do not move and the

chains are wiggling around the primitive path and later, the conformation of the

path changes as the chain moves with their ends outside of the original tube and

new tube segments are created.

The correct definition of the tube length is still unknown and in this project we

will use two definitions which are introduced in section 3.2. First, is the tube axis

and second is the primitive path. An alternative definition of the tube length is the

‘time averaged density of a chain’ [41]. However the difficulties with this definition

are that the density pattern changes with the chain motion and there are some cases

where more than one maximum exists in the cross-sectional density profile of the

chain [41].

1.10.1 Definition of the tube model

The tube model assumes that all chains in the melt are frozen except a test chain.

The test chain is viewed as being located in a sea of obstacles (referring to the frozen

other chains), as shown in Fig. 1.4.

We can map the tube into an equivalent freely jointed chain with Nk bonds of

length lk each. The mapping works by equating the mean square (MS) end-to-end

distance, 〈R2
e〉 = Nkl

2
k and contour length L = Nklk.

The MS end-to-end distance of the primitive chain is assumed to be equal to the

MS end-to-end distance of the chain, Nb2
3D. If we know the contour length of the
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Figure 1.4: The Rouse chain and the obstacles, representing the other chains

primitive chain, L, then

La = Nb2
3D (1.33)

L = Za (1.34)

where Z is the tube Kuhn segments and a is the tube Kuhn length. Thus,

a =
Nb2

3D

L
(1.35)

Z =
L

a
=
Nb2

3D

a2
(1.36)

The primitive path can be viewed as a chain consisting of ‘blobs’ with size a.

Each blob contains Ne monomers and behaves as an ideal polymer coil because

we assume that the excluded volume interactions are completely screened out in

polymer melts. From Eq. 1.36, Ne is defined as:

Ne =
N

Z
=
N2b2

3D

L2
=

a2

b2
3D

(1.37)
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1.10.2 Pure reptation

The original tube model assumes [20,31]:

1. The local fluctuations of the primitive path at the chain ends (contour length

fluctuations, CLF effects) are neglected [9].

2. The tube is fixed and there is no constraint release, CR. It only moves via rep-

tation, where the tube segments diffuse in curvilinear one dimensional motion

along the tube except for the tube ends which randomly move.

3. The friction of the beads of the chain inside the tube, ζ1D is equal with the

unentangled Rouse chain, ζ1D = ζ3D. However, some detailed studies are

required to validate this assumption.

Some elements have been added to the original tube model [9] such as CR and

CLF. In real polymer melts, the lifetime of an obstacle is finite and leads to some

constraint release. The CR is especially effective for binary blends such as when

mixing long chains with short chains [42]. In a complete description for the polymer

melts, CR should be taken into account. However, this is beyond the scope of the

present project as our simulations are based on fixed obstacles for the modeling of

polymer melts.

1.10.3 Tube segment occupation function

The tube segment occupation function, µ(t) is the fraction of the original tube

that lives longer than time t and at the disengagement time, τ 0
d , the original tube

is completely forgoten and a new tube for the chain is created. The analytical
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expression of µ(t) for pure reptation is [9, Eq.6.16]

µ(t) =
∑

p=1,odd

8

p2π2
exp

(
−p

2t

τ 0
d

)
(1.38)

where τ 0
d is the disengagement time without CLF:

τ 0
d =

ζ3DN
3b4

3D

π2kBTa2
(1.39)

In the case without CR, the tube theory predicts the Φ(t) = µ(t) where Φ(t)

is the chains end-to-end relaxation function [43]. The expression for the Φ(t) is

available in [9, Eq.4.35] with Φ(t) = 〈Re(t)Re(0)〉
〈R2

e〉
where Re(t) is the end-to-end vector

of the chain.

If the tube is deformed, the tube segments are randomly oriented. The orienta-

tion contributes to the stress. By means of reptation, when the chain diffuses out of

the original tube segment, the segment is deleted. The newly created segments after

the deformation has random orientations. The initial deformation is thus forgotten

at this stage, where the G(t) is proportional to the µ(t) [9, 44].

G(t) = G0
Nµ(t), t >> τe (1.40)

with the entanglement time, τe is defined as

τe =
a4ζ3D

3π2b2
3DkBT

(1.41)

The stress relaxation G(t) for the entangled melts consists of two regimes:

1. t < τe, at this short time scale, G(t) behaves like the free Rouse chain that

scales with t−1/2 as in Eq. 1.32 and the limit time is τe.
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Figure 1.5: A schematic plot of G(t) for different chain lengths as measured in
entangled polymer chains.

2. t > τe, this regime is based on Eqs. 1.40 and 1.38

The tube theory only predicts the second regime. The schematic plot of the time

behaviour of the G(t) as measured for different chain length is shown in Fig. 1.5.

1.10.4 Segmental diffusion

The one dimensional mean square displacement of the bead along the tube contour,

gs(t) is defined as gs(t) ≡ 〈∆s2〉 with ∆s = s(t) − s(0) where s, (s = 0, · · · , L) is

the bead coordinate along the tube contour which is measured from a certain fixed

point inside the tube (see Fig. 1.6). Assuming s is a continous function, then in the

limit of N >> 1, ∆s shows two regimes with the characteristic time of τR,1D:

gs(t) =


2kBTb1D
ζ1D

√
tζ1D

3πkBT
, t ≤ τR,1D

2kBT
Nζ1D

t, t ≥ τR,1D

(1.42)
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where τR,1D =
ζ1Db

2
1DN

2

3π2kBT
. The gs(t) will be further discussed in section 4.4.

s n ( t + ∆t )

T u b e  c o n t o u r  t = 0

T u b e  c o n t o u r  a t  t = t + ∆t

s n ( 0 )

∆s ( t )

Figure 1.6: Motion of bead n along the primitive path

1.10.5 Bead diffusion in the tube

The MSD of a bead of an entangled chain consists of 4 regimes, (see Fig. 1.7). Each

regime is delimited by its characteristic time as follows [9, 11]:

 

1 / 2
1 / 4

1 / 2

1

l o g ( t )

log
(g 1(t))

�e �R �d

Figure 1.7: The MSD of the tube segments consist of several regimes which is
determined by its characteristic time.

1. The first regime, t ≤ τe

At very short times, the beads move like in a Rouse chain in free space. This
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is because the beads do not feel the constraints yet. When a bead moves a

distance of the tube diameter ‘a’, the dynamics of the bead is restricted by

the presence of the constraints. This occurs at time, τe which is independent

of the chain length N , see Eq. 1.41 [45].

2. Second regime, τe < t < τR

The MSD of the beads scales with t1/4 with the assumption that the primitive

path and the chain as a whole do not move [45]. The MSD of the bead is

g1,mid(t) ∼ a
√
gs(t) (1.43)

where gs is Eq. 1.42. We will show that the expression 1.43 needs a prefactor,

which we calculate in section 4.4.1.

3. Third regime, τR < t < τd

The dynamics of the beads can be described as synchronised one dimensional

motion of the chain and the tube contour length. The g1,mid(t) is still described

by Eq.1.43 with gs given in Eq. 1.42 for t > τR.

4. Fourth regime, t > τd

At this regime, the tube segments are totally renewed. The dynamics of the

beads are dominated by the tube reptation, thus it gives [9]:

g1,mid(t) ≈ kBTa
2

N2ζ3Db2
3D

t (1.44)

From the definition of τR and τd, we can see that they are separated only by the

number of entanglement 3Z. This indicates that this region is clearly visible only

for very long chains.
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1.10.6 Contour length fluctuations

Let us denote the average length of the tube by L̂ = 〈L〉 where L is the instanta-

neous contour length of the tube. The contour length is assumed to be Gaussian

distributed. It can be considered as being under the influence of a quadratic poten-

tial [30, 46]:

U(L̂) = ν
kBT

Nb2
1D

(
L− L̂

)2

(1.45)

with ν = 3
2
. The probability of a chain with length N beads being confined in a tube

of length L with its average L̂ and variance ∆L̂2 can be approximated by Gaussian

function. The approximation at the the region of L ≈ L̂ [41, 47–49] is

P (L,N) =

(
1

2π∆L̂2

)1/2

exp

(
−U(L̂)

kBT

)
(1.46)

Thus, the average fluctuations of the tube length is

∆L̂ ≡
〈

∆L̂2
〉1/2

=

(
Nb2

1D

3

)1/2

(1.47)

Apart from N , the expression for ∆L̂ also depends on the local parameter b1D,

which is the chain statistical segment length inside the tube. Hence, alternatively

b1D can be defined as:

b1D =

√
3

N
∆L̂2 (1.48)

where b1D is related to spring constant for the one-dimensional Rouse chain inside

the tube k1D via k1D = 3kBT
b21D

. We mark b1D with the subscript 1D to stress that b1D

might be different from the free Rouse chain parameter in three dimensions, while

in [9] there is no distinction between b3D and b1D.

In limit of length scale larger than step size of the tube, the conformations of
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the tube are assumed to be Gaussian where for any two tube vertices, Vi and Vj

with |i− j| >> 1, we expect:

P (Vi −Vj) =

(
3

2π|i− j|a2

)3/2

exp

(
−3 (Vi −Vj)

2

2|i− j|a2

)
(1.49)

thus we obtain 〈
(V(s)−V(s′))

2
〉

= a2 |s− s′| (1.50)

where s is the separation between the cells.

In this project, Eq. 1.50 is observed by averaging the internal distance between

vertices, i and j as a funtion of chemical distance |i− j| with the following function:

dt(s) =
1

Z − s+ 1

Z−s∑
i=0

〈
(Vi+s −Vi)

2〉
s

(1.51)

where the average is calculated over ensemble and time.

Statistics of the tube contour length is assumed to be Gaussian. However, a new

tube segment is created when the chain moves out and an old segment is deleted if

the chain retracts into the tube. If we assume that the tube is a random walk on a

regular d-dimensional lattice, then the chain ends have (zd− 1) directions to choose

from zd possible path which increases the tube’s contour length then there is an

imbalance in the change of the contour length. On a larger scale, the conformations

of the tube contour segments are represented by a non-folding back random walk

statistics in a lattice [41]. The MS end-to-end vector of the non-folding back chain

is given by: 〈
R2
e

〉
= Zsl2

zd
zd − 2

(1.52)

where l is the step length of the contour and Zs is number of tube segments.

The contour length fluctuations, CLF, describe more details of the dynamics
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of a single chain inside a tube. The dimension of a real flexible polymer chain

can fluctuates and this is not different from the primitive path. These fluctuations

contribute significantly to the disengagement time, τd (the typical time it takes for

the chain to escape from its original tube) and the stress relaxation of the chain.

According to Doi and Edwards [9], the CLF makes the tube relax faster, τ f
d < τ 0

d ,

(disengagement time with CLF, τ f
d) and will enhance the stress relaxation of the

chain [9].

The probability of the contour length, P (L) and ∆L̂ was calculated in section

1.10.6, where the relative fluctuation decreases with the number of tube segments:

∆L̂

L̂
≈

(
ab1D√
3Nb2

3D

)
≈ 1√

3Z
(1.53)

The estimation of the τ f
d is given by [9]:

τ f
d ≈ τ 0

d

(
1− X√

Z

)2

(1.54)

With X as an unknown parameter which is larger than 1.45 [9,45]. As Z gets larger

the effect of CLF become less important. In our model, the CLF is already added

thus the τ f
d in the following analysis will be represented by τd. The CLF is more

significant in branched polymer, for example the star polymers in melts cannot move

by reptation and is relaxed by individual arms retraction.

1.11 Outline of Thesis

This thesis reports the coarse-grained simulations of polymer melts. We studied

two well known theories for the dynamics of polymer melts, the Rouse and the tube

model. These theories and some analytical results are discussed in this chapter.
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In chapter 2, we present the computer simulations for the Rouse chain in an

array of obstacles, known as the ‘grid model’. Uncrossability constraints will be

implemented to mimic the entanglements. The simulation is developed according

to the polymer model discussed in section 1.7. The suitability of the simulation

methods (Brownian dynamics and Monte Carlo) and the integration steps (Euler

integration steps and predictor-corrector) will be studied. We also studied the effects

of allowing the bead to reattempt its movement when it violates the constraint.

The static properties of the entangled polymer chains will be analysed in chapter

3. These include the procedures of the tube construction and the tube length. The

definitions of the tube length that we studied are the tube axis and the primitive

path. The tube parameters for each definition will be analysed. We also compared

the results of the grid model with the lattice models.

Chapter 4 covers the dynamic properties of the polymer chain. First we validated

the basic results of the entangled polymer chains as predicted by the tube theory.

Then, we analysed the bead diffusion along the tube axis which gave the bead

friction inside the tube, ζ1D. By using the ζ1D and the tube static parameters, the

properties of the chain dynamics can be predicted.

At the end of this thesis, we will give an overall conclusion and suggestions for

improvements of the current computer simulations.



Chapter 2

The Computer Simulation Model

2.1 Introduction

The developments of current technology made computer simulations an essential

tool in revealing the microscopic behavior of polymer chains. Nowadays, a number

of simulation techniques have been developed such as molecular dynamics (MD),

Monte Carlo (MC) and Brownian dynamics (BD) simulations [50,51]. In this project

we study BD and MC simulations in order to be able to explore the structures

and dynamic properties of polymer melts at time and length scales of microscale.

Discussion about MC is available in Appendix A.

The static and dynamic properties of macromolecules can be observed by atom-

istic MD simulation at molecular level, but it requires a lot of CPU resources. Usu-

ally, one is not able to obtain results for long chains where the entanglement effects

are evident. One way to solve this problem is to coarse grain (e.g., use groups of

atoms as the basic unit in the model), which allows one to use softer potentials and

to simulate a large system with a longer time scale. Examples of the coarse-grained

models are dynamic Monte Carlo [52, 53], coarse-grained molecular dynamics and

28
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BD simulations [50, 51, 54]. However softer potentials do not prevent the chains

from crossing each other, thus the effects of entanglements can be lost with coarse

graining. In this chapter, we discuss our computer simulations for polymer melts,

the grid model. This includes the simulation methods (BD and MC), integration

algorithms and uncrossability constraints.

2.2 Brownian dynamics model

Brownian dynamics is used to simulate the dynamics of molecules that undergo

Brownian motion. The motion arise from random collisions of the particles with

other particles in the solvent/melts. In Brownian dynamics model, the SDE of

the Rouse chain (Eqs. 1.9a, 1.9b and 1.9c) can be solved by integrating them

with respect to time. In the grid model, there is an additional potential caused by

the constraints. The potential between the bonds with the line obstacle which is

represented by the ‘step’ potential as follows [55]:

U(d) =


0, d > 0

∞, d = δi

(2.1)

where δi → 0 is the closest distance between the bond and the obstacles.

