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Abstract

In this thesis we consider stochastic resonance for a diffusion with drift given by a potential,
which has two metastable states and two pathways between them. Depending on the
direction of the forcing the height of the two barriers, one for each path, will either oscillate
alternating or in synchronisation.

We consider a simplified model given by discrete and continuous time Markov Chains
with two states. This was done for alternating and synchronised wells. The invariant
measures are derived for both cases and shown to be constant for the synchronised case.
A PDF for the escape time from an oscillatory potential is reviewed.

Methods of detecting stochastic resonance are presented, which are linear response,
signal-to-noise ratio, energy, out-of-phase measures, relative entropy and entropy. A new
statistical test called the conditional Kolmogorov-Smirnov test is developed, which can be
used to analyse stochastic resonance.

An explicit two dimensional potential is introduced, the critical point structure derived
and the dynamics, the invariant state and escape time studied numerically.

The six measures are unable to detect the stochastic resonance in the case of synchro-
nised saddles. The distribution of escape times however not only shows a clear sign of
stochastic resonance, but changing the direction of the forcing from alternating to syn-
chronised saddles an additional resonance at double the forcing frequency starts to appear.
The conditional KS test reliably detects the stochastic resonance even for forcing quick
enough and for data so sparse that the stochastic resonance is not obvious directly from
the histogram of escape times.
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Introduction

Outline of Problem

Consider the following problem. Let Xε
t be the random variable describing the trajectory

of a diffusion process in Rr where t is the time and ε2 is the variance level. More precisely
we consider processes described by the following type of stochastic differential equation

dXε
t = b (Xε

t , t) dt+ ε dWt

where b : Rr×R −→ Rr and Wt is a Wiener process in Rr. We suppose that the drift term
b has the form

b(x, t) = −∇V0(x) + F cos Ωt

where F, x ∈ Rr and V0 : Rr −→ R is called the unperturbed potential. We consider
unperturbed potentials with two or more minimas (wells). Most importantly, we consider
potentials where there are multiple pathways between the wells. To our knowledge systems
with two pathways have not been studied in the context of stochastic resonance.

Consider the case Ω = 0 and where the noise ε is very small. The particle will stay very
close to one of the wells of the potential and will occasionally escape to the other well. The
time of the actual transition from one well to the other is very short compare to the time
it stays in any particular well.

Now consider the case where Ω > 0. For particular choices of Ω > 0 and ε > 0, these
transitions between the two wells will become synchronised with the driving frequency
Ω. This is called stochastic resonance. Thus the term noise induced synchronisation was
used for systems where the amplitude of the forcing F was not large [1, 2] (see also the
discussions in [3]). New insights into the exact manner of these synchronised transitions
will be studied in this thesis, which may be more appropriate in light of the results obtained
in this thesis.

For small noise ε, one would expect that stochastic resonance depends only on the
essential properties of the system, such as the height difference between the wells and the
pathways for escape. We investigate what effects these multiple pathways have on the
appearance of stochastic resonance. Varying F , Ω and ε should thus reveal the qualitative
structure of the unperturbed potential V0. In this thesis we test this paradigm by studying
a two dimensional example with two wells and two independent pathways between them,
see Chapter 5.
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Historical Background

Stochastic resonance has attracted interest among mathematicians and physicist. An
overview of the studies that have occurred in both physics and mathematics are given
here.

Physical Background

Stochastic resonance was first observed in 1981 [4–6]. The first example [4] considered
transitions between two metastable states to model the cyclic occurrences of ice ages.
Since then many examples of stochastic resonance were found in optics [7–10], electronics
[11–19], neuronal systems [20], quantum systems [21,22] and paddlefish [23,24]. Stochastic
resonance could be thought of as quasi-deterministically periodic transition between two
metastable states. For example, the climate of the Earth could be modelled by two states.
There is a state corresponding to an Ice Age and another corresponding to the opposite of
an Ice Age, a so-called “Hot Age”. As the Earth’s climate cyclically changes many times
between Cold Ages and Hot Ages, its behaviour could be modelled by stochastic resonance.

A range of techniques for example linear response [25, 26], signal-to-noise ratio [27, 28]
and distribution of escape times [28–30] were used to define, analyse and study stochastic
resonance. These techniques along with other examples of stochastic resonance are re-
viewed in the long overview paper by Gammaitoni, Hänggi, Jung and Marchesoni [31]. We
will evaluate the usefulness of some of these techniques for our problem, see Chapter 7.

Mathematical Background

There are various mathematical studies of stochastic resonance. These often involve differ-
ent orders of approximations for small noise levels. The first and second order of approxi-
mations are discussed below. Adiabatic large deviation is also presented.

In the first leading order of approximation, a key element of study is to control the
escape times from the wells as given by the so called large deviation theory, see the mono-
graph of Freidlin and Wentzell [32]. The distribution of the exit time was derived by Day
in [33] and by Galves, Kifer, Olivieri and Vares [34–36]. To go beyond leading order has
been much more difficult for the transition problem between two wells as WKB theory
could up to now not be rigorously applied.

The next order of approximation was rigorously derived by Bovier, Eckhoff, Gayrard,
Klein [37] and Berglund and Gentz [38] using techniques from potential theory. Berglund
and Gentz in a series of papers studied the situation of low, non-quadratic barriers and
drifts not given by autonomous potentials [3, 38]. A review of different techniques used to
derive Kramers’ formula can be found in the review paper [39].

In [40] Friedlin considered stochastic resonance in the adiabatic regime. This means
the diffusion can effectively be described by a Markov process which describes the jumps
between wells. This problem was revisited by Hermann, Imkeller and Pavlyukevich, see
Chapter 4 in [41] and references therein, to derive results uniformly for varying time scale
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to identify the optimal resonance point asymptotically for small noise even outside the
adiabatic regime leading to different logarithmic corrections including the famous cycling
effect discovered by Day [42], see also [43] for the connection with stochastic resonance.
Escape time outside of adiabatic regime is studied in [44].

As mentioned above in leading order the transitions of the diffusion process Xε
t between

the wells can be approximated by a two state Markov Chain Y ε
t = ±1 which have been

studied [41,45–47]. Further comparative studies of the stochastic resonance for the diffusion
case Xε

t versus the Markov Chain Y ε
t case were done by Hermann, Imkeller, Pavlyukevich

and Peithmann in [48–51]. A collection of papers on comparative studies between stochastic
resonance in diffusion and Markov Chains can be found in the monograph [41]. One
of the main conclusions in [41, 49–51] is rigorously showing that using linear response
and signal-to-noise ratio to analyse stochastic resonance in the diffusion case Xε

t gives a
different result to analysing the Markov Chain case Y ε

t = ±1 with the same techniques even
asymptotically in the small noise limit. Other common methods used to study stochastic
resonance include invariant measures and Fourier transforms. We consider six measures
of stochastic resonance frequently used and considered by Pavlyukevich in his thesis [41,
45] which are linear response, signal-to-noise ratio, energy, out-of-phase measure, relative
entropy and entropy.

In this thesis we will study stochastic resonance on a two dimensional toy model, in
both the diffusion and Markov Chain cases, and where there are two independent pathways
between the wells going through two different saddles. The escape times and the six
measures of stochastic resonance introduced above are studied.

Summary of Research

In Chapter 1 we review the first model in which stochastic resonance was observed, that
is, we are considering the unperturbed potential

V0(x) =
x4

4
− ax

2

2

and the corresponding SDE

dXε
t = [−∇V0 + F cos(Ωt)] dt+ ε dWt.

In one dimension the escape time can be explicitly computed as the solution to an ODE
and using Laplace method asymptotic formulas can be derived. In Chapter 2 a review
of large deviation theory and results concerning escape times are given. In Chapter 2.2
further results, based on potential theory, are given and the analogue of Kramers’ formula
for our case is presented. In Chapter 3 discrete and continuous time Markov Chains are
considered. The associated invariant measures and the relaxation time to this invariant
measure is derived for alternating and synchronised wells. The probability density function
of escape times is derived as well. In Chapter 4 the six measures used to analyse stochastic
resonance mentioned above are introduced. Furthermore, methods used to study escape
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times are given and in particular a new version of the Kolmogorov-Smirnov test suitable for
this problem is discussed. In Chapter 5 the main model under consideration in this thesis
is studied, which has two wells and two saddles. The two wells are connected through to
independent pathways each through one of the saddles. Due to its form, we nicknamed it
the Mexican Hat Toy Model

V0(x, y) =
1

4
r4 − 1

2
r2 − ax2 + by2 where r =

√
x2 + y2.

We rigorously derive the qualitative structure of the potential with and without external
forcing. In Chapter 6 the numerical methods used to simulate the associated SDE

dx =

[
−∂V0

∂x
+ Fx cos Ωt

]
dt+ ε dwx

dy =

[
−∂V0

∂y
+ Fy cos Ωt

]
dt+ ε dwy

are discussed and non rigorous estimates of all relevant error sources are given necessary to
be confident about the precision of the simulation needed. The dwx and dwy are x and y
components of the two dimensional Wiener processes. The numerical algorithm used is the
Euler method [52] which is sufficiently accurate for our purposes. In Chapter 7 the results
from simulating the SDE are presented and interpreted. The six measures are studied and
the quality of the approximation by the aforementioned Markov chains is tested using the
Kolomogorov-Smirnov test developed. The results were repeated in a sparse data context.

In Chapter 7 the main findings and conclusions of this thesis are presented. It is shown
that the six measures are unable to detect stochastic resonance in the case of synchronised
saddles. The six measures show no sharp signature as the saddles change from alternating
to synchronised saddles. This is due to the fact that the invariant measures are constant
for synchronised saddles. By contrast, not only did the distribution of escape times show
a signature for stochastic resonance with synchronised saddles; the distribution of escape
times did show a clear signature as the saddles change from alternating to synchronised, by
exhibiting signatures which we call the Single, Intermediate and Double Frequency. The
newly developed conditional Kolomogorov-Smirnov test was shown to be a good method
to analyse the statistics of the escape times.

This thesis then finishes with a conclusion of the results obtained. In Appendix A the
conventions used are collected. In Appendix B the methods used to calculate the Fourier
transforms and the escape times are explained.
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Chapter 1

Stochastic Resonance

The earliest known and simplest example of stochastic resonance is reviewed. This was
done in 1981 [4]. Properties about its escape times are derived. Estimates for the resonance
noise level εres are given. The techniques involved include a review of Laplace method. This
study only works for ε in the small noise approximation. Only one dimensional systems
will be studied in this Chapter. Deducing properties about the underlying potential is
trivial.

1.1 Laplace Method

The main technique used to study exit times in one dimension is the so called Laplace
Method. For completeness and to get a better understanding of the mechanism we are
going to study, a proof will be provided later on.

Theorem 1.1. (Laplace Method) Let f : [a, b] → R be twice differentiable on [a, b]. Let
x0 ∈ (a, b) be unique such that f(x0) = maxx∈(a,b) f(x). Assuming f ′′(x) is continuous on
[a, b] with f ′(x0) = 0 and f ′′(x0) < 0 then

lim
n→∞

 ∫ b
a
enf(x)dx

enf(x0)
√

2π
n(−f ′′(x0))

 = 1.

A Corollary follows from Laplace Method as a special case of Theorem 1.1.

Corollary 1.2. Let f : [a, b] → R be twice differentiable on [a, b]. Let x0 = a or x0 = b
be unique such that f(x0) = maxx∈[a,b] f(x). Assuming f ′′(x) is continuous on [a, b] with
f ′(x0) = 0 and f ′′(x0) < 0 then

lim
n→∞

 ∫ b
a
enf(x)dx

1
2
enf(x0)

√
2π

n(−f ′′(x0))

 = 1.
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We recall Taylor’s Remainder Theorem which is needed in the proofs.

Theorem 1.3. Suppose that f : R→ R is (n+ 1) times differentiable on R. Let x, a ∈ R,
with x > a then f can be expressed as

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ fn(a)

n!
(x− a)n +Rn+1(x)

where Rn+1 the remainder can be expressed as

Integral Form Rn+1(x) =
1

n!

∫ x

a

(x− t)nfn+1(t)dt

Lagrange Form Rn+1(x) =
fn+1(ξ)

(n+ 1)!
(x− a)n+1 , ξ ∈ [a, x].

The following simple Lemma is also needed in the proof of Laplace Method.

Lemma 1.4. Let f : [a, b] −→ R be continuous. Let x0 be a unique maximum such that
f(x0) = maxx∈[a,b] f(x), then for any fixed δ > 0, there exists an η > 0 such that for any
s /∈ (x0 − δ, x0 + δ) we have

η ≤ f(x0)− f(s).

Now we review proofs of the methods needed.

Proof of Lemma 1.4. We know that x0 is the unique maximum, which means

0 < f(x0)− f(s)

for any s /∈ (x0 − δ, x0 + δ). This means the infinum of the set is bounded by zero

inf {f(x0)− f(s) : s /∈ (x0 − δ, x0 + δ)} ≥ 0.

Suppose that the infinum of the set is zero

inf {f(x0)− f(s) : s /∈ (x0 − δ, x0 + δ)} = 0

and yet all elements of the set are strictly greater than zero. This means some members
would be arbitrarily close to zero,

0 < f(x0)− f(s) < ε

where ε is arbitrarily small. There exists a sequence

(sn)n≥1 ⊂ [a, b]\(x0 − δ, x0 + δ) = [a, x0 − δ] ∪ [x0 + δ, b]

such that

0 < f(x0)− f(sn) <
1

n
=⇒ f(x0) < f(sn) +

1

n
.
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But this sequence is in a compact set, which must have a subsequence which converges to
a member s′ ∈ [a, x0 − δ] ∪ [x0 + δ, b], that is

f(x0) ≤ f(s′)

which contradicts the fact x0 is the unique maximum. This implies that

inf {f(x0)− f(s) : s /∈ (x0 − δ, x0 + δ)} > 0

so the η > 0 as in the assertion of the Lemma must exist.

Proof of Theorem 1.1. A differentiable function is also a continuous function. Since f(x0) =
maxx∈[a,b] f(x) we can say f ′(x0) = 0. Using the Taylor’s Remainder Theorem we can
rewrite f(x) for x ∈ [x0, x0 + δ] for some δ > 0 and ξ ∈ [x0, x] as

f(x) = f(x0) +
f ′′(ξ)

2
(x− x0)2.

We can obtain an upper and lower bound for f ′′(ξ) by exploiting its continuity on [a, b].
Since x ∈ [x0, x0 + δ] we must also have ξ ∈ [x0, x0 + δ]. So

|ξ − x0| ≤ δ.

For any ε > 0 and for a sufficiently small δ, we can have

|f ′′(ξ)− f ′′(x0)| < ε.

This means we can say

−ε < f ′′(ξ)− f ′′(x0) < ε

f ′′(x0)− ε <f ′′(ξ) < f ′′(x0) + ε

which gives

f(x) ≤ f(x0) +
1

2
(f ′′(x0) + ε)(x− x0)2 (1.1)

f(x) ≥ f(x0) +
1

2
(f ′′(x0)− ε)(x− x0)2. (1.2)

We start with the lower bound for f(x) as in Equation 1.1∫ b

a

enf(x)dx ≥
∫ x0+δ

x0−δ
enf(x)dx

≥ enf(x0)

∫ x0+δ

x0−δ
e
n
2

(f ′′(x0)−ε)(x−x0)2dx

= enf(x0) 1√
n(−f ′′(x0) + ε)

∫ +δ
√
n(−f ′′(x0)+ε)

−δ
√
n(−f ′′(x0)+ε)

e−
1
2
y2dy
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where we have made a transformation using

y =
√
n(−f ′′(x0) + ε)(x− x0).

Dividing both sides by enf(x0)
√

2π
n(−f ′′(x0))

gives ∫ b
a
enf(x)dx

enf(x0)
√

2π
n(−f ′′(x0))

 ≥ 1√
2π

√
−f ′′(x0)

−f ′′(x0) + ε

∫ +δ
√
n(−f ′′(x0)+ε)

−δ
√
n(−f ′′(x0)+ε)

e−
1
2
y2dy. (1.3)

Using Lemma 1.4 we can say that for any fixed δ, there exists an η > 0 such that for any
s /∈ (x0 − δ, x0 + δ) we have

η ≤ f(x0)− f(s).

So we can proceed with∫ b

a

enf(x)dx =

∫ x0−δ

a

enf(x)dx+

∫ x0+δ

x0−δ
enf(x)dx+

∫ b

x0+δ

enf(x)dx

≤
∫ x0−δ

a

en(f(x0)−η)dx+

∫ x0+δ

x0−δ
enf(x)dx+

∫ b

x0+δ

en(f(x0)−η)dx

= (x0 − δ − a)en(f(x0)−η) + (b− x0 − δ)en(f(x0)−η) +

∫ x0+δ

x0−δ
enf(x)dx

= (b− a− 2δ)en(f(x0)−η) +

∫ x0+δ

x0−δ
enf(x)dx.

Now we use the upper bound for f(x) from Equation 1.2. So∫ b

a

enf(x)dx ≤ (b− a)en(f(x0)−η) + enf(x0)

∫ x0+δ

x0−δ
e
n
2

(f ′′(x0)+ε)(x−x0)2dx

≤ (b− a)en(f(x0)−η) + enf(x0)

∫ +∞

−∞
e
n
2

(f ′′(x0)+ε)(x−x0)2dx

= (b− a)en(f(x0)−η) + enf(x0)

√
2π

n(−f ′′(x0)− ε)

where ε is chosen small enough so that (f ′′(x0) + ε) < 0 is still negative. Now divide both

sides by enf(x0)
√

2π
n(−f ′′(x0))

which gives ∫ b
a
enf(x)dx

enf(x0)
√

2π
n(−f ′′(x0))

 ≤ ((b− a)e−nη
√
n(−f ′′(x0))

2π
+

√
−f ′′(x0)

−f ′′(x0)− ε

)
. (1.4)
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Now using the other bound for

( ∫ b
a e

nf(x)dx

enf(x0)
√

2π
n(−f ′′(x0))

)
from Equation 1.3 together with Equa-

tion 1.4 gives

1√
2π

√
−f ′′(x0)

−f ′′(x0) + ε

∫ +δ
√
n(−f ′′(x0)+ε)

−δ
√
n(−f ′′(x0)+ε)

e−
1
2
y2dy ≤

 ∫ b
a
enf(x)dx

enf(x0)
√

2π
n(−f ′′(x0))


≤

(
(b− a)e−nη

√
n(−f ′′(x0))

2π
+

√
−f ′′(x0)

−f ′′(x0)− ε

)
.

Now we can take the limit as n→ +∞ which gives√
−f ′′(x0)

−f ′′(x0) + ε
≤ lim

n→∞

 ∫ b
a
enf(x)dx

enf(x0)
√

2π
n(−f ′′(x0))

 ≤√ −f ′′(x0)

−f ′′(x0)− ε

after noting that limn→0 e
−nη√n = 0 and limn→∞

∫ +δ
√
n(−f ′′(x0)+ε)

−δ
√
n(−f ′′(x0)+ε)

e−
1
2
y2dy =

√
2π. Since ε

can be chosen to be arbitrarily small using the Sandwich Theorem gives

lim
n→∞

 ∫ b
a
enf(x)dx

enf(x0)
√

2π
n(−f ′′(x0))

 = 1.

Proof of Corollary 1.2. If x0 = a then the proof is the same but with a few adjustments.
In other words, the interval [x0 − δ, a] does not need to be considered as it is outside the
region of integration. ∫ x0+δ

x0−δ
→
∫ x0+δ

x0∫ x0−δ

a

→ 0∫ b

x0+δ

→
∫ b

x0+δ

and the resulting computation would give the extra factor of 1
2

after using∫ x0+δ

x0

e
n
2

(f(x0)±ε)dy =
1

2

∫ x0+δ

x0−δ
e
n
2

(f(x0)±ε)dy.

A similar argument holds for x0 = b. Note that the computation shows that only a small
neighbourhood of x0 is relevant asymptotically and that the average term is exponentially
small in n.
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1.2 One Dimensional Potential

The potential we are interested in is

V0 =
x4

4
− ax

2

2

where a > 0. When this is given a driving frequency it is1

Vt = V0 − Fx cos Ωt

=
x4

4
− ax

2

2
− Fx cos Ωt

which when the forcing is zero, the potential has two wells at x0 = ±
√
a. The SDE we

want to study is

dx

dt
= −∇Vt + ε

dw

dt
dx =

[
x(a− x2) + F cos Ωt

]
dt+ ε dw

where w is a one dimensional Wiener process. Consider a realisation of the trajectory x(t)
starting at x(0) = y. Its escape time from the left well τ1 and right well τ2 are defined as

τ1(y) = inf{t : x(t) = 0 and x(0) = y} where y ∈ (−∞, 0) (1.5)

τ2(y) = inf{t : x(t) = 0 and x(0) = y} where y ∈ (0,+∞). (1.6)

Note that the trajectory x(t) is related to the escape times τ1 and τ2. Define a new quantity
by

f in(y) = 〈τi(y)n〉

with i = 1, 2 for the two wells and n = 1, 2, . . .. Note 〈·〉 denotes the mean average over
all realisations. Also note that the nth moment is being used here. In [4] a method by
Gihman and Skorohod [53] was used to derive the following equation

1

2
ε2
d2

dy2
f in(y)− V ′ d

dy
f in(y) = −nf in−1(y) (1.7)

where V ′ is a shorthand for V ′ = ∇V0 if we are escaping from the potential described by
V0. Note that the potential is frozen in the case of V0. Similarly V ′ is a shorthand for
V ′ = ∇Vt if we are escaping from the potential described by Vt. The following boundary
conditions are

f in(0) = 0,
d

dy
f 1
n(−∞) = 0 and

d

dy
f 2
n(+∞) = 0.

1See Appendix A for a full explanation of the notation used for the potentials.
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Having f in(0) = 0 is appropriate since being at y = 0 means it is in neither well and so has
already escaped at t = 0 anyway. We can see how d

dy
f 1
n(−∞) = 0 and d

dy
f 2
n(+∞) = 0 make

sense by considering f 2
1 as an example. If the particle starts at x(0) = y, where y is a very

large positive number y � N
√
a (where N � 1) then with the equilibrium point being an

attractor, it would more or less deterministically slide towards x = +
√
a. We call the time

it takes for it to travel to x = +
√
a, τ ′. If the particle starts somewhere further beyond y

say x = y+ δ, where δ > 0 , it would also slide down to x = +
√
a almost deterministically.

We call this new time to get to x = +
√
a, τ ′′. Intuitively, we would expect τ ′ ≈ τ ′′ so

d
dy
f 2

1 (−∞) = 0.
The aim now is to solve Eqn 1.7 for different cases. These are for F = 0 and F 6= 0, in

the small noise approximation.

1.2.1 One Dimensional Potential - Case F = 0

The potential is stationary and does not depend on time. It is symmetric at x = 0 so we
must have

f 1
1 (−y) = f 2

1 (y).

For simplicity we denote the following

f = f 1
1 and I =

df

dy

which rewrites the differential equation as

1

2
ε2
dI

dy
− V ′0I = −1

where V ′0 = ∇V0. Using an integrating factor gives

d

dy

(
I × exp

{∫ y

0

− 2

ε2
V ′0(s) ds

})
= − 2

ε2
exp

{∫ y

0

− 2

ε2
V ′0(s) ds

}
which gives

d

dy

(
I × exp

{
− 2

ε2
V0(y)

})
= − 2

ε2
exp

{
− 2

ε2
V0(y)

}
.

We know that I(−∞) = 0 so integrating we have

I(y)× exp

{
− 2

ε2
V0(y)

}
− I(−∞)× exp

{
− 2

ε2
V0(−∞)

}
= − 2

ε2

∫ y

−∞
exp

{
− 2

ε2
V0(s)

}
ds

and proceeding we have

I(y)× exp

{
− 2

ε2
V0(y)

}
= − 2

ε2

∫ y

−∞
exp

{
− 2

ε2
V0(s)

}
ds
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I(y) = − 2

ε2
exp

{
+

2

ε2
V0(y)

}∫ y

−∞
exp

{
− 2

ε2
V0(s)

}
ds.

We know that f(0) = 0 so integrating we have

f(y)− f(0) = − 2

ε2

∫ y

0

exp

{
+

2

ε2
V0(u)

}∫ u

−∞
exp

{
− 2

ε2
V0(s)

}
ds du

which we rewrite as

f(y) = − 2

ε2

∫ y

0

exp

{
+

2

ε2
V0(u)

}
g(u) du (1.8)

where g(u) =

∫ u

−∞
exp

{
− 2

ε2
V0(s)

}
ds.

Up to now the methods we have used for solving f(·) are exact and the boundary conditions
on f(·) have also been kept. There are no approximations to our approach so far. Recall
that y < 0. We seek an approximate solution for f(y) in the region y ∈ [−

√
a, 0]. Now we

use Laplace Method in the small noise limit (small ε) to evaluate the integrals in Equation
1.8. Note that

max
u∈[−∞,0]

(
− 2

ε2
V0(u)

)
= − 2

ε2
V0

(
−
√
a
)
.

Using the Laplace Method for small ε gives the approximation

g(u) ≈


√

πε2

2a
exp

{
a2

2ε2

}
if u ∈ (−

√
a, 0]

1
2

√
πε2

2a
exp

{
a2

2ε2

}
if u = −

√
a

This means g(u) ≈
√

πε2

2a
exp

{
a2

2ε2

}
almost everywhere with respect to the Lebesgue mea-

sure on [−
√
a, 0]. This approximates f(·) to

f(y) ≈ +
2

ε2

√
πε2

2a
exp

{
a2

2ε2

}∫ 0

y

exp

{
+

2

ε2
V0(s)

}
ds

where we have switched the limits of the integral. We use Laplace Method again after
noting that

max
s∈[−

√
a,0]

(
+

2

ε2
V0(s)

)
= +

2

ε2
V0(0)

here the maximum is on the edge on the boundary meaning we would need an extra factor
of 1

2
. So

f(y) ≈ +
2

ε2

√
πε2

2a
exp

{
a2

2ε2

}
1

2

√
πε2

a

=
1√
2

π

a
exp

{
a2

2ε2

}
.
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1.2.2 One Dimensional Potential - Case F 6= 0

The potential is now oscillating. We aim to do a similar calculation to the static potential
case. We make an approximation by assuming that the amplitude of the oscillations F is
small enough such that there will always be two distinct wells. The positions of the critical
points and wells will be very close to the static potential case. We can just focus on one
well x0(t) on the left of the hill which is dependent on the time t. The method is similar
to what we have used in the F = 0 case. We have

f(y) = − 2

ε2

∫ y

0

exp

{
+

2

ε2
Vt(u)

}∫ u

−∞
exp

{
− 2

ε2
Vt(s)

}
ds du (1.9)

= +
2

ε2

∫ 0

y

exp

{
+

2

ε2
Vt(u)

}
gt(u) du

where gt(u) =

∫ u

−∞
exp

{
− 2

ε2
Vt(s)

}
ds

since y < 0 the limits of the integral may be switched. Notice we have approximated the
situation by assuming that the hill moves very little away from x = 0 which is what makes
Equation 1.9 valid. We seek a solution for f(y) in the region y ∈ [x0(t), 0]. For small ε, we
can use Laplace’s Method to approximate the integrals in Equation 1.9. Note that

max
u∈[−∞,0]

(
− 2

ε2
Vt(u)

)
= − 2

ε2
Vt (x0(t)) .

