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Abstract

Accurately measuring rainfall is important in most parts of the world due to our reliance on it

for food, energy and drinking water. The seasonality and interannual variability at a daily scale

needs to be understood for our current climate in order to understand how it is changing with

global warming. However, obtaining this information for large land areas, such as the African

continent, down to the few km level instead of a regional or country levels is difficult due to the

very large number of rain gauges required. Rain gauges is the preferred measurement method

since it provides the most accurate amount for a specific location. Satellites on the other

hand can easily collect information over a whole continent, but these cannot directly measure

rainfall. It therefore needs to be calibrated against ground observations and in addition only

returns an area average estimate instead of a point estimate. An optimal observation product

would draw information from both of these sources when appropriate, but this requires a de-

tailed understanding about the radius the rain gauge information can be extrapolated to and

the relation between the two sources of information.

This thesis aims to achieve improvements in these two areas. The first contribution is to

provide new methods for estimating the correlation distance for all rainfall intensities, informa-

tion which can be used to inform about the radius a gauge measurement can be extrapolated.

The second is to provide an improved distribution function for daily rain gauge measurements

associated with satellite estimates at a 4km scale. The combination of these two can improve

the merging of information from rain gauges and satellite estimates by drawing information

from the most accurate source at each location. The application of the new methodologies are

demonstrated by applying these to a new, dense daily rain gauge data set collected over Ghana.

A non-parametric methodology for estimating the correlation distance is developed, which

can easily be adapted for a given study region. Based on comparing the observed with the

expected co-occurrence probabilities, it by design takes into account the rainfall climate for the

specific time period and rainfall intensity considered. The annual variation of the correlation

range for four intensity classes is estimated over southern Ghana, and compared with estimates

from previous studies for other west African countries.
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To estimate the dependence structure in extreme values, and especially for values larger

than the ones observed, multivariate Extreme Value Theory provides the appropriate frame-

work. A semi-parametric estimator for the coefficient of tail dependence is proposed and the

performance is evaluated in a finite sample simulation study. The extremal dependence struc-

ture for different times of the year is evaluate by applying the estimator to the daily rain gauge

data set collected over Ghana. Limitations stemming from strong seasonality and missing val-

ues are addressed.

A qualitative study for assessing the distributional fit of rain gauge measurements condi-

tioned on a satellite rainfall estimate is performed, with the 4km satellite estimates given by the

TAMSAT data set. A skewed distribution with heavier than normal distributed tails is found

to generally be suitable.



Declaration

I declare that the work in this thesis has been done by myself and the use of all material from

other sources has been properly and fully acknowledged.

Chapter 3 corresponds to published work: Israelsson, J., Black, E., Neves, C., Torgbor, F.F.,

Greatrex, H., Tanu, M., Lamptey, P.N.L., ’The spatial correlation structure of rainfall at the

local scale over southern Ghana’, Journal of Hydrology: Regional Studies, vol. 31, 2020,

https://doi.org/10.1016/j.ejrh.2020.100720

Jennifer E. Israelsson

iii



Acknowledgements

Firstly, a huge thanks to my supervisors Professor Emily Black and Dr Claudia Neves for their

support, encouragement and the occasional push when needed. I am so grateful that you both

wanted to be a part of this project, which would not have been possible without your combined

wealth of knowledge! I have enjoyed our meetings and really value all the knowledge that

you have shared along our four-year long journey. Doing a PhD in normal circumstances is

a challenge and under pandemic conditions even worse, but together we made it through. I

would also like to thank Dr David Walshaw for his collaboration on the work in Chapter 5, and

all of his advice after joining for the second half of this project.

Secondly, I must thank the Ghana Meteorological Agency for sharing their rain gauge data

set with me, which I know took a huge amount of time and effort to collect and digitalise. This

project would not have been possible without it. I would also like to thank the MPE CDT,

especially the Reading staff, for their continuous support both academically but also well-being.

The regular Tuesday coffee mornings, in person and online, has been a very appreciated break

from work. I would also like to acknowledge the additional funds which allowed my trip to

Ghana, it was definitely one of the highlights on my PhD journey!

I would like to thank my cohort, and in particular Ieva, Elena and Mariana, for all the

laughs and hugs, whether it be for celebrating our achievements or for giving support after

tough feedback. The countless number of office coffee breaks (the first coffee machine even

gave up) has been a true joy and is one of the things that I am really going to miss.

Continuing with coffee, I must thank Dave for the many hours at the gym, walks and coffee

shops, listening to me complaining. I am honestly not sure what I would have done the past

18 months without your support.

My final and biggest thank you goes to my fantastic fiancé Bruce who has been standing
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Chapter 1

Introduction

1.1 Motivation

Consistently measuring rainfall is of great importance for most places in the world since we as

a species are dependent on water. Most countries in the world depends on rain fed agriculture

with limited access to irrigation, making the food production sensitive to changes in timing of

the growing season and rainfall amounts. This since the crops and growing practices are usually

chosen based on historic rainfall patterns. Nowadays, rainfall measurements are also needed to

verify and calibrate global climate models, which is our main tool for deriving climate change

projections. If we do not know the current rainfall patterns in terms of amounts, seasonality

and variability it is impossible to understand how this is likely to change under global warming.

The most accurate way of measuring rainfall is through ground based rain gauge mea-

surements, since these can capture exactly how much rain that fell in that particular location.

However, in order to consistently monitor rainfall in this way, a dense and uniformly spaced

rain gauge network is required to capture rainfall variability everywhere. Unless the rain gauges

are automatic and can transmit their measurements, the amount in each rain gauge must be

manually recorded each day, preferably in even 24 hour intervals. These two factors combined

makes this a very expensive and labour intensive method for recording rainfall. It further comes

with the issue that records cannot be created afterwards if someone forgot to record the rainfall

one day. This requires a long-term commitment and persistence to collect long enough records

to be of use, usually 30 years of length for climate studies.

Another method for collecting rainfall records is through satellite estimates. There are a

number of different ways of doing this (Section 4.1) but they are all based on approximating

cloud measurements recorded by satellites and converting this into rainfall amounts. Once the
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Chapter 1. Introduction 2

satellite is launched, it can monitor and record the variable of interest over entire continents

with very limited human interaction, and the information can easily be shared widely around the

world. This solves both the coverage and labour issues with rain gauges, but these estimates

instead have their own drawbacks. The first issue is that the rainfall is not measured directly

but instead approximated, meaning that the rainfall record will be an estimated amount rather

than an actual one. The estimates are further given as an area average since estimated on a

grid in contrast to rain gauges that record point estimates, meaning that satellite estimates

will miss any variabilities within a grid cell. The biggest limitation is however that these rainfall

estimates must be calibrated against rain gauge measurements, which requires both rain gauge

records and an understanding of how these two are related.

Given the two information sources different strengths and limitations, a combination of

the two would provide the most and best information. With a dense rain gauge network, the

unmonitored areas between the gauges can be estimated by interpolating the measurements

(Section 2.1). This however requires information about the correlation structure, meaning

over which distances two locations can be assumed correlated and how this tails of with dis-

tance. This is something that is not well understood so far for daily rainfall in west Africa

due to the historic lack of dense enough rain gauge datasets. Since this area experiences

both small drizzly events and mesoscale convective storms (Section 1.2.2) it is further likely,

but so far not widely researched, that the correlation distance is not equal for all rainfall events.

In order to use satellite estimates to fill in the blank areas where rain gauges are missing

or too far away to be interpolated, one first needs to understand what distance is ’too far

away’ and how this is related to the rainfall amount observed at the rain gauge. We must

further understand how the ground based rain gauge values are related to the satellite cloud

observations in order to convert the latter to a well calibrated rainfall estimate. With rain

gauges recording point wise and continuously and satellites area averages and at an interval,

there is naturally not a one-to-one relation between the two but rather a distribution of rain

gauge values observed for each satellite cloud observation. First when a solid understanding

of these two things, the correlation structure and the distributional relation, is achieved can

the two information sources be combined to obtain a merged product which maximises the

available rainfall records. It is to advance this area the following thesis aims are proposed.
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1.2 Thesis aims

The aim of this thesis is to develop improved methodologies for estimating the key

components in spatial statistics, specifically the correlation structure and conditional

distributions, which are required for relating rain gauge data with satellite imagery.

The main scientific questions addressed to meet this aim are:

1) How can we accurately estimate the correlation structure in daily rainfall?

2) Does the correlation distance vary with storm intensity?

3) What is a suitable distribution to model the full range of observed gauge observations

related to a given satellite image?

The following sections provide the background and motivation for each of the questions

raised above and how the work in this thesis addresses them.



Chapter 1. Introduction 4

1.2.1 How can we accurately estimate the correlation structure

in daily rainfall?