A suitable numerical integration method is required as it will determine the

efficiency of the simulation and accuracy of the data. In determining the procedure

for our simulation, we have studied two numerical schemes. They are the Euler

integration algorithm and the predictor-corrector integration algorithm.
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2.2.1 Euler integration algorithm

The Euler integration step, EIS also known as conventional Brownian dynamics is

a first-order algorithm to solve the Rouse equation [56–59]. The algorithm is based

on the following particle update scheme:

Ri(t+ ∆t) = Ri(t) +
Fi({Rj(t)})∆t

ζ3D

+ Γi(t) (2.2)

where ∆t is the time step and Γi(t) is a random displacement of particle i. The Γi(t)

is sampled from a Gaussian distribution with zero mean and variance
〈

Γαi,k(t)Γ
β
j,m(t′)

〉
=

(2∆tkBTδijδkmδαβ)/ζ3D where k and m are the current and previous time steps, re-

spectively. Their Cartesian components are denoted by α and β. The bonded forces,

Fi({Rj(t)}) are

Fi({Rj}) = −dURouse

dRi

with (2.3)

URouse =
3kBT

2b2
3D

N−1∑
i=0

(Ri+1 −Ri)
2 (2.4)

where kB is Boltzmann’s constant and T is the absolute temperature.

2.2.2 Predictor-corrector integration algorithm

The predictor-corrector (PC) is a second-order algorithm. It is based on an extended

deterministic Runge-Kutta algorithm in which the stochastic term is added. The

algorithm involves the prediction and the correction steps:

First, the predicted position of bead Ri is calculated by using the EIS:

Rp
i (t+ ∆t) = Ri(t) +

Fi({Rj(t)})∆t
ζ3D

+ Γi(t) (2.5)
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Second, the positions of beads are corrected by using the second order stochastic

Runge-Kutta algorithm [57]:

Ri(t+ ∆t) = Ri(t) +
1

ζ3D

[
Fa
i (t) + Fb

i(t+ ∆t)
]

∆t+ Γi(t) (2.6)

where Fa
i = Fi({Rj(t)}) and Fb

i = Fi({Rp
j(t + ∆t)}). The Γ(t) in Eq. 2.6 is the

same as in Eq. 2.5. In contrast to the EIS, two force evaluations per bead per time

step are required for this algorithm.

2.3 Uncrossability constraints

Uncrossability constraints are required to prevent the chains from crossing other

chains. The uncrossability constraints can also be used for multi-chain model or

single chain model where other chains are presented by obstacles. The algorithm for

uncrossability constraints involves a simple geometrical operation. The operations

are simple but must be optimized because they are repeated billions of times during

a long simulation and thus take a lot of computational time. For instance, the im-

plementation of one of the existing entanglement algorithms in a stochastic dynamic

program is roughly 10 times slower than the same algorithm without uncrossabil-

ity constraints [23]. In order to check whether the bond crosses the obstacles, we

implement 3 steps of checking.

1. For bond ri(t) and line obstacle Li as shown in Fig. 2.1. The scalar triple

product is calculated [25] at each instant of time:

vi(t) = (Ri(t)− li) · (ri(t)× Li) (2.7)

The absolute value of vi, is the volume of the parallelepiped defined by Ri(t), li, ri
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Figure 2.1: Bond ri connects beads Ri and Ri+1, and line obstacle Li connects point
li and li+1.

and Li. There are three possibilities for the volume to become zero. First, if

the distance between the bond and the line obstacle is zero. Second, if the

bond and obstacle are parallel to each other. Third, if the bond length r(t) is

zero. Those three situations are very rare to occur in a standard linear chains

simulation [24] (‘standard’ refer to the grid model). However, they occur in

the primitive path construction which uses the geometrical moves (see section

3.2.3). If one of these conditions occur the trial move is rejected then the bead

is kept at its original position. This is to avoid the |vi| become zero, which

makes us unable to detect whether the bond has crossed the line. If vi changes

its sign upon displacing the bond:

vi(t)vi(t+ ∆t) < 0 (2.8)

there is a possibility that the bond has crossed the constraint. However, Eq.

2.8 is only true if the bond and the line obstacle are infinite. If it is not, the

following check is required.

2. This analysis is for a plane and line intersection. There are two planes formed
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when bead Ri(t) moves into a new position R′i(t + ∆t) (see Fig. 2.2). Each

plane contains one triangle. The first plane is formed by the triangle 1 and

the triangle 2 is located on the second plane. In the following discussion, we

only focus on the first plane and its corresponding triangle. For the second

plane, we use the same steps as in the first plane. The beads and obstacles in

this plane are illustrated in Fig. 2.3.

R i ( t )

R ’ i ( t + ∆ t )

R i + 1 ( t )

R i + 2 ( t )R i - 1 ( t )
t r i a n g l e  2

t r i a n g l e  1

R i - 2 ( t )

Figure 2.2: Bead Ri(t) moves into a new position R′i(t+ ∆t), it forms two triangles.
The first triangle is constructed by Ri(t), Ri−1(t), R′i(t+∆t) and the second triangle
is by Ri(t), Ri+1(t), R′i(t+ ∆t).

Point p of the line Li that passes through the plane is given by:

n · (li + µ (li+1 − li)) = n · p (2.9)

with n is normal vector of the plane. The parameter µ is obtained by:

µ =
n · (p− li)

n · Li

(2.10)

If n·Li = 0, this means that the line and plane are parallel thus bead R′i(t+∆t)

does not violate the constraint.

The point p will interect with the plane if:
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R i - 1 ( t )

R ’ i ( t + ∆ t )

n

R i ( t )

r ’ i ( t + ∆ t )

r i ( t )

r p ( t )

L i

l i

l i + 1

p
p l a n e

Figure 2.3: The plane is constructed by the three position vectors Ri(t), Ri−1(t)
and R′i(t+ ∆t), with n a normal vector of the plane. The line Li intersects with the
plane at position p. rp(t) is a vector connecting Ri−1(t) and p.

• 0 < µ < 1: the intersection is between point li and li+1 thus go to step 3.

• µ = 0 or µ = 1: the intersection either occurs at the end point of li or

li+1.

• µ > 1 or µ < 0: there is no intersection along the point li+1 and li.

An intersection can occur at any point of the surface. The following check is

required to know if the intersection is located within the triangle. If it does,

then this implies that the bead’s movement has violated the constraint. The

next step will test this.

3. Finally, we use the Barycentric method to determine the location of point p.

According to this method, assume a triangle made by beads A, B and C.

Any point p is inside the triangle can be described by a linear combination of
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the beads:

p = λ1A + λ2B + λ3C (2.11)

where λ1, λ2 and λ3 are the coefficient in the Barycentric coordinates. Taking

coefficient in Eq. 2.11 gives:

1 = λ1 + λ2 + λ3 (2.12)

Rearrange the coefficients and substitute back it into Eq. 2.11:

P−C = λ1(A−C) + λ2(B−C)) (2.13)

In our case, A = Ri(t), B = R′i(t + ∆t) and C = Ri−1(t). Convert the

parameters in Eq. 2.13 into their connectiong vectors (see Fig. 2.3) gives:

rp = λ1ri(t) + λ2r
′
i(t+ ∆t) (2.14)

In 3D case, there are three equations with two unknown parameters λ1 and

λ2, so any one equation can be dropped and the remaining two will be solved.

The equation is solved by using Cramer’s rule [60]. The point p is located in

the triangle, if and only if:

λ1 + λ2 < 1 with λ1 ∈ (0, 1) and λ2 ∈ (0, 1) (2.15)

and hence the constraint is violated.
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2.4 The grid model

The grid model is a single chain model. The chain is modelled by a Rouse chain

which is located in a regular grid of fixed point obstacles (for 2D simulation) or

line obstacles (for 3D simulation). The function of the obstacles is to mimic the

entanglements with other chains. The thickness of the lines and the diameter of the

‘points’ are only constrained by the floating-point precision. This is small enough in

order to have a negligible effect on the static properties and therefore it only affects

the dynamic properties of the chain [61,62].

The only parameter that determine the size of the square lattice (in 2D) and

the cubic lattice (in 3D) of the obstacles is the length of the grid spacing g, (g =

1, 2, . . .). The dimensionless unit of g is defined as g′ = g
b3D

, which shown in Fig.

2.4.

The mobility of the chains is restricted by prohibiting bonds to cross the obsta-

cles. The model is supposed to mimic real polymer melts where long range hydro-

dynamic and excluded volume interactions are screened by other chains [9, 63]. In

this study, we use the 3D case. An example of a snapshot of our simulation with

N = 13 and g′ = 1 is shown in Fig. 2.5.

2.4.1 Implementation of the Brownian dynamics integration

scheme

To incorporate the effect of the uncrossable constraints we modify the integration

algorithm as follows:

1. All beads must be selected to move at each time step. The order in which beads

in the system are moved is taken at random (by generating a permutation of

bead indices). This is to make sure our algorithm is time reversible, head-tail
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Figure 2.4: The Rouse chain in an array of point obstacles for 2D model (2.4(a))
and the chain in 3D cubic lattice (2.4(b)).

Figure 2.5: A snapshot of the 3D model of the computer simulation, consisting of
chain with 13 beads located in a grid, g′ = 1.



CHAPTER 2. THE COMPUTER SIMULATION MODEL 38

symmetric with respect to the chain ends and as efficient as possible.

2. The selected bead is moved by using the selected numerical integration schemes

either the EIS or the PC.

3. A possible violation of constraints is checked for the current bead by looking at

the bonds with which the bead is connected (the constraints are point-like in

2D and lines in 3D). The detail about the violation of constraints was discussed

in section 2.3.

4. If any of the two bonds crossed the constraint then the motion is rejected and

keep the bead at its original location. Otherwise the movement is accepted.

5. Step 1 is repeated for other selected beads.

2.5 The computer program: Generic Polymer Sim-

ulation

Our Simulations are run by using Generic Polymer Simulation (GPS). GPS is a

simulation package which is developed by the Theoretical Polymer Physics group,

at the University of Reading. This package works as a platform for researchers to

build their polymer models and uses object oriented programming concepts. The

advantage of this package is that researchers are able to share or use some common

functions such as observables and analyses. Some parts of the code describing the

specific model make use of classes and inheritance. Therefore the validation of the

model is easier as some functions are already validated by others.
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2.6 Discussion

2.6.1 Brownian dynamics step

In the Brownian dynamics simulations, the size of time step contributes to accuracy

of the results and simulation’s efficiency. An optimal time step is required to preserve

the Gaussian statistics of the chains and minimize the computational time. Thus

we did analysis of rejection rate for various sizes of time step, ∆t. Average rejection

rate (γrej) is the average number of rejection movement due to obstacles violation

for each particle per integration step. The γrej as a function of ∆t for different chain

lengths with g′ = 1 and g′ = 2 is shown in Fig. 2.6.

The γrej for all N and g′ shows a slow increase until ∆t = 0.01 and then dra-

matic increase with ∆t. The fitting of the data indicate that the γrej for both g′

approximately scale with
√

∆t. As a result, the time step that will be used in our

simulation is ∆t = 0.01, just before fast increase of γrej.

2.6.2 Integration step

The EIS is easy to implement in computer programming, however it has strong

time step dependence. The smaller time step is required to provide accurate results.

However, a larger time step allows one to simulate longer chain length or time scales.

The PC method can give more accurate results for larger time steps. This method

was first developed for computer simulations of colloid particles [56], Brownian mo-

tion of particles in one [57] and two dimensions [58]. Although there is extra works

required (calculate the predicted positions and then correct them) but there is still

significant gain in efficiency because time step can be much larger. The objective of

this analysis is to study the suitability of PC for our simulations.

The analysis is carried out by comparing the results between these methods for
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Figure 2.6: Average rejection rate γrej versus different sizes of time steps, ∆t for
N = 20, 40, 60 and 160. The open symbols are for g′ = 1 and filled for g′ = 2. The
dotted lines are the linear fitting of the data, which scale approximately with

√
∆t.

the Rouse chain without and with grid. We are interested in the influence of the

algorithms on some physical quantities characterising statics and dynamics of the

chain. They are the d(s), g1,mid(t) and G(t).

In the static property, we studied the Gaussian properties of the chain by analysing

the d(s) as a function of ∆t. We obtained the d(s) by taking average values of the

vector connecting beads with chemical distance 4, d(4). The d(4) as a function of

∆t and ∆t2 are shown in Fig. 2.7. In this figure, the d(s) from the PC for all ∆t

are much closer to the expected d(s) = 1 while from the EIS, it increases linearly

with ∆t. The d(4) from the PC is proportional to ∆t2. Thus, it can be concluded

that the PC is able to preserve the Gaussian statistics of the chains better than EIS

even for the larger ∆t.

In the case of dynamic properties of the chain, we investigate the functions of

G(t) and g1,mid(t) with N = 16 at t = 9.6 and 8.0, respectively. These are shown in
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Figure 2.7: The d(s) for 4 beads distance of the free Rouse chain from the EIS and
PC algorithms with N = 16 as a function of time steps ∆t (in Fig. (a)) and ∆t2 (in
Fig. (b)). The solid lines are the d(s) for the Gaussian chain statistics.
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Figure 2.8: The G(t) at t = 9.6 of the free Rouse chain with N = 16 from the EIS
and PC algorithms as a function of ∆t (in Fig. (a)) and ∆t2 (in Fig. (b)). The
solid lines are the exact values for G(t = 9.6) obtained from expression 1.31.
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Figure 2.9: The g1,mid(t) at t = 8.0 from the PC and EIS algorithms with N = 16
as a function of ∆t (in Fig. (a)) and ∆t2 (in Fig. (b)). The solid lines are the exact
values for g1,mid(t = 8.0) obtained from expression 1.18.

Figs. 2.8 and 2.9, respectively. The results obtained from G(t = 9.6) at small sizes

of ∆t are quite noisy but their fluctuations are still close to the exact values. There

are no significant differences between the G(t) obtained from the PC and the EIS

(see Fig. 2.8). This is also shown in the G(t) as a function of t with N = 16 and

∆t = 0.08 (see Fig. 2.10).