Now using the Laplace’s Method gives

gt(u) ≈

 exp
{
− 2
ε2
Vt (x0(t))

}√
πε2

V ′′t (x0(t))
if u ∈ (x0(t), 0]

1
2

exp
{
− 2
ε2
Vt (x0(t))

}√
πε2

V ′′t (x0(t))
if u = x0(t)

where V ′′t = ∇2Vt. In other words gt ≈ exp
{
− 2
ε2
Vt (x0(t))

}
almost everywhere on [x0(t), 0]

with respect to the Lebesgue measure. So

f(y) ≈ +
2

ε2
exp

{
− 2

ε2
Vt (x0(t))

}√
πε2

V ′′t (x0(t))

∫ 0

y

exp

{
+

2

ε2
Vt(u)

}
du.

Now

max
u∈[x0(t),0]

(
+

2

ε2
Vt(u)

)
= +

2

ε2
Vt(0)

where the maximum is on the boundary of [x0(t), 0] meaning we would need an extra factor
of 1

2
. So

f(y) ≈ +
2

ε2
exp

{
− 2

ε2
Vt (x0(t))

}√
πε2

V ′′t (x0(t))

1

2

√
πε2

−V ′′t (0)
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which gives

f(y) ≈ π√
aV ′′t (x0(t))

exp

{
− 2

ε2
Vt (x0(t))

}
.

Finding f(y) is very hard so we consider when the oscillations are very slow, that is for
very small Ω. At the two extremes we have

dx = [x(a− x2) + F ]dt + ε dw when t = 0 (1.10)

dx = [x(a− x2)− F ]dt + ε dw when t =
π

Ω
. (1.11)

We also assume that the oscillations are so small, the now time dependent equilibrium
point does not differ much from the time independent case x0 = −

√
a. We solve f(y) for

the case of Equation 1.10. The case for Equation 1.11 is similar. Let x0(t) be approximated
and denoted with a new notation by

x0(t) = z0 + δ = s

where z0 = −
√
a. We seek an expression for δ by

[s(a− s2) + F ]dt = 0 from Equation 1.10

s(a− s2) = −F

δ ≈ −F
a− 3z2

0

= +
F

2a

after ignoring terms of higher order than δ2. Progressing further gives

− 2

ε2
Vt=0(s) = − 2

ε2

{
s4

4
− as

2

2
− Fs

}
≈ − 2

ε2
[
V0(z0) + δ(z3

0 − az0 − F )− Fz0

]
(1.12)

again after ignoring terms of higher order than δ2. Equation 1.12 is now approximated by

− 2

ε2
Vt=0(s) ≈ − 2

ε2
[
V0(z0) + δ(z3

0 − az0 − F )− Fz0

]
=

a2

2ε2

{
1 +

4F 2

2a3
− 4F

a
3
2

}
≈ a2

2ε2

{
1− 4F

a
3
2

}
after assuming F 2 is small. We make another approximation by√

aV ′′t=0 (x0(t)) ≈
√
aV ′′0 (z0)
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=
√
a[3z2

0 − a]

= a
√

2

after noting that z0 = −
√
a. So f(y) for Equation 1.10 and 1.11 are

f(x0(t)) =
π

a
√

2
exp

{
a2

2ε2

(
1− 4F

a
3
2

)}
when t = 0

f(x0(t)) =
π

a
√

2
exp

{
a2

2ε2

(
1 +

4F

a
3
2

)}
when t =

π

Ω
.

We can see how the solution make physical sense because when t = π
Ω

the left well is lower,
and so the probability to escape is lower and the time to escape would also be longer. Now
that all of our calculations are done for both the time independent and time dependent
case we can compare them.

1.2.3 Conclusion and Resonance Condition εres

We have effectively reviewed f 1
1 in the limit of small noise, which is 〈τ〉 the averaged escape

time for small ε. Comparing them more clearly here gives

F = 0 〈τ〉 =
1√
2

π

a
exp

{
a2

2ε2

}
F 6= 0 〈τ〉 =

π

a
√

2
exp

{
a2

2ε2

(
1− 4F

a
3
2

)}
when t = 0

〈τ〉 =
π

a
√

2
exp

{
a2

2ε2

(
1 +

4F

a
3
2

)}
when t =

π

Ω
.

For the F 6= 0 case if we impose

〈τ〉 =
π

Ω
for t = 0 (1.13)

〈τ〉 =
π

Ω
for t =

π

Ω
(1.14)

and solve for the noise in both cases (that is solving Equation 1.13 and 1.14 for ε) we have

ε1 = a

(
1− 4F/a3/2

2 ln(2
√

2a/Ω)

)1/2

for t = 0

ε2 = a

(
1 + 4F/a3/2

2 ln(2
√

2a/Ω)

)1/2

for t =
π

Ω
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then the resonance condition εres should be inside the interval εres ∈ [ε1, ε2]. For the
example below it just so happen that [ε1, ε2] = [0.18, 0.31] and εres ≈ 0.26, which gives the
trajectory

Figure 1.1: This trajectory is exhibiting quasi-determinism. It is near stochastic resonance.

We can increase and decrease the noise away from εres ≈ 0.26, and transitions will occur
more frequently or less frequently as we move away from resonance.

Figure 1.2: Transitions occur irregularly and are rare.
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Figure 1.3: Transitions occur very often.

1.3 Remarks on One Dimensional Potential

Notice that this is a very crude way to study the system. The oscillating potential is being
approximated by a frozen static potential. This is precisely the adiabatic approximation.
Not only does it assume small noise, small forcing and adiabatic time development, the
exact positions of the critical points (the two wells and the hill) were not calculated. All
the calculations assumed that the hill was near x = 0. This means the forcing is assumed
to be small enough such that the hill does not move far away from x = 0. Benzi et al’s
definition of the escape time is so crude it will be used only as a rough guide.

Also note it is hard to tell if Figures 1.1, 1.2 and 1.3 show any regularity or not. As we
shall see, regularity shows itself in the distribution of the escape times.
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Chapter 2

Theoretical Escape Time from a Well
of a Static Potential

We consider the theoretical escape time of a particle from a well of a static potential. This
is done in two parts. The first part is Freidlin-Wentzell theory or large deviation and the
second part is Kramers’ formula which is derived using potential theory. For small noise
levels large deviation is considered and for higher noise levels potential theory is used.

2.1 Freidlin-Wentzell Theory and Large Deviation

A review of the major results of the Freidlin-Wentzell theory is presented which is found
in [32]. This is done by considering stochastic systems converging to the deterministic
limit for small noise, action functional for Wiener processes, action functional for general
processes and the main theorems concerning the escape time.

2.1.1 Stochastic Processes

Let (Ω,F , P ) be a probability space. Let (Rr,B) be a measure space on Rr. Let T be an
indexing set. For ω ∈ Ω and t ∈ T define a mapping Ω× T −→ Rr by

Xt(ω) : Ω× T −→ Rr

where Xt(ω) ∈ Rr is called a stochastic process on Rr. The probability measure defined on
A ∈ F is denoted by P (A). But if this probability measure can depend on a value x ∈ Rr,
we will often put this dependence explicitly into the notation

P (A, x) = Px(A).

We will only consider Markov processes in this thesis. There are further technical properties
a Markov process has to fulfil.2 Intuitively this can be understood in the following way;

2For more details see page 20 in [32].
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the Ω can be thought of as the set of all trajectories of a stochastic process; the T can be
thought of as the set of time, for example T = [0,∞); the Rr can be thought as the space
in which the trajectory is in, then Xt(ω) is a trajectory in Rr with continuous time t ≥ 0.

2.1.2 Deterministic Limit

Consider the following system. We have the r-dimensional real space Rr. Let xt ∈ Rr be
a time dependent variable in Rr. Let b(xt) be a function b : Rr → Rr on xt. We then let

dxt = b(xt)dt (2.1)

which can be seen as a system of r differential equations for each of the elements of xt.
When we consider random systems we denote the (random) variable by Xε

t with values
in Rr. The stochastic processes we consider in this thesis are diffusion processes. More
precisely we consider random dynamical systems which are solutions of the following system
of stochastic differential equations

dXε
t = b(Xε

t )dt+ εσ(Xε
t )dwt (2.2)

where ε is the noise level, wt is a l-dimensional Wiener process and σ(Xε
t ) is a function on

Xε
t returning a l × r matrix.

The first circle of results in the book of Freidlin and Wentzell are about how the solutions
of the random system Equation 2.2 approximate the solutions of the deterministic system
Equation 2.1. For example we know that

lim
ε→0

Xε
t = xt.

But the exact manner of this limit and the conditions under which Xε
t → xt is reached is

documented in Freidlin-Wentzell.3 For example we have4

Theorem 2.1. Suppose that the coefficients of Equation 2.2 satisfy a Lipschitz condition
and a growth condition given by∑

i

[bi(x)− bi(y)]2 +
∑
i,j

[σij(x)− σij(y)]2 ≤ K2|x− y|2 (2.3)∑
i

[bi(x)]2 +
∑
i,j

[σij(x)]2 ≤ K2(1 + |x|2) (2.4)

then for all t > 0 and δ > 0 we have

E |Xε
t − xt|

2 ≤ ε2a(t) and lim
ε→0

P

{
max
0≤s≤t

|Xε
s − xs| > δ

}
= 0

where a(t) is a monotone increasing function, which is expressed in terms of |x| and K.

3See pages 44-59 in [32].
4Adapted from Theorem 1.2 page 45 of [32].
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Theorem 2.1 can be explained in another way. Intuitively as ε→ 0 we would expect to be
back in the deterministic system xt. Note that Equation 2.3 is the Lipschitz condition and
2.4 is the growth condition.

There is also a stochastic analogue of Taylor’s Remainder’s Theorem where it can be
shown that Xε

t admits the following decomposition5

Xε
t = X

(0)
t + εX

(1)
t + · · ·+ εkX

(k)
t +Rε

k+1(t)

where the remainder is bounded by new functions

sup
0≤t≤T

∣∣Rε
k+1(t)

∣∣ < C(ω)εk+1 and P {C(ω) <∞} = 1

and the X
(k)
t are solutions of stochastic differential equations.

2.1.3 Action Functional for Wiener processes

The second part of Freidlin-Wentzell has a new setting.6 Let b(Xε
t ) = 0, σ(Xε

t ) = 1 and wt
be a r-dimensional Wiener process, that is to say

dXε
t = ε dwt

where we have reduced the system to a r-dimensional Wiener process. Let CT1T2 =
CT1T2(Rr) denote the set of all continuous paths in Rr starting at time T1 and ending
at T2. On this set we define a metric by

ρT1T2(ψ, ϕ) = sup
T1≤t≤T2

|ψt − ϕt|.

We define a new functional by

S(ϕ) = ST1T2(ϕ) =
1

2

∫ T2

T1

|ϕ̇s|2ds

for absolutely continuous (and differentiable) ϕt. If ϕt is not absolutely continuous or if
the integral is divergent, we set S(ϕ) = +∞. We define the action functional by

IεT1T2(ϕ) = ε−2ST1T2(ϕ)

and ST1T2(ϕ) will be called the normalized action functional. The paths should be inter-
preted as points, that is elements of the functional space of paths, that is each point is
itself a path. The distance between these points, and hence paths, is given by the metric
just defined. We define a new set

Φ(s) = {ϕ ∈ C0T such that ϕ0 = 0 and S0T (ϕ) ≤ s}
5See Theorem 2.1 page 52 of [32].
6See pages 70-79 in [32].
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which can be shown to be compact in the uniform topology.7 Now the SDE

dXε
t = ε dwt

cannot be solved pathwise as in the deterministic case. The solution is a randomly chosen
path out of an infinitude of possible paths. This is described by the probability of the
path having certain properties. Also Xε

t is self-similar and non-differentiable, but may be
approximated by differentiable functions ϕt. The next major theorems in Freidlin-Wentzell
show that for any δ > 0 and γ > 0 we have8

P {ρ0T (Xε
t , ϕt) < δ} ≥ exp

{
−ε−2 [S0T (ϕ) + γ]

}
and for any δ > 0, γ > 0, s0 > 0 with s < s0 we have9

P {ρ0T (Xε
t ,Φ(s)) ≥ δ} ≤ exp

{
−ε−2(s− γ)

}
.

These two statements may be interpreted as a Laplace type theorem in function spaces.
A physical interpretation is that this gives an asymptotic description (in small ε) for the
probability that the path Xε

t is near to ϕt, that is

P {ρ(Xε
t , ϕ) < δ} ≈ exp

{
−ε−2S(ϕ)

}
.

In the next section we develop the action functional for more general processes.

2.1.4 Action Functional for General processes

So far the action theory was developed for just one particular example of a stochastic pro-
cess, that is the Wiener process. Now we develop an action theory for a general stochastic
process described by Equation 2.2.10

Before we do that we state a list of properties a functional should have so that we can
consider a suitable action functional. We state these properties in a more general context.
Let (X, ρ) be a metric space with metric ρ. On the σ-algebra of its Borel subsets let µh be
a family of probability measures depending on a parameter h > 0. Let λ(h) be a positive
function going to +∞ as h ↓ 0. Let S(x) be a function such that S : X → [0,∞]. We say
that λ(h)S(x) is an action function if the following holds.

(0) the set Φ(s) = {x : S(x) ≤ s} is compact for every s ≥ 0.
(I) for any δ > 0, any γ > 0 and any x ∈ X there exists an h0 > 0 such that

µh{y : ρ(x, y) < δ} ≥ exp{−λ(h)[S(x) + γ]}

7See Lemma 2.1 page 77 of [32].
8See Theorem 2.1 page 74 in [32].
9See Theorem 2.2 page 74 in [32].

10See pages 79-92 of [32].
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for all h ≤ h0

(II) for any δ > 0, any γ > 0 and any s > 0 there exists an h0 > 0 such that

µh{y : ρ(y,Φ(s)) ≥ δ} ≤ exp{−λ(h)(s− γ)}

for all h ≤ h0.

S(x) and λ(h) will be called the normalized action functional and normalizing coefficient.
The results given in Chapter 2.1.3 show that the functional considered there has all

the above properties, where X = CT1T2(Rr), S(ϕ) = ST1T2(ϕ), λ(h) = ε−2 and ε = h.
Thus we can see how X = CT1T2(Rr) with IεT1T2 is an action functional since it satisfied all
three properties. Doubtless that there will be many other systems which satisfy all these
three properties as well. This higher level of abstraction would allow us to prove powerful
theorems.

2.1.5 Main Theorems

The action functional was given for a diffusion with drift term zero i.e. b(Xε
t ) = 0. We

now put this term back in to consider the equation

dXε
t = b(Xε

t )dt+ ε dwt

where wt is a r-dimensional Wiener process. It can be shown that letting11

S0T (ϕ) =
1

2

∫ T

0

|ϕ̇s − b(ϕs)|2ds

with λ(h) = ε−2 and h = ε satisfy the three properties of the action functional. The action
functional then allows us to compute asymptotically different probabilities. For example,
let D ⊂ Rr be a region of space in Rr and let

HD(t, x) = {ϕ ∈ C0T (Rr) : ϕ0 = x, ϕt ∈ D ∪ ∂D}
HD(t, x) = {ϕ ∈ C0T (Rr) : ϕ0 = x, xs /∈ D for some s ∈ [0, t]}

then it can be shown that12

lim
ε→0

ε2 lnPx{Xε
t ∈ D} = − min

ϕ∈HD(t,x)
S0T (ϕ) (2.5)

lim
ε→0

ε2 lnPx{τ ε ≤ t} = − min
ϕ∈HD(t,x)

S0T (ϕ) (2.6)

where τ ε = min{t : Xε
t /∈ D} is the escape time from D. This theorem gives us the leading

term for the probabilities leaving this region of space D. The HD is the set of all paths

11See Theorem 1.1 page 104 of [32].
12See Theorem 1.2 page 105 of [32].
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that stay in D and its boundary. The HD is the set of all paths that leave D at some time.
Equation 2.5 is thus the probability of remaining in D and Equation 2.6 is the probability
of the escape time being less than t.

So far the above results hold for a general region D. Now we want to consider the case
where D is the vicinity of a well, that is the region near and around a metastable state.
This means D is attracted to a point inside of D. Without loss of generality we can choose
this point, which is the position of the well, to be zero xwell = 0. But the minimiser of
S0T (ϕ) is very difficult to compute explicitly using the usual differential equations. Let

f(t, x, y) = min
ϕ0=x
ϕt=y

S0t(ϕ).

The Hamilton-Jacobi equations are given by

∂f(t, x, y)

∂t
+

1

2
|∇yf(t, x, y)|2 + (b(y),∇yf(t, x, y)) = 0 (2.7)

where ∇y is the gradient operator in the variable y and note that

min
ϕ∈HD(t,x)

S0t(ϕ) = min
y∈D∪∂D

f(t, x, y)

min
ϕ∈HD(t,x)

S0t(ϕ) = min
0≤s≤t
y /∈D

f(s, x, y)

and the solution to Equation 2.7 would be closely related to Equation 2.5 and 2.6.13 Let
us introduce the so-called quasipotential

Ṽ (x, y) = inf{ST1T2(ϕ) : ϕ ∈ CT1T2(Rr), ϕT1 = x, ϕT2 = y}

which is the least action over all paths which starts at x and ends at y. Suppose that the
drift term can be written as the gradient of a potential V

b(x) = −∇V (x)

then it can be shown that14

Ṽ (0, x) = 2V (x). (2.8)

Note that this only holds for points x ∈ Rr such that V (x) ≤ miny∈∂D V (y), that is for
points lower than the exit point. Now suppose that there exists a unique point y0 ∈ ∂D
for which Ṽ (0, y0) = miny∈∂D Ṽ (0, y) then15

lim
ε→0

Px{ρ(Xε
s, y0) < δ} = 1 where s = inf {t : Xε

t ∈ ∂D} (2.9)

for every δ > 0 and any x ∈ D. This means Xε
t will exit near points of least height in the

small noise limit.
13See pages 105-108 of [32].
14See Theorem 3.1 page 118 of [32].
15See Theorem 2.1 page 108 of [32].
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2.1.6 Remarks on Freidlin-Wentzell and Large Deviation Theory

The main Theorems of Freidlin-Wentzell were developed on a precise and rigorous mathe-
matical setting. It would be appropriate to interpret what they mean in a more physical
setting. Consider Equation 2.8 and 2.9. Equation 2.8 gives an easier way to calculate the
quasipotential, because the quasipotential is related in a very simple way to the height of
the potential. Equation 2.9 means that the particle will escape whilst travelling through
a path which gives the least height, or interpreted in another way, a path of least action.
Thus, one of the main conclusion of the Fredlin-Wentzell theory is that the particle will
tend to escape following close to a path which gives the least distance to climb out of a
well.

2.2 Kramers’ Formula and Potential Theory

Let V : Rr −→ R. Let x ∈ Rr be a well and zi ∈ Rr be saddles labelled by i = 1 . . . n. The
saddles would be gateways providing a passage for escape from the well. Define

∆Vi = V (zi)− V (x)

which is the height difference between the well and the ith saddle. For small noise ε, an
approximate expression can be estimated for the escape time of the particle going through
the ith saddle. In the smallest order of the noise ε the mean exit time, as described in the
previous section, is given by16

τi = e+2∆Vi/ε
2

.

Inverting this gives the escape rate

Ri = e−2∆Vi/ε
2

and the total escape rate would be to sum over all the saddles

R =
n∑
i=1

Ri =
n∑
i=1

e−2∆Vi/ε
2

.

The order correction is done by adding a coefficient called Kramers’ coefficient and the
resulting corrected rate is called Kramers’ rate

Ri = kie
−2∆Vi/ε

2

where

ki =

√
|∇2V (x)|

2π

|λ(zi)|√
‖∇2V (zi)‖

16See Theorem 4.1 and 4.2 on pages 124-127 of [32].

34



where |∇2(x)| denotes the determinant of the Hessian of the potential at the well x,
‖∇2V (zi)‖ denotes the modulus of the determinant of the potential at the saddle zi and
|λ(zi)| denotes the minimum eigenvalue of the Hessian of the potential at the saddle zi.
This gives the escape rate in the next order of approximation to be

R =
n∑
i=1

Ri =
n∑
i=1

kie
−2∆Vi/ε

2

which is rewritten as

R =

√
|∇2V (x)|

2π

n∑
i=1

|λ(zi)|√
‖∇2V (zi)‖

exp

{
−2 (V (zi)− V (x))

ε2

}
.

The last order of approximation for higher noise ε is done by bounding the error on Kramers’
coefficient. This is

ki =

√
|∇2V (x)|

2π

|λ(zi)|√
‖∇2V (zi)‖

(
1

1 +O
(
ε2

2
ln ε2

2

))

which is rewritten as

1

ki
=

2π√
|∇2V (x)|

√
‖∇2V (zi)‖
|λ(zi)|

[
1 +O

(
ε2

2
ln
ε2

2

)]
. (2.10)

We conclude with a few words on the derivation of Kramers’ formula and the bound on its
error. Equation 2.10 was derived rigorously using techniques from potential theory instead
of large deviations. Part of the technique involves the escape time being expressed in terms
of a partial differential equation, similar to Equation 1.7 for example. This derivation was
done in [37] which is beyond the scope of this thesis. This Chapter reviewed the escape
rates of a particle from a static well, which will be relevant when we consider escape rates
from an oscillating well.
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Chapter 3

Theoretical Escape Time from a Well
of an Oscillatory Potential

Stochastic resonance usually involves studying transitions between two stable states. Study-
ing a stochastic differential equation in multidimensional real space can be complicated. It
would be useful to simplify stochastic resonance down to a Markov Chain with transitions
between two states +1 and −1, then we try to model stochastic resonance with a two state
Markov Chain. This is done for both discrete and continuous time Markov Chains with
two states, for both alternating and synchronised saddles.

3.1 Markov Chain Reduction

Let V : Rr −→ R be a potential with two wells. This potential is subjected to a periodic
forcing F with frequency Ω and perturbed by noise ε, which is described by the SDE17

Ẋε
t = −∇V + F cos(Ωt) + εẆt (3.1)

where Wt is a Wiener process in Rr and F ∈ Rr. We call Xε
t the diffusion case. The Xε

t

can be reduced to a Markov Chain Y ε
t on {−1,+1}

Xε
t −→ Y ε

t

in the following way. In what follows we will assume that the diffusion Xε
t is continuous

in time and space. Let wl(t) denote the position of the left well at time t and wr(t) the
position of the right well at time t. Note that wl(t) and wr(t) are also continuous in time.
Let R ∈ R be constant. The reduction from the Xε

t to the Markov Chain Y ε
t is

Y ε
t =


−1 if |Xε

t − wl(t)| ≤ R

+1 if |Xε
t − wr(t)| ≤ R

Z if |Xε
t − wl(t)| > R and |Xε

t − wr(t)| > R

17See Appendix A for how the forcing is denoted.
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where Z is given by

Z =

{
−1 if s2 < s1

+1 if s1 < s2

where s1 and s2 are given by

s1 = max
u<t
{u : |Xε

u − wl(u)| ≤ R}

s2 = max
u<t
{u : |Xε

u − wr(u)| ≤ R} .

When Y ε
t = −1 we say the particle is in the left well and when Y ε

t = +1 we say the particle
is in the right well. Only when it enters the other well would Y ε

t change sign. When the
condition |Xε

u − wl(u)| ≤ R is satisfied we say the particle is covered by the left well. When
the condition |Xε

u − wr(u)| ≤ R is satisfied we say the particle is covered by the right well.
Note that R is chosen small enough such that it is impossible for the particle to be covered
by both wells at any time, that is

{x ∈ Rr : |Xε
t − wl(t)| < R and |Xε

t − wr(t)| < R} = ∅

for all times t ≥ 0. This means that s1 is the most recent time the particle is covered by
the left well and s2 is the most recent time the particle is covered by the right well. Notice
that if initially at t = 0, the particle is covered by neither well then Y ε

t cannot be derived
nor defined by the above definitions. In this case either Y ε

0 = −1 or Y ε
0 = +1 is chosen

depending on what initial conditions are required. In other words if Y ε
0 = −1 is chosen as

the initial condition then the particle is covered by the left well for t < 0. If Y ε
0 = +1 is

chosen as the initial condition then the particle is covered by the right well for t < 0.
The escape time from the left to right well τ−1+1 and from the right to left well τ+1−1

are defined in the following way18

τ−1+1 = µ ({t : Y ε
t = −1}) where {t : Y ε

t = −1} is an interval

τ+1−1 = µ ({t : Y ε
t = +1}) where {t : Y ε

t = +1} is an interval

where µ denotes the Lebesgue measure. In other words the time spent being in the state
Y ε
t = −1 is τ−1+1 and the time spent being in the state Y ε

t = +1 is τ+1−1. These intervals
will always be closed intervals. The process Y ε

t has two states, hence each sample is a
piecewise constant function. The length of each piece is the escape time τ−1+1 or τ+1−1.
Note that τ−1+1 and τ+1−1 are random times and random variables.

For the diffusion the escape time can be explained in the following way. Each well is
surrounded by a circle with a constant radius R which moves with the well. A particle
is said to have entered the left well if it enters the region covered by the radius R over
the left well. The particle is then said to have entered the right well when it enters the
region covered by R in the right well. The time difference between entering the left well

18See Appendix B.1 for details of the actual use of R in the measurement of the escape times.
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and entering the right well is defined to be the escape time from left to right τ−1+1. A
similar argument is said for τ+1−1. This also means the escape times in the Markov Chain
is the same as the diffusion trajectory Xε

t by definition. Notice that the diffusion Xε
t has

to be defined first before the Markov Chain Y ε
t which is a derived quantity.

Notice that all of our reasoning in deriving Y ε
t only assumes that Xε

t is a continuous time
process in Rr. We did not check whether Y ε

t satisfy the strict definitions of a continuous
time Markov Chain. If Y ε

t is a Markov Chain it should also satisfy the Markov property,
that is

P
(
Y ε
t = i|Y ε

t1
= −1, Y ε

t2
= +1

)
= P

(
Y ε
t = i|Y ε

t1
= −1

)
= P

(
Y ε
t = i|Y ε

t2
= +1

)
for any 0 ≤ t1 < t2 < t. Again we stress that the only assumption we made when deriving
Y ε
t from Xε

t is that Xε
t is a continuous time process in Rr, which is not sufficient for Y ε

t to
be a Markov Chain nor for Y ε

t to satisfy the Markov property. But throughout the rest of
this thesis the diffusion Xε

t will be a Markov process, which means Y ε
t should be a good

approximation to a Markov Chain.19

A discrete time and continuous time Markov Chain model for Equation 3.1 are studied
in the following sections.