The correlation range is essential in spatial statistics, and more specifically geostatisitics, which

is the class of statistical tools aimed at describing the spatial continuity that is present in most

environmental phenomena. The First Law of Geography by Waldo Tobler states that: ”Ev-

erything is related to everything else, but near things are more related than distant things”

(Sui (2004)). This might be true in principle, but the correlation range specifies when two

locations can be assumed to be approximately independent, and therefore not related anymore.

Getting an accurate estimate at an unobserved location is of interest in any field where a

spatial process is observed as a point process, such as weather stations or drill holes collecting

data at specific locations, since observing the whole area is not possible. To get information

at the unobserved locations, some form of interpolation must be performed. A key decision

is which observations to include for the estimate, and whether these should be weighted de-

pending on the assumed similarity to the unobserved location. Inverse Distance Weighting

estimates the value at the new location as a linear combination of either a set number of clos-

est observations or all observations within some area, and weight them based on some function

of the Euclidean distance and potentially additional covariates. This does however not take

into account the relation between the observed locations, possibly leading to spatially clustered

observations more heavily influencing the weighted estimate compared to isolated observations.

A standard method in geostatistics that attempts to reduce this issue is kriging, which

is the best linear unbiased estimator, since it is designed to minimise the error variance by

assigning weights based on the relation between all observations and the new location (see

Chapter 4 for full method; Isaaks and Srivastave (1989)). To assign the weights, a covariance

function defined by three parameters; sill, nugget and range (see Section 2) are used. The

nugget represents the measurement error and the sill the variance of the variable, but the work

here will primarily be focused on the range. The range parameter determines at what distance

two locations are no longer correlated, and should therefore not contribute in the weighted

estimate. This range parameter is what will be called the correlation range, and needs to be

estimated.

The commonly used correlation estimation method ’Pearson correlation coefficient’ is very

restricted, since it can only detect linear relationships between the two variables. This is un-

suitable for rainfall, since the dependence changes at an exponential rate rather than a linear

(Section 3.2.4). A method commonly used in geostatistics is the sample variogram (Section



Chapter 1. Introduction 5

3.2), which estimates the sample variance for pairs located at various distance lags. This has

been used for daily rainfall (Greatrex et al. (2014)), but the large absolute spread in rainfall

amounts leads to a large variance already for short distances and it is often difficult to deter-

mine a stabilising plateau, which indicates the correlation range.

Alternative methods for estimating rainfall correlation at short time scales, for both gauge

measurements and satellite observations, have been proposed (Section 3.1), however a ma-

jority of these chooses an arbitrary ’null’ value for determining when the correlation range is

reached. In agreement with Tobler, a region share a general rainfall climate, which can be

denoted the background rainfall climatology, which leads to the observations being weakly cor-

related despite no true dependence still present (Section 3.2.4) In other words, for a particular

region or country there is a certain probability of observing light or heavy rainfall because of

the atmospheric conditions during the different seasons. In Ghana, there is a much higher

probability of observing heavy rainfall during June compared to April because of the position

of the Intertropical convergence zone (ITCZ), which drives the west African monsoon (WAM).

Since any two locations can observe heavy rainfall with a certain seasonally varying probability,

the two can observe this on the same day even if they are completely independent of each other.

The methodology derived in Chapter 3 addresses this issue by both estimating the back-

ground and the observed dependence, and can therefore incorporate information about the

local seasonal rainfall climatology. This provides a data determined rather than a user decided

correlation range. The method is non-parametric, further reducing the uncertainty by removing

the need for making distribution or relation assumptions. It additionally provides a straight-

forward way to estimate the correlation range for various intensity classes, since it takes into

account the background probability of any subset of observations.

For the highest observed intensities, also called the extreme values, a different method is

however needed since these are too few to accurately model the dependence with the first

model. Often when one wants to model the most extreme values, methods in the field of Ex-

treme Value Theory (EVT) are used since these are developed specifically to only work with the

largest values in a sample. For estimating dependence in the extremes, multivariate EVT must

be used which has become a very active field of research in the past decades due to the pressing

need to better understand current and future multiple risks (Huser and Wadsworth (2020)).

A major limitation in this framework, is that one needs to decide if the model one works with

is asymptotically dependent or independent (Sibuya (1960)), where the former corresponds to

there being a non-zero probability of the two variables being extreme simultaneously. A great

deal of research is being done to construct models that allows for both, but they are often
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restricted to either dependent or independent in practice (Section 6.1).

With the correlation range defined as the distance where two locations can be assumed

independent, an asymptotically independent model is preferred since it does not impose that

two locations must be dependent. Ledford and Tawn (1997) introduced a submodel, meaning

an extension of a previous model with a larger set of possible outcomes, that allows one to

measure the association between two variables despite them being asymptotically independent.

This is called the coefficient of tail dependence and it provides a method to investigate changes

in association (a weak type of dependence) in the case of asymptotic independence (Section

5.2). The regular extreme value index estimators can be used to estimate this coefficient, but

these suffer from the classical bias-vs-variance trade-off, which means that the bias is small

(large) for smaller (larger) sample sizes included in the estimation and vice versa for the vari-

ance. In Chapter 5 an estimator extending the mean-of-order-p univariate estimator (Gomes

and Caeiro (2014)) is developed along side a reduced bias variation, taking into account the

uncertainty arising from the marginal transformation (Section 5.3) in the bivariate setting.

The two models developed compliment each other by together making it possible to esti-

mate the correlation range for any intensity, a key feature for answering thesis aim question

2. That is, given a rain gauge data set one can use the non-parametric model for estimating

the correlation ranges for the regular rainfall values, which are observed every year from low

to high intensity events. The parametric extreme value method can then be used on the most

extreme values, usually the 3-5% largest, to understand over what distances it is likely to ob-

serve two extreme events simultaneously. These observations might only have occurred a few

times, and therefore could not be estimated by the first method due to the small sample size.

This information can then be utilised to estimate the risk of co-occurring extremes, and to

understand how far away gauges must be in order to be pooled together and thereby create a

larger sample size for univariate estimates.
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1.2.2 Does the correlation distance vary with storm intensity?

There is a large discrepancy between the research community that models the regular part

of the daily rainfall regime, and the extreme value community which only considers the most

extreme daily observations. A common assumption for the first group is the one of an intensity

invariant correlation range. That is, given a time of the season, the correlation range will be

the same regardless of the storm intensity and therefore also the rainfall generating process,

meaning that the correlation range used is a seasonally averaged estimate instead of changing

with the event. This assumption can appear rather unrealistic when modelling daily rainfall,

considering the widespread possible rainfall processes and the physical behaviour difference

between small, drizzly events and large frontal systems.

In the extreme value statistics community on the other hand, it is generally accepted that

environmental variables tend to become more localised as the intensity increases due to phys-

ical constraints (Huser and Wadsworth (2020)). However, very few studies have confirm this

assumption; due to the aforementioned issue of appropriate methodology and data availabil-

ity. These two opposing assumptions pose the question of whether the correlation distance is

approximately constant up to some intensity before it starts to decrease, or if variations are

present for the entire spectrum of rainfall intensities and nearly always are ignored.

To address this question, west Africa and specifically Ghana is chosen as the study region.

This is a region which experiences a large number of storms in a year, and equally impor-

tantly a wide range of rainfall processes with varying physical features (McGregor and Nieuwolt

(1998)). Maranan et al. (2018) defined, based on satellite observations, seven different rainfall

processes over west Africa based on their depth, horizontal extent and reflective factor, which

roughly measures the water content. It was concluded that even though the vast majority of

the number of rainfall events are of the ’Moderate’ or ’Strong’ convection type, and a rela-

tively large proportion warm rain along the coast, nearly all of the rainfall amount stems from

the ’Strong convection’ and Mesoscale convective type events. This indicates that there is

a connection between the physical extent of the rainfall process and the intensity of it, but

potentially in the other direction than what is assumed for very extreme events. Since the most

frequently occurring events are smaller in extent than stronger and rarer events, estimating a

general correlation range for all these events reduces the amount of information that could be

extrapolated and risks underestimating the rainfall amounts at ungauged locations.
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The second motivation for this particular region is the availability of a dense, long-term

rain gauge data set, curated by the Ghana Meteorological Agency (GMet), of which a detailed

description will be provided in Chapter 3. This consists of 590 unevenly distributed stations,

with some of the records dating back to 1940, which is incredibly rare on the African continent.

Washington et al. (2004) highlighted nearly 20 years ago that the gauge density over Africa is

about 8 times less dense than recommended by the World Meteorology Organisation (WMO),

and Nicholson et al. (2018) among others has showed that the gauge network has steadily

declined since the 1980s. Figure 1.1 displays the gauge network currently reporting to the

WMO Integrated Global Observing Systems (WIGOS) (WMO2019) in Europe and Africa,

clearly highlighting the density difference between the two continents. The distances between

the African gauges are often larger than one might expect to be the correlation distance,

making it impossible to derive any conclusions about the smaller scale differences.