The g1,mid(t = 8.0) from the EIS deviates significantly from the exact value while

the value obtained from the PC only shows a slight deviation. The g1,mid(t = 8.0)

from the EIS and PC changed linearly with ∆t and ∆t2, respectively. The results

from the PC algorithm have demonstrated that it weakly changes with ∆t.

From this analysis, we found that the PC provides good estimation for static and

dynamics of the Rouse chains without grid. This is expected because the simulation

is more or less the same as being reported in the literature, i.e., the motion of

Brownian particles [56, 57] and dynamics of colloid particles [56]. The question is,

whether the PC is able to give the same precision when we implement uncrossability

constraints?
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Figure 2.10: The G(t) as a function of t with N = 16, ∆t = 0.08 for EIS and PC.

For this purpose, we performed the similar analysis with g′ = 1. The limitation

of such analysis was the unavailability of the analytical value of each observable to

compare with. However, we can still investigate the convergence of the observables

as ∆t→ 0.

The function of d(s) from simulations of N = 32 and g′ = 1 for various ∆t are

obtained from the EIS and the PC are shown in Fig. 2.11. For small ∆t, the d(s)

from PC are approximately close to the Gaussian chain statistics d(s) = 1 (see Fig.

2.11(b)) compared to EIS (see Fig. 2.11(a)). The d(s) obtained from the end-to-end

distance of 8 beads, d(8) as function of ∆t and ∆t2 are shown in Fig. 2.12, while

d(3) for g′ = 2 with N = 64 are shown in Fig. 2.13. These plots demonstrated

similar trends as the Rouse chain without grid. It can be concluded that the PC

also produce better result for static properties of the entangled chains.

For dynamics observations, the G(t) from the EIS and the PC algorithms with

different sizes of ∆t are shown in Fig. 2.14 and the intermediate-time regions is

shown in the inset. It was observed that the G(t) from the PC change slower
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Figure 2.11: The d(s) for N = 32 and g′ = 1 from the EIS (a) and PC (b) algorithms
with different sizes of the time steps. The solid lines are the d(s) for ideal random
walk statistics of the chain.
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Figure 2.12: The d(8) from the EIS and PC algorithms for N = 32, g′ = 1 with ∆t
(in Fig. (a)) and ∆t2 (in Fig. (b)).
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Figure 2.13: The d(3) from the EIS and PC algorithms with N = 64, g′ = 2 as a
function of ∆t (in Fig. (a)) and ∆t2 (in Fig. (b)).
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Figure 2.14: The G(t) from the EIS and PC algorithms are in dotted lines and
symbols, respectively. The data from N = 32, g′ = 1 and different sizes of the time
step, ∆t. The inset shows an enlargement of the intermediate-time regions.
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Figure 2.15: The intermediate-time regions of the g1,mid(t) from the EIS (in lines)
and PC (in symbols) algorithms with N = 32, g′ = 1 and different sizes of the time
step.

with ∆t than EIS. At ∆t ≤ 0.01, both algorithms produce very similar G(t). The

contribution of PC towards the g1,mid(t) can be seen in its intermediate-time regions

(see Fig. 2.15). The g1,mid(t) from the PC is less affected by the ∆t compared to

the EIS.

In the entangled Rouse chain, we found that the PC has better convergence of

both static and dynamic properties as compared to EIS. Thus, we will use the PC

algorithm with ∆t = 0.01 in our simulations.

2.6.3 Number of attempts

In this section, we vary number of attempts that are allowed if the bead’s motion

violated a constraint. There are other algorithms available such as the Monte Carlo

simulations, where the movement is rejected if it violates the constraints (see section
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A.1.1).

(a) (b)

Figure 2.16: The d(s) over the s beads distance with N = 32, g = 1, ∆t = 0.01 and
different number of attempts Natt in Fig. (a). The d(8) for each Natt as a function
of time steps which obtained from Fig. (a) are in Fig. (b). The solid lines in both
graphs are the d(s) for Gaussian chain statistics.

We are interested in the influence of maximum number of attempts Natt on var-

ious static and dynamics properties. They are d(s), MS displacement of the middle

bead, g1,mid(t), stress relaxation, G(t) and end-to-end vector relaxation function,

Φ(t). The procedure of this analysis is that, we run several simulations with the

same input parameters N , g and ∆t but we vary the maximum number of attempts

that is allowed. For example, if Natt = 3, the bead will attempt to move 3 times

and if it still violates the constraint, then the bead is not moved during that time

step.

The contribution of Natt to the static properties of the chain are determined

from the d(s) which is shown in Fig. 2.16. The function of d(s) without attempt

procedure, Natt = 0 shows a moderate decrease and the values are relatively close

to the expected Gaussian chain statistics, d(s) = 1. Increase in the Natt values,

however, the d(s) deviate more than 2% from the expected values. The 〈b2
3D〉 of

each Natt is obtained from the vector connecting beads with chemical distance 8,
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Figure 2.17: The intermediate-time regions for the g1,mid(t) with N = 32, g = 1,
∆t = 0.01 and different number of attempts, Natt.

d(8) is plotted as a function of ∆t in Fig. 2.16(b). The figure shows for ∆t ≤ 0.01,

the 〈b2
3D〉 from Natt = 0 is almost equivalent to the exact values, 〈b2

3D〉 = 1, whereas

for the Natt > 0, about 2% deviation was obtained. In this project, we will use

∆t = 0.01 for our Brownian dynamics simulations, thus by using Natt = 0, the

simulation will be able to preserve the Gaussian statistics of the chains.

For the dynamics analysis, we use the simulation of N = 32 with g′ = 1,

∆t = 0.01 and different number of attempts, Natt. The intermediate regimes of

the g1,mid(t), is shown in Fig. 2.17. The middle bead moves slower for Natt = 0 as

compared to the higher Natt. This is because the beads do not move when they were

rejected due to the constrain violations.

The G(t) for various maximum number of attempts is shown in Fig. 2.18. The

results for G(t) are not very sensitive on Natt. The clear difference is shown in the

inset. The Natt = 0 shows the chains relaxed slower compared to the others. This
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Figure 2.18: The G(t) for N = 32, g′ = 1 and ∆t = 0.01 with different number of
attempts, Natt. The inset presents an enlargement of the intermediate-time regions.
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is because the bead movement has a higher probability to be rejected and hence

the bonds are less likely to be re-oriented and therefore it stores the original stress

longer. The changes of Φ(t) are very similar to the of G(t).

Simulation without attempt procedure has shown that it produces a better static

properties of the chain. In the dynamics observations, the chain from Natt = 0

relaxed slower compared to higher Natt. The higher number of Natt also contributes

to the high bead’s density at the centre of the tube. As a result, we will use no

attempt procedure throught the simulations.

2.7 Conclusions

We have developed Brownian dynamics and dynamic Monte Carlo simulations of

the Rouse chain in a sea of fixed obstacles. The predictor-corrector algorithm is

used in our simulation where its able to preserve the Gaussian properties of the

chains. Regarding to the reattempt procedure, the results from the simulations

without attempts have better static property and have slightly slower dynamics.

In this chapter, we conclude that we will not use the re-attempt procedure in the

uncrossability constraints and will apply the predictor-corrector algorithm in the

Brownian dynamics simulations. The Monte Carlo simulations was able to preserve

the Gaussian statistics of the chains for the larger ∆t as shown in Appendix A.

However the dynamics of the chains become slower due to increase of rejection rate,

but is is still the fastest overall.



Chapter 3

Static analysis of the Tube

3.1 Introduction

The static analysis includes testing the conformation of the tube as defined by the

tube theory by means of simulations. The simulation as discussed in chapter 2.

In order to conduct this, we first need to construct the tube, given the chain in

an array of obstacles. The conformation of the tube will be examined to obtain

tube parameters. The statistics of the tube is analysed such as the average and

‘root-mean-square’ (RMS) length of the tube. The tube length distributions are

compared with standard statistical distributions, which allows the tube parameters

such as the tube Kuhn step (a), the chain statistical segment length inside the tube

(b1D) and the number of beads per entanglement (Ne) to be calculated.

3.2 Tube-like region

We will employ two definitions of the tube:

1. Tube axis: the total length of segments connecting vertices of the tube cells

as shown in Fig. 3.1.

51
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2. Primitive path: the shortest path connecting the ends of the chain without

violating the constraints.

As the constructions for both methods show some overlap, we will first present

their preconstruction in section 3.2.1. Section 3.2.2 will further treat the tube axis

and introduce some additional notation. In section 3.2.3, the construction of the

primitive path will be given.

3.2.1 Construction of the tube-like region

The tube-like region can be constructed by different ways either for lattice [41,48,61]

or off lattice model [21,22,64,65]. Our model is based on the off lattice single chain

model. For multi-chain models, the tube region and its primitive path was obtained

by using several methods. One of the successful methods is called the ‘annealing’

method [16]. The method consist of 3 steps:

1. The chain ends are fixed in space.

2. The intrachain excluded volume interactions is disabled.

3. The energy of the system is minimized by slowly cooling the system toward

T = 0. This cause the bonds try to reduce their length to zero and pull the

other chains taut.

The other method is the primitive chain network (PCN) [66–68]. The PCN is a

3D network chains where the entanglements are modelled as slip-links joining two

chains. Each chain slides through several slip links in the simulation box.

In our model, the tube will be constructed based on the idea proposed by Ed-

wards and Evans [40, 62], who introduced the concept of obstacles which are pro-

duced by other chains, resulting in a ‘tube’ where the beads move. The physical
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Figure 3.1: Definition of the tube parameters where the tube consist of three seg-
ments, Zs = 3.

description of the parameters used in the tube construction is shown in Fig. 3.1

using the following definitions:

• grid g: length of the grid spacing, while g′ is dimensionless grid size defined

as g′ = g
b3D

.

• vertex Vi: Cartesian coordinate of the centre of cell i.

• Segment vi: vector connecting two consecutive vertices, vi = Vi+1 −Vi with

i = 1, . . . , Zs, where Zs is total number of the tube segments with Zs + 1 cells

(see Fig. 3.1).

To construct the tube like region, we refer to steps used by Evans and Edwards in

their work, where they have constructed a primitive path from the lattice model [62].

Some modifications have been made to suit with our off-lattice model. The steps

are as follows. Consider a chain configuration as in Fig. 3.2(a), (for the sake of

simplicity, we illustrate the algorithm in 2D, but 3D is analogous).
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Figure 3.2: Steps in constructing the tube like region.
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Figure 3.3: (a) Determine the skipped cell. (b) bead Ri+1(t) is added at the skipped
cell.

1. The bead coordinate, Ri is converted into a dimensionless vertices coordinate,

Ṽi by using

Ṽi,α = (Ri,α − q × g) +
1

2
(3.1)

where q is the quotient of the division between Ri,α and g with i = 0, . . . , N .

The Greek indices denote the Cartesian components and 1
2

is added to move

the coordinate into the centre of the cell. Since the vertices coordinate Ṽi is

an integer, therefore, there is a possibility that more than one bead will have

the same Ṽi.

2. The initial tube configuration is determined by marking all the cells that are

occupied by Ṽi, see Fig. 3.2(b).

3. If the segment length |vi| > g for i = 1, . . . , N then the bond vi has crossed
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Figure 3.4: Flow chart of recursive middle point calculation. Firstly, two adjacent
beads are copied into new variables RA and RB. Calculating the middle coordinate
between RA and RB gives Rmid and converted to grid base coordinate, Ṽr,mid. If

the Ṽr,mid is located in the same cell with ṼA, then the A variables are replaced by

mid variables. If the checked false then if Ṽr,mid is in cell ṼB, then the B variables
are replaced by mid. This process is repeated until the mid bead is located neither
in ṼA nor ṼB. Finally, the skipped bead Rskipped is added between bead Ri and
Ri+1 by shift bead Ri+1 into Ri+2.
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the tube corner as illustrated in Fig. 3.3(a). In this situation, an extra bead

is required to make sure the tube segments are the same length. The skipped

bead is added by using the algorithm called recursive middle point calculation

as follows

(a) Calculate Rmid which is in the middle point between beads Ri and Ri+1

(see Fig. 3.3(b)).

(b) Rmid is converted into Ṽmid using Eq. 3.1.

(c) If Ṽmid is the same coordinate with Ṽi then bead Ri is replaced by Rmid.

The same procedure is applied to Ṽi+1.

(d) Steps, a, b and c (calculate Rmid, convert to Ṽmid and compare Ṽmid with

Ri and Ri+1) are repeated until the current Ṽmid is located neither in Ṽi

nor Ṽi+1.

(e) The skipped bead, Rmid is added in cell Ṽmid.

The detail about the algorithm is presented in Fig. 3.4. Step 1 is repeated to

convert Ri into Ṽi, (i = 0, · · ·N ′) where N ′ is the chain length included the

skipped bead

4. Unentangled loops in Fig. 3.2(d) are determined and removed. The unentan-

gled loop is defined as, if vertices, Ṽi−1 and Ṽi+1 are located in the same cell

then, Ṽi−1, Ṽi and Ṽi+1 are in the unentangled loop. These beads are moved

into their root cell, Ṽi−1. This process is repeated until all the unentangled

loops are removed and the tube configuration is constructed as illustrated in

Fig. 3.2(e).

5. Finally, the beads in cell Ṽi are replaced by one vertex point Vi shown in

Fig. 3.2(f). The tube consist of {Vi} = (V0, . . . ,VZs) with Zs = 6 as in Fig.
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3.2(f).

3.2.2 Tube axis

The tube like region consist of numbers of tube cells (see Fig. 3.5), thus the tube

axis is defined as a path produced by connecting the middle of the cells of the tube.

Contour length of the tube axis is defined as:

Lg =
Zs−1∑
i=0

|vi| = Zsg (3.2)

which means that in average:

Zs
avga = Nb2

3D (3.3a)

Zs
av =

Nb2
3D

ag
(3.3b)

The Zs
av in Eq. 3.3b is not the number of entanglements since the entanglements are

usually associated with the number of turns of the tube path. Thus we cannot use

Zs
av directly into the tube theory. Ẑs is defined as Ẑs = 〈Zs〉 and ∆Ẑs =

〈
(∆Zs)2〉1/2

with

(∆Zs)2 =

〈(
Zs
)2
〉
−
(
Ẑs
)2

(3.4)

where 〈. . .〉 is the average over the number of conformations of the tube segments.

By using Eqs. 1.36 and 1.48, the tube parameters are defined as:

ag =
Nb2

3D

Ẑsg
(3.5)

bg1D =

√
3(∆Ẑs)2g2

N
(3.6)
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The definition for number of beads per entanglement, N g
e is similar to Eq. 1.37 with

‘a’ is replaced by ag.