3.2 Discrete Time Markov Chain

Let the time be discrete. This to say time t belongs to

t ∈ {0, 1, 2, . . .} .

The Markov Chain is a time dependent stochastic process which can take values +1 or −1

Yt = ±1.

At time t the probability of Yt jumping from −1 to +1 is denoted by p−1+1(t); the proba-
bility of jumping from +1 to −1 is denoted by p+1−1(t); the probability of staying in −1 is
denoted by p−1−1(t); and the probability of staying in +1 is denoted by p+1+1(t). Notice
that they have the following properties for all time t

p−1−1(t) + p−1+1(t) = 1

p+1+1(t) + p+1−1(t) = 1.

A transition matrix can be defined as

Pt :=

(
p−1−1(t) p−1+1(t)

p+1−1(t) p+1+1(t)

)
.

19Whether Y εt is a Markov Chain for a Markov process Xε
t , or for Xε

t described by an SDE requires
proof. This is an open question.
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At every point in time it is possible to define a state probability, that is the probability of
the trajectory being −1 or +1,

P (Yt = −1) = ν−(t)

P (Yt = +1) = ν+(t).

Notice that the state probability satisfy the following condition for all time t

ν−(t) + ν+(t) = 1.

The two ν−(t) and ν+(t) can be written compactly in vector notation

ν(t) =

(
ν−(t)

ν+(t)

)
.

The state probability at time t+ 1 can be expressed in terms of the last time t, that is

ν(t+ 1) = P †t ν(t)(
ν−(t+ 1)
ν+(t+ 1)

)
=

(
p−1−1(t) p+1−1(t)

p−1+1(t) p+1+1(t)

)(
ν−(t)

ν+(t)

)

where P †t denote the transpose of the matrix Pt. This means if the initial value of the state
probability is known at t = 0, then the future behaviour of the state probability can be
described by computing all subsequent values of ν(t), that is

ν(t) =
i=t−1∏
i=0

P †i ν(0).

The main aim for the rest of our studies of the Markov Chain is to compute the state
probability for various transition matrices. When the wells of the potential are oscillating
such that one well is higher than the other, we model using p 6= q. When the wells of the
potential are oscillating such that both wells are always at the same height as each other,
we model using p = q.

3.2.1 Discrete Time Markov Chain - Alternating Saddles p 6= q

We want to study a system with periodic elements. The transition matrix would change
periodically in time. Let the period be

T = 2m

where m is an integer. Let the time t be written in the form

t = NT + n
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where N is an integer number of periods. The transition matrix would vary periodically
according to

For n = mod(t, T ) ∈ T1 Pt = P1 =

(
1− p p

q 1− q

)

For n = mod(t, T ) ∈ T2 Pt = P2 =

(
1− q q

p 1− p

)
where

T1 = {0, 1, . . . ,m− 1}
T2 = {m,m+ 1, . . . , 2m− 1} .

We interpret Yt = −1 as being in the left well and Yt = +1 as being in the right well. We
also interpret p as the probability of escape from a shallow well and q as the probability of
escape from a deep well. The transition matrix varying periodically in time can be used to
model the periodic forcing being applied to the potential. The following Theorem derives
the state probabilities.

Theorem 3.1. Let the time be t = NT + n. Let λ = 1 − p − q. The state probability at
time t is

For n ∈ T1 ν =
1

p+ q

(
q
p

)
− p− q
p+ q

× λn

1 + λm

(
−1
1

)
+
ν+(0)(p+ qλm)− ν−(0)(q + pλm)

1 + λm
λ2mN+n

(
−1
1

)
For n ∈ T2 ν =

1

p+ q

(
p
q

)
+
p− q
p+ q

× λn−m

1 + λm

(
−1
1

)
+
ν+(0)(p+ qλm)− ν−(0)(q + pλm)

1 + λm
λ2mN+n

(
−1
1

)
Proof. Notice that the eigenvectors and eigenvalues of the transpose matrix P †1 are

λ1 = 1− p− q v1 =

(
−1
1

)
λ2 = 1 v2 =

(
q
p

)
which also spans the R2 space. For short we call λ = λ1. This means an arbitrary vector
can be expressed as a linear combination of the eigenvectors of P †1 . This is(

x
y

)
=

1

p+ q

{
(qy − px)

(
−1
1

)
+ (x+ y)

(
q
p

)}
.
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Now consider m application of the P †1 matrix on the arbitrary vector.

(P †1 )m
(
x
y

)
=

1

p+ q

{
(qy − px)λm

(
−1
1

)
+ (x+ y)

(
q
p

)}
=

1

p+ q

(
q + pλm q(1− λm)
p(1− λm) p+ qλm

)(
x
y

)

=

(
1− p′ p′

q′ 1− q′
)†(

x
y

)
where

p′ =
p(1− λm)

p+ q
and q′ =

q(1− λm)

p+ q

with a similar expression for the other transition matrix

(P †2 )m
(
x
y

)
=

(
1− q′ q′

p′ 1− p′
)†(

x
y

)
.

Now denote a new matrix by

Ptot = (P †2 )m(P †1 )m

=

(
1− q′ p′

q′ 1− p′
)(

1− p′ q′

p′ 1− q′
)

where Ptot has eigenvalues and eigenvectors

ξ1 = 1 e1 =

(
1− q′
1− p′

)
ξ2 = (1− p′ − q′)2 e2 =

(
−1
1

)
and these eigenvectors span the R2 space(

x
y

)
=

1

1 + λ′

{
(x+ y)

(
1− q′
1− p′

)
+ [y(1− q′)− x(1− p′)]

(
−1
1

)}
where we have denoted

λ′ = 1− p′ − q′.

Now consider N applications of the matrix Ptot on the initial value of the state probability

PN
tot ν(0) =

1

1 + λ′

{(
1− q′
1− p′

)
+ [ν+(0)(1− q′)− ν−(0)(1− p′)]λ′2N

(
−1
1

)}
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and express the results in terms of the eigenvectors of P †1

PN
tot ν(0) =

1

1 + λ′
× 1

p+ q

{
[q(1− p′)− p(1− q′)]

(
−1
1

)
+ (1 + λ′)

(
q
p

)}

+
[ν+(0)(1− q′)− ν−(0)(1− p′)]λ′2N

1 + λ′

(
−1
1

)
.

If n ∈ T1 consider

(P †1 )nPN
tot ν(0) =

1

1 + λ′
× 1

p+ q

{
[q(1− p′)− p(1− q′)]λn

(
−1
1

)
+ (1 + λ′)

(
q
p

)}

+
[ν+(0)(1− q′)− ν−(0)(1− p′)]λ′2N

1 + λ′
λn
(
−1
1

)
=

1

p+ q

(
q
p

)
− p− q
p+ q

× λn

1 + λm

(
−1
1

)
+
ν+(0)(p+ qλm)− ν−(0)(q + pλm)

1 + λm
λ2mN+n

(
−1
1

)
.

If n ∈ T2 consider

(P †2 )n−m(P †1 )mPN
tot ν(0) = (P †2 )n−m

[
1

p+ q

(
q
p

)
− p− q
p+ q

× λm

1 + λm

(
−1
1

)
+
ν+(0)(p+ qλm)− ν−(0)(q + pλm)

1 + λm
λ2mN+m

(
−1
1

)]
and we express (q, p)† in terms of the eigenvectors of P †2

(P †2 )n−m(P †1 )mPN
tot ν(0) = (P †2 )n−m

[
p− q
p+ q

(
−1
1

)
+

1

p+ q

(
p
q

)
− p− q
p+ q

× λm

1 + λm

(
−1
1

)
+
ν+(0)(p+ qλm)− ν−(0)(q + pλm)

1 + λm
λ2mN+m

(
−1
1

)]
=

1

p+ q

(
p
q

)
+
p− q
p+ q

× λn−m

1 + λm

(
−1
1

)
+
ν+(0)(p+ qλm)− ν−(0)(q + pλm)

1 + λm
λ2mN+n

(
−1
1

)
.

This completes the proof.
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3.2.2 Discrete Time Markov Chain - Synchronised Saddles p = q

Let the period be

T = 4m

where m is an integer. Let the time t be written in the form

t = NT + n

where N is an integer number of periods. The transition matrix would vary periodically
according to

For n = mod(t, T ) ∈ T1 P1 =

(
1− p p

p 1− p

)

For n = mod(t, T ) ∈ T2 P2 =

(
1− q q

q 1− q

)

For n = mod(t, T ) ∈ T3 P3 =

(
1− p p

p 1− p

)

For n = mod(t, T ) ∈ T4 P4 =

(
1− q q

q 1− q

)
where

T1 = {0, 1, . . . ,m− 1}
T2 = {m,m+ 1, . . . , 2m− 1}
T3 = {2m.2m+ 1, . . . , 3m− 1}
T4 = {3m, 3m+ 1, . . . , 4m− 1}

where again p should be interpreted as the probability of escape from a shallow well and q
from a deep well. The following Theorem derives the state probabilities.

Theorem 3.2. Let the time be t = NT + n. The state probability at time t is

For n ∈ T1 ν =
1

2

{(
1
1

)
+ (1− 2p)2mN+n(1− 2q)2mN [ν+(0)− ν−(0)]

(
−1
1

)}
For n ∈ T2 ν =

1

2

{(
1
1

)
+ (1− 2p)2mN+m(1− 2q)2mN+(n−m)[ν+(0)− ν−(0)]

(
−1
1

)}
For n ∈ T3 ν =

1

2

{(
1
1

)
+ (1− 2p)2mN+m+(n−2m)(1− 2q)2mN+m[ν+(0)− ν−(0)]

(
−1
1

)}
For n ∈ T4 ν =

1

2

{(
1
1

)
+ (1− 2p)2mN+2m(1− 2q)2mN+m+(n−3m)[ν+(0)− ν−(0)]

(
−1
1

)}
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Proof. Notice that the transpose of the matrix P †1 has the following eigenvalues and eigen-
vectors

λ1 = 1− 2p v1 =

(
−1
1

)
λ2 = 1 v2 =

(
1
1

)
.

These eigenvectors span the space, which means any vectors can be expressed as a linear
combination of them(

x
y

)
=

1

2

{
(y − x)

(
−1
1

)
+ (x+ y)

(
1
1

)}
.

This means the initial values of the state probability ν can be expressed in terms of the
eigenvectors of P †1 . Denote the matrix

Ptot = (P †2 )m(P †1 )m(P †2 )m(P †1 )m

which is the total transition matrix in one period. Proceeding we have

PN
tot ν(0) =

1

2

{(
1
1

)
+ (1− 2p)2mN(1− 2q)2mN [ν+(0)− ν−(0)]

(
−1
1

)}
with the added condition ν−(0) + ν+(0) = 1. Now note the following

For n ∈ T1 ν(t) = (P †1 )nPN
tot ν(0)

For n ∈ T2 ν(t) = (P †2 )n−m(P †1 )mPN
tot ν(0)

For n ∈ T3 ν(t) = (P †1 )n−2m(P †2 )m(P †1 )mPN
totν(0)

For n ∈ T4 ν(t) = (P †2 )n−3m(P †1 )m(P †2 )m(P †1 )mPN
tot ν(0)

This completes the proof.

3.2.3 Discrete Time Markov Chain - Invariant Measures, Relax-
ation Time and Fourier Transform

We consider a discrete Markov Chain on {−1,+1}, that is

Y ε
t = ±1

and the time is

t ∈ {0, 1, 2, . . .}
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and the probabilities for being in Y ε
t = −1 or Y ε

t = +1 at time t are given by the state
probabilities ν±(t)

P (Y ε
t = −1) = ν−(t) and P (Y ε

t = +1) = ν+(t).

The probabilities of transitions occurring as given in the transition matrices changes with
period T . After a very long time the state probabilities ν±(·) should not depend on the
initial state probabilities ν±(0). At time infinity ν±(·) should also be cyclic on [0, T ]. Let
the time be given by t = NT + n where N is a discrete number of periods. This leads us
to define the invariant measure as the state probabilities in the limit as N −→∞

ν(n) := lim
N−→∞

ν(NT + n)

and since ν(·) is periodic on [0, T ] it should also satisfy

ν(t+ T ) =
i=t+T−1∏

i=t

P †i ν(t)

where Pi are the transition matrices, that is to say ν is invariant over one period of appli-
cation of the transition matrices. This brings us to the following.

Corollary 3.3. For the state probabilities in Theorem 3.1 the invariant measures are

For t ∈ T1 ν(t) =
1

p+ q

(
q
p

)
− p− q
p+ q

× λt

1 + λm

(
−1
1

)
For t ∈ T2 ν(t) =

1

p+ q

(
p
q

)
+
p− q
p+ q

× λt−m

1 + λm

(
−1
1

)
Corollary 3.4. For the state probabilities in Theorem 3.2 the invariant measures are

ν(t) =
1

2

(
1
1

)
The proof is easy and omitted. The fact that the ν are invariant over one period of
application of the transition matrices follow from the proof of the Theorems.

The rate of convergence to the invariant measure would depend on the value of p and
q themselves. Define the relaxation time Trelax as the first time t = Trelax such that

|ν (Trelax)− ν (Trelax)| ≤ e−1

which is a measure of the rate of convergence to the invariant measure.
Consider the averaged Markov Chain over many realisations. This is related to the

invariant measure by

〈Y ε
t 〉 = ν−(t)(−1) + ν+(t)(+1) = ν+(t)− ν−(t).
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The Fourier Transform of the averaged Markov Chain 〈Ỹ ε
ω〉 is often studied (see Chapter

4), that is

〈Ỹ ε
ω〉 = F (〈Y ε

t 〉) .

We can Fourier Transform both the alternating saddle p 6= q case and the synchronised
saddle p = q case. This brings us to the following.

Corollary 3.5. For the Markov Chain in Theorem 3.1 the Fourier Transform of the av-
eraged trajectory is

〈Ỹ ε
ω〉 =

1

T

p− q
p+ q

(
1− e−iπω

){ 1− e−iπω

1− e−iπω/m
− 2

1 + λm
1− λme−iπω

1− λe−iπω/m

}
.

Proof. Notice that

ν−(t+m) = ν+(t) and ν+(t+m) = ν−(t)

so we have

〈Ỹ ε
ω〉 = F (〈Y ε

t 〉)

=
1

T

2m−1∑
t=0

〈Y ε
t 〉e−2πiωt/2m

=
1

T

m−1∑
t=0

〈Y ε
t 〉e−2πiωt/2m +

1

T

2m−1∑
t=m

〈Y ε
t 〉e−2πiωt/2m

=
1

T

m−1∑
t=0

[ν+(t)− ν−(t)] e−2πiωt/2m +
1

T

m−1∑
t=0

[ν−(t)− ν+(t)] e−2πiω(t+m)/2m

=
1

T

m−1∑
t=0

[ν+(t)− ν−(t)]
(
e−2πiωt/2m − e−2πiω(t+m)/2m

)
=

1

T

(
1− e−iπω

)m−1∑
t=0

[ν+(t)− ν−(t)] e−iπωt/m

=
1

T

(
1− e−iπω

) p− q
p+ q

m−1∑
t=0

(
1− 2

λt

1 + λm

)
e−iπωt/m

=
1

T

p− q
p+ q

(
1− e−iπω

){ 1− e−iπω

1− e−iπω/m
− 2

1 + λm
1− λme−iπω

1− λe−iπω/m

}
.

This completes the proof.

Corollary 3.6. For the Markov Chain in Theorem 3.2 the Fourier Transform of the av-
eraged trajectory is

〈Ỹ ε
ω〉 = 0.
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Again the proof is trivial and omitted. If we study the Fourier Transform at ω = 1, this
would be the same as studying the driving frequency, which is the frequency at which the
transition matrices are changing. The physical intuition is that one has the most significant
response at this frequency.

3.3 Continuous Time Markov Chain

Let the time be continuous. This is to say time t belongs to

t ∈ R.

The Markov Chain is a time dependent stochastic process with values −1 or +1,

Yt = ±1.

Let p and q be real functions

p : R −→ R and q : R −→ R

and p and q are periodic on [0, T ]

p(t+ T ) = p(t) and q(t+ T ) = q(t).

Let A ⊆ [0, T ] be a subset of the interval [0, T ]. The probability of Yt transiting from
Yt = −1 to Yt = +1 for the times in A, t ∈ A, is denoted by

p−1+1(A).

Similarly the probability of Yt transiting from Yt = +1 to Yt = −1 for the times in A,
t ∈ A, is denoted by

p+1−1(A).

The probability of Yt staying at −1 in the time t ∈ A is given by

p−1−1(A) = 1− p−1+1(A).

Similarly the probability of Yt staying at +1 in the time t ∈ A is given by

p+1+1(A) = 1− p+1−1(A).

If A is a small time interval A = [t, t + δt] then the following infinitesimal representation
can be made

p−1+1([t, t+ δt]) = p(t)δt

p+1−1([t, t+ δt]) = q(t)δt.
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Now we consider a small change in the state probabilities at times t and t+ δt.(
ν−(t+ δt)

ν+(t+ δt)

)
=

(
p−1−1([t, t+ δt]) p−1+1([t, t+ δt])

p+1−1([t, t+ δt]) p+1+1([t, t+ δt])

)†(
ν−(t)

ν+(t)

)

=

(
1− p(t)δt p(t)δt

q(t)δt 1− q(t)δt

)†(
ν−(t)

ν+(t)

)
then

ν(t+ δt)− ν(t) =

(
ν−(t+ δt)

ν+(t+ δt)

)
−

(
ν−(t)

ν+(t)

)

=

(
−p(t)δt p(t)δt

q(t)δt −q(t)δt

)†(
ν−(t)

ν+(t)

)

ν(t+ δt)− ν(t)

δt
=

(
−p(t) p(t)

q(t) −q(t)

)†(
ν−(t)

ν+(t)

)
which in the limit of small δt leads to a differential equation describing the behaviour of
ν(t)

dν

dt
= Q†ν (3.2)

where the infinitesimal generator Q is defined as

Q =

(
−p(t) p(t)

q(t) −q(t)

)
.

Note that the transpose of Q is taken in Equation 3.2. The aim now is to derive the state
probability by solving this differential equation for various forms of p and q. The extra
conditions we use are

ν−(t) + ν+(t) = 1

ν ′−(t) + ν ′+(t) = 0

for all times t and the initial conditions at t = 0 are ν−(0) and ν+(0).

3.3.1 Continuous Time Markov Chain - Alternating Saddles p 6=
q

Notice that p may be interpreted as the probability of escape from the left well and q as
the probability of escape from the right well. If p and q are cyclic over [0, T ], then this can
be interpreted as modelling a potential with periodic forcing in continuous time.
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Theorem 3.7. Let p 6= q and t ≥ 0. The state probabilities are given by

ν−(t) =
ν−(0) +

∫ t
0
q(s) exp

{∫ s
0
p(u) + q(u) du

}
ds

exp
{∫ t

0
p(u) + q(u) du

}
ν+(t) =

ν+(0) +
∫ t

0
p(s) exp

{∫ s
0
p(u) + q(u) du

}
ds

exp
{∫ t

0
p(u) + q(u) du

}
Proof. The differential equations we want to solve are given by

d

dt

(
ν−(t)

ν+(t)

)
=

(
−p(t) p(t)

q(t) −q(t)

)†(
ν−(t)

ν+(t)

)

=

(
−p(t) q(t)

p(t) −q(t)

)(
ν−(t)

ν+(t)

)
which gives

dν−
dt

= −pν− + qν+

dν+

dt
= pν− − qν+

and by using ν− + ν+ = 1 we get

dν−
dt

+ (p+ q)ν− = q (3.3)

dν+

dt
+ (p+ q)ν+ = p. (3.4)

We will only solve for ν−(t). The case for ν+(t) is similar. Equation 3.3 can easily be
solved with an integrating factor

d

dt

{
ν−(t) exp

{∫ t

0

p(u) + q(u) du

}}
= q(t) exp

{∫ t

0

p(u) + q(u) du

}
and proceeding we have

ν−(t) exp

{∫ t

0

p(u) + q(u) du

}
− ν−(0) =

∫ t

0

q(s) exp

{∫ s

0

p(u) + q(u) du

}
ds

which rearranges to give

ν−(t) =
ν−(0) +

∫ t
0
q(s) exp

{∫ s
0
p(u) + q(u) du

}
ds

exp
{∫ t

0
p(u) + q(u) du

} .

This completes the proof.
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3.3.2 Continuous Time Markov Chain - Synchronised Saddles
p = q

If p = q for continuous time, then this can be modelled as both wells of the potential
always being at the same height but moving together.

Theorem 3.8. Let p = q and t ≥ 0. The state probabilities are given by

ν−(t) =
1

2
− ν+(0)− ν−(0)

2
exp

{
−2

∫ t

0

p(s) ds

}

ν+(t) =
1

2
+
ν+(0)− ν−(0)

2
exp

{
−2

∫ t

0

p(s) ds

}
Proof. The differential equations we have to solve are given by

d

dt

(
ν−(t)

ν+(t)

)
= p(t)

(
−1 1

1 −1

)(
ν−(t)

ν+(t)

)

which gives

dν−
dt

= p (ν+ − ν−) (3.5)

dν+

dt
= p (ν− − ν+) (3.6)

and subtracting Equation 3.5 away from Equation 3.6 leads to

d

dt
(ν+ − ν−) = −2p (ν+ − ν−) .

Denote the difference by

z(t) = ν+(t)− ν−(t)

which gives the differential equation we need to solve to

dz

dt
= −2pz∫ z(t)

z(0)

dz

z
= −2

∫ t

0

p(s) ds

ln(z(t))− ln(z(0)) = −2

∫ t

0

p(s) ds

z(t) = z(0) exp

{
−2

∫ t

0

p(s) ds

}
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and using z = ν+ − ν− and ν− + ν+ = 1 rearranges the solution to

ν−(t) =
1

2
− ν+(0)− ν−(0)

2
exp

{
−2

∫ t

0

p(s) ds

}

ν+(t) =
1

2
+
ν+(0)− ν−(0)

2
exp

{
−2

∫ t

0

p(s) ds

}
.

This completes the proof.

3.3.3 Continuous Time Markov Chain - Invariant Measures and
Fourier Transform

As in the discrete time case we can compute the corresponding invariant measures.

Corollary 3.9. For the state probabilities in Theorem 3.7 the invariant measures are

ν−(t) =

∫ t
0
p(s)g(s) ds

g(t)
+

∫ T
0
p(s)g(s) ds

g(t) (g(T )− 1)

ν+(t) =

∫ t
0
q(s)g(s) ds

g(t)
+

∫ T
0
q(s)g(s) ds

g(t) (g(T )− 1)

where

g(t) = exp

{∫ t

0

p(u) + q(u) du

}
.

Proof. We derive the invariant measure for ν−(t). The case for ν+(t) is similar. Consider
the fact that p(·) and q(·) are cyclic on [0, T ] and let i be an integer, then the following
integral can be rewritten as∫ (i+1)T

iT

p(s)g(s) ds =

∫ T

0

p(s)g(iT + s) ds

=

∫ T

0

p(s)g(iT )g(s) ds

= g(iT )

∫ T

0

p(s)g(s) ds

= g(T )i
∫ T

0

p(s)g(s) ds.

Let the time be given by NT + t where N is an integer number of periods. This means the
following integral can be written as∫ NT+t

0

p(s)g(s) ds =

∫ NT+t

NT

p(s)g(s) ds+
N−1∑
i=0

∫ (i+1)T

iT

p(s)g(s) ds
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=

∫ t

0

p(s)g(NT + s) ds+

∫ T

0

p(s)g(s) ds
N−1∑
i=0

g(T )i

= g(T )N
∫ t

0

p(s)g(s) ds+

∫ T

0

p(s)g(s) ds
N−1∑
i=0

g(T )i.

So the state probability is equal to

ν−(NT + t) =
ν−(0) +

∫ NT+t

0
q(s) exp

{∫ s
0
p(u) + q(u) du

}
ds

exp
{∫ NT+t

0
p(u) + q(u) du

}
=
ν−(0) + g(T )N

∫ t
0
p(s)g(s) ds+

∫ T
0
p(s)g(s) ds

∑N−1
i=0 g(T )i

g(T )Ng(t)

=
ν−(0)

g(T )Ng(t)
+

∫ t
0
p(s)g(s) ds

g(t)
+

∫ T
0
p(s)g(s) ds

g(t)

1

g(T )N

N−1∑
i=0

g(T )i

=
ν−(0)

g(T )Ng(t)
+

∫ t
0
p(s)g(s) ds

g(t)
+

∫ T
0
p(s)g(s) ds

g(t)

1

g(T )− 1

(
1− 1

g(T )N

)
.

Letting N −→∞ gives the required result.

Corollary 3.10. For the state probabilities in Theorem 3.8 the invariant measures are

ν(t) =
1

2

(
1
1

)
.

The proof is trivial and omitted. Similar to the discrete time case we can also study the
Fourier Transform of the averaged Markov Chain.

Corollary 3.11. For the Markov Chain in Theorem 3.7 the Fourier Transform of the
averaged Markov Chain is

F (〈Y ε
t 〉) =

∫ +∞

−∞

(∫ t
0

[q(s)− p(s)] g(s) ds

g(t)
+

∫ T
0

[q(s)− p(s)] g(s) ds

g(t) (g(T )− 1)

)
e−i2πωt dt.

Corollary 3.12. For the Markov Chain in Theorem 3.8 the Fourier Transform of the
averaged Markov Chain is

F (〈Y ε
t 〉) = 0.
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3.4 Probability Density Function of Escape Times

The escape rates from the left to right are denoted by R−1+1(·) and right to left escape
rates are denoted by R+1−1(·). The PDFs for the escape times are given by the Theorem
below.

Theorem 3.13. Let u be the time of entry into a well, then the PDFs for the escape
occurring at time t > u are

p−(t, u) = R−1+1(t) exp

{
−
∫ t

u

R−1+1(s) ds

}

p+(t, u) = R+1−1(t) exp

{
−
∫ t

u

R+1−1(s) ds

}
where p−(t, u) is for left to right and p+(t, u) is for right to left.

Proof. We consider escaping from the left well. The right well is similar. Divide the time
interval [u, t] into many small time intervals

δt =
t− u
N

.

Similar to how we derived the invariant measures we want to derive the probability of
escape in a very small time interval [t, t+ δt]. This is given by

p−1+1([t, t+ δt]) = p(t)δt

= 1− e−R−1+1(t)δt

≈ R−1+1(t)δt

which is valid for small δt. Large deviations allow us to say even more about the escape
time τ−1+1 and τ+1−1. Theorem 1 in [35] shows that it is an exponentially distributed
random variable. The probability of staying in the left well is given by

p−1−1([t, t+ δt]) = 1− p−1+1([t, t+ δt])

= 1− p(t)δt
= 1−

(
1− e−R−1+1(t)δt

)
= e−R−1+1(t)δt.