Figure 1.1: Location of all surface bases stations and platforms reporting to WIGOS
(WMO2019), (left) Europe (latitude (71, 29), longitude (-20, 56)) and (right) Africa
(latitude (37, -34), longitude (-20, 56)).

Chapter 3 and 6 tackle the two rainfall regimes, regular and extremes, by estimating the

dependence as a function of distance for 5 intensity bands. This is done at the fine resolution

of 10km distance steps, filling in an information gap present in many previous studies (Moron

et al. (2007), Greatrex et al. (2014)). By using the same data set for both of the regimes,

differences and similarities can more easily be compared, something that is often not possible.

This since analysis of this sort are often performed by different research groups, either coming
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from the meteorology side or statisticians from the extreme value side, and therefore not using

the same data set or even the same region since what is available to one group might not be

to another. The results in these chapters demonstrate the significant difference in correlation

structure for different rainfall intensities and provide support for considering an intensity varying

correlation range.
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1.2.3 What is a suitable conditional distribution to model the

full range of observed gauge observations related to a given

satellite image?

Due to the scarcity of high quality rain gauges and weather stations over Africa, satellites

are being used to provide consistent monitoring of the rainfall, covering the entire continent.

Good coverage from geostationary satellites providing thermal infrared (TIR) imagery has been

available since the early 80s, providing nearly 40 years of consistent data (Maidment et al.

(2020)), therefore exceeding the 30 years of data that is usually required for climate studies.

Weather observations are crucial in any region for monitoring changes and more recently vali-

dating climate models, but in Africa even more so since a large part of the population depend

on rain-feed crops and energy is increasingly being generated by hydropower (IEA (2020)).

However mapping observed rain gauge measurements with satellite imagery is far from

trivial, since one needs to understand the relation between the rain gauge measurements and

the area average satellite estimates. There exists a multitude of satellite rainfall products over

Africa, providing data at a wide range of spatial and temporal scales (Section 4.1), and a

common feature for many of them is that gauge measurement are used to calibrate the chosen

estimation model.

The TIR data does not provide rainfall information, but cloud cover temperature, from

which the duration of clouds colder than a specific temperature (CCD) can be related to the

observed rainfall amount (Section4.2.1; Maidment et al. (2020)). There is however not a one-

to-one relation between these two values, but rather a distribution of gauge observations are

related to a given CCD value as demonstrated in Figure 1.2.



Chapter 1. Introduction 11

0

25

50

75

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 49 55 63

RFE value

G
au

ge
 v

al
ue

Month 06

Gauge values for RFE=11mm

Gauge values (mm)

D
en

si
ty

0 20 40 60 80 1000.
00

0.
02

0.
04

0.
06

Figure 1.2: Box and Whiskers graph over all gauge measurements associated with a satel-
lite rainfall estimate (RFE), histogram demonstrating the distribution of gauge values for
a particular RFE value.

An important difference between satellite estimated rainfall and ground observations, is the

difference in scale. Rain gauges are point processes that accurately captures the amount at

that specific location, but leaves large gaps of information. Satellite data is collected on a fine

or coarse scale (Section 4.1), but nevertheless as a smooth spatial process with one grid cell

representing an average of the precipitation within that area.

The difference in observational scale and the distributional relation between the two in-

formation sources results in the satellite estimated map providing a good mean estimate. It

however fails to represent the most extreme values, and there is also a relatively large un-

certainty associated with the estimate. Teo and Grimes (2007) developed a geostatistical

sequential simulation algorithm to generate an ensemble of rainfall estimates, given a single

TIR imagery, in order to capture the uncertainty in the estimates. The basis for the algorithm

is to randomly sample a rainfall amount given the CCD value at a selection of ’seed’ cells,

and then apply kriging to generate a realistic rainfall field with the correct spatial dependence

structure (cf. Section 4.2.2).

A similar approach can be used to ’merge’ ground observation data with satellite estimates,

and thereby incorporate all the available information into a single estimation map (Section

4.2.2). This merged estimate will then draw information from the most reliable source at

each instance, and can return the more extreme values from the satellite estimate conditional

distribution when these are observed.
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A key aspect for both of these applications, is that the conditional distribution accurately

describes the full range of observed gauge measurements for a given satellite value. It is well

known that rainfall follows a skewed distribution, but a large selection of these exists with

varying tail behaviour. A too short-tailed distribution leads to an underestimation of the un-

certainty and unrealistically many observations will correspond to the very highest quantiles of

the distribution, and vice versa for a too heavy tailed.

This is addressed in Chapter 4 by comparing the gamma distribution used in Teo and Grimes

(2007) and Greatrex et al. (2014) for describing the conditional gauge distribution, with the

heavier tailed lognormal distribution. The results in the chapter shows that a well-parametrised

lognormal distribution better models the full range of values, especially the tails of the obser-

vations. This provides an improvement in the understanding of the uncertainty associated with

the satellite rainfall estimates.

This knowledge, coupled with the answers derived from aim 1 and 2, provides a deeper

understanding of how to combine and map gauge observed measurements with satellite derived

estimates and therefore addresses the overarching thesis aim. Starting with a set of gauge

measurements and satellite rainfall estimates, the intensity varying correlation range will inform

over what distances the gauge information can be utilised. By using an intensity dependent

range instead of a mean range, the overall uncertainty will decrease since observations with

a shorter ranges will not be extended outside of this and observations with longer ranges will

be fully utilised. The improved conditional distribution will allow for a closer-to-the-true range

of rainfall values, especially the larger values, which will result in a monitoring product which

better represents the ground observed rainfall.
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1.3 Thesis structure

Chapter 2 provides an introduction to the two main areas of statistics used in this thesis,

geostatistics and Extreme value statistics. The first part presents the method of kriging, by

detailing the semivariogram and covariogram functions and how these two are related. The

second part briefly explains the concept of Extreme value statistics and how this is different

from other statistical areas.

Chapter 3 provides a detailed description of the daily rainfall data set collected over Ghana

from 1940-2017, that will be further used in Chapter 4 and 6, and presents the rainfall climatol-

ogy for the different climate regions of the country. An algorithm for estimating the correlation

range for different intensities, based on estimating the co-occurrence probability and comparing

it to the background probability, is developed. This is used to estimate the correlation distance

for storms in four different intensity classes for each month of the season. This information is

used to answer question 1 and 2 in the thesis aims.

In Chapter 4 the focus is on answering question 3 from the thesis aim by evaluating the fit

of a lognormal distribution to measured rain gauge values from the previously introduced Ghana

rain gauge data set, associated with the TAMSAT satellite rainfall estimates. The evaluation

of the fit is considered for four months, representing different phases of the monsoon, and

a wide range of rainfall estimate values to determine the overall best performing distribution

parameters.

Chapter 5 also relates to thesis aim question 2, where a new estimator for the coefficient

of tail dependence, which measures the dependence strength in the case of asymptotic in-

dependence, is developed. The asymptotic normal distribution is derived and a reduced bias

version is introduced. The performance compared to the Hill estimator is evaluated through

an extensive finite sample simulation study.

In Chapter 6 the analysis done in Chapter 3 is extended by applying the reduced bias

estimator developed in Chapter 5 to the extreme observations in the rain gauge data set. A

non-stationarity and cluster analysis is performed for a set of baseline stations, from which

the dependence structure is thereafter estimated. Shorter dependence distances are derived

compared to Chapter 3, but several issues with the results are highlighted.

Finally, Chapter 7 presents the main conclusions from Chapter 3-6 along with some direc-

tions for further work.



Chapter 2

Statistical background

The following short chapter outlines the statistical knowledge needed to fully understand the

methods introduced and applied throughout the thesis. The first section focuses on the geosta-

tistical part, with a special focus on the method of kriging since this will be the main method

used. The second part will introduce the area of extreme value statistics, starting with the

univariate setting and following up with the multivariate extension. The multivariate section

will provide an overview of the aims and issues, but leaves the theoretical definitions to Chapter

5.

2.1 Geostatistics

Geostatistics is as mentioned in the introduction the area of statistics related to spatio-temporal

processes. The aim is usually to estimate the value at one or more unmeasured locations given

the information from other locations, plus the knowledge that physical processes often are

smooth in space. This means that locations close to each other should have values similar

to each other, and the forced similarity should decay with distance and potentially other co-

variates, such as mountains or large bodies of water. As mentioned in the introduction, a

key parameter is the correlation range, which determines over what distances we assume the

spatially smooth condition to be true. In the following section, the impact of this param-

eter, and the others mentioned in Section 1.2.1 will be described. Using Figure 2.1 as our

example problem, the aim is to determine the value at the orange star using either all or a

subset of the measurements at the blue dots. The two circles represents two different corre-

lation ranges which leads to a different number of sample points being included in the estimate.