T u b e  a x i s
Figure 3.5: Tube axis connected by the middle point of a tube cell with its neighbour.
The Rouse chain is given in 3.2(a).

3.2.3 Primitive Path

The primitive path is defined as the shortest contour connecting the chain ends

without violation of the constraints. The path length is obtained by summing all

bond lengths of the chain backbone. In constructing the primitive path, we im-

plement the ‘annealing’ method [16] and geometry arrangement. Without thermal

fluctuations and interchain excluded volume interactions, the bond spring tries to

reduce the bond length and the chain is pulled taut, thereby minimizing the total

length of the chain.

The implementation of this method into simulation is as follows:

1. The chain ends R0 and RN are fixed in space.

2. The tube is constructed as discussed in section 3.2.1. The only differences are

the end vertices, where V0 = R0 and VZs = RN .
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3. The number of beads for each tube cell is added so that total nummber of

beads in each cell is nb, giving a total number of N ′ beads per chain with

N ′ = (Zs + 1)× nb. The beads are located inside the cell in accordance to the

following procedures:

(a) Construct the tube for its initial chain configuration (at t = 0).

(b) The tube cell is divided into nb sub-segments as shown in Fig. 3.6.

(c) The nb beads are distributed equally for each tube cell with one bead

per sub-segment except for the sub-segments adjacent to the tube ends.

For simplicity, we use the centre of each sub-segment as coordinate for

the added bead. As an example, for nb = 3 as shown in Fig. 3.6, firstly,

the cell is divided into 3 segments (see Fig 3.6(a)), then beads are added

at the segments except for the end bead of the chain, as shown in Fig.

3.6(b).

(d) Step 3(b) is repeated for all cells in the tube.

4. We study two methods of obtaining the primitive path. The first is by using

the ‘annealing’ method. The energy of the system is minimised by slowly

cooling down the system. At each time step, the temperature is exponentially

decreased which resulted in the shrinking of the bond lengths. This process

is repeated until T → 0, thus, it requires a longer time to obtain the shortest

contour length. The second method is by initially using T = 0 and immediately

reducing (shrinking) the bond lengths without the violation of constraints.

The bonds are allowed to move along the constraints until the shortest path

is obtained. In this project, we use the second method because it is faster in

obtain the shortest path.

5. The contour length Lpp between R0, . . . ,RN ′ is obtained by summing all bond
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lengths:

Lpp =
N ′−1∑
i=0

|Ri −Ri+1| (3.7)

( a )

( b )
Figure 3.6: Example of adding nb = 3 per tube cell. The cell is divided into nb
sub-segments (Fig. (a)). The beads are added into the sub-segments, Fig (b).

We have conducted an analysis to determine which nb is required for each grid

size. Table 3.1 shows the primitive path length with different nb and grid sizes.

We found that for g′ > 1, increasing the nb results will decrease the primitive path

length. However, the changes of primitive path length is smaller for the higher nb.

As a result, we use nb which gives a large change of the primitive path length. As

a result we used nb = 2, 4, 6 for g′ = 1, 2, 4 respectively.

The construction of the primitive path is shown in Fig. 3.7. The definitions of

the tube Kuhn step app, the chain statistical segment length inside the tube bpp
1D

and number of beads per entanglement Npp
e are similar with Eqs. 3.5, 3.6 and 1.37,

respectively, by substituting Ẑsg with L̂pp and ∆Ẑsg with ∆L̂pp.
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Table 3.1: Number beads per cell for each grid sizes with N = 128 based on statistics
of 300 chains.

grid nb Length of Primitive Path

1
1 61.508
2 61.964
4 62.083

2

1 32.487
2 31.952
4 31.880
6 31.909

4

1 18.711
2 18.563
4 18.593
6 18.576
8 18.580

P r i m i t i v e  p a t h
Figure 3.7: Primitive path of the tube. The Rouse chain is given in 3.2(a).



CHAPTER 3. STATIC ANALYSIS OF THE TUBE 63

3.3 Probability distribution of the tube length

The probability distribution of the tube length is available in section 1.10.6. The

negative of natural logarithm of Eq. 1.46 gives:

ln(P (L,N)) = −ln

(
1

2π∆L̂2

)1/2

+

(
L− L̂

)2

2∆L̂2
(3.8a)

=
L2

2∆L̂2
− LL̂

∆L̂2
+

L̂2

2∆L̂2
− 1

2
ln

(
1

2π∆L̂2

)
(3.8b)

Expression 3.8b can be used to obtain the Gaussin parameters such as L̂ and

∆L̂ [69]. In our simulation, Eq. 3.8b is valid for shallow fluctuations around L̂.

However, for deep fluctuations, the potential experienced by the chain ends is not as

specified by Eq. 1.45 [47]. This is because in the limit of very long chain, N >> g′,

the probability to form a loop where there are no entanglements and its ends are in

the same cell [49]. As a result Eq. 3.8b can be simplified when L = 0 and tranform

back it into original expression, Eq. 1.46 gives:

P (L = 0, N) = exp

(
L̂2

2∆L̂2
− ln

(
1

2π∆L̂2

)1/2
)

(3.9a)

=

(
1

2π∆L̂2

)
exp

(
L̂2

2∆L̂2

)
(3.9b)

Assuming a ≈ g, b3D = 1 then we obtain Ne ≈ (g′)2, knowing that L̂ = Ẑg and

∆L̂ = ∆Ẑg. Thus from Eq. 3.9b we obtain

P (0, N) = c

(
N

g2

)−1/2

exp

(
−βN

g2

)
(3.10)

with two unknown parameters, c and β. These parameters for the 2D and 3D lattice

models available in [41,49], respectively. In this project, parameter β is obtained by
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using the following steps:

1. Fit the natural logarithm of P (L,N) with Eq. 3.8b as shown in Fig. 3.8 for the

tube axis, P (Zs, N) with N = 512, and g = 4. The dashed line represents the

fitting at Zs ≈ Ẑs and the solid line is at small Zs. The fitting is represented by

Eq. 3.8b, then the intersection at y−axis which represent P (0, N) is obtained.

This process is repeated for all chain lengths and grid sizes as shown in Figs.

3.9 for g′ = 1 and g′ = 2.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
- 2 2
- 2 0
- 1 8
- 1 6
- 1 4
- 1 2
- 1 0
- 8
- 6
- 4
- 2

 G r i d  m o d e l ,  t u b e  a x i s
 F i t t i n g  a t  Z s ~  < Z s >
 F i t t i n g  a t  s m a l l  Z sln(

P(Z
s ,N)

)

Z s

Figure 3.8: The natural logarithm of the data for P (Zs, N) with N = 512, g′ =
4, 〈Zs〉 = 50.18. The solid and dashed lines are the regions to obtain the P (0, N).
The dashed line is the fitting at the peak region of the distribution.

2. In each grid size, the P (0, N) are fitted with Eq. 3.10 to obtain the parameters,

c and β. This is shown by the dashed lines in Fig. 3.9 for the tube axis with

g′ = 1 and g′ = 2 which gives β = 0.3, c = 0.3 for g′ = 1 and β = 0.4, c = 0.4

for g′ = 2. The β and c for all grid sizes are presented in Table 3.2.
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0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 01 E - 2 3
1 E - 2 0
1 E - 1 7
1 E - 1 4
1 E - 1 1
1 E - 8
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 F i t t i n g
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(a)

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 01 E - 1 6
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 g ’ = 2

 F i t t i n g

P(Z
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,N)

N
(b)

Figure 3.9: P (Z = 0, N) as a function of N for g′ = 1 (Fig. 3.9(a)) and g′ = 2 (Fig.
3.9(b)). The dashed lines are the data fitting with Eq. 3.10.

If the potential is obtained from the dashed lines, the parameters in Eq. 3.10

(in this case, they are represented by βT and cT) can be calculated analytically

by using Eqs. 1.46 and 3.10 where:

βT = ν
b4

3Dg
2

b2
1Da

2
(3.11)

cT =

(
3

2πg2b2
1D

)1/2

(3.12)

with ν = 3/2. Table 3.2 present βT and cT for all grid sizes. By identifying

the simulation value β and the theoretical value βT, the difference between

them is given below:

∆β =
∣∣β − βT

∣∣ (3.13)

which shows how large the potential in the model deviate from the ideal Gaus-

sian distribution (fitting at Z ≈ Ẑ).
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3.4 Analysis and Discussion

3.4.1 Probability distribution of the tube length

The tube theory assumes that the tube length is Gaussian distributed (Eq. 1.46)

and by using our model, we are able to test this assumption and to see deviations

from the Gaussian approximation [41,49,70,71].

Figs. 3.10 and 3.11 show the probability distributions of the tube length for the

tube axis and the primitive path which are normalised with Ẑs, ∆Ẑs and L̂pp, ∆L̂pp,

respectively. The predicted ideal Gaussian is included to show the derivations from

Gaussianity (the dashed lines).

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6
1 E - 6

1 E - 5

1 E - 4

1 E - 3

0 . 0 1

0 . 1

1

 g ’ = 1 ,  N = 1 6
 g ’ = 2 ,  N = 6 4
 g ’ = 4 ,  N = 2 5 6
 g ’ = 8 ,  N = 1 0 2 4
 g ’ = 1 6 ,  N = 4 0 9 6
 G a u s s i a n  d i s t r i b u t i o n

P(Z
s ,N)

∆Z
s

( Z s  -  < Z s > ) / < ( ∆ Z s ) 2 > 1 / 2

Figure 3.10: Semi-log scale, normalised distribution of number of tube segments
Ẑs for g′ = 1, 2, 4, 8, 16 with N = 16, 64, 256, 1024, 4096, respectively. The
dashed line is the normalised Gaussian distribution. The data are based on 1× 106

configurations.
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- 3 - 2 - 1 0 1 2 3
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 g ’ = 1 ,  N = 1 6
 g ’ = 2 ,  N = 6 4
 g ’ = 4 ,  N = 2 5 6
 G a u s s i a n  d i s t r i b u t i o n

P(L
pp

,N)
∆L

pp

( L p p  -  < L p p > ) / < ( ∆ L p p ) 2 > 1 / 2

Figure 3.11: Semi-log scale, normalised distribution function of the primitive path
length, L̂pp for g′ = 1, 2, 4 with N = 16, 64, 256, respectively. The dashed line is
the normalised Gaussian distribution. The data are based on 1000 configurations.



CHAPTER 3. STATIC ANALYSIS OF THE TUBE 68

In tube axis and primitive path methods, their probability distributions are well

approximated by Gaussian at the probability larger than 0.01. In case of the tube

axis, we are able to observe very small probabilities in the distribution function (see

Fig. 3.10). Hence both deep retractions Zs << Ẑs and stretching Zs >> Ẑs are

visible. For g′ = 1, all chain lengths behave Gaussian with very small deviations

occurring especially for the longest chain, N = 128. The deviations are clearly

visible for g′ = 2, 4, 8, 16 especially for the longer chains. The results show that it

is less probable to find a tube with shorter Zs than predicted by Gaussian. On the

other hand, a larger value of Zs has a higher probability to occur. The deviation

for deep retractions implies that the effective potential in our model is stronger

than the ideal quadratic potential (Eq. 1.46). This is in qualitative accordance

with the literature lattice model, which observed the potential was stronger than

the ideal Gaussian distribution with a 20% deviation [48, 49]. Although there are

some differences from the Gaussian prediction, these are only visible at a very low

probability. As such, for probabilities larger than 0.01, our model shows a good fit

with the Gaussian distribution.

The probability distribution of the primitive path length for all chain lengths

and grid sizes is shown in Fig. 3.11. The data are noisier because they require a

huge number of tube conformations to obtain good statistics. The drawback of the

primitive path method is that longer time is required to do the analysis, as it is

required to minimize the contour length.

The degree of deviation from the ideal quadratic potential is determined by the

parameter ∆β in Eq. 3.13. Table 3.2 presents the value of βg, βT
g and ∆βg for the

grid model. βT
g and cT

g are obtained by using Eqs. 3.11 and 3.12, respectively, with

bg1D and a are from the static analyses of the tube axis. Fig. 3.12 shows the βT
g as a

function of 1/N and the extrapolated values are obtained.
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Figure 3.12: βT and cT as a function of 1/N for g′ = 1 and g′ = 2 are in 3.12(a) and
3.12(b), respectively. These are based on the tube axis statistics.

In the lattice model by Zheligovskaya et al., the parameter βL is available in [49]

and βT
L is obtained by using Eq. 3.18. The trend of β and βT as a function of 1

√
g

for both models are shown in Fig. 3.13. In the grid model, the deep retractions for

small grid sizes are well presented by the ideal Gaussian distribution. However, for

the larger grid size g ≥ 4 the deviations are visible. On the other hand, the lattice

model shows the agreement is improving for the larger lattice size. This is due to

the anisotropic properties of the lattice model where the segments are not allowed

to fold back. In the limit of g → ∞, both models approximately have β = 0.6 (see

Fig. 3.13).

The lattice model is where the beads of the chain are situated at the lattice

points thus the bonds have the same length and they independent with each other.

The example of 2D lattice model with 5 segments is shown in Fig. 3.14.

The analysis shows that a non-quadratic correction for a full retraction potential

is required. Examples of the correction are available in [47]. However, for the linear

chains the correction is not so important as the deviation only occurs at probability

smaller than 0.1. The non-quadratic correction is important for branch polymers
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Table 3.2: Parameters c and β from the grid model

grid
fitting at Zs << Ẑs fitting at Zs ≈ Ẑs

∆β
cg βg cT

g βT
g

1 0.3 0.30 0.37 0.33 0.03
2 0.4 0.40 0.3 0.40 0
4 0.4 0.50 0.23 0.40 0.10
8 0.4 0.55 0.2 0.40 0.15
16 0.4 0.60 0.16 0.43 0.17
32 0.4 0.60 0.18 0.47 0.13

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0
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3 . 5  G r i d  m o d e l ,  β g
 L a t t i c e  m o d e l ,  β L
 G r i d  m o d e l ,  βΤ

g
 L a t t i c e  m o d e l ,  βΤ

L

β

1 / g 1 / 2

Figure 3.13: Parameter β from the grid and lattice model by Zheligovskaya et al as
a function of 1/g′1/2. In the limit of a very large g, β in both models approximately
equals to 0.6.

where the relaxation of the arms depends on such extreme fluctuations to relax

their entangled conformations. Also, many important rheological properties such

as the stress relaxation modulus are governed by the deep fluctuations. We would

disregard the non-quadratic correction since we focus solely on linear chain.
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Figure 3.14: Two dimensional representation of a chain on the lattice model. The
chain consist of 5 segments.