We want to know the probability of escaping in the time interval [t, t + δt] given that the
particle has entered at u and stayed up to time t. This is given by

p−1−1([u, t])p−1+1([t, t+ δt]) =
N∏
i=1

p−1−1 ([u+ (i− 1)δt, u+ iδt]) p−1+1([t, t+ δt])
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=
N∏
i=1

exp {−R−1+1 (u+ (i− 1)δt) δt} p−1+1([t, t+ δt])

= exp

{
N∑
i=1

−R−1+1 (u+ (i− 1)δt) δt

}
p−1+1([t, t+ δt])

= exp

{
−
∫ t

u

R−1+1(s) ds

}
R−1+1(t)δt.

This completes the proof.

3.4.1 Normalised Time Probability Density Function of Escape
Times

The period of the forcing is T and we can make a change of variables to normalised time

tnorm =
treal

T

which measures time in how many periods have elapsed. This rearranges the PDFs to

p−(t, u) = TR−1+1(Tt) exp

{
−T

∫ t

u

R−1+1(Ts) ds

}
p+(t, u) = TR+1−1(Tt) exp

{
−T

∫ t

u

R+1−1(Ts) ds

}
where u, t and s are in normalised time. Note that R−1+1(·) and R+1−1(·) always have
their arguments in real time and R−1+1(·) and R+1−1(·) always give the averaged number
of transitions per real unit time. Expressing the PDF in normalised time can be found
in [41].

3.4.2 Perfect Phase Approximation of Probability Density Func-
tion of Escape Times

The PDF for the escape times derived in Theorem 3.13 had to differentiate between left
and right escapes and are conditioned on the time u of entrance into the well. Suppose
now that t is the escape time from any well, which does not differentiate between left and
right escape. Note that t is the actual time it takes to escape from a well and is not a time
coordinate. The PDF for t is given by

ptot(t) =
1

2

∫ T

0

p−(t+ u, u)m−(u) + p+(t+ u, u)m+(u) du.

This is because after a long time has elapsed we would expect that many transitions would
have occurred between left and right. The number of transitions escaping from the left
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and right should be roughly the same. The m−(u) is a PDF for the time of entrance into
the left well and the m+(u) is a PDF for the time of entrance into the right well. We may
not have explicit expressions for m−(u) and m+(u). We derive an approximate expression
for ptot without an explicit expressions for m−(u) and m+(u). Let m−(u) and m+(u) be
approximated by

m−(u) ≈ δ (u− T/2)

m+(u) ≈ 1

2
δ (u) +

1

2
δ (u− T )

where δ(·) is the Dirac delta function. This approximation is used because in the SDEs
which we will simulate, the times when transition into the left well is greatest is at half
the period u = T

2
and the times when transition into the right well is greatest is at u = 0

and u = T . Due to the fact that m−(u) and m+(u) are probabilities a factor of 1
2

is used
in m+(u). Progressing we have

ptot(t) =
1

2

∫ T

0

p−(t+ u, u)m−(u) + p+(t+ u, u)m+(u) du

≈ 1

2

∫ T

0

p−(t+ u, u)δ (u− T/2) + p+(t+ u, u)

(
1

2
δ (u) +

1

2
δ (u− T )

)
du

=
1

2

{
p−(t+ T/2, T/2) +

1

2
p+(t, 0) +

1

2
p+(t+ T, T )

}
=

1

2

{
p−(t+ T/2, T/2) +

1

2
p+(t, 0) +

1

2
p+(t+ 0, 0)

}
=

1

2
{p−(t+ T/2, T/2) + p+(t, 0)}

= p+(t, 0).

This is because for the simulations which we are going to do, the Kramers’ rate satisfy
R−1+1(t) = R+1−1(t + T/2) (see later in Chapter 5 for the geometry of the Mexican Hat
Toy Model which justifies this). Thus the following approximation

ptot ≈ p+(t, 0)

is only valid for the simulations we do, and not for a general potential. We call this way
of approximating m−(u) and m+(u) the perfect phase approximation.

3.5 Adiabatic Large Deviation

We have to stress that this thesis is built on three approximations, which form the backbone
of all the research presented. These are small noise approximation, adiabatic approximation
and perfect phase approximation.
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Perfect phase approximation only works for small noise. This is because the noise is so
small the particle will only escape when the maximum probability to escape has arrived.
When the minimum probability to escape is present it will almost never escape. This is
the idea behind the perfect phase approximation.

Notice one subtlety behind all the theory presented in this Chapter. The derivations
involved probabilities of escape p and q and the escape rates R−1+1 and R+1−1. But it was
assumed that p, q, R−1+1 and R+1−1 are accurately known no matter how large or small
the noise level ε is and no matter how fast or slow the driving frequency Ω is. But such
ideal expressions for p, q, R−1+1 and R+1−1 are not known.

When we come to do the analysis in Chapter 7, the ptot is calculated with the approx-
imation ptot ≈ p+(t, 0). When the rates R−1+1 and R+1−1 are needed they are calculated
using Kramers’ formula as though it is escape from a static potential in the small noise
limit. This means an oscillatory potential is being approximated by a static potential
which is the adiabatic approximation.

In the paper [54] the adiabatic approximation was justified in the small noise, slow
forcing limit using time dependent large deviation theory, that is, it was shown asymptot-
ically the escape times are given by the adiabatic approximation. This result is only for
the leading term, whether the analogue result holds for the Kramers’ rate is unknown.
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Chapter 4

Theory of Analysis of Stochastic
Resonance

We present different criteria that have been used to define stochastic resonance. This
includes the six measures, which are linear response, signal-to-noise ratio, energy, out-of-
phase measures, relative entropy and entropy. A new statistical test called the conditional
Kolmogorov-Smirnov test is introduced.

4.1 Six Measures of Stochastic Resonance

We introduce six possible criteria of measuring how close a process is to exhibiting stochas-
tic resonance [41, 45]. These six criteria are closely related to linear response [25, 26],
signal-to-noise ratio [27,28] and distribution of escape times [28–30]. We call them the six
measures denoted by M1, M2, M3, M4, M5 and M6. Recall that the SDE we want to study
is

Ẋε
t = −∇V0 + F cos Ωt+ ε Ẇt

where V0 : R2 −→ R is the unperturbed potential, F is the forcing, Ω is the forcing
frequency, ε is the noise level and Wt is a Wiener process in two dimensions, which when
rewritten into separate components are

dx =

[
−∂V0

∂x
+ Fx cos Ωt

]
dt+ ε dwx

dy =

[
−∂V0

∂y
+ Fy cos Ωt

]
dt+ ε dwy

where wx and wy are two independent Wiener processes. The solution to these equations
is the trajectory in two dimensions

Xε
t = (xt, yt) .
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This diffusion can be reduced to a Markov Chain on {−1,+1} denoted by

Y ε
t = ±1

where by definition of the Markov Chain the escape times are the same as the diffusion
case (see Chapter 3). The probability of the Markov Chain being in one state at time t is
given by the state probabilities

P (Y ε
t = −1) = ν−(t) and P (Y ε

t = +1) = ν+(t).

In what follows we will consider so large times, that the relaxation time has effectively
elapsed for both the diffusion and Markov Chain, in other words the state probability
would have effectively converged to the invariant measure ν. This means that over one
period T = 2π/Ω of the forcing, the invariant measures will have the properties

ν±(t) = ν±(t+ T ) and ν±(t) = ν∓(t+ T/2).

We obtain the averaged trajectories given by

〈Xε
t 〉 = E (Xε

t ) and 〈Y ε
t 〉 = E (Y ε

t )

which are the trajectories obtained after averaging over many realisations. Notice that
〈Y ε

t 〉 is related to the invariant measures by

〈Y ε
t 〉 = ν+(t)− ν−(t).

We introduce the Out-of-Phase Markov Chain defined by

Y
ε

t =


0 if Y ε

t = −1 and mod(t, T ) ≤ T/2
1 if Y ε

t = −1 and mod(t, T ) > T/2
1 if Y ε

t = +1 and mod(t, T ) ≤ T/2
0 if Y ε

t = +1 and mod(t, T ) > T/2

and similarly the averaged Out-of-Phase Markov Chain is defined by〈
Y
ε

t

〉
= E

(
Y
ε

t

)
.

Define two new functions by

φ−(t) =

{
1 if mod(t, T ) ≤ T/2
0 if mod(t, T ) > T/2

φ+(t) =

{
0 if mod(t, T ) ≤ T/2
1 if mod(t, T ) > T/2.

The following trajectories are Fourier transformed

x̃(ω) = F (〈xt〉) = 〈F (xt)〉
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Ỹ (ω) = F (〈Y ε
t 〉) = 〈F (xt)〉.

The linear response is defined as the intensity of the Fourier Transform at the driving
frequency Ω 20

Xlin =

∣∣∣∣x̃( Ω

2π

)∣∣∣∣ and Ylin =

∣∣∣∣Ỹ ( Ω

2π

)∣∣∣∣ .
Now we can define the six measures. For the diffusion case only M1 and M2 are defined.

M1 =
1

F
Xlin

M2 =
1

εF
Xlin

where F is the magnitude of the forcing. For the Markov Chain M1, M2, M3, M4, M5 and
M6 are all defined as

M1 =
1

F
Ylin

M2 =
1

εF
Ylin

M3 =

∫ T

0

〈Y ε
t 〉

2 dt

M4 =

∫ T

0

〈
Y
ε

t

〉
dt

M5 =

∫ T

0

φ−(t) ln

(
φ−(t)

ν−(t)

)
+ φ+(t) ln

(
φ+(t)

ν+(t)

)
dt

M6 =

∫ T

0

−ν−(t) ln ν−(t)− ν+(t) ln ν+(t) dt.

Note that in the definition of the six measures it is assumed that the process has relaxed
to equilibrium. We give a few physical interpretation of the six measures M1, M2, M3, M4,
M5 and M6. The M1 is the intensity of the driving frequency Ω in the spectrum of the
Fourier transform. The M2 is sometimes called signal-to-noise ratio as it compares this
intensity to the noise level ε. The M3 is sometimes called the energy. The M4 is sometimes
called the out-of-phase measure since it measures the amount of time the Markov Chain
spends in the “wrong” well. The M5 and M6 are sometimes called relative entropy and
entropy respectively, since they measure how far away the invariant measures are from
being constant. If the invariant measures are constant then these six measures will also
be constant. Thus it can be understood that these six measures is a measure of how far
away the invariant measures are from being constant. M6 measures how non-constant the
invariant measure is. M5 is extremal if the invariant measure is constant.

20See Appendix B.2 for how the linear response is calculated numerically.
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4.2 Statistical Tests

We will measure the escape time for many consecutive transitions. This will result in a
collection of measurements of escape times

τ1, τ2, . . . , τn.

A new method for analysing such a collection of measurements is presented.

4.2.1 Kolmogorov-Smirnov Test

First we recall results about the Kolmogorov-Smirnov statistic and the Kolmogorov-Smirnov
test [55]. Let

ξ1, ξ2, . . . , ξn

be n independently and identically distributed real random variables. Each ξi is distributed
with PDF f(·) as in

P (ξi ∈ A) =

∫
A

f(s) ds

and distributed with CDF F (·) as in

P (ξi ≤ x) = F (x) =

∫ x

−∞
f(s) ds.

Define a function by Fn(·) by

Fn(x) =
1

n

n∑
i=1

1(−∞,x](ξi)

where 1A is the indicator function for a set A. We may think of ξ1, ξ2, . . . , ξn as n empirical
or numerical realisations of the same random variable ξ. The Fn(x) is therefore an approx-
imation to the CDF of ξ that is empirically found using ξ1, ξ2, . . . , ξn, therefore Fn(·) is
called the empirical CDF. Consider the supremum metric on the space of real continuous
functions. Consider the distance between the real and the empirical CDF in this metric.

Dn = ‖Fn − F‖∞

= sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

1(−∞,x](ξi)− F (x)

∣∣∣∣∣
where Dn is called the Kolmogorov-Smirnov statistic or KS statistic. Intuitively we would
expect Dn to tend to zero as n increases, that is

lim
n−→∞

Dn = 0

if the ξi are distributed by F (·). There are times when we experimentally obtain n values
of a random variable ξ1, ξ2, . . . , ξn, and want to test whether they are distributed by a CDF
F (·). We define what we mean by the null hypothesis.
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Definition 4.1. Let ξ1, ξ2, . . . , ξn be n real random variables. The null hypothesis is that
each ξi is independently distributed with CDF F (x).

We want to know how large or small Dn needs to be before deciding whether to reject the
null hypothesis. The following Theorem offers a remarkable answer to this problem.

Theorem 4.2. Suppose the null hypothesis is true, then the distribution of Dn depends
only on n.

Notice that Dn is in itself a real random variable. The PDF and CDF of Dn is a function of
n only, and will be the same whatever F (·) is. This distribution is called the KS distribution
and tables are available upto n = 100. There is a Theorem which describes the asymptotic
behaviour of the KS distribution [56,57].21

Theorem 4.3. In the limit n −→∞,
√
nDn is asymptotically Kolmogorov distributed with

the CDF

Q(x) = 1− 2
∞∑
k=1

(−1)k−1e−2k2x2

that is to say
lim
n−→∞

P (
√
nDn ≤ x) = Q(x).

4.2.2 Conditional Kolmogorov-Smirnov Test

Let ζ1, ζ2, . . . , ζn be n iid real random variables. They are n empirical observations of a
random variable ζ. Now suppose that each of the ξ1, ξ2, . . . , ξn is conditioned and depen-
dent on the corresponding ζ1, ζ2, . . . , ζn. This means a conditional PDF f(·, ·) gives the
probability

P (ξi ∈ A | ζi) =

∫
A

f(s, ζi) ds

and the conditional CDF F (·, ·) is

P (ξi ≤ x | ζi) = Fζi(x) =

∫ x

−∞
f(s, ζi) ds.

But ξ1, ξ2, . . . , ξn are empirical measurements of the same random variable ξ. The PDF for
ξ is given by

P (ξ ∈ A) =

∫
A

∫ +∞

−∞
f(s, u)m(u) ds du

21There appears to be topographical errors in the literature for the limiting function. Some sources cite
Q1 = 1− 2

∑∞
k=1(−1)k−1e−2k

2x2

(see [58–60]) and some cite Q2 = 1− 2
∑∞
k=1(−1)k−1e−k

2x2

(see [56,57]).
But the proof of Theorem 1 in [57] shows Q = Q1. Nevertheless in this thesis we use Q = Q1 which
actually gives smaller and more conservative values of the metric Dn that are needed.
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and the CDF for ξ is

P (ξ ≤ x) = F (x) =

∫ x

−∞

∫ +∞

−∞
f(s, u)m(u) ds du

where m(·) is the PDF for ζ, that is

P (ζ ∈ A) =

∫
A

m(s) ds.

In our context we have the problem that the random variables are not identically distributed
under the null hypothesis. The ξ1, ξ2, . . . , ξn and ζ1, ζ2, . . . , ζn are obtained experimentally
and Fζi(ξi) can be calculated but a PDF for ζi, that is m(·), has no easy expression. We
still want to perform a statistics test that is similar to the KS test even in such situations
where the distribution m(·) of ζ is unknown. First we define what we call the total null
hypothesis and the conditional null hypothesis.

Definition 4.4. Let ξ1, ξ2, . . . , ξn be n empirical observations of a random variable ξ.
The total null hypothesis is that ξ is distributed with the CDF F (·). The conditional null
hypothesis is that each ξi is distributed with the conditional CDF Fζi(·).

A new statistical test is developed, which is similar to the KS test.

Theorem 4.5. Suppose the conditional null hypothesis is true. Let Fζi(·) be continuous.
Let Sn be the statistic given by

Sn = sup
x∈[0,1]

∣∣∣∣∣ 1n
n∑
i=1

1[0,x] (Fζi(ξi))− x

∣∣∣∣∣
then Sn is KS distributed.

Proof. Denote

Yi = Fζi(ξi)

which means

P (Yi ≤ x) = P (Fζi(ξi) ≤ x)

= P
(
ξi ≤ F−1

ζi
(x)
)

= Fζi
(
F−1
ζi

(x)
)

= x

and 0 ≤ Yi ≤ 1, so Yi is uniformly distributed on [0, 1]. Note that Fζi(·) is a function of
one variable only. Let

Fn(x) =
1

n

n∑
i=1

1[0,x](Yi) =
1

n

n∑
i=1

1[0,x] (Fζi(ξ))
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where Fn(·) is the empirical CDF of a uniformly distributed random variable, computed
using n observations. The statistic Sn is the suprenum metric

Sn = ‖Fn − x‖∞

= sup
x∈[0,1]

∣∣∣∣∣ 1n
n∑
i=1

1[0,x] (Fζi(ξi))− x

∣∣∣∣∣ .
So clearly Sn is KS distributed.

We call Sn the conditional KS statistic. Compare this to the original KS statistic, which
under the assumption of the total null hypothesis can be rewritten as

Dn = sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

1(−∞,x](ξi)− F (x)

∣∣∣∣∣ = sup
x∈[0,1]

∣∣∣∣∣ 1n
n∑
i=1

1[0,x] (F (ξi))− x

∣∣∣∣∣ .
When both the total and conditional hypothesis are true Dn and Sn are KS distributed,
that is

P (Dn ∈ A) = P (Sn ∈ A) and P (Dn ≤ x) = P (Sn ≤ x) .

The subtlety here is that Dn and Sn are different objects, yet they have the same distribu-
tion. Dn is KS distributed under the total null hypothesis, whereas Sn is KS distributed
under the conditional null hypothesis. This can be explained in another way. We have
n experimental observations of a random variable ξ denoted by ξ1, ξ2, . . . , ξn and each are
conditioned on observations of another random variable ζ denoted by ζ1, ζ2, . . . , ζn. The
Dn is KS distributed if the random variable ξ is distributed by CDF F (·), but the Sn is
KS distributed if each ξi is conditionally distributed by the CDF Fζi(·).
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Chapter 5

Mexican Hat Toy Model

The main object of consideration of this project, which is called the Mexican Hat Toy
Model, is now introduced. Let a > 0, b > 0 and V0 : R2 −→ R be a real function from the
plane to the line. The unperturbed potential is defined as

V0(x, y) =
1

4
r4 − 1

2
r2 − ax2 + by2 where r =

√
x2 + y2.

Let Fx, Fy ∈ R be the forcing. The potential with forcing VF is defined as

VF (x, y) =
1

4
r4 − 1

2
r2 − ax2 + by2 + Fxx+ Fyy

=
1

4
r4 − 1

2
r2 − ax2 + by2 + F · x

= V0 + F · x

written more compactly in vector notation. When VF is defined using +F · x we say
positive forcing. Alternatively if VF is defined using −F · x we say negative forcing. The
VF is defined with a positive forcing because for the rest of this Chapter we will study the
critical points which are solutions to the simultaneous equations

∂VF
∂x

= 0 and
∂VF
∂y

= 0.

The properties of the critical points will change as F is increased from zero, therefore it
is convenient to define VF with a positive forcing. The behaviour of the critical points
are studied for different cases. The main aim is to find the positions and nature of the
critical points for a range of parameter values. This is complex due to several cases to be
considered and previewed in the following Theorem, which is one of the main conclusions
of this Chapter. Although this Theorem only considers the case for non-negative forcing
Fx ≥ 0 and Fy ≥ 0, the case for Fx < 0 and Fy < 0 is similar by considering the symmetry
of the potential.
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Theorem 5.1. Let Fx ≥ 0, Fy ≥ 0, a > 0, b > 0. Note that definitions of constants are
at the end. The positions and nature of the critical points of the Mexican Hat Toy Model
VF (·) are for the following range of parameters.

For Fx = 0, Fy = 0 and b < 1
2

(0, 0) hill

(±
√

1 + 2a, 0) well

(0,±
√

1− 2b) saddle

For Fx = 0, Fy = 0 and b ≥ 1
2

(0, 0) saddle

(±
√

1 + 2a, 0) well

For Fx > 0, Fy = 0, b < 1
2

and the following values of Fx

For any Fx > 0
{

(x0, 0) well

and if Fx < F sad
x


(x1, 0) well
(x2, 0) hill
(xsaddle,±ysaddle) saddle

or F sad
x < Fx < F crit

x


(x1, 0) saddle for

√
1− 2b ∈ R1

(x1, 0) well for
√

1− 2b ∈ R2

(x2, 0) hill for
√

1− 2b ∈ R1

(x2, 0) saddle for
√

1− 2b ∈ R2

(xsaddle,±ysaddle) nonexistent

or Fx = F sad
x < F crit

x


(x1, 0) unidentified for

√
1− 2b ∈ R1

(x1, 0) well for
√

1− 2b ∈ R2

(x2, 0) hill for
√

1− 2b ∈ R1

(x2, 0) unidentified for
√

1− 2b ∈ R2

(xsaddle,±ysaddle) unidentified

or Fx = F crit
x

{
(x1, 0) unidentified
(x2, 0) unidentified

or Fx > F crit
x

{
(x1, 0) nonexistent
(x2, 0) nonexistent
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For Fx > 0, Fy = 0, b ≥ 1
2

and the following values of Fx

Fx < F crit
x


(x0, 0) well
(x1, 0) well
(x2, 0) saddle

Fx > F crit
x


(x0, 0) well
(x1, 0) nonexistent
(x2, 0) nonexistent

Fx = F crit
x


(x0, 0) well
(x1, 0) unidentified
(x2, 0) unidentified

For Fx = 0, Fy > 0, b ≥ 1
2

and the following values of Fy

Fy < F crit
y

{
(0, y1) saddle
(0, y2) hill

Fy < F sad
y

{
(0, y0) saddle
(±xwell, ywell) well

Fy > F crit
y

{
(0, y1) nonexistent
(0, y2) nonexistent

Fy > F sad
y

{
(0, y0) well
(±xwell, ywell) nonexistent

Fy = F crit
y

{
(0, y1) unidentified
(0, y2) unidentified

Fy = F sad
y

{
(0, y0) unidentified
(±xwell, ywell) unidentified

For Fx = 0, Fy > 0, b > 1
2

and the following values of Fy

Fy < F sad
y

{
(0, y0) saddle
(±xwell, ywell) well

Fy = F sad
y

{
(0, y0) = (±xwell, ywell) unidentified

Fy > F sad
y

{
(0, y0) well
(±xwell, ywell) nonexistent
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where

xk = − 2√
3

√
1 + 2a cos

{
1

3
tan−1

(√
4(1 + 2a)3 − 27F 2

x

Fx
√

27

)
+

2π

3
k

}

yk = − 2√
3

√
1− 2b cos

1

3
tan−1


√

4(1− 2b)3 − 27F 2
y

Fy
√

27

+
2π

3
k


xsaddle =

Fx
2(a+ b)

ysaddle =

√
(1− 2b)−

(
Fx

2(a+ b)

)2

xwell =

√
(1 + 2a)−

(
Fy

2(a+ b)

)2

ywell =
−Fy

2(a+ b)

F crit
x =

√
4(1 + 2a)3

27

F sad
x = 2(a+ b)

√
1− 2b

F crit
y =

√
4(1− 2b)3

27

F sad
y = 2(a+ b)

√
1 + 2a

R1 =

(
1√
3

√
1 + 2a,

√
1 + 2a

)
R2 =

(
0,

1√
3

√
1 + 2a

)
.

The proof is given in a series of Lemmas for each of the six different cases. Theorem 5.4
proves the case for Fx = 0 and Fy = 0, Theorem 5.10 proves the case for Fx > 0, Fy = 0
and b < 1

2
, Theorem 5.11 proves the case for Fx > 0, Fy = 0 and b ≥ 1

2
, Theorem 5.16

proves the case for Fx = 0, Fy > 0 and b < 1
2

and Theorem 5.17 proves the case for Fx = 0,
Fy > 0 and b ≥ 1

2
. All the notation used will be consistent with this current Theorem 5.1.

The following standard result is used.

Theorem 5.2. Let V : R2 −→ R be twice differentiable everywhere. Let H be the Hessian
at a critical point (x0, y0). The nature of the critical point can be determined by

detH < 0 ⇒ saddle

detH > 0 then

{
if ∂2V

∂x2
> 0 ⇒ well

if ∂2V
∂x2

< 0 ⇒ hill
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We recall results about the cubic equation.

Theorem 5.3. Let a3, a2, a1, a0 ∈ R where a3 6= 0. Consider the cubic equation

a3x
3 + a2x

2 + a1x+ a0 = 0

and its discriminant

∆ = 18a3a2a1a0 − 4a3
2a0 + a2

2a
2
1 − 4a3a

3
1 − 27a2

3a
2
0

then following statements hold

if ∆ > 0 then the equation has 3 distinct real roots.

if ∆ = 0 then the equation has a multiple real root and all its roots are real.

if ∆ < 0 then the equation has 1 real root and 2 complex conjugate roots.

and the three roots of the equations are

xk = − 1

3a3

(
a2 + eiψkC + e−iψk

∆0

C

)
where

ψ0 = 0, ψ1 = 2π/3, ψ2 = 4π/3

C =
3

√
∆1 +

√
−27∆

2

∆0 = a2
2 − 3a3a1

∆1 = 2a3
2 − 9a3a2a1 + 27a2

3a0.

5.1 Case Fx = 0 and Fy = 0

The case for no forcing F = 0 is considered first.

Theorem 5.4. When Fx = Fy = 0 the critical points of the potential have the following
properties. For b < 1

2
the critical points and their nature are

b < 1
2

(0, 0) hill

(±
√

1 + 2a, 0) well

(0,±
√

1− 2b) saddle

For b ≥ 1
2

the critical points and their nature are

b ≥ 1
2

(0, 0) saddle

(±
√

1 + 2a, 0) well

The proof is trivial and omitted.
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5.2 Case Fx > 0 and Fy = 0

When forcing is only in the x direction two cases are considered separately, that is for
b < 1

2
and b ≥ 1

2
. The case for Fx ≤ 0 is similar.

5.2.1 Case Fx > 0, Fy = 0 and b < 1
2

When there is no forcing there are five critical points. Intuitively as forcing is increased the
system could gradually start to deviate away from having five critical points. The critical
points may collide and coincide. The structure of the following proofs are first determining
the bounds on the critical points and then determining their nature. We have the following
consequence which uses the solution and theory of the cubic equation with three real roots.

Theorem 5.5. Let Fx > 0, Fy = 0 and b < 1
2
. Let Fx be bounded by

Fx ≤ F sad
x and Fx ≤ F crit

x

where

F sad
x = 2(a+ b)

√
1− 2b and F crit

x =

√
4(1 + 2a)3

27

then there are five critical points given by

(xk, 0) k = 1, 2, 3

(xsaddle,±ysaddle)

where

xsaddle =
Fx

2(a+ b)

ysaddle =

√
(1− 2b)−

(
Fx

2(a+ b)

)2

xk = − 2√
3

√
1 + 2a cos

(
φ+ k

2π

3

)
φ =

1

3
tan−1(l)

l =

√
4(1 + 2a)3 − 27F 2

x

Fx
√

27

k = 0, k = 1, k = 2.