A simple method for determining the value at an unmeasured location is the Inverse Dis-

tance Weighting (IDW). In this case, the value at the star is given as a weighted sum of all the

14



Chapter 2. Statistical background 15

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X coordinate

Y 
co

or
di

na
te

1

2

3

4

5

6

7
8

9

10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X coordinate

Y 
co

or
di

na
te

1

2

3

4

5

6

7
8

9

10

Figure 2.1: Example plot of an unmeasured location (star), 10 measured locations (blue
dots) and two different correlation ranges.

values within the circles, and the weights are only dependent on the distance between the star

and the point. How this weight dependence on the distance is up to the person performing

the analysis, but could for example linearly decay if it is a very smooth parameter such as

temperature or exponentially if it is more variable. The large drawback with this method is the

lack of taking into account the dependence between the blue dots. In this example, points 7

and 8 are very close to each other so will have measured similar values. Point 5 on the other

hand is at a similar distance from the star location, but in a different direction, hence will

probably have a different value. In the right plot in Figure 2.1 where only these three points

are included, the star value will mostly be influenced by the points 7 and 8 since they each

individually carry the same weight as point 5.

2.1.1 Kriging

It is the issue of clustered observations, together with obtaining a method for deriving a measure

on the uncertainty, kriging was developed. Kriging is an interpolation method, which given

suitable assumption on the parameters, returns the best linear unbiased estimate (BLUE).

It is modelled based on a Gaussian (normal distribution) process with some prior knowledge

about the covariance structure, that is how large the circle should be and how the correlation

should decay within it. The empirical idea of kriging was originally introduced in a master
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thesis by Danie G. KRIGE in the 1950s, but developed and the theoretical basis formalised by

the mathematician Georges Matheron in the early 1960s (Chilès and Desassis (2018)), and is

now a widely used tool in the geostatistical field. There are several different types of kriging

depending on the level of assumptions made and the smoothness of the field one wants to

model. Simple kriging is the most restricted version, where we assume that the expected value

µ = 0 everywhere and that the covariance function is known. A slightly more flexible version

is ordinary kriging where one assumes that the expected value is constant everywhere but

unknown. One further level of complexity is to assume that the mean is following a general

polynomial trend, which is referred to as Universal kriging.

For all versions of kriging, the key part is to determine the shape of the covariance function

and the values of the three parameters; sill, nugget and range. In order to estimate the covari-

ance function one first needs to estimate the semivariogram function, γ(h), which estimates

the variance between two locations, to then translate this to the desired covariance function,

c(h). Figure 2.2 demonstrates the three parameters and describes the inverse relationship

between the two functions, which is given by

c(h) = σ2 − γ(h) (2.1)

where σ2 is the sill value.

Figure 2.2: Relation between the (left) semivariogram and the (right) covariance func-
tion with the three parameters nugget, sill, range visualised. Figures produced by
pro.arcgis.com

The semivariogram function can be obtained by first creating an empirical semivariogram

and then fitting a semivariogram function through the points. In the isotropic setting where
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we assume that the variability is the same in all directions, the empirical semivariogram is

constructed by calculating the variance between all locations as a function of the distance

between them. In the case of different variance structures in different directions, due to for

example mountains or atmospheric patterns, only locations in the same directions can be

included. Since points with similar values will result in a smaller variance, we expect the

empirical semivariogram values to be close to 0 for short distances and converge to the spatial

process variance for longer distances. If we assume that the mean is the same for all points,

then this can be estimated by Matheron’s classical estimator (Matheron and Blondel (1962)),

defined as

γ̂(h± δ) =
1

2|N(h± δ)|
∑

(i,j)∈N(h±δ)

|zi − zj|2 (2.2)

where zi is the observed value at location i, N(h± δ) is the set of pairs within the spatial lag

h ± δ and |N(h ± δ)| is the number of pairs in that distance range. This will however only

provide estimates for a limited number of distances, marked by the points in Figure 2.3, which

is why we need a function to get an estimate for all distances. The line in Figure 2.3 shows

the fitted semivariogram function through the empirical sample points

Occurrence semivariogram month 4 model Mat ( 0.07 , 0.1 , 19 , 0.3 )
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Figure 2.3: Empirical (points) and fitted (line) semivariogram.
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The fitted line is given by a semivariogram function and depends on the three before

mentioned parameters nugget, sill and range. The interpretation of the three parameters are

as follows (Isaaks and Srivastave (1989))

• Sill: the maximum value that the functions attains, either definitely or asymptotically

depending on the function. A larger sill value corresponds to a large area variance but

does not impact the kriging estimate.

• Range: the distance at which the sill is reached and therefore the two locations are

uncorrelated. Mainly has an effect on the number of points included in the estimation.

• Nugget: the jump at the near-0 distance, representing the measurement error and small

scale variability. In a perfect world, measurements taken very close to each other should

have the same value and therefore be perfectly correlated and zero variance. This is

however nearly never the case in reality where small scale variation and measurement

errors prevents this, which is reflected in the nugget effect. A large nugget results in

all locations within the range having a similar weighting, since the difference in value is

small.

The most commonly used semivariogram functions are given below with h denoting the

distance between two locations, n, s, r denoting the nugget, sill, range respectively and the

indicator function 1A(h) is 1 if h ∈ A (h belongs to the range A) and 0 else. Figure 2.4

demonstrates the difference in shape for the first three functions.

Figure 2.4: Examples of the three semivariogram functions exponential, spherical and
gaussian with the same nugget, sill and range values. Figure from Isaaks and Srivastave
(1989).
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Exponential

c(h) = s2 − (s− n)
(
1− e−h/(r)

)
+ n1(0,∞)(h)

Spherical

c(h) = s2 − (s− n)

((
3h

2r
− h3

2r3

)
1(0,r)(h) + 1[r,∞](h)

)
+ n1(0,∞)(h)

Gaussian

c(h) = s2 − (s− n)
(

1− e−h2/(r2)
)

+ n1(0,∞)(h)

The indicator function in the last term in the functions clarifies that the nugget effect is included

at any distance ε > 0. Another model that is popular in the statistics community but less used

in the meteorological setting is the following flexible, but more complicated model

Matérn

c(h) = s2 21−ν

Γ(ν)

(
h

r

)ν
Kν

(
h

r

)
where ν > 0 is a shape parameter, Γ(.) is the gamma function defined by Γ(z) =

∫∞
0
xz−1e−xdx

and Kν is the modified Bessel function of the second kind and order ν.

The covariance function can now be defined through Equation 2.1. After specifying the

covariance function, one can proceed with estimating the value at the non-measured location

x0 (orange star). Denoting the observed values Z(xi) = zi (blue dots) and the weights wi(x0),

i = 1, .., N , the estimate at our new location x0 is given by

Ẑ(x0) =
N∑
i=1

wi(x0)× Z(xi) (2.3)

In the case of simple kriging, the weights wi = wi(x0) are estimated by
w1

...

wN

 =


c(x1, x1) · · · c(x1xN)

...
. . .

...

c(xN , x1) · · · c(xN , xN)


−1

c(x1, x0)
...

c(xN , x0)
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From this, the kriging error can also be estimated by

Var
(
Ẑ(x0)− Z(x0)

)
= c(x0, x0)−


c(x1, x0)

...

c(xN , x0)


′

c(x1, x1) · · · c(x1xN)
...

. . .
...

c(xN , x1) · · · c(xN , xN)


−1

c(x1, x0)
...

c(xN , x0)


(2.4)

where the first term is the variance of the Gaussian process at the point x0 and the second

term the variance of the estimate.

2.2 Extreme value theory

Extreme value theory (EVT) is as the name suggests, the study of the most extreme values in a

distribution. Anyone studying statistics will early on learn that one cannot extrapolate outside

of the measured sample, since regular statistics are based on minimising the total error between

the data points and the assumed distribution. With this aim, most of the weight to determine

a good fit will naturally be given to the bulk of the data, since this is where most of our sample

points lie. This unfortunately means that the fit in the tails can be rather poor, hence any

extrapolation further into the tail would be based on an already poor fit. There are however

a great number of situations where one would like to make inferences about values that has

not been observed yet, especially when it comes to estimating risk. Insurance companies and

infrastructure planners often want to know for example what intensity of rainfall or the largest

pay out amount to expect once every 100 years, even though only 20 years of data is available.

It is for these kind of situations extreme value has been developed, to provide a theoretically

justified way of estimating return periods (e.g. how often we will see 200mm rain in a 24 hour

period) or very high quantiles (e.g. the strongest wind we will measure in a 100 year period).