3.4.2 Mean square spatial distance

The purpose of this section is to observe whether the conformation of the tube

segment can be represented by an ideal random walk or an ideal non-folding back

random walk. The tube theory assumes the conformation is Gaussian on a large

length scale [9, 62], and Rubinstein and Helfand mention that the statistics are a

non-folding back random walk [41].

0 4 0 8 0 1 2 0 1 6 0 2 0 0
1

1 0

1 0 0
      g ’ = 1                 g ’ = 2                 g ’ = 4          

 N = 8        N = 3 2      N = 1 2 8
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 N = 1 2 8    N = 2 5 6    N = 5 1 2   

                             g ’ = 8                   g ’ = 1 6
                         N = 2 5 6     N = 5 1 2
                         N = 5 1 2     N = 1 0 2 4
                         N = 1 0 2 4   N = 2 0 4 8d t(s)
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 g ’ = 2 ,  N = 3 2
 g ’ = 4 ,  N = 1 2 8
 g ’ = 8 ,  N = 5 1 2

d t(s)
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s
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Figure 3.15: Mean square spatial distance of the tube axis as a function of cell
separation s for various grid sizes in Fig. 3.15(a) and normalised by g2, in 3.15(b)
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The analysis is carried out by using Eq. 1.51. The average square of the internal

distance dt(s) between cell i and j for g′ = 1, 2, 4, 8, 16 are shown in Fig. 3.15(a).

In g′ = 1, a plateau region for long chains is visible which is equal to the average

square of the tube Kuhn segment (ag)2. For the larger g′, the patterns are: dt(s)

increases from s = 1 until s = 2, then it decreases, after which a plateau is reached

and finally it decreases again. The increased section is due to the non-folding back

property of the tube segments and the decreased section means that there is a long

range effective interaction between the segments. This observation means that the

conformations of the segments obey neither ideal random walk nor ideal non-folding

back statistics.

The scaling of dt(s) at different grid size is studied in Fig. 3.15(b), where the

focus is on Ẑs ≈ 8 with N = 8, 32, 128, 512 for g′ = 1, 2, 4, 8, respectively. The

normalised dt(s) over the grid size shows that they collapse upon each other except

for g′ = 1, which indicates that the grid dependence disappears in the limit of a

large grid size.

3.4.3 Average tube length and its fluctuations

The tube has a different length in every chain conformation, thus its average fluctu-

ations ∆Ẑs can be obtained either by using the definition in Eq. 3.4 or by fitting the

top region of the P (Zs, N). An example of the fitting for the tube axis with g′ = 4,

N = 512 is shown in Fig. 3.16 where the solid lines represent the fitting regions.

The results from these methods show that they produce approximately the same

∆Ẑs. In the following analysis, the first method (Eq. 3.4) is implemented because

the (Zs)2 and Ẑs are calculated during simulations.

Two tube parameters, ag and bg1D can be derived from Ẑs and ∆Ẑs, respectively,

(see Eqs. 3.5 and 3.6). Fig. 3.17 shows the parameters for each grid size as a
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function of g′2/N . The ag and bg1D are almost linearly change with g′2/N then their

extrapolated values are obtained which presented in Table 3.3. Indeed, if ag ≈ g

and b2
3D = 1, then g′2/N is the expected inverse number of entanglements.
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- 1 8
- 1 6
- 1 4
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 t u b e  a x i s
 Q u a d r a t i c  f i t t i n g

ln(
P(Z

s ,N)
)

Z s

Figure 3.16: Natural logarithm of the data for P (Zs, N) with N = 512 and g′ = 4.
The solid line is the fitted region. The Gaussian parameters obtained from the
fitting are Ẑs = 50.184 and ∆Ẑs = 10.04.

The variation of the primitive path length is calculated by using Eq. 3.4 with

Ẑs and Zs are replaced by L̂pp and Lpp, respectively. The process to obtain the

extrapolated tube parameters for the primitive path, app and bpp
1D is similar with the

tube axis (see Fig. 3.18). The values of the parameters are shown in Table 3.3. An

interesting feature found in the bpp
1D is that the dependence on g′ is not too obvious.

In Figs. 3.5 and 3.7, we see that the contour length of the tube axis is longer

than that of the primitive path for the same grid size and chain length, thus the

Kuhn step of the tube axis is smaller than that of the primitive path. This property

is clearly illustrated in Fig. 3.19(a). The normalised ag and app by g, show their
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Figure 3.17: Tube Kuhn step for the tube axis, ag as a function of g′2/N where the
asymptotic value, N → ∞ for each grid size is obtained in Fig. 3.17(a). The same
procedure is applied for the bg1D, Fig. 3.17(b).
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Figure 3.18: Kuhn step for the primitive path, app as a function of g′2/N where the
asymptotic value, N → ∞ for each grid size is obtained in Fig. 3.18(a). The same
procedure is applied for bpp

1D, Fig. 3.18(b).
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Table 3.3: The extrapolated value of a and b1D for each grid size from the tube axis
and the primitive path.

grid size ag app bg1D bpp
1D

1 1.151 2.997 1.848 0.828
2 1.646 4.812 2.443 0.833
4 2.586 8.702 3.09 0.864
8 4.351 16.313 3.746 0.906
16 7.681 4.399
32 13.905 5.055
64 25.695 5.544

scaling as ag ∝ g and app ∝ g for g >> 1.
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Figure 3.19: The Kuhn segment length from the tube axis, ag and the primitive
path, app normalised by g′ as a function of g′ are in Fig. 3.19(a). The ratio of these
Kuhn segments versus 1/g is shown in Fig. 3.19(b).

Further analysis was conducted by taking the ratio between ag and app as in Fig.

3.19(b). In limit of g′ →∞, the ag is about factor 2.5 smaller than app. The number

of beads per tube cell, Ne from the tube axis and the primitive path for each grid

size are presented in Table 3.4.

In Fig. 3.20, the bg1D for all grid sizes is greater than 1.0 and slowly change with

g′ approximately scaled as g′1/4 and approach bg1D = 9.1 for g′ → ∞. On the other

hand, bpp
1D < 1.0 and seem almost constant with g′. Within all grid sizes, b1D which
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Table 3.4: Average number of beads per entanglement, Ne for each grid size from
the tube axis and the primitive path.

grid N g
e Npp

e

1 1.325 8.963
2 2.707 23.138
4 6.684 75.242
8 18.881 280.98
16 58.717
32 193.77
64 660.01

obtained from the tube axis and the primitive path are not equal to b3D as predicted

by the tube theory.
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Figure 3.20: The extrapolate value for bg1D and bpp
1D in Fig. 3.20(a) and 3.20(b),

respectively.

3.5 Comparison with the lattice model

A very similar approach to our study is the lattice model. In the literature, there are

two studies for this lattice model, i.e, Rubinstein and Helfand [41] for 2D lattice and

Zheligovskaya et al. [49] for the 3D. We are interested to obtain the tube parameters

from these models and compare them with our results. Since our model is in 3D, we
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only refer to the work by Zheligovskaya et al. The description of the parameters in

the lattice model is presented in Table 3.5. We also developed our 3D lattice model

and used exactly the same procedure as in the grid model.

Table 3.5: Parameters under study
Description Grid Model Zheligovskaya et al
Grid or lattice spacing g m

Average number of tube segments Ẑ k0

Instantaneous number of tube segments Z k
Number of beads /chain length N N
Number of beads per cell Ne G0

Tube parameters ag and b1D γ and β

The distribution of the tube length was approximated around the most probable

value k0 by [49]

P (k) =

√
γ

2πk0

exp

(
− γ

2k0

(k − k0)2

)
(3.14)

By comparing it with Eq. 1.46 for the grid model, the relationship between the

parameters are

k0 =
Nb2

3D

gag
(3.15)

γ

k0

=
1(

∆Ẑ
)2 (3.16a)

=
3g2

N(bg1D)2
(3.16b)

thus

γ =
3gb2

3D

ag(bg1D)2
(3.17)
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and βT
L is obtained by using Eqs. 3.14 and 3.10:

βT
L =

γb2
3Dg

2ag
(3.18)

From Eqs. 3.15 and 3.17, the parameters ag and b1D from k0 and γ are obtained by

taking into account that k0 = N
g0g2

where g0 = G0

g2
, thus:

ag =
Nb2

3D

gk0

= b2
3Dg0g (3.19)

b2
1D =

3gb2
3D

aγ
=

3

g0γ
(3.20)

The ag from the models are presented in Fig. 3.21(a). In the limit of g >> 1, our

lattice model and the grid model almost agree to each other.
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Figure 3.21: Tube Kuhn step normalised by g from the grid and the lattice models
as a function 1/g1/2 in Fig. 3.21(a). b1D from the models show they approximately
scale with g1/4 in Fig. 3.21(b).

The b1D in all models are scaling with g1/4 but the lattice model by Zheligovskaya

et al. deviate at g >> 1 while our lattice model convergens with the grid model

(See Fig. 3.21(b)). This finding indicates that, the disagreement with the lattice
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model by Zheligovskaya et al. might be due to the inaccuracy of their data.

3.6 Conclusions

Two definitions of the tube length were studied, the tube axis and the primitive path.

Both definitions show their conformations are random walk for long enough chains.

The probability distribution of the tube length concludes that there are deviations

between the Gaussian approximation especially with respect to deep retractions of

the tube in larger grid sizes. Furthermore, the potential is stronger than predicted

by the tube theory.

Table 3.6: The product of a and b1D from the tube axis and the primitive path.
grid (ag × bg1D)/b3D (app × bpp

1D)/b3D

1 2.127 2.481
2 4.021 4.008
4 7.991 7.527
8 16.299 13.976
16 33.789
32 70.290
64 142.453

According to the definition of the tube, the contour length of the tube axis is

longer than the primitive path and none of them give b1D = b3D. Despite the fact

that parameters of the tube axis and the primitive path are not equal, the ab1D is

almost the same (see Table 3.6). It can be concluded that, any definition of the tube

contour length results in similar ab1D. The parameters examined in this chapter will

be further applied to the analyses of the dynamics of entangled polymer chains.



Chapter 4

Dynamic Analysis of the Tube

4.1 Introduction

The dynamic properties of the entangled polymer chains that are examined in this

chapter are MS displacement of the bead g1,mid(t), stress relaxation modulus, G(t),

end-to-end vector relaxation function, Φ(t), tube survival function, µ(t) and MS

displacement of bead along the tube axis, gs(t). The objectives of the analysis

are to validate the assumptions of the tube theory with regards to the agreement

between G(t), Φ(t) and µ(t) and the determination of the tube parameters, a, b1D

and ζ1D. The µ(t) and gs(t) are obtained based on the tube length which are defined

by the tube axis (see section 3.2.2).

4.2 Tube mapping

The dynamics of the chain is referred to as reptation where the middle bead moves

simultaneously along the tube while the ends move randomly [11]. The tube cells

are created when chain ends moved out into a new position and are deleted when

the ends retract into the tube. Thus, each cell in the tube contains information

80
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about its creation time and its life time. The life time is defined as time difference

between the creation time and the time that the cell is visited again by the chain

ends. This is required in calculating the µ(t) where it is defined as fraction of the

tube segments that that live longer and equal to time t.

At every time step, a new tube segment is created or deleted depending on the

motion of the chain inside the tube. Thus the current tube is required to map with

its configuration at a previous time step. This is to determine which segment of the

tube is deleted, added and which segment moved into a new position. The process

to gather these information is known as tube mapping.

Tube mapping is essential and proper validation is required to ensure µ(t) is

correctly calculated. The mapping becomes more complicated because a tube cell

can be occupied by more than one bead at one time. The algorithm of the mapping

is described in Appendix B.
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Figure 4.1: Living time of cells for Zs=10, 20 and 30, grid=1

The check is the distribution of the average living time of cells in the tube must
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be symmetric. This quantity is predicted by the tube theory [9, Fig. 6.5]. Fig. 4.1,

shows the distribution of the average living time of each cell in different tube lengths.

The symmetric properties is checked by imposing the right side of the plot into its

left side (symbols in Fig. 4.1). This figure confirms that our mapping algorithm

provide the reasonable distribution of the average living time of cells inside the tube.

4.3 Tube segment occupation function

The function µ(t) is defined as the fraction of tube segments who live longer than

time t. The expression for µ(t) for all length scales is available in section 1.10.3.

The µ(t) for early time, τe < t < τR has a scaling form [45]:

µ(t) =
L(t)

L0

(4.1a)

= 1− Cµ

Ẑ

(
t

τe

)1/4

(4.1b)

where Cµ is numerical prefactor, calculated to be Cµ ≈ 1.5 in [45].

In this project, µ(t) is calculated as presented in the following example (see Fig

4.2). At initial time, t = 0, the tube has 3 cells (2 segments). In here, we use ∆t = 1

for simplicity. The data that is gathered at every time step is the cell’s creation

time, tci , (i = 0, . . . Zs). The life time is the time the cell lives at time t which is

defined as tli = t − tci , (i = 0, . . . Zs). At every time integration steps the µ(t) is

calculated as follows:

1. At t = 0.

Firstly the creation time for each cell is assigned, tci = 0, i = 0, . . . , 2. Then

their living time is calculated as shown in Fig. 4.2(a).

2. At t = 1.
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Figure 4.2: Steps in calculating µ(t) where tci and tli are the creation time and living
time for cell i respectively.

Assume the chain retraction makes the tube expand into Zs = 4 (seeFig.

4.2(b)). A new cell i = 3 is created and its creation time is tc3 = 1. The

creation time for cells 0 until 2 is transfered from t = 0 as shown in Fig. 4.2(b)

with their tli = 1, i = 0 · · · 2. µ(t) for t = 0 is:

µ(t = 0) = 4
4

= 1.0

µ(t = 1) = 3
4

= 0.75

3. At t = 2.

The chain reptates on the right direction thus one cell is created and one cell
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at the left of the tube is deleted. The creation time for the new cell is assigned,

tc3 = 2 and the living time for each cell is calculated as shown in Fig .4.2(c).