Proof. The simultaneous equations to be solved are

∂VF
∂x

= x(x2 + y2)− (1 + 2a)x+ Fx = 0 (5.1)
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∂VF
∂y

= y(x2 + y2)− (1− 2b)y = 0. (5.2)

Equation 5.2 holds if either (x2 + y2)− (1− 2b) = 0 or y = 0. The (x2 + y2)− (1− 2b) = 0
case is considered first, which gives (x2 + y2) = (1 − 2b). Substituting this into Equation
5.1 gives x as

xsaddle =
Fx

2(a+ b)

which when substituted back into (x2 + y2) = (1− 2b) gives y as

ysaddle = ±

√
(1− 2b)−

(
Fx

2(a+ b)

)2

.

For the y = 0 case, Equation 5.1 becomes

x3 − (1 + 2a)x+ Fx = 0

which is a cubic equation. Solving this cubic equation using the notation in Theorem 5.3
gives

∆0 = 3(1 + 2a), ∆1 = 27Fx, ∆ = 4(1 + 2a)3 − 27F 2
x

which gives22

C =
3

√
27Fx + i

√
27∆

2

=

(27Fx
2

)2

+

(√
27∆

2

)2
1/6

exp

{
i(1/3) tan−1

(√
27∆

27Fx

)}

which simplifies to (
27Fx

2

)2

+

(√
27∆

2

)2

=
1

4

(
27× 27F 2

x + 27∆
)

= 27(1 + 2a)3,

after letting

φ = (1/3) tan−1

(√
27∆

27Fx

)
22After noting that (x+ iy)1/3 = (x2 + y2)1/6 exp

{
i(1/3) tan−1(y/x)

}
.
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we have

C =
√

3(1 + 2a) eiφ

∆0

C
=

3(1 + 2a)√
3(1 + 2a)

e−iφ

=
√

3(1 + 2a) e−iφ

which gives the 3 solution as

xk = −1

3

√
3(1 + 2a)

(
ei(φ+ψk) + e−i(φ+ψk)

)
= −2

3

√
3(1 + 2a) cos(φ+ ψk)

= −2

3

√
3(1 + 2a) cos

{
1

3
tan−1

(√
4(1 + 2a)3 − 27F 2

x

Fx
√

27

)
+ ψk

}

where k = 0, 1, 2, ψ0 = 0, ψ1 = 2π
3

and ψ2 = 4π
3

. Now notice that ysaddle requires taking the
square root of a real number. This means ysaddle will be real if and only if the argument
under the square root is positive

ysaddle = ±

√
(1− 2b)−

(
Fx

2(a+ b)

)2

∈ R

⇔ 0 ≤ (1− 2b)−
(

Fx
2(a+ b)

)2

⇔ Fx ≤ F sad
x

where F sad
x = 2(a+ b)

√
1− 2b.

Notice also how the argument inside the tan−1(·) function contains a square root as well,
which is actually the square root of the discriminant. The three cubic roots xk would be
real if and only if the discriminant is positive

√
∆ =

√
4(1 + 2a)3 − 27F 2

x

∈ R
⇔ 0 ≤ 4(1 + 2a)3 − 27F 2

x

⇔ Fx ≤ F crit
x

where F crit
x =

√
4(1 + 2a)3

27

which clearly puts bounds on the forces. This completes the proof.

Next there is a simple but useful Lemma.
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Lemma 5.6. The function l (as in Theorem 5.5) is monotone in Fx for Fx < F crit
x .

Proof. We differentiate l with respect to Fx.

dl

dFx
=

d

dFx

(√
4(1 + 2a)3 − 27F 2

x

Fx
√

27

)
=

1

Fx
√

27

(
4(1 + 2a)3 − 27F 2

x

)− 1
2 (−2Fx)

1

2
27

+

√
4(1 + 2a)3 − 27F 2

x

Fx
√

27

(
−1

F 2
x

)
≤ 0

which is always negative since we assumed Fx < F crit
x for the square roots to be real and

forcing is assumed to be in the positive direction.

Although the monotonicity of l is trivial, it would prove essential for the next series of
reasoning. It is also easy to see that

Fx = 0 then l = +∞
Fx = F crit

x then l = 0.

Since the derivative of l is negative this means that l would decrease from +∞ to 0 as
Fx increase from 0 to F crit

x . This function being monotone means it would decrease to 0
without any oscillations. For short this means

l =∞ ↓ 0 as Fx = 0 ↑ F crit
x .

But φ = 1
3

tan−1(l), with tan−1 is also monotone over [−∞,+∞]. So similarly we can also
say

φ =
π

6
↓ 0 as Fx = 0 ↑ F crit

x

monotonically for increasing Fx. This means that for 0 ≤ Fx ≤ F crit
x we would have

0 ≤ φ ≤ π

6
.

We note the following values of the cos(·) function.

cos(0) = 1 cos
(
π
6

)
=
√

3
2

cos
(

2π
3

)
= −1

2
cos
(

2π
3

+ π
6

)
= −

√
3

2

cos
(

4π
3

)
= −1

2
cos
(

4π
3

+ π
6

)
= 0.
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From this we can bound cos(·) for the three values of k for 0 ≤ Fx ≤ F crit
x .

k = 0
√

3
2
≤ cos

(
φ+ k 2π

3

)
≤ 1

k = 1 −
√

3
2
≤ cos

(
φ+ k 2π

3

)
≤ −1

2

k = 2 −1
2
≤ cos

(
φ+ k 2π

3

)
≤ 0.

We also note that the cos(·) function is monotone on [0, π] and [π, 2π]. But
(
φ+ k 2π

3

)
is in the intervals where cos(·) is monotone, therefore we can say that the three critical
points on the x-axis xk are also monotone in Fx. We can now have bounds on the xk for
0 ≤ Fx ≤ F crit

x .

−2√
3

√
1 + 2a ≤ x0 ≤ −

√
1 + 2a

1√
3

√
1 + 2a ≤ x1 ≤

√
1 + 2a

0 ≤ x2 ≤
1√
3

√
1 + 2a.

Using the monotonicity of xk we get that

x0 : −
√

1 + 2a −→ −2√
3

√
1 + 2a as Fx → F crit

x

x1 :
√

1 + 2a −→ 1√
3

√
1 + 2a as Fx → F crit

x

x2 : 0 −→ 1√
3

√
1 + 2a as Fx → F crit

x .

The monotonicity of xk means the movements of the xk are always in one direction and
they will never oscillate. We obtain the following

Lemma 5.7. Let Fx > 0, Fy = 0 and b < 1
2
. These three scenarios hold.

If Fx < F crit
x we have 3 critical points on the x-axis: x0 < x2 < x1.

If Fx = F crit
x we have 2 critical points on the x-axis: x0 < x2 = x1.

If Fx > F crit
x we have 1 critical point on the x-axis: x0 <

−2√
3

√
1 + 2a and x0 → −∞

monotonically with increasing Fx.

Proof. The three xk are solutions to a cubic equation. This cubic equation was derived
assuming y = 0. The other critical points (xsaddle,±ysaddle) were derived assuming y 6= 0.

If Fx < F crit
x the discriminant of this cubic equation dictates that there should be three

distinct real solution. The bounds on x0, x1 and x2 show that x0 < x2 < x1. If Fx = F crit
x

the discriminant of this cubic equation dictates that there should be at least two repeated
solution. It was shown that x1 = x2 = 1√

3

√
1 + 2a when Fx = F crit

x . The bound on x0,

x1 and x2 shows that x0 < x2 = x1. If Fx > F crit
x the discriminant of this cubic equation

dictates that there should only be one real solution. If we can show that x0 < 0 is real
then we are done. For Fx > F crit

x the l function becomes

l = i

√
27F 2

x − 4(1 + 2a)3

Fx
√

27
.

73



Differentiating the imaginary part gives

d

dFx
(−il) =

d

dFx

(√
27F 2

x − 4(1 + 2a)3

Fx
√

27

)

=
Fx
√

27√
27F 2

x − 4(1 + 2a)3

(
1− 27F 2

x − 4(1 + 2a)3

27Fx

)
> 0,

since we have assumed Fx > F crit
x . This also shows that the imaginary part of l is mono-

tonically increasing as Fx increases. We also note that

0 ≤ (−il) ≤ 1

because (−il) = 0 when Fx = F crit
x and (−il) = 1 when Fx =∞ and the increase in (−il)

is monotone. Using tan−1(·) defined for complex arguments gives

φ =
1

3
tan−1(l)

=
1

3
× 1

2
i{ln(1− il)− ln(1 + il)}

=
1

6
i{ln(1 + ε)− ln(1− ε)} where 0 ≤ ε ≤ 1

after letting ε = −il. Notice that φ now has zero real part, which means we can denote φ
with a real γ by writing

φ = iγ.

We also note that γ will be monotonically decreasing as Fx increases because

d

dε
[ln(1 + ε)− ln(1− ε)] =

1

1 + ε
− 1

1− ε

=
−2ε

(1 + ε)(1− ε)
< 0 for Fx > F crit

x .

Because it was shown that as Fx increases from Fx = F crit
x to Fx = ∞, ε would increase

from ε = 0 to ε = 1, which means γ would monotonically decrease. So the critical point
may now be written as

x0 = − 2√
3

√
1 + 2a cos (φ)

= − 2√
3

√
1 + 2a

ei(iγ) + e−i(iγ)

2
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= − 2√
3

√
1 + 2a cosh(γ)

which means x0 < −2√
3

√
1 + 2a and monotonically decreasing. Note that γ = 0 when

Fx = F crit
x .

Now we consider a special case of the forcing when Fx = F sad
x . This gives

(xsaddle,±ysaddle) = (xsaddle, 0)

= (
√

1− 2b, 0)

⇒ xsaddle =
√

1− 2b

which seemingly adds a fourth critical point onto the x-axis. This brings us to the next
Lemma.

Lemma 5.8. F sad
x ≤ F crit

x holds.

Proof. Proof by contradiction. Assume that F sad
x > F crit

x . Let Fx = F sad
x which means

(xsaddle,±ysaddle) = (xsaddle, 0) as a new critical point on the x-axis. Now we have to show
that (xsaddle, 0) is not one of (x0, 0), (x1, 0) or (x2, 0). The expressions for the critical points
mean we would always have xsaddle > 0. But Fx = F sad

x also implies Fx > F crit
x which by

Lemma 5.7 means the only critical point is x0 < 0 which is a contradiction.

The next Lemma will be useful in avoiding complicated manipulation of trigonometric
identities when it comes to proving properties about the critical points.

Lemma 5.9. Let Fx > 0, Fy = 0 and b < 1
2
. If Fx = F sad

x we must have either xsaddle = x1

or xsaddle = x2. If Fx = F sad
x = F crit

x then xsaddle = x1 = x2.

Proof. For strictly positive Fx > 0 some of the bounds on the critical points would have
to be made strict inequalities. This means x0 < 0, x1 > 0, x2 > 0 and xsaddle > 0. By the
time Fx = F sad

x , xsaddle would be a critical point on the x-axis. By Lemma 5.8 we must
always have F sad

x ≤ F crit
x . If F sad

x < F crit
x then by Lemma 5.7 there must be three distinct

critical points on the x-axis, so we must have either xsaddle = x1 or xsaddle = x2 (as x0 < 0).
If F sad

x = F crit
x then again by Lemma 5.7 x1 = x2 and there can only be two critical points

on the x-axis, therefore xsaddle = x1 = x2.

Now we are ready for one of the main Theorems of this Chapter. The ultimate aim is to
find the nature and position of all the critical points under different values of the forcing
Fx.

Theorem 5.10. Let Fx > 0, Fy = 0 and b < 1
2
. The positions and nature of the critical

points are as follows

For any Fx > 0
{

(x0, 0) well
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and if Fx < F sad
x


(x1, 0) well
(x2, 0) hill
(xsaddle,±ysaddle) saddle

or F sad
x < Fx < F crit

x


(x1, 0) saddle for

√
1− 2b ∈ R1

(x1, 0) well for
√

1− 2b ∈ R2

(x2, 0) hill for
√

1− 2b ∈ R1

(x2, 0) saddle for
√

1− 2b ∈ R2

(xsaddle,±ysaddle) nonexistent

or Fx = F sad
x < F crit

x


(x1, 0) unidentified for

√
1− 2b ∈ R1

(x1, 0) well for
√

1− 2b ∈ R2

(x2, 0) hill for
√

1− 2b ∈ R1

(x2, 0) neither for
√

1− 2b ∈ R2

(xsaddle,±ysaddle) unidentified

or Fx = F crit
x

{
(x1, 0) unidentified
(x2, 0) unidentified

or Fx > F crit
x

{
(x1, 0) nonexistent
(x2, 0) nonexistent

Proof. For the three xk we note that for 0 < Fx ≤ F crit
x they are elements of the intervals

x0 ∈
[
−2√

3

√
1 + 2a,−

√
1 + 2a

)
x1 ∈

[
1√
3

√
1 + 2a,

√
1 + 2a

)
x2 ∈

(
0,

1√
3

√
1 + 2a

]
.

Note also that at Fx = F sad
x the associated value of xsaddle(a, b, F

sad
x ) =

√
1− 2b can only

ever be elements of certain intervals.

For F sad
x < F crit

x either
√

1− 2b ∈ R1 :=

(
1√
3

√
1 + 2a,

√
1 + 2a

)
or
√

1− 2b ∈ R2 :=

(
0,

1√
3

√
1 + 2a

)
and if F sad

x = F crit
x then

√
1− 2b =

1√
3

√
1 + 2a

where R1 and R2 are defined as above. These statements above can be justified as follows.
Lemma 5.8 says F sad

x ≤ F crit
x . If Fx = F sad

x = F crit
x then Lemma 5.9 says xsaddle = x1 =
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x2 = 1√
3

√
1 + 2a. Also,

√
1− 2b must always live in the regions specified, because we must

always have 0 <
√

1− 2b <
√

1 + 2a for 0 < b < 1
2
. Or, to justify it in another way, if√

1− 2b > 0 live beyond the regions R1 or R2 then we would have four critical points on
the x-axis which is not possible.

Now we see how the critical points collide. If
√

1− 2b ∈ R1 then we got to have
xsaddle = x1. If

√
1− 2b ∈ R2 then we got to have xsaddle = x2. This is because for

Fx = F sad
x < F crit

x there have to be three distinct critical points on the x-axis as argued
by Lemma 5.7 and Lemma 5.9. From this information new bounds on the xk critical
points may be derived. The bounds for the critical points on the x-axis written compactly,
concisely and definitively for Fx > 0 are

Fx ≤ F crit
x


−2√

3

√
1 + 2a ≤ x0 < −

√
1 + 2a

1√
3

√
1 + 2a ≤ x1 <

√
1 + 2a

0 < x2 ≤ 1√
3

√
1 + 2a

Fx < F sad
x

{
x1 >

√
1− 2b for

√
1− 2b ∈ R1

x2 <
√

1− 2b for
√

1− 2b ∈ R2

Fx > F sad
x

{
x1 <

√
1− 2b for

√
1− 2b ∈ R1

x2 >
√

1− 2b for
√

1− 2b ∈ R2

Fx = F sad
x

{
x1 = xsaddle =

√
1− 2b

x2 = xsaddle =
√

1− 2b
not necessarily x1 = x2

Fx = F crit
x

{
x0 = −2√

3

√
1 + 2a

x1 = x2 = 1√
3

√
1 + 2a

Fx > F crit
x

{
x0 <

−2√
3

√
1 + 2a

Fx = F sad
x = F crit

x

{
x1 = x2 = xsaddle =

√
1− 2b = 1√

3

√
1 + 2a

Now that the bounds on the critical points for various forces are known, we can deduce their
nature. The (xsaddle,±ysaddle) is the easiest to prove, taking into account of x2

saddle+y
2
saddle =

(1− 2b) we have for the determinant of the Hessian at (xsaddle,±ysaddle)

detH = −4y2
saddle(a+ b) < 0

which is definitely a saddle. The Hessian for the critical points (xk, 0) is already diagonal
even with forcing. It is

H(xk, 0) =

(
∂2VF
∂x2

0

0 ∂2VF
∂y2

)
=

(
3x2

k − (1 + 2a) 0
0 x2

k − (1− 2b)

)
and so by using the bounds we derived, and by considering whether the eigenvalues are
both positive (well), both negative (hill) or opposite signs (saddle) we can finally deduce
the nature of all five critical points.
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The situation can be represented graphically as

Figure 5.1: As Fx increases from 0 to F crit
x , the x1,2,3 move as shown in the diagram. As Fx

increases from 0 to F sad
x the (xsaddle,±ysaddle) meet each other on the x-axis. There are three

possible paths for (xsaddle,±ysaddle). If
√

1− 2b ∈ R1, then the two (xsaddle,±ysaddle) would

meet in the interval
(

1√
3

√
1 + 2a,

√
1 + 2a

)
and collide into (x2, 0). If

√
1− 2b ∈ R2, then

the two (xsaddle,±ysaddle) would meet in the interval
(

0, 1√
3

√
1 + 2a

)
and collide into (x1, 0).

If
√

1− 2b = 1√
3

√
1 + 2a, which is also when F sad

x = F crit
x , then the two (xsaddle,±ysaddle)

would meet at x = 1√
3

√
1 + 2a and collide simultaneously into (x1, 0) and (x2, 0).
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Figure 5.2: This is the case for when
√

1− 2b ∈ R1. When F = F sad
x the two saddles

collide into the right well and turns into a new saddle. At F crit
x , this newly created saddle

collides into the hill and both disappears. When Well 2 turns into a Saddle here, it is like
creating a new path for the particle to transit to Well 1.
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Figure 5.3: This is the case for
√

1− 2b ∈ R2. When F = F sad
x the two saddles collide into

the hill and turns into a new saddle. At F crit
x , this newly created saddle collides into the

right well and both disappears. This system behaves in a similar way to a One Dimensional
Potential.
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Figure 5.4: This is the case for when
√

1− 2b = 1√
3

√
1 + 2a, which is also when F sad

x =

F crit
x . At F = F sad

x = F crit
x the two saddles, hill and right well mutually collide at the same

place and disappears.

5.2.2 Case Fx > 0, Fy = 0 and b ≥ 1
2

For b ≥ 1
2

the reasoning is similar to the b < 1
2

case, but (xsaddle,±ysaddle) does not exist.
We have the following Theorem.

Theorem 5.11. Let Fx > 0, Fy = 0 and b ≥ 1
2
. The positions and nature of the critical
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points are as follows

Fx < F crit
x


(x0, 0) well
(x1, 0) well
(x2, 0) saddle

Fx > F crit
x


(x0, 0) well
(x1, 0) nonexistent
(x2, 0) nonexistent

Fx = F crit
x


(x0, 0) well
(x1, 0) neither
(x2, 0) neither

This can be graphically conveyed as

Figure 5.5: As Fx increases from 0 to F crit
x , the saddle collides into the right well and

disappears.

5.3 Case Fx = 0 and Fy > 0

Similarly when forcing is only in the y direction, the cases for b < 1
2

and b ≥ 1
2

have to be
considered separately. The case for Fy ≤ 0 is similar.

5.3.1 Case Fx = 0, Fy > 0 and b < 1
2

We have some Lemmas and Theorems which are almost analogous to the case for Fx > 0,
Fy = 0 and b < 1

2
. Their proofs are very similar and are omitted.

Theorem 5.12. Let Fx = 0, F > 0 and b < 1
2
. Let Fy be bounded by

Fy ≤ F sad
y and Fy ≤ F crit

y
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where

F sad
y = 2(a+ b)

√
1 + 2a and F crit

y =

√
4(1− 2b)3

27

then there are five critical points given by

(0, yk) k = 1, 2, 3

(±xwell, ywell)

where

xwell =

√
(1 + 2a)−

(
Fy

2(a+ b)

)2

ywell =
−Fy

2(a+ b)

yk = − 2√
3

√
1− 2b cos

(
ψ + k

2π

3

)
ψ =

1

3
tan−1(p)

p =

√
4(1− 2b)3 − 27F 2

y

Fy
√

27

k = 0, k = 1, k = 2.

Lemma 5.13. The function p (as in Theorem 5.12) is monotone in Fy for Fy < F crit
y .

Lemma 5.14. Let Fx = 0, Fy > 0 and b < 1
2
. These three scenarios hold.

If Fy < F crit
y we have 3 critical points on the x-axis: y0 < y2 < y1.

If Fy = F crit
y we have 2 critical points on the y-axis: y0 < y2 = y1.

If Fy > F crit
y we have 1 critical point on the y-axis: y0 <

−2√
3

√
1− 2b and y0 → −∞

monotonically with increasing Fy.

Using the same reasoning as for the x-direction case we have bounds on the three yk for
0 ≤ Fy ≤ F crit

y .

−2√
3

√
1− 2b ≤ y0 ≤ −

√
1− 2b

1√
3

√
1− 2b ≤ y1 ≤

√
1− 2b

0 ≤ y2 ≤
1√
3

√
1− 2b.
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The monotonicity of yk means

y0 : −
√

1− 2b −→ −2√
3

√
1− 2b as Fy → F crit

y

y1 :
√

1− 2b −→ 1√
3

√
1− 2b as Fy → F crit

y

y2 : 0 −→ 1√
3

√
1− 2b as Fy → F crit

y

without any oscillations. Now consider the special case when Fy = F sad
y . This gives

(±xwell, ywell) = (0, ywell)

= (0,−
√

1 + 2a)

⇒ ywell = −
√

1 + 2a

which definitely satisfies −
√

1 + 2a < −
√

1− 2b for 0 < b < 1
2
. This seemingly adds a

fourth critical point onto the y-axis. We have a Lemma whose method of proof is similar
to Lemma 5.8. But now it does not take long to find numerical examples such that
F sad
y < F crit

x , F crit
y < F sad

y and F sad
y = F crit

y . These would form the separate sub-cases we
would have to consider.

Lemma 5.15. The following statements hold.

1. If F sad
y < F crit

y , then −
√

1 + 2a > −2√
3

√
1− 2b

2. If F sad
y > F crit

y , then −
√

1 + 2a < −2√
3

√
1− 2b

3. If F sad
y = F crit

y , then −
√

1 + 2a = −2√
3

√
1− 2b

Proof. If F sad
y < F crit

y , assume that −
√

1 + 2a ≤ −2√
3

√
1− 2b. Let Fy = F sad

y . But this

means Fy < F crit
y and by Lemma 5.14 there must be three critical points on the y-axis.

But monotonicity implies y0 >
−2√

3

√
1− 2b for Fy < F crit

y meaning there would be 4 critical
points on the y-axis, which is a contradiction.

If F sad
y > F crit

y assume, that −
√

1 + 2a ≥ −2√
3

√
1− 2b. Let Fy = F sad

y . But this means

Fy > F crit
y and Lemma 5.14 implies that there should only be one critical point on the

y-axis. We know that y0 = −2√
3

√
1− 2b at Fy = F crit

y and yet the monotonicity of y0 means

y0 <
−2√

3

√
1− 2b for Fy > F crit

y . This would mean 2 critical points on the y-axis which is a

contradiction.23

If F sad
y = F crit

y then let Fy = F sad
y = F crit

y . But Lemma 5.14 says there can only be 2
critical points on the y-axis. But y1 = y2 > 0 and y0 < 0. This means ywell must collide
into y0, hence the statement of the Theorem.

23Just like in the x-direction case it can be shown that for Fy > F crity , y0 = −2√
3

√
1− 2b cosh(z) where z

is a real number which monotonically decreases with increasing Fy, and yet z = 0 when Fy = F crity , which
justifies the idea of this proof.
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Again we are ready for another main Theorem of this Chapter. It is finding the positions
and nature of all the critical points for different values of Fy.

Theorem 5.16. Let Fx = 0, Fy > 0 and b < 1
2
. The positions and nature of the critical

points are as follows

Fy < F crit
y

{
(0, y1) saddle
(0, y2) hill

Fy < F sad
y

{
(0, y0) saddle
(±xwell, ywell) well

Fy > F crit
y

{
(0, y1) nonexistent
(0, y2) nonexistent

Fy > F sad
y

{
(0, y0) well
(±xwell, ywell) nonexistent

Fy = F crit
y

{
(0, y1) unidentified
(0, y2) unidentified

Fy = F sad
y

{
(0, y0) unidentified
(±xwell, ywell) unidentified

Proof. Just like in the x-direction case, monotonicity of p is essential in justifying the
following bounds on the critical points for Fy > 0. Note that Lemma 5.15 is used to
determine the bounds on the yk critical points

Fy ≤ F crit
y


−2√

3

√
1− 2b ≤ y0 < −

√
1− 2b

1√
3

√
1− 2b ≤ y1 <

√
1− 2b

0 < y2 ≤ 1√
3

√
1− 2b

Fy < F sad
y

{
y0 > −

√
1 + 2a

Fy > F sad
y

{
y0 < −

√
1 + 2a

Fy > F crit
y

{
y0 <

−2√
3

√
1− 2b

Fy = F sad
y

{
y0 = ywell = −

√
1 + 2a

Fy = F crit
y

{
y1 = y2 = 1√

3

√
1− 2b

Fy = F sad
y = F crit

y

{
y0 = ywell = −

√
1 + 2a = −2√

3

√
1− 2b

Now that the bounds on the critical points are found we can determine their nature.
Similarly (±xwell, ywell) is the one whose nature is easiest to prove. After noting that
x2
well + y2

well = (1 + 2a), the determinant of the Hessian at (±xwell, ywell) gives

detH = 4x2
well(a+ b) > 0
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and the second partial derivative in x gives

∂2VF
∂x2

(±xwell, ywell) = 2x2
well > 0

which is a well by Theorem 5.2. The Hessian matrix for the three critical points on the
y-axis (0, yk) is already diagonal even with forcing

H(0, yk) =

(
∂2VF
∂x2

0

0 ∂2VF
∂y2

)
=

(
y2
k − (1 + 2a) 0

0 3y2
k − (1− 2b)

)
.

Lemma 5.15 has to be used in conjunction with the bounds on y0, y1, y3 and ywell (as
derived in the proof of this Theorem) to determine the nature of the critical points.

This can be shown graphically.
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Figure 5.6: As Fy increases from 0 to F crit
y the y0, y1 and y2 move as shown in the diagram.

As Fy increases from 0 to F sad
y , the two (±xwell, ysaddle) meet each other on the y-axis. There

are three possible paths for (±xwell, ywell). If F sad
y < F crit

y , then the two (±xwell, ywell)
meet between in the interval

(
− 2√

3

√
1− 2b,−

√
1− 2b

)
. If F sad

y = F crit
y , then the two

(±xwell, ywell) meet at y = − 2√
3

√
1− 2b. If F sad

y > F crit
y then the two (±xwell, ywell) meet

in the interval
(
−∞,− 2√

3

√
1− 2b

)
.
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Figure 5.7: At F = F crit
y the top saddle collides into the hill and both then disappears. At

F = F sad
y the bottom saddle collides with the two wells and turns into a new well. These

two collisions can occur simultaneously or occur one after the other, depending on whether
we have F sad

y < F crit
y , F sad

y = F crit
y or F sad

y > F crit
y .