This is achieved by only focusing on the tails and ignoring the rest of the distribution, since

we already have suitable methods for estimating that. Figure 2.5 demonstrates the issue with

a near perfect fit in the main part of the distribution but a rather poor fit in the tail.
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Figure 2.5: Density fit to a sample for the full sample (left) and tail (right).

2.2.1 Univariate statistics

Since we are only considering the largest values of our sample, the concept of order statis-

tics is fundamental in EVT. For a sample of n independent and identically distributed (same

distribution and not correlated, i.i.d) sample points X1, X2, ..., Xn, the order statistics of this

sample is X1,n ≤ X2,n ≤ ... ≤ Xn,n. By considering this new notation of ordered samples we

can easily describe and model the largest values in the sample, where we commonly say that

we choose the k largest values with k much smaller than n. In traditional statistics the aim is

often to find the distribution of the mean, that is its central value and some variability around

it. The basis for doing so is the central limit theorem, which states that

√
n

(
(X1 +X2 + ...+Xn)/n− E(X)√

var(X)

)
(2.5)

converges to a standard normal distribution as n → ∞. We say that Equation 2.5 is asymp-

totically normally distributed, since it only holds true for n infinitely large. In EVT we are

instead interested in finding the distribution of the maximum of the distribution, which is usu-

ally denoted MX,n := max1≤i≤nXi. If we in Equation 2.5 replace the sum with the maximum

MX,n and the two constants nE(X),
√
n var(X) by a sequence of numbers bn and an > 0

respectively, we reach a similar distribution expression

P
(
MX,n − bn

an
≤ x

)
→ G(X) (2.6)
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as n → ∞. The main question here is for which distributions of X there exists sequences of

numbers bn ∈ R, an > 0 such that Equation 2.6 exists and G(X) is not equal to a constant,

also called non-degenerate. If this holds true, then we say that G belongs to the family of

extreme value distributions. If MX,n was not standardised, it would clearly converge to the

largest value of the distribution of X, denoted x∗, and G(X) would be a degenerate distribution

function only taking the value of x∗. We say that the distribution X is max-stable if it satisfies

anX + bn
d
= MX,n

for appropriate constants an > 0, bn ∈ R. This means that the extreme value distributions are

the max-stable, hence if we know that a distribution is max-stable then we also know that it is

an extreme value distribution. It has been proved by Fisher and Tippett (1928) and Gnedenko

(1943) that G can only be one of three possible distributions, and Haan (1970) further showed

that all of these three distributions can be written as one extreme value distribution

Gξ(x) = exp
(
−(1 + ξx)−1/ξ

)
, for 1 + ξx > 0

where ξ ∈ R is the extreme value index. This is a key quantity in EVT because it determines

how heavy tailed a distribution is depending on if ξ is larger, equal or smaller than 0. Sim-

ply speaking, it gives information about if the distribution has a finite maximum value or how

quickly the right tail converges towards a density value of 0, which is a measure of how extreme

values this distribution can attain and how frequent. Figure 2.6 displays this, where we can

see that the Weibull distribution (ξ < 0) has a finite right endpoint and the Fréchet/Pareto

distribution (ξ > 0) converges much slower towards the x-axis compared to the Gumbel distri-

bution (ξ = 0).

One can also flip the question and ask, ’Given that G(x) is a possible limit distribution for

the sequence a−1 (Xn,n − bn), what are the necessary and sufficient conditions on the distribu-

tion X for this to hold true?’. This is called the domain of attraction problem, and we therefore

say that X is in the domain of attraction of G, often denoted D(G). More details on this will

not be provided here since it is deemed out of scope, but a full mathematical description can

be found in Haan and Ferreira (2006).
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Figure 2.6: Density plots of the three possible extreme value distributions.

Since the key quantity in extreme value statistics is the extreme value index ξ, the main

aim is usually to try and accurately estimate this. There are two main methods for doing

this, the block maxima (BM) where one decides a block size (e.g. a year) and extracts the

maximum from this, or peaks-over-threshold (POT) where we select all observations above a

high thresholds. Both of these methods involve choosing a suitable value which is large enough

to make sure that all the sample points are extreme but low enough to ensure that enough

sample points are chosen. For the BM method, if one chooses a year as the block length but

only have 5 years of data, only 5 data points will be used to estimate ξ, leading to a very

uncertain estimate. If we instead choose a month as block length, non extreme values will

be selected if there is a strong seasonality in the variable, such as temperatures in Europe or

rainfall over west Africa. If we instead use the POT model, we need to decide a threshold with

the same limitations. This is the root of the bias-vs-variance trade-off, many sample points

will mean that some are not extreme and therefore bias the estimate, but very few will lead

to a large variance and therefore an uncertain estimate. Figure 2.7 shows these two methods

where the red dots are the selected sample points with the BM method and the blue and red

in the POT method. The horizontal line marks the threshold for the POT method and the

vertical lines the blocks for the BM.
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Figure 2.7: The sample points included in the extreme value analysis using the BM method
(red points) and POT (blue and red points). Horizontal dashed line marks the threshold
for the POT method and the vertical dashed lines the year breaks for the Block maxima.

To decide the block length or threshold, a combination of knowledge about the data and

qualitative tools can be used. The block length will usually be decided based on a natural

time sectioning that matches when one would expect the most extreme observations to occur.

If one is modelling cold temperatures in Europe, then the best block would be the minimum

temperature in October-March rather than the annual minima to capture the seasonal minima.

To decide a suitable threshold in the POT model, stability plots can be used, alongside a

sensibility check. One useful stability graph is to plot the estimate of ξ as a function of the

k number of top order statistics included. This can be used since we expect ξ to be constant

for all extreme values, since they belong to the same extreme value distribution G(x), but

become biased as we include non extreme values. Therefore by selecting a k, which essentially

is the same as picking a threshold equal to the sample point Xn−k,n, for which the estimate

of ξ is constant for smaller values of k but different for larger, we can find the balance in the

bias-variance trade-off. This is visualised in Figure 2.8 where the horizontal line is the value of

ξ that the estimate is stable around and the vertical dashed line indicates the optimal k value.
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Figure 2.8: Estimate of the shape parameter ξ as a function of the number of upper order
statistics k, including the top 10% values. The horizontal solid line is the correct value
and the vertical dashed line the optimal k value.

To estimate ξ, a whole range of estimators are available with different advantages and

drawbacks such as smaller bias, minimum variance or ability to estimate ξ for one or several of

the value ranges (positive or negative values). The most classical estimator is the Hill estimator

(Hill (1975)), which has a smaller variance than many others but can only estimate positive

values of ξ and therefore only works for Fréchet/Pareto type distributions. Another positive

thing with the Hill estimator is that it is a consistent and asymptotically normal estimator,

meaning that it always converges to the true value for a large enough sample (n → ∞) and

it is possible to get a confidence interval on the estimate. It is however often biased due to

a rather slow convergence, which means that a very large sample is needed for there to be

enough extreme sample points to get an accurate estimate. Because an estimator can be

unbiased in theory but not necessarily in practice, theoretical derivation of consistency and

asymptotic distribution are often complemented with finite samples simulations to investigate

this discrepancy.

2.2.2 Multivariate statistics

In the previous section we assumed all sample points to be i.i.d, which often is the case if they

all come from the same weather station. However in many application we are interested in the

interaction or dependence between either two different variables or locations. This information

can for example be used to estimate the joint probability of two variables being large, e.g. rain

and temperature, and thereby calculate their combined risk. It can also be used to estimate
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the dependence as a function of distance and thereby understand both the area that might be

experiencing extreme events at the same time, and the distance required for two locations to

be independent. The second application can be very useful if only short time series exists for

each weather station but there are several weather stations in a region with a similar climate,

since one can then pool the independent stations together and obtain a significantly larger i.i.d

sample size.

It is however not as straight forward in the multivariate setting to define and rank extreme

events. Is it an extreme event only if all of the variables are extreme at the same time, or is it

enough if one is extreme? And how can we rank points when only one variable is extreme?

Because the different variables might be on different scales, and to simplify the joint es-

timation, modelling multivariate extremes consists of two parts; the marginal distribution and

the dependence structure. By first transforming the marginal distributions to be equal, we

remove any potential influence from them being on different scales and can therefore estimate

the true dependence between the variables. The exact choice of marginal distribution is not

important from a theoretical point of view, since it is just a method for standardising the

variables (Beirlant et al. (2004)). The most common choice is to standardise to unit Fréchet

marginals because it leads to simple expressions to work with in the dependence estimation.

Another common choice is the unit Pareto distribution, which as mentioned in the previous

section also has a positive extreme value index and therefore has a similar tail behaviour to the

Fréchet distribution but a different distribution function. Even though the choice of marginal

distributions should not have an impact on a theoretical level, it often has an impact in practice

since we need to replace the actual unknown distribution function with an empirical estimate

(Section 5.3 for more details).