Thus µ(t) for this time is:

µ(t = 0) = 4
4

= 1.0

µ(t = 1) = 3
4

= 0.75

µ(t = 2) = 2
4

= 0.5

4. At t = 3.

The chain reptate into one cell, a new cell, i = 3 is created and one cell in the

left of the tube is deleted. The tci and tli with i = 0, · · · , 2 are shown in Fig.

4.2(d). The µ(t) for this time is :

µ(t = 0) = 4
4

= 1.0

µ(t = 1) = 3
4

= 0.75

µ(t = 2) = 2
4

= 0.5

µ(t = 3) = 1
4

= 0.25

5. At t = 4.

A new tube is created with the creation time and living time for each cells as
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shown in Fig. 4.2(e). The µ(t) as follows:

µ(t = 0) = 4
4

= 1.0

µ(t = 1) = 3
4

= 0.75

µ(t = 2) = 2
4

= 0.5

µ(t = 3) = 1
4

= 0.25

µ(t = 4) = 0
4

= 0
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0 . 0 1
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1

µ(t
)

t
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0 . 0 1 1 1 0 0 1 0 0 0 0

1

1 0
-t-1/

4 µ’(
t)/(

3π
)1/4

t
(b)

Figure 4.3: The µ(t) for g′ = 1 with N = 16, 32, 64, 128 in symbols, whereas g′ = 2
is shown in solid lines for N = 32, 64, 128, 256 and the dashed lines are for g′ = 4
with N = 64, 128, 256, 512. Fig. 4.3(b) shows the normalised derivative of µ(t)
for g′ and N as in Fig. 4.3(a), while for g′ = 4, the chain lengths are N = 128 and
256.

The behaviour of µ(t) is boring monotonic and it is quite difficult to obtain much

information regarding to the tube parameters from it. This is shown in Fig. 4.3(a)

for g′ = 1, 2 and 4 with various chain lengths. However the time derivative of Eq.

4.1b indicates:

µ̃(t) ≡ −4Ẑτ 1/4
e t3/4

(
∂µ

∂t

)
(4.2)



CHAPTER 4. DYNAMIC ANALYSIS OF THE TUBE 86

where a plateau region appears at early time τe ≤ t ≤ τR which gives the value of

unknown coefficient Cµ in Eq. 4.1b. At later time τR ≤ t ≤ τd a step rise pattern is

noticeable for the well entangled chains..

The tube theory predicts the plateau region is approximately at 1.5, however we

obtain, the plateau at 2.3 for g′ = 1 and increases with the grid size. This is due to

the approximations have been made to the tube parameters above.

4.4 Bead diffusion along the tube axis

According to Doi and Edwards [9], the dynamics of the beads inside the tube at times

τe < t < τR is 1D Rouse-like diffusion along the tube axis and at τR < t < τd, the

whole chain diffuses along the tube. This assumption can be validated by observing

the mean square displacement of a bead along the tube axis, gs(t). The gs(t) is

defined as gs(t) ≡ 〈∆s(t)2〉 and ∆s(t) = s(t) − s(0) where s is bead position in

the unit of the cell index, which is measured from the middle cell of the tube. The

middle cell is chosen to avoid the tube ends effect and to reduce the probability of

the bead coming back into the tube after an infinitely long time.

Assumes the s(t) in a continuous function, thus the Langevin equation of the

s(t) can be referred in [9, Eq. 6.77]. The solution of the equation is [32]:

gs(t) =
2kBT

(N + 1) ζ1D

t+
b2

1D

3 (N + 1)

N∑
p=2,even

sin−2

(
πp

2 (N + 1)

)(
1− exp

(
− t

τp,1D

))
(4.3)

with τp,1D =
ζ1Db

2
1D

12kBT
sin−2

(
πp

2(N+1)

)
, p = 1, . . . , N and τR,1D =

b21Dζ1DN
2

3πkBT
. In summary,
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the gs(t) contain the two regimes:

gs(t) ≈


2Nb21D
3π3/2

√
t

τR,1D
, t ≤ τR,1D

2Nb21D
3π2

t
τR,1D

, t ≥ τR,1D

(4.4)

and the simpler empirical expression as follows:

gs(t) =
2Nb2

1D

3π2

√
t

τR,1D

(
π3/2 +

(
t

τR,1D

)3/2
)1/3

(4.5)

The gs(t) describes the one dimension motion of bead in the tube space. The motion

of the real space is described in the following section.

4.4.1 Mean square displacement in real space

By assuming the s(t) is a continuous function the probability distribution of ∆s(t)

can be represented by Gaussian with zero mean:

P (∆s(t), gs(t)) =
1√

2πgs(t)
exp

(
−∆s(t)2

2gs(t)

)
(4.6)

The distribution of the separation between two beads in the real space r given their

separation along the tube axis, ∆s is

P (r,∆s) =

(
3

2π|∆s|a

)3/2

4πr2exp

(
− 3r2

2|∆s|a

)
(4.7)

where ‘a’ is the tube Kuhn step.

The standard spherical symmetric Gaussian has 〈r2〉 = a∆s. Thus, to obtain the

mean square displacement in real space in this project, for the middle bead g1,mid(t),
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we use:

g1,mid(t) =

∫ ∞
−∞

d∆s(t)P (∆s(t), gs(t))

∫ ∞
0

r2drP (r,∆s) (4.8)

The inner integral over r is |∆s|a and the outer integral gives [72]:

g1,mid(t) = 2a

∫ ∞
0

∆sd∆sP (∆s(t), gs(t)) (4.9)

= a

√
2

π
gs(t) (4.10)

4.5 Results and discussions

4.5.1 Main results for the grid model

The main results for the different grid sizes and chain lengths for the grid model such

as the mean square displacement of the middle bead, g1,mid(t), the end-to-end vector

relaxation function, Φ(t) and the stress relaxation function, G(t), are shown in Fig.

4.4. In this model, the CLF and the longitudinal relaxation due to redistribution of

beads inside the tube are naturally included.

The g1,mid(t) shows three regimes as predicted by the tube theory, (see section

1.10.5). However, for the larger grid, there are negative slopes shown for the plot

that are normalised by t1/4 (see Fig. 4.4(a)). This shows that the bead moves slower

than expected by the tube theory in which might be caused by the perpendicular

motion of the bead inside the tube.

The Φ(t) shows that the terminal time, τd increases strongly with N for all grid

sizes. The tube theory predicts that the τd scales with N3 − N3.4. Our analysis

shows that τd increases faster than N3 (see Fig. 4.5(b)) for all grid sizes.

The G(t) consists of two stages of relaxation. The first stage occurs at t ≤ τe,

where the G(t) relaxes according to the unentangled Rouse chain G(t) ∼ t−1/2 and
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Figure 4.4: Main results for the grid model. Symbols correspond to g = 1 with
N = 16, 32, 64, 128, lines for g = 2 with N = 32, 64, 128, 256 and the dotted
lines for g′ = 4 with N = 64, 128, 256, 512.
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Figure 4.5: Diffusion coefficient in 3D space, D3D normalised by N2 as a function
of N/g′2 for g′ = 1, 2 and 4 in Fig. 4.5(a). The normalised disengagement time, τd

by N3 which is obtained from G(t), Φ(t) and µ(t) for g′ = 1, 2, 4 and the dashed
lines are the Rouse time, τR for each grid size are shown in Fig. 4.5(b).

is independent of the chain lengths. The second regime occurs at t ≥ τe which shows

almost a plateau region especially for the longest chains. In comparison, the G(t)

in the tube model only has the second regime.

These results are quantitatively similar to the tube model, however at present

there are no clear methods to obtain the tube parameters. An ideal analysis method

would be a method which can be implemented into the other models and the results

are model independent. In the following section, we attempt to obtain the tube

parameters by using the dynamic properties of the tube.

4.5.2 The tube theory predictions

In the absence of CR, the tube theory predicts that Φ(t) = µ(t) and G(t) = G0µ(t)

which will be examined in this section. The µ(t) and Φ(t) for all grid sizes are

almost identical to each other (see Figs. 4.3(a) and 4.4(c)). However, the difference

between them clearly appears in their derivative. The µ̃(t) (see Fig. 4.3(b)) shows
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roughly a plateau region at an early time (t < τR). On other hand, the normalised

Φ′(t) by −Nt3/4 shows a slow positive slope of 0.02 in all grid sizes (see Fig 4.6).
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 N = 1 2 8     N = 2 5 6      N = 5 1 2

-N
t3/4

Φ
’(t)

t

s l o p e = 0 . 0 2

Figure 4.6: Normalised derivative of the end-to-end vector relaxation function,
−Nt3/4Φ(t)′ for different g′ and N .

The function of G(t) for g′ = 2 was shifted vertically until it agree with µ(t)

and Φ(t), respectively, are shown in Fig. 4.7. The better agreement occurs, for the

longer chain length but there is less agreement for the shorter chain.

The diffusion coefficient D3D that normalised by N2 is shown in Fig. 4.5(a). In

each grid size, the D3D almost scale with 1/N2 as predicted by the tube theory [9,

Eq. 6.40]:

D3D =
kBTa

2

3N2ζ3Db2
3D

(4.11)

The distinct difference between G(t), µ(t) and Φ(t) is obtained by comparing

their relaxation time, τd which is shown in Fig. 4.5(b). The τd in Fig. 4.5(b) is

obtained by fitting the results on G(t), µ(t) and Φ(t) with the Maxwell modes by
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Figure 4.7: The vertically shifted G(t) until they collapse upon µ(t) and Φ(t) for
g′ = 2 with N = 32, 64, 128, 256.
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Figure 4.8: Ratio between τd from Φ(t) and G(t) and τd from µ(t) in Fig. 4.8(a).
The normalised disengagement time, τd by N3 for µ(t) which are obtained by using
the Maxwell modes and calculate the gradient of the semi-log plot in Fig. 4.8(b).
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using Reptate software.

The other method to obtain τd is by fitting a semi-log plot at the late time region

(t � τR). The gradient of the fitting gives the inverse of τd. Fig 4.8(b) shows the

τd from both methods for µ(t) which give approximately the same τd. As a result

in the following analysis we use the first method (Maxwell modes) in obtaining the

τd for G(t), Φ(t) and µ(t).

The ratio of the relaxation time of G(t) and Φ(t) with the µ(t) as a function to

g2/N is shown in Fig. 4.8(a). The sequence of the relaxation from the fastest to the

slowest is µ(t), G(t) and Φ(t), respectively.

4.5.3 Fitting with the tube theory

One of the methods to obtain the tube parameters is by fitting the simulation results

with an adequate theory [45, 73]. Likhtman and McLeish updated the tube theory

which we refer to as LM2002. The theory includes all length scales, counting CLF,

CR and longitudinal modes as follows [45]:

G (t) = Ge

(
4

5
µ (t)R (t) +

1

5Z

Z−1∑
p=1

exp

(
−p

2t

τR

)
+

1

Z

N∑
p=Z

exp

(
−2p2t

τR

))
(4.12)

Where R(t) = 1 for our case without CR. Details about Eq. 4.12 are available

in [45,70]. Fig. 4.9 shows the snapshot of the fitting for g′ = 2 with N = 32, 64, 128

by using our in-house software, ‘Reptate’. The lines and squares are the theory and

the simulation data, respectively. The parameters that are obtained in the fitting,

Ne, τe and Ge are presented in Table 4.1.

In Fig. 4.9, the longer chain fits well with the theory. However, for the shorter

chain and at high frequency, the fits are not really good. In addition, the Ne in

Table 4.1 for all grid sizes are higher than the one obtained in the static analysis of



CHAPTER 4. DYNAMIC ANALYSIS OF THE TUBE 94

g ’ = 2
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N = 1 2 8

N = 6 4

N = 3 2

Figure 4.9: The G′(ω) and G”(ω) from the simulation results (symbols) and the
tube theory, LM2002 (symbols) for g′ = 2 with N = 32, 64, 128, 256.

Table 4.1: The tube parameters obtained from fitting the simulation results with
the tube theory, LM2002.

g Ne τe Ge

1 3 0.586 0.313
2 9 6.223 0.097
4 25 37.505 0.036
8 84 471.18 0.01
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the tube, tube axis and primitive path (see Table 3.4). This disagreement indicates

that the theory can’t represent our model. In the next section, we study the effects

which might contribute to the disagreement with the theory.

4.5.4 Bead diffusion inside the tube

The tube theory assumes that the bead inside the tube moves in 1D motion with

the gs(t) scales with t1/2 at t ≤ τR and gs(t) ∼ t at t ≥ τR. This is shown in Fig.

4.10(a) for g′ = 1, 2 and 4 with various chain lengths. The first regime clearly shows

at the longest chain lengths. The negative slope at an earlier time for g′ = 2 and

g′ = 4 occurs because of the discretisation effects where the gs(t) is measured by the

integer of the cell index. The other contribution might be the unentangled loops

where the bead is stationary if the reference bead is in the unentangled loops.

To study the discreteness effects which occur at early time for gs(t) as shown in

Fig 4.10(a), we observe the mean square displacement of the middle bead in free

space (Rouse model) using the discretise coordinate of the beads, rounded to the

nearest integer. This is shown in Fig. 4.10(b) for N = 16, 64 and 256 where their

negative slopes at early time t ≤ τR are similar with the gs(t)/t
1/2.

Fig. 4.11 shows the time normalised by τR in 3D for each chain length. The

scaling of τR ∝ N2 is shown in Fig. 4.5(b). The plots collapse onto each other at

t > τR and the transition between the gs(t) ∝ t1/2 and gs(t) ∝ t regimes occur at a

time later than τR. This gives the first sight that the τR,1D is greater than the Rouse

time in 3D.

The simulation results for gs(t) are fitted with Eq. 4.5 to obtain the parameters,

b1D and ζ1D. Having the b1D and ζ1D, we are able to predict the g1,mid(t) by using Eqs.

4.3 and 4.10, which is shown by the dotted lines in Fig. 4.12 for g′ = 1 and g′ = 2

with various chain lengths. The prediction fit very well with the simulation results
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Figure 4.10: The normalised gs(t) by t1/2 for g′ = 1 with N = 32, 64, 128 are
presented in solid lines, whereas the dashed lines for g = 2 with N = 64, 128, 256
and symbols for g′ = 4 with N = 128 are shown in Fig. 4.10(a). The g1,mid(t) are
based on the continuous (lines) and discrete (symbols) coordinate of the beads for
N = 16, 64 and 256 for free Rouse chain is shown in Fig.4.10(b).
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Figure 4.11: The time normalised by τR for g′ = 1 and 2 are shown in Figs 4.11(a)
and 4.11(b), respectively. The chain lengths are the same as shown in Fig. 4.10(a).
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Figure 4.12: The normalised g1,mid(t) by t1/4 from the simulation results (symbols)
and predicted by Eq. 4.10 (dashed lines) for g′ = 1 and g′ = 2.

at t ≥ τd. In that plot, we use the parameter ‘a’ which was obtained from the static

tube axis analysis. On the other hand, the tube Kuhn step, ‘a’ can be obtained by

the following method. The procedure is plotting the g1,mid(t) and
√

(2/π)gs(t) and

then
√

(2/π)gs(t) is vertically shifted until it collapses onto the g1,mid(t) (see Fig.