5.3.2 Case Fx = 0, Fy > 0 and b ≥ 1
2

The case for Fy > 0, b ≥ 1
2

is slightly different in the sense that we have to consider the
discriminant of the cubic equation with one real solution for the potential. We have the
last main Theorem in this Chapter.
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Theorem 5.17. Let Fx = 0, Fy > 0 and b ≥ 1
2
. The positions and nature of the critical

points are as follows

Fy < F sad
y

{
(0, y0) saddle
(±xwell, ywell) well

Fy = F sad
y

{
(0, y0) = (±xwell, ywell) unidenitified

Fy > F sad
y

{
(0, y0) well
(±xwell, ywell) nonexistent

Proof. The simultaneous equations we have to solve are

∂VF
∂x

= x(x2 + y2)− (1 + 2a)x = 0 (5.3)

∂VF
∂y

= y(x2 + y2)− (1− 2b)y + Fy = 0. (5.4)

Equation 5.3 holds if either x = 0 or (x2+y2)−(1+2a) = 0. The case for (x2+y2)−(1+2a) =
0 gives (±xwell, ywell) as a critical point in similar way as before. The case for x = 0 reduces
Equation 5.4 to

y3 − (1− 2b)y + Fy = 0.

It is this resulting cubic equation which forms the next series of discussions. The required
expressions in solving this cubic equation are

∆0 = 3(1− 2b), ∆1 = 27Fy, ∆ = 4(1− 2b)3 − 27F 2
y .

Since b ≥ 1
2

the discriminant of this cubic equation is strictly negative meaning ∆ < 0,
which means there can only be one real solution. All the solutions whether complex or real
are given by

yk = −1

3

(
eiψkC + e−iψk

∆0

C

)
where

ψ0 = 0, ψ1 = 2π/3, ψ2 = 4π/3

C =
3

√
∆1 +

√
−27∆

2
.

Notice that the ∆ < 0, C and ∆0 are all real numbers. Since there can only be one real yk
solution this has to be y0, as y0 would just be a sum of real numbers. This then means y1

and y2 would be complex conjugate solutions. Now written explicitly we have

C =
3

√√√√27Fy +
√

(27F 2
y − 4(1− 2b)3)× 27

2
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which for b ≥ 1
2

is clearly monotonically increasing in Fy for Fy > 0. This is because the√
· and 3

√
· are both monotone with respect to their own argument. This means we can say

dC

dFy
≥ 0

dy0

dFy
= −1

3

(
1− ∆0

C2

)
dC

dFy

≤ 0

because (−∆0) > 0 for b ≥ 1
2
. This means y0 would always monotonically decrease with

increasing Fy. We also know that at Fy = F sad
y the two wells on the sides become

(±xwell, ywell) = (0,−
√

1 + 2a).

Note that earlier when x = 0 was imposed in Equation 5.3 and 5.4 we were reduced with a
cubic equation that only admits one real solution in y. This means there can only be one
critical point on the y-axis so we must have

y0 = −
√

1 + 2a

at Fy = F sad
y . This justifies the following bounds

Fy < F sad
y

{
y0 > −

√
1 + 2a

Fy = F sad
y

{
y0 = −

√
1 + 2a

Fy > F sad
y

{
y0 < −

√
1 + 2a

which can be justified by the monotonicity of y0. This together with the Hessian can allow
us to identify the nature of the critical points.

Again the situation can be represented graphically.
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Figure 5.8: At Fy = F sad the saddle collides with the two wells and turns into a new well.

5.4 Case Fx 6= 0 and Fy 6= 0

Consider the forcing

F =

(
Fx
Fy

)
=

(
F cosφ
F sinφ

)
where F =

√
F 2
x + F 2

y

so far we have only studied the case when φ = 0◦, 90◦, 180◦, 360◦. Now we consider the
case for forcing in a general direction. The critical points are given by solutions to

∂VF
∂x

= x(x2 + y2)− (1 + 2a)x+ Fx = 0 (5.5)

∂VF
∂y

= y(x2 + y2)− (1− 2b)y + Fy = 0. (5.6)

The arguments presented next can actually apply for any a, b, Fx and Fy regardless of
whether they are positive or negative. Notice that if φ /∈ {0◦, 90◦, 180◦, 360◦} then Fx 6= 0
and Fy 6= 0. This means x = 0 or y = 0 must not appear in any solution. This is the
assumption used. Solving Equation 5.6 for x2 gives

y(x2 + y2)− (1− 2b)y + Fy = 0

(x2 + y2)− (1− 2b) +
Fy
y

= 0
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(x2 + y2) = (1− 2b)− Fy
y

x2 = (1− 2b)− Fy
y
− y2 (5.7)

and substituting Equation 5.7 into Equation 5.5 gives√
(1− 2b)− Fy

y
− y2

(
(1− 2b)− Fy

y

)
− (1 + 2a)

√
(1− 2b)− Fy

y
− y2 + Fx = 0

√
(1− 2b)− Fy

y
− y2

(
(1− 2b)− Fy

y
− (1 + 2a)

)
+ Fx = 0

[
(1− 2b)− Fy

y
− y2

] [
−2b− Fy

y
− 2a

]2

− F 2
x = 0

[
(1− 2b)− Fy

y
− y2

] [
2(a+ b) +

Fy
y

]2

− F 2
x = 0

[
y(1− 2b)− Fy − y3

] [
2(a+ b) +

Fy
y

]2

− F 2
xy = 0

[
y(1− 2b)− Fy − y3

] [
4(a+ b)2 + 4(a+ b)

Fy
y

+
F 2
y

y2

]
− F 2

xy = 0[
y(1− 2b)− Fy − y3

] [
4(a+ b)2y2 + 4y(a+ b)Fy + F 2

y

]
− F 2

xy
3 = 0

which rearranges into a fifth degree polynomial in y

y5[−4(a+ b)2]

+ y4[−4(a+ b)Fy]

+ y3[(1− 2b)4(a+ b)2 − F 2
y − F 2

x ]

+ y2[(1− 2b)4(a+ b)Fy − Fy4(a+ b)2]

+ y1[(1− 2b)F 2
y − Fy4(a+ b)Fy]

+ y0[−F 3
y ]

= 0 (5.8)

which can only be solved numerically. The five solutions for Equation 5.8 are denoted by

yi where i = 1, 2, 3, 4, 5.
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Now consider Equation 5.5

x(x2 + y2)− (1 + 2a)x+ Fx = 0

x =
−Fx

x2 + y2 − (1 + 2a)

=
−Fx

(1− 2b)− Fy
y
− (1 + 2a)

where we have used Equation 5.7 for the last line. This means the x part of the final set
of solutions is

xi =
−Fx

(1− 2b)− Fy
yi
− (1 + 2a)

where i = 1, 2, 3, 4, 5.

Notice how the calculation is not straightforward if one feeds yi into Equation 5.7 by means
of

xi 6=

√
(1− 2b)− Fy

yi
− y2

i .

We do not know whether to take the positive or negative solution. Any easy counting
shows that one obtains too many solutions. These five solutions (xi, yi) are sorted into
wells, hills and saddles. Although an explicit value for the critical forcing cannot be given
analytically, an educated guess can be made

F crit = min
{
F sad
x , F crit

x , F sad
y , F crit

y

}
(5.9)

that is because a critical force in a general direction must encompass all the other directions.
Here are some real examples of the critical points, as the force is being changed during half
a period of an oscillatory potential.
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Figure 5.9: The critical points move very little here.

Figure 5.10: The critical points have a more extreme trajectory here.
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Figure 5.11: Notice that the use of F crit as a critical force is just an educated guess. Here
the system is so close to criticality the saddle is almost colliding with the hill.

5.5 Remarks on Mexican Hat

We give an example of how the Mexican Hat Toy Model look like.
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Figure 5.12: An example of the potential VF (x, y) = 1
4
r4 − 1

2
r2 − ax2 + by2 + Fxx + Fyy

where r =
√
x2 + y2. Here a = 0.1, b = 0.1, Fx = 0.1 and Fy = 0. Notice there are two

saddles just ahead of the hill. The well on the right is higher than the well on the left.

5.5.1 Beyond Criticality

At first glance since the critical points can all be found numerically, one may ask why
studied the cubic formula. This actually provided exact analytic information about the
system near and beyond criticality and in the extremal cases as well. Besides, stochastic
resonance is studied when the forcing is small enough such that the topology of the potential
does not change significantly. This is because if the forcing is too large (beyond criticality)
then transitions are almost certain, and there is little point to consider stochastic resonance
in this case.

5.5.2 Numerical Problems

When the critical points are numerically found, they were fed back into Equations 5.5 and
5.6 and were correct to 10−9. But a few problems remain. In simulations when the angle
of the forcing

φ = tan−1

(
Fy
Fx

)
is changed from φ = 0◦ to φ = 90◦ the potential was continuously changing from a system
needing to solve third order roots to a system needing to solve fifth order roots. This
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means the numerical algorithms for solving the quintic polynomial (Equation 5.8) became
very unstable when the system is close to solving a cubic equation.24 No further numerical
investigation is necessary as analytic results are available to interpolate the correct solution.

5.5.3 Comparison with One Dimensional Case

The one dimensional potential is

VF =
x4

4
− ax

2

2
+ Fx

and their critical points are given by solutions to the equation

∂VF
∂x

= x3 − ax+ F = 0

which when compared to the solutions in the Mexican Hat yields the critical points as

xk = −2

3

√
a cos

{
1

3
tan−1

(√
4a3 − 27F 2

F
√

27
+

2π

3
k

)}
.

Similarly if we want three critical points, the tan−1(·) must take real arguments, which
means

F < F crit =

√
4a3

27

and the nature of the critical points are

F < F crit


x0 well
x1 well
x2 hill

F > F crit


x0 well
x1 nonexistent
x2 nonexistent

F = F crit


x0 well
x1 unidentified
x2 unidentified

which is similar to the Fx > 0, Fy = 0 and b ≥ 1
2

case. These critical points are bounded
by

x0 < x2 < x1.

24Algorithms used in the roots(·) function in MatLab.
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This was a calculation not studied in the paper by Benzi et al [4] and other literature. In
the paper [4] it was assumed that the forcing is so small the hill is very near to x2 = 0.
In [4], the escape times were defined by Equations 1.5 and 1.6, where having reached the
hill (which is assumed to be at x2 = 0) is sufficient for escape. Our calculations show
that the hill actually moves as the potential oscillate. Taking this into account may give a
better approximation of the exit times than in [4].
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Chapter 6

Numerical Methods

Let us remind ourselves of the unperturbed potential of the Mexican Hat Toy Model.

V0(x, y) =
1

4
r4 − 1

2
r2 − ax2 + by2 where r =

√
x2 + y2.

The SDE we want to study and simulate is

Ẋε
t = −∇V0 + F cos Ωt+ ε Ẇt

where Wt is a two dimensional Wiener process. When this SDE is expressed for the separate
x and y components we have

dx =

[
−∂V0

∂x
+ Fx cos Ωt

]
dt+ ε dwx

dy =

[
−∂V0

∂y
+ Fy cos Ωt

]
dt+ ε dwy

where ε is the noise level and wx and wy are two independent Wiener processes. When this
SDE is numerically approximated by the Euler method we have

tn = tn−1 + tstep

xn = xn−1 +

[
−∂V0

∂x
(xn−1, yn−1) + Fx cos(Ωtn−1)

]
tstep + ε

√
tstep ξx

yn = yn−1 +

[
−∂V0

∂y
(xn−1, yn−1) + Fy cos(Ωtn−1)

]
tstep + ε

√
tstep ξy

for the iterative scheme, where ξx and ξy are two independent normal random variables.
The level of precision for the numerics are estimated assuming the Euler method is being
used in simulations. More on numerical solutions to SDEs can be found in [61].

When the escape times are measured for an oscillatory potential, a fixed radius R is
defined around the well which moves with the well. The two parameters we need to consider
are

tstep and R
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and derive appropriate values for them. The particle is defined as having entered a well
when it enters the area covered by the radius R around the well. The time difference
between entering the first well and the second is measured as the escape time from the first
well. The idea behind the considerations is to identify possible sources of error for tstep
and R and eliminate them. The consequence is that tstep is bounded by six bounds on the
time step

tstep ≤ min {t1, t2, t3, t4, t5, t6}

where the time step tstep has to meet six different conditions. Similarly the radius is
bounded in the following way

R ≤ min {R1, R2} .

Although these theories are not rigorous, it gives a fair idea of the level of precision that
is needed. It is assumed in the following that the same precision needed for measuring
escape times is also precise enough for studying the six measures of resonance. Although
the Mexican Hat is a two dimensional system, part of the numerical theory is derived on
a general number of dimensions Rr.

6.1 Basic Conditions - Estimating tstep ≤ t1, tstep ≤ t2
and tstep ≤ t3

When the potential oscillates, one period T is achieved when

ΩT = 2π ⇒ T =
2π

Ω

and the time step tstep has to be precise enough such that the potential is well presented.
Thus it is reasonable to take as the first bound

t1 =
2π

ΩN1

where N1 is an appropriately large number say N1 = 1000. Denote by tend for the end
time. This is the time the simulation is being run for. At least 1000 transitions need to be
detected, which makes the following a reasonable choice

tend = 1000×

max
wj(t)

0≤t≤T

τ + min
wj(t)

0≤t≤T

τ


where τ is the predicted escape time as given by Kramers’ formula, wj(t) where j = 1, 2, . . .
are the positions of the wells at time t. Thus the tend is 1000 times the minimum and
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maximum predicted escape times over all wells over one period. Trivially, the time step
has to be smaller than the shortest predicted escape time so the second bound is

t2 =
1

N2

min
wj(t)

0≤t≤T

τ

where we use N2 = 1000. Most of the time, the particle is near the bottom of the well,
then one can approximate the iteration scheme to

tn = tn−1 + tstep

xn = xn−1 + ε
√
tstep ξx

yn = yn−1 + ε
√
tstep ξy

which allows the distance travelled by the particle in one increment, in the time of one
time step tstep to be given as

∆z =

√
(xn − xn−1)2 + (yn − yn−1)2.

Let the critical points be given by

c1(t), c2(t), . . .

If the particle starts at the well and ever reaches a hill or saddle, then transition to the
other well is almost certain. Thus travelling from the well to another critical point should
be almost impossible in a single time step tstep, that is one increment ∆z. The length of
this forbidden jump is

l1 = min
wi(t)6=cj(t)

0≤t≤T

|wi(t)− cj(t)|

which is the minimal distance from the wells to any other critical points (which are not
wells) over one period. But the normal random variables ξi are normal distributed in
N(0, 1). This means

P (ξx > r) =

∫ ∞
r

e−x
2/2

√
2π

dx

and the joint distribution is given by

P (ξx > r1, ξy > r2) =

∫ ∞
x=r1

∫ ∞
y=r2

n(x, y) dx dy

where

n(x, y) =
1

2π
exp

{
−1

2
(x2 + y2)

}
.
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This gives

P (∆z > l1) = P

(√
ξ2
x + ξ2

y >
l1

ε
√
tstep

)
=

∫∫
{

(x,y):
√
x2+y2>

l1
ε
√
tstep

} n(x, y) dx dy

=

∫ θ=2π

θ=0

∫ ∞
l1

ε
√
tstep

1

2π
e−r

2/2 r dr dθ

= exp

{
−1

2

(
l1

ε
√
tstep

)2
}

and the number of increments achieving such a direct jump must be almost zero in one
session of the simulation. So

tend
tstep

P (∆z > l1) < N3

where N3 needs to be smaller than one for example N3 = 0.1. Rearranging the expression
to

tend
tstep

exp

{
−1

2

(
l1

ε
√
tstep

)2
}

= N3

and solving for the time step tstep we get

tstep = J(ε, l1, N3, tend)

where J is a function which numerically inverts the expressions to give the time step
required. This gives the third bound as

t3 = J(ε, l1, N3, tend).

6.2 Increment Conditions

The bound t3 on the time step hinges on finding bounds on the length of a single increment

∆z =

√
(xn − xn−1)2 + (yn − yn−1)2

that is the distance travelled in the time of one time step tstep. This is now considered
again but in a more general setting in Rr a general number of dimensions.
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6.2.1 Increment Theory - Developing W (S, l)
Let V0 : Rr −→ R be a real function from Rr to R. Its gradient with a periodic forcing
and noise gives rise to the SDE

Ẋt = −∇V0 + F cos(Ωt) + εẇt

where Xt is a trajectory in Rr, F is the force in Rr and wt is a vector of r independent
Wiener processes. Thus

Xt = (x1(t), x2(t), . . . , xr(t))

F = (F1, F2, . . . , Fr)

wt = (w1(t), w2(t), . . . , wr(t)).

This trajectory can be numerically approximated with the Euler scheme

tn+1 = tn + tstep

xn+1
i = xni +

[
−∂V0

∂xi
(xn1 , x

n
2 , . . . , x

n
r ) + Fi cos(Ωtn)

]
tstep + ε

√
tstep ξi (6.1)

where the partial derivative is evaluated at the previous iteration step (xn1 , x
n
2 , . . . , x

n
r ) and

ξi is a normal random variable. Rearranging Equation 6.1 gives(
xn+1
i − xni

)
≤
[
−∂V0

∂xi
(xn1 , x

n
2 , . . . , x

n
r ) + Fi cos(Ωtn)

]
tstep + ε

√
tstep ξi. (6.2)

Notice that we can make the following bound[
−∂V0

∂xi
(xn1 , x

n
2 , . . . , x

n
r ) + Fi cos(Ωtn)

]
tstep ≤

∣∣∣∣−∂V0

∂xi
(xn1 , x

n
2 , . . . , x

n
r ) + Fi cos(Ωtn)

∣∣∣∣ tstep
≤
[ ∣∣∣∣−∂V0

∂xi
(xn1 , x

n
2 , . . . , x

n
r )

∣∣∣∣+ |Fi cos(Ωtn)|
]
tstep

≤
[ ∣∣∣∣−∂V0

∂xi
(xn1 , x

n
2 , . . . , x

n
r )

∣∣∣∣+ |Fi|
]
tstep

≤
[
max
S

∣∣∣∣∂V0

∂xi

∣∣∣∣+ |Fi|
]
tstep (6.3)

where S is a set that is large enough such that

(xn1 , x
n
2 , . . . , x

n
r ) ∈ S ⊂ Rn.

We define

∆xi =

[
max
S

∣∣∣∣∂V0

∂xi

∣∣∣∣+ |Fi|
]
tstep + ε

√
tstep ξi = Ai +Bξi. (6.4)
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By using the triangle inequality we can bound Equation 6.2 and 6.4 in the following way∣∣xn+1
i − xni

∣∣ ≤ ∣∣∣∣−∂V0

∂xi
(xn1 , x

n
2 , . . . , x

n
r ) + Fi cos(Ωtn)

∣∣∣∣ tstep +
∣∣ε√tstep ξi

∣∣
|∆xi| ≤

[
max
S

∣∣∣∣∂V0

∂xi

∣∣∣∣+ |Fi|
]
tstep +

∣∣ε√tstep ξi
∣∣

and by using 6.3 we know that ∣∣xn+1
i − xni

∣∣ ≤ |∆xi| .
This means the total increment in the time of one iteration is bounded by√∣∣xn+1

1 − xn1
∣∣2 +

∣∣xn+1
2 − xn2

∣∣2 + . . .+ |xn+1
r − xnr |

2 ≤
√

∆x2
1 + ∆x2

2 + . . .+ ∆x2
r

leading us to define

∆z =
√

∆x2
1 + ∆x2

2 + . . .+ ∆x2
r.

Now introduce a new variable

ηi =
∆xi
B
∼ N

(
Ai
B
, 1

)
which is a normal random variable with mean Ai/B and variance one. Let

η = η2
1 + η2

2 + . . .+ η2
r and λ =

1

B2

(
A2

1 + A2
2 + . . .+ A2

r

)
which means η is a sum of the squares of r normal random variables with variance one
and λ is the sum of their means. This means η is noncentral chi-squared distributed with
r degrees of freedom. Its CDF is

P (η ≤ x) = 1−Q r
2
(
√
λ,
√
x)

where Qm is the Marcum Q-function. Thus the total increment is distributed by

P (∆z > l) = P (∆z2 > l2)

= P (ηB2 > l2)

= P

(
η >

l2

B2

)
= Q r

2

(√
λ,

l

ε
√
tstep

)
where l would be the length of a forbidden increment. The number of such forbidden jumps
must stay below an appropriate number N3, that is

tend
tstep

P (∆z > l) = N3 (6.5)
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and Equation 6.5 has to be numerically inverted to give the required time step tstep

tstep = W (S, l)

where a different region S and length l fulfilling different criteria is used to calculate a
different bound on the time step. Note that we choose N3 = 0.1.

6.2.2 Absence of Large Jumps - Estimating tstep ≤ t4 and tstep ≤ t5

Let the set S1 be given by

S1 =
{(
−
√

1 + 2a, 0
)
,
(

+
√

1 + 2a, 0
)
,
(

0,−
√

1− 2b
)
,
(

0,+
√

1− 2b
)
, (0, 0)

}
which is the positions of all the critical points as they would be when the forcing is zero
F = 0. This means

max
S1

∣∣∣∣∂V0

∂x

∣∣∣∣ = 0 and max
S1

∣∣∣∣∂V0

∂y

∣∣∣∣ = 0.

The set S1 can be used as an approximation for small forcing. Equation 6.4 now becomes

∆x = |Fx| tstep + ε
√
tstep ξx

∆y = |Fy| tstep + ε
√
tstep ξy

and we want a time step tstep small enough such that almost every value of ∆z =
√

∆x2 + ∆y2

is bounded by

∆z =
√

∆x2 + ∆y2 ≤ l1

and this time step is given by t4 below

t4 = W (S1, l1).

Now we remind ourselves that if ζ is an exponentially distributed random variable, its
PDF, CDF, mean and variance are given by

P (ζ ∈ A) =

∫
A

λe−λx dx

P (ζ ≤ x) =

∫ x

−∞
λe−λx dx = 1− e−λx = F (x)

〈ζ〉 =
1

λ

var(ζ) =
1

λ2
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where λ is the parameter associated with the exponential distribution. Now define the
height

h0 = max
wj(t)

0≤t≤T

Vt(wj(t))

which is the maximum height any well can ever reach. Now define the expression

∆Vh = h1 − h0

where h1 is chosen so high that the particle will probably never reach there. Even if it
starts from the highest possible well the chances are still very slim. Now we try to estimate
what this height h1 may be. From Freidlin-Wentzell we know that the escape time from
V = h0 to V = h1 is roughly

τh ≈ e2∆Vh/ε
2

and we want the time it takes to reach V = h1 to be significantly more than the duration
of the simulation

τh � tend

which means a reasonable estimate would be

N2tend = e2∆Vh/ε
2

2∆Vh = ε2 ln(N2tend)

⇒ h1 =
1

2
ε2 ln(N2tend) + h0

where as before we choose N2 = 1000. The escape times leaving V = h0 and arriving at
V = h1 is exponentially distributed. The average of them would be

〈τh〉 = N2tend = e2∆Vh/ε
2

and so by using the CDF of the exponential distribution we can say

P (τh < tend) = 1− e−1/N2

= 0.632 for N2 = 1

= 0.095 for N2 = 10

= 0.01 for N2 = 100

= 0.001 for N2 = 1000.

So if we choose N2 ≥ 1000 the chances of reaching V = h1 are less then one in a thousand.
Define the set

S2 = {x ∈ Rr : [V0(x)− Fx cos(Ωt)] ≤ h1 : 0 ≤ t ≤ T}
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= {x ∈ Rr : Vt ≤ h1 : 0 ≤ t ≤ T}

which is the set of all the points below Vt ≤ h1 over the time of one period. The forbidden
increment is taken as the same as last time

l2 = l1

so the second bound is

t5 = W (S2, l2).

6.3 Stability and Radius Conditions

Stability of the trajectory in the context of this thesis is for the time step tstep to be small
enough such that the simulated discrete trajectory is a good enough approximation of a
physical continuous trajectory. For example consider the following trajectories for a particle
falling down to the well of the Mexican Hat starting at (xstart, ystart) = (−0.75,−0.75).

Figure 6.1: The trajectory is so unstable the particle even transits to the other well.
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Figure 6.2: The trajectory is more stable but the particle now oscillates near the well.

Figure 6.3: The trajectory is sufficiently stable here.

It is the aim of this section to study these stability problems. The Euler method is effec-
tively a discrete iterative map with some operations. We have the following.
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Lemma 6.1. Let (X, ‖ · ‖) be a vector space endowed with the norm ‖ · ‖ over the complex
scalar field F. Let M be an operator M : X −→ X with the property ‖Mx‖ ≤ ‖M‖‖x‖
and ‖M‖ ≥ 0. Let x ∈ X be part of an iterative scheme

xn = Mxn−1 + ε
√
t ξn−1

where ξn−1 ∈ X is a term which depends on the iterative step n. The entire term xn is
then bounded by

‖xn‖ ≤ ‖M‖n‖x0‖+ ε
√
t
n−1∑
i=0

‖M‖i ‖ξn−1−i‖

where x0 and ξ0 are the starting (first) steps.

Proof. Rewrite the iterative scheme with a new operator

xn = Mxn−1 + ε
√
t ξn−1

= M ′
nxn−1

where M ′
n is the total operator which depends on the nth step. In general M ′

n is not
commutative so we write

xn = M ′
nM

′
n−1 . . .M

′
1x0

and consider just one operation on M ′
n

M ′
nx = Mx+ ε

√
t ξn−1

‖M ′
nx‖ =

∥∥∥Mx+ ε
√
t ξn−1

∥∥∥
≤ ‖Mx‖+ ε

√
t ‖ξn−1‖

≤ ‖M‖ ‖x‖+ ε
√
t ‖ξn−1‖ .

So we have an iterative expression

‖M ′
nx‖ ≤ ‖M‖ ‖x‖+ ε

√
t ‖ξn−1‖ (6.6)

and iterating Equation 6.6 gives

‖xn‖ =
∥∥M ′

nM
′
n−1 . . .M

′
1x0

∥∥
≤ ‖M‖n‖x0‖+ ε

√
t
n−1∑
i=0

‖M‖i ‖ξn−1−i‖

which completes the proof.

Remark 6.2. There are a lot of remarks to say about this simple Lemma.
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1. Nowhere was it assumed M is bounded, linear or commutative.

2. Notice that ‖M‖ was not defined. It could be the usual operator norm or something
else.

3. Notice that we are only truncating the bound as in Equation 6.6 and NOT truncating
the original iterative Euler scheme.

4. Notice that M0 = 0 for the zero vector. Notice also that M(λx) = λM(x) where λ
is a scalar was not assumed.

5. Notice that a norm on ‖M ′
n‖ was not needed. This is because such a norm would

have to satisfy ‖M ′
nx‖ ≤ ‖M ′

n‖ ‖x‖ which implies M ′
n0 = 0. But with the random

vector ξn−1 in M ′
n this cannot be achieved.