In contrast to the univariate case, there does not exist a finite number of parametric dis-

tribution functions that we can fit our sample points to, but instead a number of different

parametric and non-parametric models for describing the dependence structure. This gives

more flexibility in choosing the type of method one wants to use, but also makes it significantly

more complex since we need to know which of these different method is the most suitable

in our particular case. An important distinction is the one of asymptotic independence and

asymptotic dependence (Sibuya (1960)), which essentially determines if the two variables are

extreme at the same time. The asymptotic comes from the fact that everything in EVT is only

defined in the limit n→∞, hence can never be fully but only asymptotically true.



Chapter 2. Statistical background 27

A useful way to model the dependence structure between two variables while ignoring their

marginal distributions is through copulas. A copula is a joint distribution function of two or

more variables where each marginal distribution is uniform on the interval [0, 1]. This is based

on Sklar’s theorem (Sklar (1959)) which stats that if H is a 2-dimensional distribution function

with marginal distribution function F,G, then there exists a copula C such that

H(x, y) = C (F (x), G(y)) , (x, y) ∈ R2

The above stems from the fact that if X follows a distribution F then F (X) is uniformly

distributed on the interval [0, 1]. The joint behaviour is therefore completely determined by

the copula function C, of which there exists a huge variety with different behaviours (Nelsen

(2006)). The main feature of a copula is how dependent, or correlated, the two variables X, Y

are with each other. The dependence is controlled by the type of copula function, but also on

a dependence parameter, θ, which all copula functions includes (see Section 5.5 for examples).

In Figure 2.9 three different copula functions are demonstrated with different values on the

dependence parameter θ. The possible values on θ for the three models are: bivariate normal

−1 ≤ θ ≤ 1, Frank θ > 0 and FGM −1 ≤ θ ≤ 1. We can see that there is a big difference in

how correlated the points are for the different copulas even for θ close to their limit values.

What is more difficult to see in these graphs, is that these copula functions has two ’types’

of dependence/correlation, one in the main part of the distribution and one in the tail. A prime

example is the Bivariate normal distribution which can be nearly completely correlated in the

main part of the distribution (Figure 2.9 top row) but is in fact asymptotically independent in

the tail. This means that for sample points that are close to 1 (the maximum value) in one

variable, is not for sure going to be close to 1 in the second variable, and therefore be located

in the top right corner.
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Figure 2.9: Simulated samples from three different copulas and three different values of
the dependence coefficient of each. (Top) Bivariate normal, (middle) Frank and (bottom)
FGM copula. (Left) θ=(-0.8, 0.2, -0.8), (middle) θ=(0.2, 0.2, 2) and (right) θ = (0.99,
0.99, 5).

Similar to univariate statistics where we needed one set of methods and distribution func-

tions for the main part of the distribution and others for the extremes, the same is true for

the two dependence areas. The dependence in the main part is often decided by various mea-

sures such as the Pearson correlation which require many sample points and considers the full

sample. For the tail dependence, the common measures are instead the extremal dependence

measure, χ(x) (Coles et al. (1999)), in case of asymptotic dependence and coefficient of tail

dependence, η(x) (Ledford and Tawn (1996)), for asymptotic independence. This is a clear
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example of the added complexity in multivariate EVT where one needs to decide which of the

two dependence regimes is considered since the estimators are different. In this thesis, only

the asymptotic independence case is consider and the reason for this is outlined in Section 5.1

and 6.1 where all the theoretical definitions are also introduced.



Chapter 3

The spatial correlation structure of

rainfall at the local scale over

southern Ghana

In this chapter, the two first questions from the thesis aim will be addressed by developing

a non-parametric estimation method for the correlation distance (see Section 1.2.1), inspired

by the method of comparing observed and expected probability of rainfall co-occurrence intro-

duced in Ricciardulli and Sardeshmukh (2002). This therefore partly answers the first question.

The developed method will be applied to different combinations of rainfall intensities to study

the difference in range for these, thus addressing the second question.

The chapter also includes a detailed description of the Ghana rain gauge data set that is

used to estimate the correlation range here, and later used in Chapter 4 and 6. The description

provides information about the distribution of missing values, the seasonal cycle and variabili-

ties in annual, monthly and daily amounts.

This chapter has been published in Journal of Hydrology: Regional studies (Israelsson et al.

(2020)) and the supplementary material can be found in Appendix A. Since it is written to be

read on its own, there is some overlap with Chapter 2.

30
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Highlights

• Daily rainfall record since 1940 from 590 stations.

• A simple and easy to interpret method for estimating correlation is constructed and

implemented.

• Decorrelation range is shown to depend on the intensity of the rainfall event.

• Long-term rainfall climatology for all of Ghana.

• First study on the local correlation structure and anisotropic patterns.

3.1 Introduction

Rainfall over west Africa has received a lot of interest the past decades due to the limited

possibility of irrigation for the many farmers depending on rain fed crops. In Ghana, 50% of

the population depend on rain-fed crops (SRID Ministry of food and agriculture (2017)) and

a large part of the country’s energy come from hydropower from the lake Volta (Nyarko Kumi

(2017)), which makes the hydrological cycle of great importance. Because of the sparse rain

gauge network over most parts of Africa (Washington et al. (2004)), some research has been

done on describing the rainfall distribution over time for a specific station and then extrapo-

lating this knowledge to the surrounding region (e.g. Nicholson et al. (2000)). One problem

with this approach is the highly variable weather over west Africa which makes it difficult to

extrapolate knowledge outside a very small region, leading to large uncertainties. The majority

of the west African rainfall comes from the west African monsoon which is controlled by the

movement of the Inter tropical convergence zone, (ITCZ), an area where the south-east and

north-east trade winds meet and a belt of convective clouds is present due to this convergence

and the high amount of energy from the sun. The movement of the ITCZ results in strong

seasonality in rainfall over the year and the convective nature of the rainfall is one of the

reasons for the high variability in both time and space on a daily scale.

There has also been a lot of research done using satellite rainfall estimates, calibrated

against the sparse network of ground stations, or using reanalysis products which in general

performs worse at finer scales in the tropics when compared to gauge measurements (Diro

et al. (2009), Maidment et al. (2017) and references therein). To get a more realistic de-

scription of the spatial rainfall distribution, and to generate spatially accurate satellite rainfall

estimates, several papers have modelled the spatial covariance over either all of Africa or a

specific country or region. This has been done using satellite data (e.g. Funk et al. (2015b),
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Smith et al. (2005)) and rain gauge data (Moron et al. (2007), Ricciardulli and Sardeshmukh

(2002), Greatrex et al. (2014)). Both of these types of dataset have their individual issues

when collected over Africa. Satellite products may not represent fine scale variability accu-

rately (Maidment et al. (2017)), but rain gauge data on the other hand is usually very sparse

which again leads to issues when modelling the small scale behaviour (Greatrex et al. (2014),

Moron et al. (2007)). A general problem is the lack of long time series, making it difficult to

describe the full interannual variability (Greatrex et al. (2014)). Exceptions exists, with some

time series dating back to the 1880 (Nicholson et al. (2018)), but these are highly clustered in

a few countries and with the highly variable nature of the African climate this does not provide

much information for other countries.

Ricciardulli and Sardeshmukh (2002) used 3 years of cloud observation data transformed

into a ”Deep convection activity index”, with a resolution of 0.35°× 0.7°covering the entire

tropics to model the correlation distance. They only focused on modelling the decorrelation

distance for deep convection clouds for all active months, hence not making a distinction

between the different phases of the monsoon cycle. With this method, they were not able

to capture rainfall events related to any processes other than deep convection (Young et al.

(2014)). Both a method of estimating the distance until the correlation was less than 1/e,

and a method to estimate the distance at which the conditional probability of rainfall, given

that it rains at the grid point, approaches the overall probability of rainfall was used. In south

West Africa, the decorrelation distance was estimated to roughly 150km with the first method

180km with the second. Funk et al. (2015b) instead used 0.05°resolution 5-day cumulative cold

cloud duration (CCD) data to estimate the decorrelation distance for each month seperatly.

Their method instead involves to estimate the average correlation at 1.5°around the grid point

and then calculate the decorrelation slope by assuming the correlation to be 1 at distance 0.

From this slope, the distance at which the correlation should be 0 was estimated. This method

results in decorrelation distances of 500-800km over south west Africa. The longer range than

obtained in previous studies is likely to be due to the use of 5 day, rather than daily, values.