4.13(b) and 4.13(d) for g′ = 1 and g′ = 2, respectively). The agreement between

them occurs at region t ≥ τR. The amount of the vertical shift gives the value ‘a’.

The results from this analysis ‘a’ is compared with the static analysis (section 3.4.3)

The comparison is shown in Fig. 4.14 for g′ = 1 and g′ = 2. The plot shows the

value of ‘a’ are equal to each other with approximately less than 10% difference and

nearly coincident for large N .

The drawback of gs(t) is that it requires the simulation to construct a tube-like

region and do the tube mapping at every simulation step. These processes consume a

lot of computational time, thus much more time is required to obtain better statistics

especially for the longer chains. This is the reason why we have only managed to

do the analysis of gs(t) up to g′ = 2.
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Figure 4.13: The g1,mid(t) and
√

2/πgs(t) for g′ = 1 and g′ = 2 are shown in Figs.

4.13(a) and 4.13(c).The vertical shifted of the a
√

2/πgs(t) in both grid sizes are
shown in Figs. 4.13(b) and 4.13(d).
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Figure 4.14: The tube Kuhn step, a which obtained from the tube axis and dynamics
fitting (as in Fig. 4.13) for g′ = 1 and 2.

Since the g1,mid(t) agrees very well with gs(t) as shown in Fig. 4.13, thus we can

use g1,mid(t) to obtain the tube parameters. The expression for g1,mid(t) in Eq. 4.13

is obtained by substituting Eq. 4.3 into Eq. 4.10.

g1,mid(t) = ab1D

(
3π2t

b2
1Dζ1D

)1/4
√

4

3π3

((
3π2t

N2b2
1Dζ1D

)3/2

+ π3/2

)1/6

(4.13)

Fitting the simulation data with Eq. 4.13, we obtain two combinations of the

tube parameters, ab1D and b2
1Dζ1D. The ab1D from the static analysis (tube axis and

primitive path) and this analysis (dynamics) are plotted as a function of 1/N as

shown in Fig. 4.15. In the limit of N → ∞, the ab1D in each method agrees with

each other within about 10% difference. The difference is attributed to the accuracy

of the fitting and the use of fewer data points in obtaining the extrapolated values.

In obtaining ζ1D, we require to use ‘a’ and ‘b1D’ either from the tube axis or

primitive path. Fig 4.16(a) shows the ζ1D derived from the parameters in the static

analysis. ζ1D from the primitive path is higher than the tube axis in all grid sizes.
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Figure 4.15: ab1D obtained from the tube axis, primitive path and dynamics fitting
for g′ = 1, 2 and 4. The extrapolated ab1D from Figs. (a), (b) and (c) as a function
of g′ are shown in Fig. 4.15(d).
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Figure 4.16: ζ1D for g′ = 1, 2 and 4 as a function of (g′)2/N (Fig. 4.16(a)) and the
extrapolated ζ1D for each grid size is shown in Fig. 4.16(b).
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Figure 4.17: The ratio between the τR,1D from the tube axis and τR for each grid
size as a function of (g′)2/N is shown in Fig. 4.17(a). The extrapolated value of the
ratio is presented in Fig. 4.17(b)
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This is as expected because the contour length of the primitive path is shorter than

the tube axis. The extrapolated ζ1D is shown in Fig. 4.16(b) where it approaches

0.5 for the tube axis and 4.4 for the primitive path.
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1 . 5
2 . 0
2 . 5
3 . 0

1 / ζ 1 D

 g ’ = 1
 g ’ = 2

D 1D
N

N / g ’ 2

1 / ζ 1 D

Figure 4.18: Diffusion coefficient of the 1D Rouse motion normalised by the chain
length, N as a fucntion of N/g′2. The dotted lines are the 1/ζ1D from the tube axis

Diffusion coefficient of the one dimensional Rouse chain D1D = kBT
Nζ1D

is observed

in this simulation as shown in Fig. 4.18. The plots consist of D1DN which is

proportional to 1/ζ1D where ζ1D is obtained by using ag from the tube axis and b1D

from fitting the results with g1,mid(t) (see Table 4.2).

The product between b1D and ζ1D gives the ratio between the τR and the τR,1D

which is shown in Fig. 4.17 for the tube axis. We found that in all chain length and

grid sizes, τR,1D > τR. The τR,1D for the limit of N →∞ shows it increases with the

gird size and approach approximately 4.4 for g →∞.

4.6 Comparison with the tube simulation model

In this section, we compare our results with the tube simulation model. The com-

parison is conducted by using the simulation results from the tube and the grid
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model. The tube simulation model is developed by using one-dimensional Rouse

chain simulation which is projected into a three-dimensional freely-jointed random

walk which represent the tube. The segments are independent of each other and the

static properties of the model obey the Gaussian chain. The chain inside the tube

moves in 1D motions with the end beads experience a hypothetical tensile force,

Feq = 3kBT
a

where a is the tube Kuhn segment. The motion is projected into 3D

wheres the tube segments are deleted at the end when the bead does not occupy

anymore. The segment are created when the chain sticks out of the tube. The

observations are based on the 3D motion of the chain such as g1,mid(t), G(t), Φ(t)

and µ(t). The input parameters to the tube simulation model are Ne, a, b1D and

ζ1D.

There are two sets of parameters; a, b1D and ζ1D that can be obtained from both

the tube axis analysis and the primitive path analysis (see Table 4.2). The extrapo-

lated values of the parameters (N →∞) are used as input into the tube model. We

found that the set of parameters from the primitive path analysis produces the sim-

ulation results which are in better agreement with grid model if one includes stress

relaxation function. Fig. 4.19 shows the main results for both simulations with the

chain lengths of N = 64, 128, 256 where the parameters for the tube simulation

model are a = 4.812, b1D = 0.833 and ζ1D = 3.964. These parameters are based on

the grid model with g = 2.

In G(t), both models almost agree with each other after τe ≈ 20 (see Fig.

4.19(c)). The deviation at an earlier time is expected because their dynamics are

different where at initial time, the beads in the tube simulation model are located

along the tube segment and the beads motion are inside the tube. However, the

disagreement in the normalised derivatives Φ(t) goes beyond τe which is approxi-

mately t = 103 (see Fig. 4.19(b)). The g1,mid(t)/t1/2 shows the tube model has a
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slow transition between the first (t ≤ τe) and the third regimes (t ≥ τR,1D).

Generally, most of the plots are in good agreement with the grid model. The

deviations are within the accuracy of the data (tube static analysis) and the fitting

procedure. This analysis shows that determination of a, b1D and ζ1D is essential to

predict the dynamics of the entangled polymer chains.
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Figure 4.19: The comparison between the grid model (symbols) for g′ = 2 with
N = 64, 128, 256 and 512 and the tube simulation model (solid lines) where the
input parameters are a = 4.812, b1D = 0.833, ζ1D = 3.964.
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4.7 Conclusions

The main results for the entangled polymer dynamics such as the properties of

G(t), Φ(t) and g1,mid(t) are compared to the tube theory. We found that µ(t) 6=

Φ(t) and G(t) 6= G0µ(t). The mean square of the middle bead diffusion along

the tube axis, gs(t) is observed and the pre-factor in Eq. 4.10 which gives the

g1,mid(t) inside the tube is obtained. Fitting the simulation results with g1,mid(t)

gives the parameters ab1D and b2
1Dζ1D. This shows that the combination of these

two parameters contributes to the dynamics of the chain inside the tube. Table

4.2 presents the tube parameters which are obtained from gs(t) and g1,mid(t). In

g1,mid(t) these parameters are calculated by using either a or a and b1D from the

static analysis as in Table 4.3.

Table 4.2: Extrapolated values of the tube parameters from the gs(t) and g1,mid(t)

grid
gs(t) g1,mid(t)

b1D ζ1D ab1D b2
1Dζ1D b1D ζ1D

Tube Axis Primitive path
ζ1D ζ1D

1 1.795 0.931 2.05 2.874 1.786 0.955 0.848 4.352
2 2.184 0.577 3.503 3.392 2.100 0.602 0.452 3.964
4 7.021 4.135 1.994 0.250 0.249 3.230

Table 4.3: Extrapolated values of the tube parameters from the static analysis

grid
Tube axis Primitive path
ag bg1D app bpp

1D

1 1.151 1.848 2.997 0.828
2 1.646 2.433 4.812 0.833
4 2.586 3.09 8.702 0.846



Chapter 5

Conclusions

5.1 Conclusions

In this thesis we reported computer simulation of entangled polymer melts. The

most successful model to represent the polymer melt is the tube theory. However

the microscopic foundations of the tube are lacking in this theory and involved some

assumptions which are investigated in this study. The simulation is developed for

the Rouse chain in an array of obstacles which is based on the Brownian dynamics

model with the implementation of the predictor-corrector algorithm. For the entan-

glement effects, the optimised uncrossability constraint is implemented to prevent

the chain from violating the constraints. The CLF and longitudinal relaxation due

to redistribution of segments inside the tube are naturally present. Standard pa-

rameters that are used; ∆t = 0.01, kBT = 1, b1D = 1 and ζ3D = 1. The analysis of

results was divided into two sections.

106
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5.1.1 Static analysis of the tube

One of the static properties of the tube that we studied is the probability distribution

of the tube length. The probability distribution shows that potential force acts on

the chain ends is stronger than the potential predicted by the tube theory. The other

property is the definitions of the tube length which are the tube axis ag, bg1D and the

primitive path app, bpp
1D. The tube length probability distribution is characterised

by two parameters: tube Kuhn length (a), and the chain statistical segment length

(b1D) inside the tube. The results show that ag < app, bg1D > bpp
1D and in both

definitions, b1D 6= b3D. However, the product of a and b1D (ab1D) produces almost

the same value in both methods. The parameters a and b1D from the tube axis are

in good agreement with those in the lattice model in the limit of large grid size.

5.1.2 Dynamics analysis

In this analysis, we are interested to study the assumptions of the tube theory

(ζ1D = ζ3D) and contributions of parameters a, b1D towards the polymer chain

dynamics. The main observations of the grid model are on G(t), g1,mid(t), Φ(t) and

µ(t), show quantitatively similar behavior to the tube theory. However, we found

that the end-to-end relaxation fucntion and the stress relaxation function are not

equal with the tube segment occupation function, Φ(t) 6= µ(t) and G(t) 6= G0µ(t).

The sequence of the relaxation from the fastest to the slowest is µ(t), G(t) and

Φ(t), respectively. In obtaining the tube parameters, we investigated the 1D bead

diffusion along the tube axis, gs(t). From this observable we obtained tube Kuhn

step as the pre-factor to map the gs(t) into real space g1,mid(t). Fitting the simulation

results with the g1,mid(t), we obtained ab1D and b2
1Dζ1D. The analysis found that,

ab1D from this analysis is almost the same as those from the tube axis and the

primitive path analysis. In obtaining the ζ1D, we required a and b1D from the tube
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axis or primitive path analysis. To determine this, we compare our results with the

tube simulation model. We found that the parameters from the primitive path is

able to give a better agreement with the grid model in terms of their G(t), g1,mid(t),

Φ(t) and µ(t).

The drawback of the grid model is that it is not suitable for investigation of the

non-linear experiments, where the large deformation or continuous shear deforma-

tions in 3D will result in the chains to align along the cubic lattice.

5.2 Future directions

5.2.1 Other architectures of polymer

This project can be extended further to study other branched architectures of poly-

mer chains such as star, ring and comb. For example, the star polymer can be

studied by using the grid model where one of the chain end is fixed in space. The

dynamic properties of branched polymers can be observed similarly as in the linear

chain.

5.2.2 Definition of µ(t)

It is interesting to study different definitions of µ(t), for example to assume that

the tube segment is relaxed when it moved out from it’s original tube which is

implemented in [43]. Another definition will be to implement different weight factors

for the tube segments, especially for the end segments.

5.2.3 Effects of CR

In this model, the CR was not introduced and we kept fixed position of the obstacles.

However the obstacle can randomly appear and disappear to mimic other chains thus
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representing the CR [41].



Appendix A

Monte Carlo simulation

A.1 Monte Carlo algorithm

The Monte Carlo simulation has been used widely in various types of polymer sim-

ulations [52, 74, 75]. The simulation implements an algorithm that consists of two

independent steps. First, a trial move from state o to n is performed. The tran-

sition matrix that determines the probability to perform a trial move from an old

position, R0 to its new position, Rn is denoted by α(Ro → Rn). The α is referred

to as the underlying matrix of a Markov chain [50]. The next step is the decision

either to accept or reject the trial. The decision is made by using the Metropolis

method. The method generates a random number, x, then the trial move is accepted

if x < acc(o → n) and rejected otherwise [76]. The acc(o → n) is a matrix of the

probability for accepting the trial moves. It is defined as [50]:

acc(o→ n) =


exp[−β(Un,i − Uo,i)], for Un,i > Uo,i

1, for Un,i ≤ Uo,i

(A.1)

110
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with Un,i is the internal energy of the system when bead i is at position Rn,i and

β = 1/(kBT ).

A.1.1 Implementation of the Monte Carlo model

The implementation of the Monte Carlo model into our computer simulation is as

follows [50,77], for each ‘time’ step:

1. A bead is randomly selected from the total number of beads in the system.

Each time step, not necessary all beads should be selected to move, the selec-

tion is based on a uniform distribution.

2. The selected bead, bead i which in position Ro,i with internal energy Uo,i is

then randomly moved into a new position, Rn,i by [53]:

Rn,i = Ro,i + Γi (A.2)

where the properties of Γi are similar with one in Eq. 2.2. The position Rn,i,

has an internal energy of Un,i

3. The total difference of its energy ∆U = Un,i − Uo,i is calculated.

4. If ∆U ≤ 0, then the move is accepted and we move to step 7.

5. If ∆U ≥ 0, then generates a uniform distribution random number, x in the

range [0, 1]. If x < exp(−∆U/kBT ) then go to step 6, otherwise the bead

remains at it initial position Ro,i.