Consider the two dimensional Mexican Hat system with z = (x, y) ∈ R2. Let the potential
be stationary by freezing it as it would be at a certain fixed point in time t = tfix. The
gradient then becomes

∇Vt=tfix(z) =

(
∂V0
∂x
− Fx cos Ωtfix

∂V0
∂y
− Fy cos Ωtfix

)

where tfix is a constant point in time. The Euler method can now be rewritten as

tn = tn−1 + tstep

xn = xn−1 +

[
−∂V0

∂x
+ Fx cos Ωtfix

]
tstep + ε

√
tstep ξx

yn = yn−1 +

[
−∂V0

∂y
+ Fy cos Ωtfix

]
tstep + ε

√
tstep ξy

and we recast it into vector notation by writing

tn = tn−1 + tstep

zn = zn−1 − tstep∇Vt=tfix(zn−1) + ε
√
tstep ξn−1 (6.7)

where

zn =

(
xn
yn

)
.

Now we apply Lemma 6.1 to Equation 6.7. Clearly the operator as mentioned in Theorem
6.1 is

M(z) = z − tstep∇Vt=tfix(z)
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and this operator has to satisfy ‖Mz‖ ≤ ‖M‖ ‖x‖. The usual operator norm would suffice
with some restrictions

‖M‖S = sup
z∈S
z 6=0

‖Mz‖
‖z‖

where S ⊂ R2 is a strict and suitable subset of the whole space. This is because in general,
the expression ‖Mz‖ is unbounded on R2. For example in our case ∇V is unbounded.
This would give

‖Mz‖ = ‖z‖‖Mz‖
‖z‖

≤ ‖z‖ sup
z∈S
z 6=0

‖Mz‖
‖z‖

≤ ‖M‖S ‖z‖ .

But we also need the condition M0 = 0 for the zero vector (see Remark 6.2). This means
we have to shift the coordinates to

znew = zold − zwell
where the well is now the new origin. Now we can apply Lemma 6.1 to Equation 6.7 and
get

‖zn‖ ≤ ‖M‖nS ‖z0‖+ ε
√
tstep

n−1∑
i=0

‖M‖iS ‖ξn−1−i‖

where the starting position is

z0 = (xstart, ystart)− (xwell(tfix), ywell(tfix))

where (xstart, ystart) is the starting position and (xwell(tfix), ywell(tfix)) is the position of
one well at time t = tfix

6.3.1 Stability Problems

Lemma 6.1 has allowed us to rewrite the Euler method, expressed in Equation 6.7, as

|zn| =
∣∣M(zn−1) + ε

√
tstep ξn−1

∣∣
≤ ‖M‖nS ‖z0‖+ ε

√
tstep

n−1∑
i=0

‖M‖iS ‖ξn−1−i‖ (6.8)

where if ε = 0 we would reduce back to the deterministic system

|zn| ≤ ‖M‖nS ‖z0‖ .

It is known that if the time step tstep is too large then even the deterministic trajectory is
unstable. A stable time step tstep is one which gives

‖M‖S ≤ (1− δ) (6.9)

where 0 < δ < 1 and the particle would settle at the bottom of the well as n −→∞. There
are two approaches to the problem here.
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1. Fix the set S and solve for the time step tstep such that ‖M‖S ≤ (1− δ) holds. This
is solving for time.

2. Fix the time step tstep and solve for the set S such that ‖M‖S ≤ (1− δ) holds. This
is solving for space.

and each approach hinges on the assumption that the S and tstep we fixed to begin with is
a good and stable choice. We can only solve for time or space but not both. This is also
complicated by the fact that the following estimate is too rough

‖Mz‖
‖z‖

≤
∥∥z − tstep∇Vt=tfix(z)

∥∥
‖z‖

≤
‖z‖+

∥∥tstep∇Vt=tfix(z)
∥∥

‖z‖
≤ 1 + δ′ (6.10)

where δ′ > 0.

6.3.2 Estimating R ≤ R1 and R ≤ R2

Now two bounds on the radius R is derived. The first bound is

R1 = min
wj(t),ci(t)
wj 6=ci
0≤t≤T

{
1

2
|wj(t)− ci(t)|

}

which is half the distance from the wells to all critical points, for all wells, over one period.
This is such that there is always exactly one critical point inside the region covered by the
radius R. The second bound comes from considering Equation 6.8

zn ≤ ‖M‖nS ‖z0‖+ ε
√
tstep

n−1∑
i=0

‖M‖iS ‖ξn−1−i‖

and seek a bound on the variance of the random part. The variance of the random part is

var

(
ε
√
tstep

n−1∑
i=0

‖M‖iS ‖ξn−1−i‖

)
= ε2tstep

n−1∑
i=0

‖M‖2i
S var (‖ξn−1−i‖) .

Notice how each of the ‖ξn−1−i‖ is χ distributed with r = 2 degrees of freedom. Its variance
is 25

σ2 = var (‖ξn−1−i‖)

= r −

(
√

2
Γ
(
r+1

2

)
Γ
(
r
2

) )2

25 Let ξx and ξy be independently and normally distributed inN(0, 1). Let ζ =
√
ξ2x + ξ2y and η = ξ2x+ξ2y ,

then ζ is χ distributed and η is χ2 distributed. Notice that we want the variance of ζ and NOT the variance
of η, therefore only the χ distribution is needed.
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= 0.4292 for r = 2

which means the variance of the random part is bounded by

var

(
ε
√
tstep

n−1∑
i=0

‖M‖iS ‖ξn−1−i‖

)
= ε2tstep

n−1∑
i=0

‖M‖2i
S σ2

≤ ε2σ2tstep

∞∑
i=0

‖M‖2i
S

= ε2σ2tstep
1

1− ‖M‖2
S

which means the random part has bounded variance, even if one considers infinite time.
The error is constantly cancelling out with itself, and the Euler method can run for a very
long time and still be stable. The radius must be similar to the size of this variance. Define

toscstep = min {t1, t2, t3, t4, t5}

which is the smallest of all the time steps we have derived so far. Assume that the operator
can indeed be bounded by ‖M‖S ≤ (1− δ), then we can define a second bound R2 on the
radius as

R2
2 = var

(
ε
√
tstep

n−1∑
i=0

‖M‖iS ‖ξn−1−i‖

)
≤ ε2σ2tstep

1

1− ‖M‖2
S

= ε2σ2tstep
1

1− (1− δ)2

where we have used ‖M‖S ≤ (1− δ). This gives R2 as

R2 =

√
ε2σ2toscstep
2δ − δ2

after choosing a suitable value for δ say δ = 0.01, then a reasonable choice on the radius
R could be

R = min {R1, R2} .

6.3.3 Estimating tstep ≤ t6

Define the set
S3 = {x ∈ Rr : |wj(t)− x| ≤ R : 0 ≤ t ≤ T, ∀wj(t)}
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which is the set of points where the distance to a well is less than the radius over all times
and all wells. The new jump size we do not want to see during our simulation is l3 = R

l3 = R

which gives another condition on the time step as

t6 = W (S3, l3).

The idea behind this final condition is so that the time step tstep is small and precise enough
such that the region around the well can capture it.

6.4 Selection of Parameters

Six conditions on the time step and two bounds on the radius were developed. These give
the recommended values for R and tstep as

R = min {R1, R2}
tstep = min {t1, t2, t3, t4, t5, t6} .

These are not rigorous estimates and hence can only be used as a guideline. We performed
several checks of consistency of our simulations at a different level of precision before
comparing them with the theoretical result. Notice tstep and R are just some of the con-
siderations we have to make when choosing a set of parameters to use for the simulations.
More details are given below.

6.4.1 Selection of Parameters - Simulation

In Chapter 7 we will introduce the simulations which we are going to do. Notice that the
SDE we want to simulate can be rewritten as

dx =

[
−∂V0

∂x
+ F cosφ cos Ωt

]
dt+ ε dwx

dy =

[
−∂V0

∂y
+ F sinφ cos Ωt

]
dt+ ε dwy.

The following parameters will be fixed with the values

a = 0.15 b = 0.1 F = 0.7F crit Ω = 0.001

and ε and φ will systemically vary by going through all possible combinations of

ε = 0.15, 0.16, . . . , 0.30 and φ = 0◦, 75◦, 78◦, 81◦, 84◦, 87◦, 90◦

and the following value of the time step and radius is used

tstep = 0.014 R = 0.19.

We give some reasons as to why these parameters were chosen.
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6.4.2 Selection of Parameters - Validity of Kramers’ Formula

There is the validity of Kramers’ formula. Consider the graphs below.

Figure 6.4: Notice that transitions tend to occur near the saddles. This is when Kramers’
formula gives a good approximation for the escape rates and escape times.

Figure 6.5: For higher noise levels transitions would occur near the hill, which is close to
the origin. Kramers’ formula is not a good approximation here.
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Note that in Figures 6.4 and 6.5 the position of the hill is near the origin and the positions
of the saddles are near the y-axis. For very high noise levels Kramers’ formula would start
to fail as an approximation to the escape times and rates. This is when the particle tend to
transit through both the saddles and the hill. A level of subjective judgement is required to
gauge how good an approximation Kramers’ formula is. Nevertheless it has been checked
that at ε = 0.30, that Kramers’ formula is good enough an approximation for all angles.
This checking was also done for an unperturbed static potential, a static potential with
maximal forcing and an oscillating potential.26

6.4.3 Selection of Parameters - Adiabatic Approximation

There is a reason why we need Kramers’ formula to be valid, that is a good approximation to
the escape times. Recall that in Chapter 3 theories about escape times from an oscillatory
potential was developed. One of the main results were the continuous time invariant
measures for an oscillatory potential (see Corollary 3.9) and the PDF for the escape times
(see Theorem 3.13). The invariant measures are

ν−(t) =

∫ t
0
p(s)g(s) ds

g(t)
+

∫ T
0
p(s)g(s) ds

g(t) (g(T )− 1)

ν+(t) =

∫ t
0
q(s)g(s) ds

g(t)
+

∫ T
0
q(s)g(s) ds

g(t) (g(T )− 1)

where

g(t) = exp

{∫ t

0

p(u) + q(u) du

}
and the PDFs are

p−(t, u) = R−1+1(t) exp

{
−
∫ t

u

R−1+1(s) ds

}

p+(t, u) = R+1−1(t) exp

{
−
∫ t

u

R+1−1(s) ds

}
where we will make the approximation

ptot(t) =
1

2

∫ T

0

p−(t+ u, u)m−(u) + p+(t+ u, u)m+(u) du ≈ p+(t, 0)

26This footnote also applies for graphs later in the thesis. Note that Figures 6.4, 6.5, 7.9, 7.10 and 7.11
have use the following parameters in the simulations.

tstart = 0 tstep = 0.014 tend = 100000

although a time step size of tstep = 0.014 was used, only the data for every ten time steps were shown.
This was done to avoid handling a very large graph in MatLab.
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because we do not have expressions for m−(u) and m+(u). Notice one subtlety about all
the theories developed in Chapter 3. It was assumed that the probabilities for transit, that
is p(t) and q(t), were known for whatever the driving frequency Ω may be. In the PDFs
it was also assumed that the escape rates R−1+1(t) and R+1−1(t) were known for however
fast or slow the driving frequency Ω may be.

But such ideal expressions for p(t), q(t), R−1+1(t) and R+1−1(t) are not known. Note
that the escape rates as given by Kramers’ formula in Chapter 2.2 are only valid for
small noise for a static potential. When we do analysis in Chapter 7 the rates R−1+1(t)
and R+1−1(t) are calculated by Kramers’ formula as though it is a static potential. This
means an oscillatory potential is being approximated by a static potential. This is the
adiabatic approximation. The following conditions are proposed to decide if the adiabatic
approximation is valid

min
t∈[0,T ]

{
τ kram−1+1(t), τ kram+1−1(t)

}
≤ 2π

Ω
(6.11)

max
t∈[0,T ]

{
τ kram−1+1(t), τ kram+1−1(t)

}
≤ 2π

Ω
(6.12)

that is we consider the minimum and maximum escape times over one period as given
by Kramers’ formula for a static potential. If this is less than the period of the driving
frequency T = 2π/Ω, then the adiabatic approximation may be valid. This was checked
for all the parameters and Equations 6.11 and 6.12 only hold for the following range of
parameters

φ ≥ 75◦ and ε ≥ 0.28.

This is a compromise we made. Nevertheless Equations 6.11 and 6.12 do not define the
adiabatic approximation, but give an idea of what range the parameters need to be in.

6.4.4 Selection of Parameters - Stability of Deterministic Tra-
jectory

There is also the stability of the deterministic trajectory (when ε = 0) to be concerned
about. The following starting positions were chosen for four particles

xstart = +2 ystart = +2

xstart = +2 ystart = −2

xstart = −2 ystart = +2

xstart = −2 ystart = −2

and their trajectories falling through an unperturbed static potential, a static potential
with maximal forcing and an oscillating potential were all shown to be stable for all angles.
Note that these values of xstart and ystart were chosen because they are at a place where
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the potential is so high the particle will probably never go there. Notice how in Figures 6.4
and 6.5 the trajectory almost never reaches any of the four corners (2, 2), (2,−2), (−2, 2)
and (−2,−2). This is the reason for checking the trajectories there.

6.4.5 Selection of Parameters - Random Number Generator

A few words may also be said about the random number generator we are using. Note
that these are pseudo random numbers. They are deterministic sequences of numbers with
a very long period. We use the randn() function in MatLab. It is very random and will
almost certainly not repeat itself for many years. This is because the period is 21492. Even
with the computer generating 60 million random numbers per second it would still take
10434 years to reach the end of the cycle [62]. The function rng(’shuffle’) was also used,
which picks a seed for the random number generator according to the time of the computer
clock. When the Parallel ToolBox is used in MatLab, each worker randomly picks a seed
for itself.

6.4.6 Selection of Parameters - Calculating Positions of Critical
Points

As mentioned in Chapter 5.5.2, the numerical algorithms can be very unstable for calculat-
ing the positions of the critical points. In the simulations which we are going to conduct,
a table of the positions of all the critical points within one period are calculated first, then
stored in the temporary memory of the computer, and looked up every time the position
of a critical point is needed. This table is calculated in the following way. Define what we
call the pseudo parameters to be

ustart = 0 ustep = 0.001 uend = 2π Ω = 1

and then numerically find the positions of the critical points of the equation

Vt = V0 − Fx cos Ωt− Fy cos Ωt

where

t = 0, t = ustep, 2ustep, 3ustep, . . . t ≈ 2π.

Due to the way a matrix is define in MatLab, the last value of t is not exactly at t = 2π.
This table was checked for all angles, and the pseudo parameters we have chosen are stable.

6.4.7 Selection of Parameters - Higher Precision Numerics

We also have some remarks about the time step we have chosen. As we shall see in Chapter
7, one of the main effects which we have observed in this thesis is what we call the Single,
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Intermediate and Double Frequency in the histograms of escape times. These effects were
first observed for the values of a = 0.15, b = 0.1, F = 0.7F crit and Ω = 0.001 when

tstep ≥ 0.0286 R ≥ 0.3218

and was observed again when tstep = 0.014 and R = 0.19. Note that tstep = 0.014 and
R = 0.19 was used for the results of this thesis. Thus we have confidence in believing that
the data we have collected is reliable. Consider the graphs below. They are histograms
of escape times from both the left and right wells combined. They are also normalised to
give an empirical PDF.

Figure 6.6: Here 2239 transitions were used. The averaged measured escape time is
0.0977T . The radius used was R = 0.5386.
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Figure 6.7: Here 56244 transitions were used. The averaged measured escape time is
0.1064T . The radius used was R = 0.19.

The higher the noise level ε is the more susceptible to errors would the Euler method be.
This is why the highest level of noise ε = 0.30 is chosen for these examples. One may
argue that having more transitions would give a better measurement of the escape times
in Figure 6.7. But the difference in real time between the measured averaged escape times
is only 54 seconds out of a period of T = 2π/Ω = 6283 seconds.
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Chapter 7

Simulations, Results and Analysis

This Chapter presents the main results of this thesis. The six measures M1, M2, M3, M4,
M5, M6, the distributions of escape times and the newly developed conditional Kolmogorov-
Smirnov test are used to analyse simulations of the SDE with the Mexican Hat Toy Model
used as the potential. The six measures are shown to be insensitive to the saddles changing
from alternating to synchronised. This is shown to be due to the fact that the invariant
measure is constant for synchronised saddles. The distribution of escape times shows new
signatures as the saddles change from alternating to synchronised and the conditional
Kolmogorov-Smirnov test is demonstrated to be an appropriate way to analyse the escape
times collected from many transitions.

We simulate a series of stochastic trajectories for the Mexican Hate Toy Model and
analyse them. We remind ourselves of the unperturbed Mexican Hat potential

V0(x, y) =
1

4
r4 − 1

2
r2 − ax2 + by2 where r =

√
x2 + y2

and the SDE we want to simulate is

dx =

[
−∂V0

∂x
+ Fx cos Ωt

]
dt+ ε dwx

dy =

[
−∂V0

∂y
+ Fy cos Ωt

]
dt+ ε dwy

where Fx and Fy are the x and y components of the forcing, Ω is the forcing frequency, ε
is the noise level and wx and wy are two independent Wiener processes. We can define the
magnitude and angle of the forcing by

F =
√
F 2
x + F 2

y and φ = tan−1

(
Fy
Fx

)
.

This means the SDE can be written alternatively as

dx =

[
−∂V0

∂x
+ F cosφ cos Ωt

]
dt+ ε dwx
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dy =

[
−∂V0

∂y
+ F sinφ cos Ωt

]
dt+ ε dwy.

The critical forcing is defined by (see Equation 5.9)

F crit = min
{
F sad
x , F crit

x , F sad
y , F crit

y

}
.

7.1 Details of the Simulations

The Euler method was used to simulate this SDE with the following parameters being
fixed at the following values

a = 0.15 b = 0.1 F = 0.7F crit Ω = 0.001.

The angle of the forcing φ and the noise level ε were varied. The values used were

ε = 0.15, 0.16, . . . , 0.30 and φ = 0◦, 75◦, 78◦, 81◦, 84◦, 87◦, 90◦.

The averaged diffusion trajectories 〈xt〉 and 〈yt〉 were collected. The averaged Markov
Chain 〈Y ε

t 〉 and the averaged Out-of-Phase Markov Chain 〈Y ε

t〉 were collected as well.
This would allow for the calculation of the invariant measures ν−(·) and ν+(·). The time
coordinates of the entrance and exit to and from the left and right wells were also collected.
This would allow for the calculation of the escape times. We use the following values for
the time step and the radius around the wells

tstep = 0.014 and R = 0.19.

Note that the period of the forcing is denoted by

T =
2π

Ω
.

The averaged trajectories were simulated by taking the averaged of 200 realisations. Each
realisation was 30 periods long, that is a trajectory over the interval [0, 30T ]. The initial
value of the state probabilities were set at

ν−(0) = ν+(0) =
1

2

which assists in giving a faster convergence to the invariant measures (see Theorems 3.1,
3.2, and 3.8). We should also stress that a lot of the data and results presented in this
Chapter is just a selection out of a much wider range of results. All 112 combinations of
the parameters were simulated and analysed.
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7.2 Six Measures Analysis

The six measures are calculated for the diffusion and Markov Chain case for all angles of
the forcing φ and all noise levels ε used in the simulations. When φ = 90◦ the wells were
moving up and down but they were always at the same height as each other. The distance
from either wells to the saddles, which is a gateway for escape, is the same in both wells at
all times. This means the φ = 90◦ can be modelled by a synchronised Markov Chain with
p = q. The invariant measures for the φ = 90◦ case as predicted by Corollary 3.4 and 3.10
is ν− = ν+ = 1

2
. The Fourier Transform of the averaged Markov Chain is predicted to be

zero by Corollary 3.6 and 3.12. This predicts the six measures at φ = 90◦ to be

M1 = 0

M2 = 0

M3 =

∫ T

0

〈Y ε
t 〉

2 dt =

∫ T

0

(ν+(t)− ν−(t))2 dt = 0

M4 =

∫ T

0

〈
Y
ε

t

〉
dt

=

∫ T/2

0

0× ν−(t) + 1× ν+(t) dt+

∫ T

T/2

1× ν−(t) + 0× ν+(t) dt

=
1

2
T

M5 =

∫ T

0

φ−(t) ln

(
φ−(t)

ν−(t)

)
+ φ+(t) ln

(
φ+(t)

ν+(t)

)
dt

=

∫ T/2

0

ln

(
1

ν−(t)

)
dt+

∫ T

T/2

ln

(
1

ν+(t)

)
dt

= +T ln(2)

M6 =

∫ T

0

−ν−(t) ln ν−(t)− ν+(t) ln ν+(t) dt

= +T ln(2).

Note that ln(2) = 0.6931 ≈ 0.7. Notice that for very low noise level ε ≈ 0 the probabilities
of escape from either well is so small it may be approximately modelled by a synchronised
Markov Chain with p ≈ q. The results below confirm the predictions for the case of
φ = 90◦.
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Figure 7.1: The measure M1 for the diffusion case for various angles and noise levels.

Figure 7.2: The measure M2 for the diffusion case for various angles and noise levels.
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Figure 7.3: The measure M1 for the Markov Chain for various angles and noise levels.

Figure 7.4: The measure M2 for the Markov Chain for various angles and noise levels.
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Figure 7.5: The measure M3 for the Markov Chain for various angles and noise levels.

Figure 7.6: The measure M4 for the Markov Chain for various angles and noise levels.
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Figure 7.7: The measure M5 for the Markov Chain for various angles and noise levels.

Figure 7.8: The measure M6 for the Markov Chain for various angles and noise levels.
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7.2.1 Interpretation of the Six Measures Analysis

The six measures M1, M2, M3, M4, M5 and M6 were plotted as a function of the noise
level ε. The six measures show a regular systematic behaviour in the angle φ. The shape of
the graphs of the six measures were very similar for all the angles. As the angle increased
from φ = 0◦ to φ = 90◦ the six measures gradually tended to being nearly constant in ε.

This effect can be explained with the invariant measures. When φ = 0◦ the probabilities
for escaping from left to right p−1+1 was different to the probabilities for escaping from
right to left p+1−1. But in the φ = 90◦ case they are the same, that is

φ = 0◦ p−1+1 6= p+1−1

φ = 90◦ p−1+1 = p+1−1.

The is can be understood geometrically. For φ = 0◦ we have Fx 6= 0 and Fy = 0. The two
wells in the Mexican Hat potential move up and down and are alternating with each other.
When one well is high the other is low. For φ = 90◦ we have Fx = 0 and Fy 6= 0. The two
wells are always at the same height as each other and the distance to the saddles (which
is a gateway to escape) is also the same in both wells.

Recall our discussions on the Markov Chain in Chapter 3. The p is related to left to
right escape p−1+1 and q was related to right to left escape p+1−1. For φ = 0◦ the Markov
Chain can be modelled with p 6= q and for φ = 90◦ the Markov Chain can be modelled
with p = q. In the case of φ = 0◦ the invariant measure was cyclically changing in time. In
the case of φ = 90◦ the invariant measure was constant at ν−(·) = ν+(·) = 1

2
. This explains

why the six measures M1, M2, M3, M4, M5 and M6 were nearly constant for angle φ = 90◦.
As φ changed from φ = 0◦ to φ = 90◦, the Markov Chain changed from being modelled by
p 6= q to being modelled by p = q. This explains the change in the six measures tending
to being constant in ε as φ was varied. The six measures can be thought of as a way of
measuring how far away the invariant measures are from being constant. If the invariant
measures are constant then the six measures will also be constant.27

For fixed φ near φ = 90◦ there is no pronounced maximum of any measure for varying
ε. Hence the six measures indicate the absence of a pronounced stochastic resonance near
φ = 90◦. But consider the trajectories at a range of angles.

27See Appendix B.3 for how M5 and M6 were numerically calculated. The ideas were not that trivial.
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Figure 7.9: The blue trajectory is x(t) and the green trajectory is y(t).

Figure 7.10: The blue trajectory is x(t) and the green trajectory is y(t).
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Figure 7.11: The blue trajectory is x(t) and the green trajectory is y(t).

When φ = 0◦ the x(t) shows quasi-deterministic behaviour. The transitions are very regular
and y(t) fluctuates around zero. As the angle varies the transitions become less regular
and y(t) starts to oscillate. This suggests that there is some regularity in the behaviour of
the trajectories but the six measures are not detecting it. Further studies with the escape
times would tell us more.

7.3 Escape Time and Conditional KS Test Analysis

We remind ourselves of the PDF of escape times and the way the conditional KS test can
be applied in our context. The conditional PDF of the escape times are

p−(t, u) = R−1+1(t) exp

{
−
∫ t

u

R−1+1(s) ds

}

p+(t, u) = R+1−1(t) exp

{
−
∫ t

u

R+1−1(s) ds

}
where R−1+1 and R+1−1 are the Kramers’ escape rate from left to right and right to left. In
the case of p−(t, u), t is the time coordinate of escape from the left well and u is the time
coordinate of entrance into the left well. In the case of p+(t, u), t is the time coordinate of
escape from the right well and u is the time coordinate of entrance into the right well. If
we do not differentiate between escaping from the left or right then the PDF for an escape
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time t is (note that t here is an escape time as it is and not a time coordinate)

ptot(t) =
1

2

∫ T

0

p−(t+ u, u)m−(u) + p+(t+ u, u)m+(u) du

where m−(·) and m+(·) are PDFs of the time of entrance into the left and right well
respectively. We do not have explicit expressions for m−(·) and m+(·). The ptot(t) is
approximated by

ptot(t) ≈ p+(t, 0).

The times it took to escape from both the left or right wells are plotted in histograms.
This is an empirical approximation to the PDF ptot(t) ≈ p+(t, 0). A selection of some of
the results are given below for various angles of the forcing φ and noise level ε. They are
examples of the Singles, Intermediate and Double Frequencies which we will explain later.
Note that the escape times are given in units of normalised time, which is in the number
of periods T .

Figure 7.12: This is an example of the Single Frequency.
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Figure 7.13: This is an example of the Intermediate Frequency.

Figure 7.14: This is an example of the Intermediate Frequency tending closer to the
Double Frequency.
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Figure 7.15: This is an example of the Double frequency.

It is important to note that Figures 7.12, 7.13, 7.14 and 7.15 are histograms of the actual
times it took to escape from either wells without differentiation between wells on the left
or right. The times of entrance into the wells are not shown. The PDF used is ptot(·) which
is being approximated by ptot(t) ≈ p+(t, 0).