One limitation of using CCD instead of gauge measurements is that decorrelation in CCD is not

equivalent to the decorrelation range in rainfall. In contrast to Ricciardulli and Sardeshmukh

(2002) and Funk et al. (2015b), Moron et al. (2007) calculated the decorrelation distance

between measured rainfall at stations instead of satellite grid points. This was calculated for

five different tropical regions, to assess the generality of the results, on amount and occurrence

data separately by estimating the Pearson’s correlation for amount data and phi correlation for

occurrence. One major limitation in this paper is the small number of stations for each region

(9, 11, 13, 28, 81) which results in very wide distance bins (100km) and only a few station

pairs in each bin.
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Another method for estimating the correlation distance is to derive a variogram. A vari-

ogram describes the variance structure between locations depending on the distance between

them. In both Greatrex et al. (2014) and Teo and Grimes (2007), climatology variograms

are calculated on rain gauge data to estimate the range, which is the correlation parameter,

of rainfall over Ethiopia and Gambia. Both of these papers split the analysis for occurrence

and positive rainfall amounts, similar to Moron et al. (2007). This is because the dependence

structure for occurrence and amount are showed to not necessarily be equal, since they come

from two different processes. The occurrence process only models the distances over which

rainfall occurs simultaneously whereas the amount process considers how similar these rainfall

values are. Furthermore, the total rainfall amount over some period is not entirely dependent

on the frequency of rainfall event. Teo and Grimes (2007) face the same limitation as Moron

et al. (2007) with only 20 stations, however distributed on a small area, resulting in a relatively

dense network. The range for occurrence and positive rainfall amounts are 50km and 150km,

hence substantially shorter than the once estimated by Funk et al. (2015b) but similar to Ric-

ciardulli and Sardeshmukh (2002). Greatrex et al. (2014) has a much larger dataset of 276

stations but is limited to only 5 years of data and the stations are very unevenly distributed

over the country with a complex topography. Many of the variograms in the paper do not

have a clearly defined range and thus a clear correlation distance is difficult to determine. The

difference in correlation distance can partly be explained by the use of different methods and

data types but some stems from the use of different countries, since the decorrolation range

varies greatly across Africa (Funk et al. (2015b)).

Two common assumptions are that the rainfall distribution will be equal for all rainfall

events and the distribution is equal in all directions. But in the recent paper of Maranan et al.

(2018) it was showed that even though the vast majority of the annual amount of rainfall

comes from Mesoscale convective systems (MCSs), but the events classified as moderate and

strong convection has the highest frequency of events. This implies that these events can

not be considered to be equal, since the less frequently occurring events generate more total

rainfall. Many rainfall processes are moreover anisotropic, especially at the daily scale. There

has been some work done on anisotropy in Africa, but this has either just been done on very

small areas (Gyasi-Agyei and Pegram (2014), Ali et al. (2003)) or using covariates to remove

the spatial variability (Laux et al. (2009)).

By describing the covariance structure in daily rainfall at the small to moderate scale (10-

150km), the results in this paper will help to fill in the knowledge gap currently existing between

the station level rainfall distributions and the large scale behaviour (∼ 400km). This analysis
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is made possible by a completely new and unique dataset from the Ghana Met Agency com-

prising 590 stations with daily rainfall measurements. Ghana is chosen as our study region

due to this unique dataset in combination with its varying rainfall behaviour both in time and

space due to the ITCZ. We will be using the method of conditional probabilities from Ricciar-

dulli and Sardeshmukh (2002) because of the easily interpretable results and the possibility to

establish a rainfall reference probability. The results will also provide a better understanding

of the spatial behaviour of different intensities of rainfall events over west Africa by modelling

their dependence structures separately. The final contribution is an anisotropic description of

rainfall, showing the impact of large scale drivers on the local scale.

The remainder of the paper is organised as follows: An introduction of the study area, the

dataset and the methods used to model the co-occurrence will be presented in Section 3.2,

results on the rainfall climatology and the spatial distribution will be given in Section 3.3 and

the paper will end with a discussion in Section 3.4.

3.2 Data and methodology

3.2.1 Study area

Ghana is located in the Guinea coast with boarders to Burkina Faso, Côte d’Ivoire and Togo

(Figure 3.1) and is approximately 650km long and 350km wide with a 560 km long coastline.

It has five distinct geographical areas: low plains in the south, the Volta Basin in the centre

with the artificial lake ’Lake Volta’, the Akwapim-Togo ranges to the east of the Volta Basin

with many heights and folded strata, the Ashanti Uplands to the west and high plains in the

north (Boateng et al. (2018)). The temperature peaks around February-March and is at its

lowest around August. The rainfall is mainly associated with the west African monsoon, which

is controlled by the movement of the ITCZ. The country is under the influence of the tropical

maritime air mass from March to October, during which the rainy season occurs. South of

8°N, there are two rainy seasons with a short dryer period in August. North of 8°N there is

only one long rainy season (see Figure 3.7). From November to February/March the country is

affected by the prevailing southward winds, called the Harmattan, which brings dry and dusty

air from the Sahara and gives rise to the dry season. The majority of the rainfall is generated by

convective clouds with a higher contributing proportion in the north. The coast experiences,

aside from convective rainfall, warm rain processes and advective rainfall from the Atlantic

ocean.
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Figure 3.1: Map highlighting the location of Ghana on the African continent. Country
boundaries defined by ISO 3166.

3.2.2 The dataset

The daily rainfall dataset used in this report is provided by the GMet (Ghana Meteorological

Agency) and consists of daily rainfall amounts recorded at 590 stations covering all of Ghana,

with a much higher density of stations in the southern half of the country. Extensive quality

control was performed by the manuscript authors, along with a team of experts from the GMet.

The dataset was assessed for errors in station locations, location shifts over time (over coastal

data), erroneous data, the relationship with neighbouring stations and erroneous statistics and

outliers. Any data flagged in this process was then checked against the original written records

and other sources such as Google Earth Imagery for locations. In the case of data that was

clearly erroneous, the station (or a subset) was removed. The original dataset consisted of 598

stations and 17’008’530 individual station-day data points. The Quality Control process led

to a reduction of 1.55% of available data, with the controlled analysis using 590 stations and

16’744’082 individual data points. The dataset spans from 1940 until the end of 2017, with

all the time series containing some missing values, but several of them only have few missing

values in the period 1950-2017.
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Figure 3.2 shows the number of stations for each month with less than 10% missing values,

which we will refer to as valid stations. Figure 3.4 shows the number of valid stations, i.e.

stations with less than 10% missing values, for each proportion of valid months in the dataset.

There is a significant increase in the number of valid stations from 1950 (Figure 3.2) and then

a steep decrease during the 80’s, similar to the station pattern found in the datasets used in

Nicholson et al. (2018). The reason for the large fluctuation between the years 2000-2010 are

not known to us. Figure 3.3 shows the distribution of the median number of daily reporting

stations during the year with the most available stations (1976) and in 2017. The station

density has decreased coherently across the whole country, however the very sparse network in

the north even during 1976 results in extremely few current stations. Due to the large increase

in the number of valid stations in the 50’s, our statistical analysis can be improved by only

including data in the period 1950-2017, which still leaves us longer records than most other

studies and includes data both before and after the Sahelian drought in the 70’s and early 80’s

(Brooks (2004)).
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Figure 3.2: Temporal evolution of the number of stations with less than 10% missing values
per month. Each vertical line marks the beginning of a year. There are 590 stations in
total.
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Figure 3.3: Maps of Ghana showing the median number of available stations in (a) 1976
(440) and (b) 2017 (100 stations). Maps from ”Google maps” using the R package ggmap.
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Figure 3.4: Absolute frequencies of stations against the proportion of valid months, i.e.
months with less than 10% missing values. There are 590 stations and 936 months (Jan
1940-Dec 2017) in total.
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3.2.3 Variability in daily to annual amounts

To provide a full picture of the rainfall climate over Ghana, made possible thanks to the dense

rain gauge dataset, the variability in rainfall amounts on a daily to annual scale will also be

presented in this paper. The different methods for doing this are presented below.

Because of the missing values, some adjustment must be made to the annual and monthly

amount totals to compensate for the missing data points. Instead of using data fill methods,

such as replacing missing values with the mean, median or most frequent measurement, the

measured annual or monthly amounts are adjusted with a parameter proportional to the number

of missing values in that time period. This scaling method is favoured over the fill method

since we are not attempting to fill in the gaps, but rather to compensate for the expected

lower amount total due to lower number of recorded days. For the monthly totals, each rainy

day measurement is multiplied by ξ−1
m , where ξm is the proportion of missing observations

within that month. Similarly for the annual totals, the total amount is multiplied by ξ−1
y where

ξy is the proportion of missing observations within that year. Only individual years with less

than 20% missing values are used in these graphs. This to not risk including years where the

recorded days do not accurately represent the full year.