6. The accepted bead Rn,i is checked whether it violates the obstacles by using the

uncrossability constraints as in section 2.3. If the bead violated the constraint,

then the motion is rejected.
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7. The whole process is repeated N times.

A.1.2 Monte Carlo step

In the Monte Carlo simulation, the static properties are independent on the effective

‘time step’ determined by the maximum displacement of beads. Monte Carlo step

does not reattempt the movement if any constraints are violated. In other words,

the bead only moves into a new position if the movement was accepted by the Monte

Carlo step and did not violate the uncrossability constraints.

The dynamics properties in a Monte Carlo simulation do depend on the effective

time step. The chain moves slower with increasing maximum displacement of a bead

where the movement has high rejection rate. This makes the data for Monte Carlo

different from the Brownian dynamics simulation.

In this section, we are interested in obtaining the most effective time step for our

Monte Carlo simulation. The procedure is by running the same simulations with

N = 32, g′ = 1 and various sizes of ∆t. We begin with ∆t = 0.01 and increase

it by 0.025 which gives ∆t = 0.025, 0.05, 0.075, 0.1 and 0.2. For comparison, the

similar configuration of simulation is used for the Brownian dynamics simulation

with ∆t = 0.01. The results are shown in Figs. A.1, A.3 and A.4 for G(t), g1,mid(t)

and Φ(t), respectively. The observation of G(t) at t = 32 is shown in Fig. A.2(a) and

for g1,mid(t) and Φ(t) are in the insets of Figs. A.3 and A.4, respectively. At small

∆t, mostly all the dynamics observations show the Brownian dynamics and Monte

Carlo are approximately equal to each other. This is because in both simulations,

the beads do not reattempt its motion if constraint was violated. The dynamics

observations from the Monte Carlo simulation show that increasing the ∆t results

in higher rejection rate, thus slower dynamics.

There is an optimal ∆t that balances between the slowing down of the chain
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Figure A.1: The stress relaxation modulus, G(t) from the Monte Carlo withN = 32,
g = 1 and different sizes of the time step, ∆t. The solid line and filled symbol
(in the inset) are obtained from the Brownian dynamics simulation with the same
parameters as in the Monte Carlo and ∆t = 0.01.
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Figure A.2: The G(t) at t = 32 from the Monte Carlo and Brownian dynamics with
N = 32, g′ = 1 as a function of

√
∆t is shown in Fig. A.2(a). Fig. A.2(b) shows

the horizontal shifted of the G(t) in Fig. A.1 until they collapse upon each other.
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Figure A.3: The mean square displacement of the middle bead, g1,mid(t) from the
MC simulation with N = 32, g′ = 1 and different sizes of the time step, ∆t . The
inset presents the g1,mid(t) at t = 32 as a function of

√
t. The solid line and filled

symbol (in the inset) are obtained from the Brownian dynamics simulation with the
same parameters as in the Monte Carlo and ∆t = 0.01.
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Figure A.4: The Φ(t) from the Monte Carlo with N = 32, g′ = 1 and various time
steps as indicated in the legend. The inset shows the Φ(t) at t = 32 over the ∆t. The
solid line and filled symbol (in the inset) are the data from the Brownian dynamics
with the same parameters as in the Monte Carlo and ∆t = 0.01
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dynamics and efficiency of the system. Table A.1 presents the data obtained from

the Monte Carlo with varying ∆t. We begin with ∆t = 0.01 and then increase it

by 0.025 until ∆t = 0.1. For comparison, we use the same input parameters for the

Brownian dynamics with ∆t = 0.01. Figs. A.1 and A.2(b) give a description about

the values in Table A.1, such as the shift factor and how the observations change

with time steps.

Table A.1: The efficiency analysis for the MC steps obtained from N = 32, g′ = 1
and different sizes of the time step, ∆t.

∆t γrej γacc teff ∆teff SG(t) ∆t · SG(t) (∆t · SG(t))/teff

0.01 41.6 58.4 1.971 0.0058 1.000 0.01 0.0051
0.025 57.3 42.7 1.850 0.0107 0.629 0.0157 0.0085
0.05 69.8 30.2 1.72 0.015 0.416 0.0213 0.0125
0.075 76.6 23.3 1.429 0.0175 0.276 0.0207 0.0145
0.1 81.1 18.9 1.362 0.019 0.192 0.0192 0.0141
0.2 89.8 10.2 1.199 0.02 0.072 0.0144 0.0120

Parameters of the analysis are:

1. Fraction of rejection γrej and fraction of attempted moves that are accepted of

the Monte Carlo moves, γacc = 1− γrej.

2. Efficiency of the computer simulations, teff , is the average time in micro seconds

of the processor per particle to complete one simulation step. The teff is

independent of the chain length.

3. Effective time steps denote as ∆teff with ∆teff = ∆t/γacc is the product of the

time step and the fraction of acceptance ratio, where increasing the time steps

makes the acceptance ratio decrease.

4. SG(t), is the time shift factor of G(t) between data from the Monte Carlo and

the Brownian dynamics.

5. ∆t · SG(t), is the relation between the time shift factor and the time step.
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6. The (∆t·SG(t))/teff is the effect of the shift factor and ∆t towards the efficiency

of the simulations.

As shown in Table A.1, all parameters change with time step. Increasing time

step makes the percentage of acceptance rate decrease and efficiency of the sys-

tem increase. The efficiency of the system increase with increasing ∆t because the

uncrossability algorithm require 3 steps of checking to accept the bead movement.

However the movement is rejected if the algorithm failed in one of the cheks.

The larger time steps makes the Monte Carlo largely deviate from the Brownian

dynamics simulation. The optimal time step that will be used in our Monte Carlo

simulation is ∆t = 0.05, because ∆t ·SG(t) has a maximum there, meaning this time

step provides most efficient simulations.

By using the optimal time step, we conducted comparison efficiency between the

Brownian dynamics and Monte Carlo simulations. The analysis was conducted by

running both simulations simultaneously and observing outputs of the simulations

after specific real time running. The results are presented in Table A.2.

Table A.2: Comparison analyses of the MC and BD simulations for N = 32, g′ = 1
with ∆t = 0.05 and 0.01, respectively. teff , is the efficiency of the simulation, tSim is
the simulation time, τd is the disengagement time.

unit time BD MC
Duration real time 1 hour 51 minutes 1hour 51 minutes

Simulation running simulation time 1.423e6 1.431e7
teff computer time 1.432 0.7102
τd simulation time 1239.08 3995.766

tSim/τd 1148.4 3581.29
(tSim/τd)MC/(tSim/τd)BD 1 3.11

The simulations of N = 32, g′ = 1 with ∆t = 0.01 and t = 0.05 for Brownian

dynamics and Monte Carlo simulations, respectively, were run about 2 hours in real

time on a similar computer with the processor Dual-Core AMD Optron @ 2.394

MHz. In Table A.2, the Monte Carlo was able to run up to 10 times longer (in
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simulation time), more efficiency and was able to run approximately 3 times of its

τd compared to the Brownian dynamics. As a result, we use the Monte Carlo steps

simulation in the validation of our models and also for longer polymer chains.



Appendix B

Algorithm for tube mapping

The algorithm for tube mapping, involves:

1. The coordinate of vertices in the tube at its previous time step, Vp is compared

with the current tube, Vc. The comparison is conducted by taking vertex i

at tube Vp
i = {Vp

0 , . . . ,V
p
Zp} and comparing it with all vertices in the current

tube, Vc = {Vc
0, . . . ,V

c
Zc}. Zp and Zc are the number of tube segments in

the previous and current time steps, respectively. If the coordinate of vertex

j of Vc is the same with the coordinate of vertex i in Vp then the index of

vertex j is stored in array, eS[i] = j. j = −1 if no cell is found. This process

is repeated until all vertices in Vp are compared. The output in this step is

eS[i] = j1, j2, . . . , jn, i = 1, . . . , Zp, where jn is the number of indices in Vc

that is located in the same cell i in Vp. For example, consider Vp and Vc

as shown in Fig. B.1. After comparing all elements in Vp then the eS[i] is

obtained as presented in Table B.1.

2. The array eS[i] is analysed to determine the list of indices in Vc that is mapped

with Vp. The ‘mapped’ element is defined as the relation between the index

of Vc with the index in Vp where they are located in the same location. The

119
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Figure B.1: Two dimensional view, the previous time step tube Vp is denoted by a
dotted line and the current tube Vc by a dashed line. The circles show the index of
cells for these tubes.

output from this analysis is stored in one dimensional array called S[i]. Firstly,

in this procedure, the middle element of eS[i] is determined. If eS[mid] =

j1(only one integer, unique) then j1 becomes a reference index. The middle

element (i = mid) is selected because the middle cell moves slower than the

end cells. Secondly, a sequence of integer (which represents the cell index)

is constructed for S[i]. The construction of the sequence is by listing the

Table B.1: Elements of array eS, vertex 1, 2, 5 and 6. Consist two of tube’s vertices
are located in the same cell with the reference cell, i.

element array eS mapped cell with Vc

eS[0] -1
eS[1] 1, 5
eS[2] 2, 6
eS[3] 3
eS[4] 4
eS[5] 1, 5
eS[6] 2, 6
eS[7] 7
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smaller to the larger value than the reference index. The sequence in array

S[i] is used to determine which cells in Vp are deleted or cells in tube Vc

are newly created. For example, referring to eS[i] in Table B.1, the middle

element eS[4] = 4 where j1 = 4 (only has one value). The mapped sequence

is constructed by using j1 = 4 as a reference index as shown in Table B.2 (the

integers are marked by the squared boxes). The sequence is stored in array

S[i] as shown in Table B.3.

Table B.2: List of indices
element array eS mapped cell with Vc

eS[0] -1

eS[1] 1 , 5

eS[2] 2 , 6

eS[3] 3

eS[4] 4

eS[5] 1, 5

eS[6] 2, 6

eS[7] 7

Table B.3: The S of tube Vp.
element array S mapped cell with Vc

S[0] -1
S[1] 1
S[3] 3
S[4] 4
S[5] 5
S[6] 6
S[7] 7

3. If eS[mid] = j1, j2, ... (i.e., it is not unique in the middle element such as

eS[5] = 3, 7 in Table B.4), then the next element in eS[i] which have unique

index is determined.

4. A validation is required for step 3 to ensure the correct sequence is obtained.

This is conducted by comparing the content and the element index of array
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S[i], where S[i] = ji. The difference is defined as dj = |ji − i| with ji ≥ 0. If

dj > 10 in 3D or dj > 6 in 2D then step 5 is executed otherwise the procedure

jumps to step 6. For example, Vp and Vc as in Fig. B.2 and its eS[i] is shown

in Table B.4. Only eS[0] = j1 with j1 = 8 (unique element) and the mapped

element is shown in Table B.5. The series shows that cell 0 in Vp has moved

about 8 cells in one time step, dj = 8. As a result, the selected series is invalid.

 

X  

X  

X  

X  X  

X  X  X  

X  

X  X  X  

0  1  2  

4  3  

5  6  

7  8  

9  
0  

1  2  

3  4  

5  6  

7  8  

Figure B.2: Tube configuration, where the dashed line is the Vp and dotted line is
the Vc.

Table B.4: Mapped element of tube Vp with tube Vc.
element array eS mapped cell with Vc

eS[0] 8
eS[1] 3,7
eS[2] 0, 4
eS[3] 1, 5
eS[4] 2, 6
eS[5] 3, 7
eS[6] 0, 4
eS[7] 1, 5
eS[8] 6, 2
eS[9] 3, 7

5. By using each integer in the middle cell (j1 = 3 and j2 = 7, in the previous
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Table B.5: Array S
element array S mapped cell with Vc

S[0] 8
S[1] -1
S[2] -1
S[3] -1
S[4] -1
S[5] -1
S[6] -1
S[7] -1
S[8] -1
S[9] -1

example), the number of sequences are determined. The longest sequence is

selected because the possibility for a large number of tube cells to disappear

in one time step is likely. For example, as shown in Vp and Vc in Fig. B.2

and eS[i] in Table B.4. The middle element is ‘mid= 5’. Thus, eS[mid] = j1

and eS[mid] = j2 with j1 = 3 and j2 = 7, respectively. The first series from

j1 = 3 gives 0, 1, 2, 3, 4, 5, 6 and the second series is 3, 4, 5, 6, 7. The

longest series, which in this case is j1 = 3 is saved in array S[i].

Table B.6: Series of the mapped elements.
element array eS mapped cell with Vc

eS[0] 8
eS[1] 3,7

eS[2] 0 ,4

eS[3] 1 , 5

eS[4] 2 , 6

eS[5] 3 , 7

eS[6] 0, 4

eS[7] 1, 5

eS[8] 6 , 2

eS[9] 3, 7

6. Finally, the sequence in array S[i] is analysed to determine the number of cells

in Vp to be added or deleted. The element in S[i] which has a value of −1
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means the cell in Vp is removed. If Zc > Zp then a new cell is added into Vp.

B.0.1 Validation of the algorithm

The validation is conducted by observing the percentage of the types of obtaining

the mapped segments. The parameters for validation as follows:

•Middle Unique: the unique element located in the middle cell of the tube.

•Other Unique: the unique element located in the other cells of the tube.

• Longest: no unique element found thus the selected series is based on the

series which has the longest number of cells selected.

• Equal: when the series are equal length, then any of the series can be chosen.

• Large Shift: the tube has shifted a large number of cells at one time step.

Table B.7 present the percentage of some parameters listed above for g = 1 with

various chain lengths. The analysis shows that the unique element that is located

in the middle cell is the highest (about more than 80%). However, it decreases

with the longer chains. This is caused by the higher probability of the chain to

form entangled loops. This analysis shows our decision to use the middle cell as a

reference cell in the mapping is acceptable.

Table B.7: Percentage of location the unique element of cells
Type N=16 N=32 N=64 N=128

Middle unique 86% 79% 72% 69%
Other unique 14% 21% 28% 31%

Longest 0% 0% 0% 0%
Large shift 0% 0% 0% 0%
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[18] S. Shanbhag and M.Kröger, “Primitive path networks generated by annealing

and geometrical methods: insight into differences,” Macromolecules, vol. 40,

pp. 2897–2903, 2007.

[19] K. Foteinopoulou, N. Ch. Karayiannis, V. G. Mavrantzas, and M. Kröger,
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