These escape times can be analysed in a different way. Let u be the time of entrance
into a well and t the time of exit from a well. Figures 7.12, 7.13, 7.14 and 7.15 are therefore
histograms of the (t−u) for both left and right escapes combined. Thus 0 ≤ mod(u, T ) ≤ 1
is the phase of entrance into a well and mod(t−u, T ) is the escape time itself in normalised
time. Such an analysis is done for the times in Figures 7.12, 7.13, and 7.15 for both the
left and right wells respectively.
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Figure 7.16: The u is the time of entrance into the well and t is the time of exit from the
well.

Figure 7.17: The u is the time of entrance into the well and t is the time of exit from the
well.
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Figure 7.18: The u is the time of entrance into the well and t is the time of exit from the
well.

Figure 7.19: The u is the time of entrance into the well and t is the time of exit from the
well.
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Figure 7.20: The u is the time of entrance into the well and t is the time of exit from the
well.

Figure 7.21: The u is the time of entrance into the well and t is the time of exit from the
well.

Notice the general behaviour of the data for mod(u, T ) and mod(t− u, T ). For the φ = 0◦

case the wells are alternating and one well is higher than the other. Entrance into the left
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well tend to occur near u = 0.5 and entrance into the right well tend to occur near u = 0
and u = 1. For φ = 90◦ the wells are synchronised and are always at the same height as
each other. Entrance and exit to and from either well tend to occur at u = 0, u = 0.5 and
u = 1. Notice that the Single, Intermediate and Double Frequencies can be seen in Figures
7.16, 7.17, 7.18, 7.19, 7.20 and 7.21.

Notice also in Figure 7.16 the data points are tiled near 0.5. This seems to suggest
that the use of the Dirac delta function to approximate ptot ≈ p+(t, 0) (see Chapter 3.4.2)
may not be very good. The main problem here is the fact that we do not have an explicit
formula for a probability measure of the time of entrance into a well, that is we do not
have expressions for m−(u) and m+(u). This motivates us into developing the conditional
KS test.

We want to test whether the escape times we have measured are really distributed by
the conditional PDFs p−(t, u) and p+(t, u). This is testing the conditional null hypothesis.
Define the conditional CDFs by

F−u (t) =

∫ t

u

p−(s, u) ds = 1− exp

{
−
∫ t

u

R−1+1(s) ds

}

F+
u (t) =

∫ t

u

p+(s, u) ds = 1− exp

{
−
∫ t

u

R+1−1(s) ds

}
.

The time coordinates of the entrance and exit from the wells are collected. These are(
u1 u2 . . . un
t1 t2 . . . tn

)
where ui is the time coordinate of the ith entrance into a well and ti is the time coordinate
of the ith exit from a well. The conditional KS statistic is calculated by

S−n = sup
x∈[0,1]

∥∥∥∥∥ 1

n

n∑
i=1

1[0,x]

(
F−ui(ti)− x

)∥∥∥∥∥
S+
n = sup

x∈[0,1]

∥∥∥∥∥ 1

n

n∑
i=1

1[0,x]

(
F+
ui

(ti)− x
)∥∥∥∥∥

where in S−n we sum over the time coordinates of entrance and exit to and from the left well
and in S+

n we sum over the time coordinates of entrance and exit to and from the right well.
Recall that if the conditional null hypothesis is true then S−n and S+

n are asymptotically
distributed by

lim
n−→∞

P (
√
nSn ≤ x) = Q(x) where Q(x) = 1− 2

∞∑
k=1

(−1)k−1e−2k2x2 .

We want 99% confidence. Note that

P
(√

nSn ≤ 1.6920
)

= Q(1.6920) = 0.99.
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The Q (
√
nSn) is also calculated. The smaller Q (

√
nSn) is the more certain we are in

accepting the null hypothesis. A selection of some of the data being implemented with the
conditional KS test are given below for various angles of the forcing φ and noise level ε.
These are examples of the KS test being implemented for the histograms of escape times
just given in Figures 7.12, 7.13, 7.14 and 7.15

Figure 7.22: This is an example of the conditional KS test being implemented for the data
in Figure 7.12. Note that ε = 0.18, φ = 0◦, n = 200,

√
nS−n = 0.5233 and Q (

√
nS−n ) =

0.0529.
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Figure 7.23: This is an example of the conditional KS test being implemented for the data
in Figure 7.13. Note that ε = 0.20, φ = 84◦, n = 200,

√
nS−n = 0.6223 and Q (

√
nS−n ) =

0.1665.

Figure 7.24: This is an example of the conditional KS test being implemented for the data
in Figure 7.14. Note that ε = 0.21, φ = 87◦, n = 200,

√
nS−n = 1.2587 and Q (

√
nS+

n ) =
0.9159.
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Figure 7.25: This is an example of the conditional KS test being implemented for the data
in Figure 7.15. Note that ε = 0.21, φ = 90◦, n = 200,

√
nS−n = 1.0465 and Q (

√
nS−n ) =

0.7766.

7.3.1 Interpretation of the Escape Time and Conditional KS Test
Analysis

When φ = 0◦ there were peaks in the empirical PDF of the escape times. These occurred
at times 1

2
T , 3

2
T , 5

2
T , . . . . This effect we call the Single frequency. When φ = 90◦ the

peaks occurred at 1
2
T , 3

2
T , 5

2
T , . . . and 0, T , 2T , 3T , 4T , . . . . This effect we call the Double

Frequency. When 0◦ < φ < 90◦ an intermediate effect is seen. There were major peaks at
1
2
T , 3

2
T , 5

2
T , . . . and minor peaks at 0, T , 2T , 3T , 4T .

The behaviour of the Single, Intermediate and Double Frequencies can be explained
geometrically. When the height between a well and a saddle is minimum, the optimal
probability of escape has occurred. When φ = 0◦ the frequency of the return of the optimal
probability of escape is the same as the driving frequency Ω. This optimal probability
comes back very T which is once in a period. When φ = 90◦ the frequency of the return
of the optimal probability of escape is double the driving frequency at 2Ω. This optimal
probability comes back very T

2
which is twice in a period. This explains why the peaks in

the Single and Double Frequencies are seen where they are.
As the angle changed from φ = 0◦ to φ = 90◦ the Single Frequency gradually changes

into the Double Frequency with the Intermediate Frequency seen in between. Thus the
angle of the forcing is leaving a mark in the PDFs of escape times.
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When the conditional KS test was implemented, the functions

y0(x) = x, y−(x) =
n∑
i=1

1[0,x]

(
F−ui(ti)

)
and y+(x) =

n∑
i=1

1[0,x]

(
F+
ui

(ti)
)

were used to calculate the following distances which are the conditional KS statistics

S−n = ‖y0 − y−‖∞ and S+
n = ‖y0 − y+‖∞ .

It is reasonable to say that y−(·) and y+(·) were close enough to y0(·) that we can accept
the conditional null hypothesis. This can be seen and judged graphically with S−n and
S+
n calculated as well. This is an example of the conditional KS test giving a reasonable

result.28

7.4 Sparse Data Analysis

We do the same analysis with the escape time and the conditional KS test. But now
we artificially make the data sparse by only implementing the conditional KS test for 20
transitions. We want 99% confidence. Thus with n = 20 tables for the KS distribution
show that

P (S20 ≤ 0.356) = 0.99

and there are two particular examples we want to focus on. These are when ptot ≈ p+(t, 0)
is not a good approximation and the conditional KS test is performed in such a situation.

28See Appendix C.1 for discussions as to how some of our implementation of the conditional KS test
are examples of oversampling.
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Figure 7.26: The ptot ≈ p+(t, 0) is not a good approximation here.

Figure 7.27: This is a KS test on the data in Figure 7.26. The conditional null hypothesis
can be reasonably accepted. Note that ε = 0.17, φ = 81◦, n = 20 and S+

n = 0.2750.
Q(
√
nS+

n ) = 0.9029.
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Figure 7.28: The ptot ≈ p+(t, 0) is not a good approximation here.

Figure 7.29: This is a conditional KS test on the data in Figure 7.28. The conditional
null hypothesis can be reasonably accepted. Note that ε = 0.27, φ = 78◦, n = 20 and
S−n = 0.1400. Also note that Q(

√
nS−n ) = 0.1720.
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7.4.1 Interpretation of the Sparse Data Analysis

The aim of Sparse Data Analysis is to see how the conditional KS test performs even if
less data is available. This is done by looking at two cases where ptot ≈ p+(t, 0) is not a
good approximation and implementing the conditional KS test on them after artificially
making the data sparse.

Consider the case for the parameters in Figure 7.26. Figure 7.26 is an example of when
the noise is so small there is very little escape times being detected in the range [0, 5T ].
The ptot ≈ p+(t, 0) is not a good approximation here. In Figure 7.27 the conditional KS
test was performed on the data in 7.26 and the distance between the two functions is small.
This means we can accept the conditional null hypothesis even when there is fewer data
and ptot ≈ p+(t, 0) is not a good approximation.

Now consider the case for the parameters in Figure 7.28. The noise is so large ptot ≈
p+(t, 0) is no longer a good approximation. But in Figure 7.29 the conditional KS test was
performed on the data in Figure 7.28. Again this is an example of us being able to accept
the conditional null hypothesis even if ptot ≈ p+(t, 0) is not a good approximation.

Only 20 escape times were implemented in the conditional KS test and the conditional
null hypothesis can still be accepted with a reasonable degree of certainty. But the ptot ≈
p+(t, 0) was not a good approximation for the empirical PDF of escape times. These are
examples of the conditional KS test giving reasonable conclusions even when there are
sparse data. It also shows that the conditional KS test can still be used even if there is no
good approximation of the PDF of escape times.

Back in Chapter 3.4.2 we approximated m−(u) and m+(u) by

m−(u) ≈ δ (u− T/2)

m+(u) ≈ 1

2
δ (u) +

1

2
δ (u− T ) .

Although the escape times (represented as dots on a scatter graph) tend to cluster around
u = 0, u = 0.5 and u = 1 there are spread around them. As the noise levels ε increases the
spread around u = 0, u = 0.5 and u = 1 would increase and ptot ≈ p+(t, 0) would stop to
be a good approximation. Despite this the conditional KS test still shows sensible results,
in that we can accept the conditional null hypothesis.

7.5 Remarks on Analysis of Stochastic Resonance

There are a few subtleties and setbacks to the analysis which is worth mentioning here.

7.5.1 Remarks on Implementing the Conditional KS Test

Notice that all the theories developed about the KS Test were based on the assumption
that the null hypothesis is true. This means strictly speaking a small KS statistic, that is
a small S−n or S+

n does not immediately allow us to accept the null hypothesis but good
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reasons not to reject it. Also when there were many transitions, that is for large n, the
terms Q(

√
nS−n ) and Q(

√
nS+

n ) were also calculated. The smaller Q(
√
nS−n ) and Q(

√
nS+

n )
are the more confidence we have in not rejecting the null hypothesis. This is because for
very large n, we would expect

lim
n→∞

√
nS−n = 0 and lim

n→∞

√
nS+

n = 0

so the smaller Q(
√
nS−n ) and Q(

√
nS+

n ) are the more certain we are in not rejecting the
null hypothesis.

7.5.2 Remarks on Adiabatic Approximation

Notice that in the PDFs p−(t, u), p+(t, u) and ptot(t) expressions for the escape rates
R−1+1(t) and R+1−1(t) were required. These rates were also required for the conditional
KS test. Strictly speaking these rates are dependent on the driving frequency Ω, but we
stress that these rates were calculated using Kramers’ formula as though the particle is
escaping from a static potential. This is the adiabatic approximation where an oscillatory
potential is approximated by a static potential. Considerations for whether the adiabatic
approximation would fail in our calculations were done back in Chapter 6.4.3

It is worth summarising all the approximations which the analysis of the data have
been based. There is the small noise approximation and slow forcing approximation from
Kramers’ formula, the adiabatic approximation and the perfect phase approximation where
ptot is approximated by ptot ≈ ptot(t, 0).
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Conclusion

Outline of Results

In this thesis we have considered the following problem. Let Xε
t be a stochastic process in

R2 which is described by the SDE

dXε
t = b (Xε

t , t) dt+ ε dWt

and the drift term b(·, ·) is expressed by

b(x, t) = −∇V0(x) + F cos Ωt

where V0 : R2 −→ R is a time independent function, the unperturbed potential, with two
metastable states, and two pathways between these states. The F ∈ Rr is the magnitude
of the forcing and Ω is the driving frequency. Our aim was to see characteristics of the
trajectory Xε

t which only depends on the qualitative structure of V0, that is the existence
of two metastable states and two pathways.

For concreteness we considered a model, which we call the Mexican Hat Toy Model

V0(x, y) =
1

4
r4 − 1

2
r2 − ax2 + by2 where r =

√
x2 + y2.

The magnitude and angle of the forcing are given by

F =
√
F 2
x + F 2

y and φ = tan−1

(
Fy
Fx

)
.

The angle φ and noise level ε were varied. At φ = 0 the wells were alternating, that is one
well is higher than the other, in the sense that it is easer to jump from one well to the
other than vice versa. At φ = 90◦ the wells are synchronised, that is both wells are always
at the same height but the heights of the barrier for the two paths is alternating.

A potential with two pathways has never been considered before in the context of
stochastic resonance. We studied it using approximation techniques and direct simulations.
In an adiabatic regime the Freidlin-Wentzell theory allows one to give analytical solutions
of the jump type distributions asymptotically in this regime. This theory predicted the
appearance of additional resonance peaks at half the frequency when the angle approaches
φ = 90◦.
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We simulated Xε
t for different values of φ and ε and computed for the values of angle

increasing from φ = 0 to φ = 90◦ the six measures M1, M2, M3, M4, M5 and M6 as
functions of the noise level. The first major surprise was that the graphs showed less and
less pronounced minima (or maxima) and hence suggests that the phenomena of stochastic
resonance gets less and less pronounced, see Chapter 7.2. The effect of resonance seems to
disappear overall.

However, considering the path Xε
t itself, one sees that there may be nevertheless some

synchronisation, see Figure 7.9, 7.10 and 7.11. We carefully controlled our simulation
and checked it for consistency, see Chapter 6.4. To properly quantify synchronisation
we considered the histograms of the escape times, which to our knowledge has been not
considered thoroughly before. The histograms showed a clear periodicity and also the
emergence of peaks at the Double Frequency for increasing angle. For a quantitative
consideration we assume that the entrance time is in perfect phase (this is when m−(u)
and m+(u) can be approximated by Dirac delta functions). This gives for several cases good
quantitative and in general good qualitative agreement with the combined adiabatic and
small noise approximation. A more sophisticated analysis based on a Kolmogorov-Smirnov
test developed here shows that this approximation works for a larger range of parameters
where the approximation of the perfect phase of the entrance time is not appropriate (this
is when m−(u) and m+(u) cannot be approximated by Dirac delta functions) see Chapter
7.4.1. Summarizing, the theoretical and the simulation results are in very good agreement.
We want to stress that in the comparison no free parameters were present and so no fitting
took place.

The fact that the six measures are blind can be explained using Markov chain models
approximating the SDE. As one expects from large deviation theory, for small noise and
in an adiabatic regime the SDE can be approximated by a continuous time Markov chain.
In this Markov chain model we showed that the invariant measures are constant when
φ = 90◦. Hence we expect that the invariant measure gives in the diffusion case equal
weights to the left and the right well. Together, this gives us the following qualitative
picture of the dynamics for any angle. At a fixed time the probability that one sees a jump
from the left to the right well or vice versa has the same probability. However, conditioned
on the phase and the direction of the last jump, for concreteness assume that it was at
phase u and from the left to the right (that is to say the particle entered the well at time
u) the next jump will be at phase which is near to a multiple of T/2 (that is to say the
particle will leave the well near the times t = nT/2 where n is an integer). The jump rates
will be given by the height of the potential barriers.

At φ = 90◦, the path Xε
t and −Xε

t will appear with the same probability if one starts in
the invariant measure. This explains why the six measures are all insensitive in this case.
The equilibration happens because the process will skip some of the jump opportunities
and in this way the left-right synchronization will get lost quickly.

This new phenomena we discovered has added an additional motivation to the ob-
servation of Hermann, Imkeller, Pavlyukevich, Berglund and Gentz that the appropriate
consideration has to be on the path level. Averaged quantities like the six measures can
be very misleading and masking the real behaviour of the system. The escape time dis-
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tribution shows a clear signal of stochastic resonance in accordance with the theoretical
consideration. The presence of a two pathways manifests itself in an appearance of peaks
at the Double Frequency. We showed that adiabatic small noise approximation gives a
good statistical model. We demonstrated that this appearance can be detected also when
only a limited number of transitions is available. Our analysis provides us with a clear
footprint indicating the existence of a second pathway. The angle dependence of our result
should also allow us to predict the orientation of the saddles with respect to the wells.

Further Studies

The invariant measures studied in this thesis are for a simple two state model. One could
try to generalise this to continuous states, that is a space-time phase PDF for the position
of the particle could be derived.

The conditional KS test gives us confidence that one could develop statistical inference,
using maximum likelihood for example, to develop a statistic test to estimate the basic
parameters of the system, if they are unknown to us. Instead of the approximation ptot ≈
p+(t, 0) used in parts of the consideration, a better approximation may be found by studying
the PDFs of m−(u) and m+(u) theoretically and statistically.

A theory beyond adiabatic approximation may be developed for very slow to fast fre-
quencies. Higher order of approximation to the escape times than Kramers’ formula could
be studied. Analytic and theoretical developments to go beyond adiabatic approximation
and potential theory may be a real mathematical challenge. But experimental simulations
may provide an idea of what this new theory may be like.
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Appendix A

Conventions in Defining the SDEs,
Potential, Time Dependency and
Forcing

This is more of a clarification on the notation being used. In this thesis only two toy model
potentials are studied. These in their most unperturbed forms are denoted by

V0(x) =
x4

4
− ax

2

2

V0(x, y) =
1

4
r4 − 1

2
r2 − ax2 + by2

where r =
√
x2 + y2, a > 0 and b > 0 which when perturbed by a force are denoted by

VF (x) =
x4

4
− ax

2

2
+ Fx

= V0(x) + Fx

VF (x, y) =
1

4
r4 − 1

2
r2 − ax2 + by2 + Fxx+ Fyy

= V0(x, y) + Fxx+ Fyy

= V0(x, y) + F · x

and when given a periodic forcing are denoted by

Vt(x, F ) =
x4

4
− ax

2

2
− Fx cos Ωt

= V0(x)− Fx cos Ωt

Vt(x, y, Fx, Fy) =
1

4
r4 − 1

2
r2 − ax2 + by2 − Fxx cos Ωt− Fyy cos Ωt

= V0(x, y)− Fxx cos Ωt− Fyy cos Ωt

= V0(x, y)− F · x cos Ωt.
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This is so that the SDEs can be written in the form

dXε
t = −∇Vt dt+ εdw

which when expanded can be written as

dx =

[
−∂V0

∂x
+ Fx cos Ωt

]
dt+ ε dwx

dy =

[
−∂V0

∂y
+ Fy cos Ωt

]
dt+ ε dwy

meaning more details about the system can be quickly seen in the notation. This also
implies that the SDEs are always defined with a negative forcing. When the critical points
of the system are being studied (in Chapter 5 for example) we can study the critical points
with a positive force and VF would be an appropriate notation to use. Using V0, VF and
Vt may seem like an abuse of notation, but if anything specific is being referred to, we can
denote VF=F crit for example. When the most general expression for a potential V is being
used, it should be deduced from context whether V = V0, V = VF or V = Vt is being
referred to.

Note also that for a stochastic process in Rr which is described by the SDE

Ẋε
t = −∇V + F cos(Ωt) + εẆt

and the magnitude of the forcing is sometimes denoted by

F =
√
F 2

1 + F 2
2 + . . .+ F 2

r .

Again this may seem like an abuse of notation, but it should be clear from context whether
F is a vector or scalar.
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Appendix B

Further Numerical Methods

B.1 Numerical Methods for measuring Escape Times

The Markov Chain takes the values Y ε
t = ±1. But in simulations time is discrete with a

time step tstep, that is

0, tstep, 2tstep, . . . , Ntstep.

The reduction from the diffusion Xε
t to the Markov Chain at the (n + 1)th time step is

actually given by

Y ε
(n+1)tstep =


−1 if

∣∣∣Xε
ntstep − wl(ntstep)

∣∣∣ < R

+1 if
∣∣∣Xε

ntstep − wr(ntstep)
∣∣∣ < R

Y ε
ntstep if otherwise

which is slightly different from the way Y ε
t was defined in Chapter 3 (see page 37). This is

so that the definition of Y ε
t was easier to write down theoretically, such that the sets

{t : |Xε
t − wl(t)| ≤ R} and {t : |Xε

t − wr(t)| ≤ R}

are compact sets given the continuity of Xε
t , wl(t) and wr(t). This meant

Y ε
t =


−1 if |Xε

t − wl(t)| ≤ R

+1 if |Xε
t − wr(t)| ≤ R

Z if neither

then Y ε
t would be easier to define for t /∈ {t : |Xε

t − wl(t)| ≤ R} ∪ {t : |Xε
t − wr(t)| ≤ R}.

But alternatively if we had

Y ε
t =


−1 if |Xε

t − wl(t)| < R

+1 if |Xε
t − wr(t)| < R

Z if neither
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then

{t : |Xε
t − wl(t)| < R} and {t : |Xε

t − wr(t)| < R}

would be open sets and Y ε
t would be harder to define for t /∈ {t : |Xε

t − wl(t)| < R} ∪
{t : |Xε

t − wr(t)| < R} which is the neither case. Nevertheless the simulations should gloss
out all these details.

B.2 Numerical Methods for calculating Fourier Trans-

form and Linear Response

Fourier Transforms are involved in finding the linear response. The trajectory of the particle
is in theory a continuous object, but in practice when simulations are done it is a finite
discrete object. The exact mechanism of obtaining the linear response from a simulated
trajectory is now being discussed.

When the trajectory is being numerically realised it is a finite discrete set. Let the x
(or y) coordinate of the particle at time ntstep where 0 ≤ n ≤ (N − 1)tstep be denoted by
Xntstep . This gives rise to the set

X =
{
X0, Xtstep , X2tstep , X3tstep , . . . , X(N−1)tstep

}
= {x0, x1, x2, x3, . . . , xN−1}

where xn = Xntstep etc. Notice that time is discrete here. When this is Discrete Fourier
Transformed (being quickly implemented by the Fast Fourier Transform algorithm) it is
denoted by

X̃ =
{
X̃0, X̃ωstep , X̃2ωstep , X̃3ωstep , . . . , X̃(N−1)ωstep

}
= {x̃0, x̃1, x̃2, x̃3, . . . , x̃N−1}

where x̃n = X̃nωstep etc and the transform is given by

x̃k =
N−1∑
n=0

xne
−2πikn/N

and the following relation is used

ωstep =
1

(N − 1)tstep

which is the highest detectable frequency divided by the number of steps. If we want to
find the linear response at driving frequency Ω, then Ω needs to be approximated by a
finite number of ωstep as in

Ω

2π
≈ nωstep
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and the linear response at this driving frequency is then given by

XΩ
lin = 2×

∣∣∣X̃nωstep

∣∣∣ .
Notice the factor of 2 being used here. Suppose that the trajectory can be approximated
by

Xε
t ≈ A cos(Ωt+ φ)

then a good approximate expression for A and φ would be

A ≈ XΩ
lin and φ ≈ arg

(
X̃nωstep

)
= tan−1

Im
(
X̃nωstep

)
Re
(
X̃nωstep

)


where φ is the angle of the complex number X̃nωstep .

B.3 Numerical Methods for calculating M5 and M6

Here we present how we computed M5 and M6 numerically. This is how M5 and M6 are
calculated in theory

M5 =

∫ T

0

φ−(t) ln

(
φ−(t)

ν−(t)

)
+ φ+(t) ln

(
φ+(t)

ν+(t)

)
dt

M6 =

∫ T

0

−ν−(t) ln ν−(t)− ν+(t) ln ν+(t) dt

where

φ−(t) =

{
1 if mod(t, T ) ≤ T/2
0 if mod(t, T ) > T/2

φ+(t) =

{
0 if mod(t, T ) ≤ T/2
1 if mod(t, T ) > T/2.

When the invariant measures are generated numerically they are finite discrete objects
described by

ν− =
{
ν−1 , ν

−
2 , · · · , ν−N

}
ν+ =

{
ν+

1 , ν
+
2 , · · · , ν+

N

}
.

The real invariant measure were close to zero sometimes and in the numerical approxima-
tion they became actually zero or even negative which lead to numerical artefacts. Note
that

lim
x−→0

ln

(
1

x

)
=∞ and lim

x−→0
x ln (x) = 0.
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Define

νlim− = min
i=1,2,...,N

ν−i >0

{
ν−1 , ν

−
2 , · · · , ν−N

}
νlim+ = min

i=1,2,...,N

ν+i >0

{
ν+

1 , ν
+
2 , · · · , ν+

N

}
.

The quantities M5 and M6 are computed numerically in the following way

M5 =
∑
i≤N

2

ν−i >0

tstep ln

(
1

ν−i

)
+
∑
i≤N

2

ν−i ≤0

tstep ln

(
1

νlim−

)
+
∑
i>N

2

ν+i >0

tstep ln

(
1

ν+
i

)
+
∑
i>N

2

ν+i ≤0

tstep ln

(
1

νlim+

)

M6 =
∑

i=1,2,··· ,N
ν−i >0

ν−i ln(ν−i )(−tstep) +
∑

i=1,2,··· ,N
ν+i >0

ν+
i ln(ν+

i )(−tstep).
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Appendix C

Further Commentary on Sparse Data
Analysis

C.1 Examples of Oversampling

Subjectively one may think that Figures 7.24 and 7.25 are so bad the conditional null
hypothesis may be rejected. This is actually an example of oversampling, where too many
transitions were used in the implementation of the conditional KS test. We know the PDF
we are fitting is not the real PDF but an approximation in the limit of small noise and
adiabatic forcing. Hence if one has enough data points this should be picked up and the
conditional KS test will refuse the approximate PDF as it will pick up even slight deviation
from the real PDF. When n = 20 are used we have the following.
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Figure C.1: This is Figure 7.24 redone with 20 transitions. Note that ε = 0.21, φ = 87◦,
n = 20, S+

n = 0.1960.

Figure C.2: This is Figure 7.25 redone with 20 transitions. Note that ε = 0.21, φ = 90◦,
n = 20, S−n = 0.1030.
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C.2 Empirical CDF

Consider Figure 7.27. Notice that the empirical CDF is on top on the y = x line. There
were enough data to give 10 more realisations of the random variable S+

n . Note that all
ten of these S+

n with n = 20 were calculated from 200 transitions divided into ten sets for
the ten S+

n . This meant 10 more versions of the Figure 7.27 were plotted. Out of these 10
plots, one had the empirical CDF to the bottom of the y = x line and one had roughly
half the empirical CDF above and below the y = x line. The noise level was very low at
ε = 0.17, which meant the escape times were very long with a very large spread, which gave
rise to data looking unreasonable. Only 200 transitions were detected which is significantly
less than other parameters, which meant only 10 realisations of the S+

n random variable
was possible. No further conclusions are drawn here.
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