The Coefficient of Variation is defined as CV = sx
x̄

, where sx is the standard deviation of

daily rainfall ≥ 1mm and x̄ is the average rainfall over rainy days. This is calculated both for

daily values and monthly aggregated values for each station with at least 23 years of data,

only using the months outside of the dry season. Since the variability in the daily amounts is

expected to be very different from the interannual monthly variability since longer accumulation

periods usually reduces the noise, both of these will be estimated. For the estimation of the

daily CV, values from all years are used, excluding missing values and amounts lower than

1mm. For the monthly CV estimation, only months with ≤ 3 missing values are used.

3.2.4 Spatial variability in the occurrence of rainfall of varying

intensity

The analysis is done separately for each month to remove some of the variability due to the

different phases of the monsoon, and only using every 5th day to work with independent events

(see Figure A.2 in the supplementary materials for autocorrelation plots). This is done because

we are interested in modelling the spatial dependence and not the dependence in time, such

as lower rainfall amounts potentially follows a day with large rainfall amounts. To reduce the

noise from large differences in absolute amounts between nearby stations, correlograms are

estimated from occurrences within amount intervals instead of covariograms on the measured

amounts.
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Using the notation that ”[” includes the value and ”)” all values up to but not including the

value, the amount intervals, hereafter denoted intensity classes, are defined as; S1 = [1, 10)mm,

S2 = [10, 30)mm, S3 = [30, 50)mm and S4 = [50,∞)mm representing low, moderate, heavy

and very heavy rainfall. In order to study how the rainfall dependence changes with intensity

of the convective system, we calculate within a specific distance the proportion of rain-rain

occurrences, hereafter denoted co-occurrence, both within an intensity class and between an

intensity class and stations in higher or lower intensity classes. That is, we will estimate the

co-occurrence probability between only stations that are within the same intensity class, and in

the setting with the origin station in one intensity class and surrounding stations in the same

or higher/lower intensity classes.

Due to only using every 5th day, we end up with 408 independent time steps (68 years, 6

days per month except February) for each month. Only stations south of 8 °N with less than

50% missing values in the period 1950-2017 have been used which gives us 232 locations for

our analysis. The reason for only using stations south of 8 °N is two-fold. Firstly, by excluding

the northern region with a single rainy season, all the stations will be in the same rainfall

regime (rainy or non-rainy). Secondly, the dataset is much more dense in the southern region

which provides us with more robust estimations. 50% missing values is chosen as a trade-off

between using stations with just a few years long record which might skew the results and

discarding information. Since our method involves taking the average over a very large number

of estimates of co-occurrences, we determined that stations with up to 50% of missing values

will not negatively impact the results.

To model the spatial dependence structure of co-occurring rainfall events within an intensity

class, the second method with conditional probabilities in Ricciardulli and Sardeshmukh (2002)

was used. The full algorithms are found in Section 3.A and a summary of it is presented below.

A schematic overview of the two algorithms can be found in Figure 3.16-3.18 in Section 3.B

and the references in the brackets refer to these.

Algorithm 1 For each unique day, transform all amounts that are within our chosen inten-

sity class to a 1 (green dot) and all other amounts to 0 (black dot). Choose one of the stations

assigned a 1 to be the origin station (pink dot) and calculate the distance from this station

to all other stations. Within each 10km distance bin (blue circles), calculate the proportion of

stations assigned a 1. Calculate the proportion for all stations assigned a 1 in step 1 and repeat

for each unique day (i.e. move the pink dot to each and every green dot for each unique day).
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By calculating the average in each distance bin, we can get a climatological average on the

probability of observing rainfall of the same intensity as the origin station for a given distance.

To model the dependence structure of co-occurring rainfall events between an intensity

class and either lower or higher intensity classes, the above method is used with a few changes.

Transform all amounts that are within our chosen intensity class to a 1 (green dots), all sta-

tions with a measured amount in all lower or higher intensity classes with a 2 (orange dots)

and all other stations to 0 (black dots). Then calculate the proportion of 1’s and 2’s instead

of just 1’s. The rest of the algorithm is identical. Just as for measurements within an in-

tensity class, taking the average in each distance bin, we can get a climatological average on

the probability of observing rainfall of a lower or higher as the origin station for a given distance.

To compare our co-occurrence probabilities with the climatology background state, a 2-step

sampling method is used. The climatology background is the by pure chance probability of

observing co-occurrence due to the current stage of the monsoon. Since there in June are

much more rainy days compared to April, the chance of observing co-occurrence of a certain

intensity is higher regardless if there is any dependence between the two stations. The aim

with algorithm 2 is therefore to ’break’ the observed dependence structure without altering the

rainfall distribution for each stations. By estimating this background probability we can both

understand how this varies over the season for the different intensity classes and obtain a data-

informed ’null hypothesis’ value. A summary of the algorithm for calculating the background

state within intensities is given below. The references in brackets still refers to the schematic

Figure 3.18 in Section 3.B.

Algorithm 2

1. For each unique day, calculate the proportion of rainy stations (blue dots).

2. Just as in algorithm 1, select one station with a measured amount in the correct intensity

band (pink dot).

3. Randomly assign rain (blue squares) or no rain (black dots) to all other station so the

proportion equals the measured proportion in step 1.

4. Randomly assign a measured rainfall amount (≥ 1mm) from that station from that

unique month (eg. May 1980).

5. Assign a 1 to all stations in the chosen intensity class (green dots).

6. Calculate the proportion of 1’s in each 10km distance bin (blue circles).



Chapter 3. Correlation structure at local scale 41

7. Repeat this for equally many times as there are stations with observations in the correct

intensity band.

The last step is to ensure that there are equally many co-occurrence estimates in the observed

and the climatology estimate. For the calculation between intensity classes apply the same

modification to step 5 as described for Algorithm 1 (1’s and 2’s).

3.2.5 Anisotropy in spatial rainfall variability

The final property we will consider to fully describe the rainfall structure over Ghana, is the

potential anisotropic structure in rainfall. Anisotropy means that the behaviour of the process

is different depending on the direction. Here we are specifically interested in studying if the

covariance of rainfall is different depending on direction. On a monthly timescales it is clear

that large scale drivers such as the ITCZ will be visible, with a higher covariance in the E-W

direction compared to the N-S. This has however not been explored on a sub-weekly level and

on smaller scales (<100km) because of data availability.

An initial analysis of this small scale, short time scale spatial variability in covariance will

be performed through the use of covariogram maps. This will be estimated on 2-, 3- and 5-day

rainy aggregated amounts from all intensities, because we here are interested in how similar

or different the rainfall amounts are in different directions. The reason for aggregating the

amounts to a few days is to reduce some of the noise while still estimating it on a short time

scale. The concept of covariogram maps will be explained by first introducing semivariograms

and then how these are related to covariograms (see Section 2 for even more details).

In our setting, let Z(si) represent the k-day aggregated rainfall amount at station si.

Assuming that the mean and variance of Z(s) are finite, the semivariogram is defined as the

half mean squared difference

γ(si, sj) =
1

2
E [(Z(si)− E(si))− (Z(sj)− E(sj))]

2 i, j = 1, 2, ..., n

Here we are going to assume that the underlying process Z(s)s≥0 generating the k-day aggre-

gated rainfall amount is intrinsically stationary and isotropic. This simply means that the mean

is constant, i.e. E(Z(s)) = µ, and the semivariogram only depends on the distance between

2 locations and not the direction. Hence

γ(h) =
1

2
E [Z(s+ h)− Z(h)]2 (3.1)
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A natural method to estimate the semivariogram is by the method-of-moments semivar-

iogram which essentially stems from replacing theoretical expectations with the analogous

sample averages. The corresponding sample semivariogram to Equation (3.1), notably the

Matheron’s classical estimator (Matheron and Blondel (1962)), is defined as

γ̂(h± δ) =
1

2|N(h± δ)|
∑

(i,j)∈N(h±δ)

|zi − zj|2 (3.2)

where zi is the observed k-day aggregated rainfall amount at station si, N(h ± δ) is the set

of pairs within the spatial lag h±δ and |N(h±δ)| is the number of pairs in that distance range.

The general shape of semivariograms can characterise and explain the dependence struc-

ture in terms of its three main indicators: nugget, range and sill. The nugget is the variance

at the close-to-0 distance representing the variability at distances of a couple of meters and

measurement error. The nugget is expected to be small in rainfall data because of very high

correlation at small distances. The sill is the value that the semivariogram converges to as the

distance increases (dependence decreases) and the range is the distance at which two stations

are independent and the sill is reached (or 95% of it if only approached asymptotically) (Cressie

and Wikle (2011)). The maximum distance is set to 160km since we are interested in modelling

the small scale behaviour and due to the small area over which this is estimated.

The estimated semivariance values will be used to calculate the covariogram, defined as

C(h) = σ2 − γ(h) (3.3)

where σ2 is the 0 distance variance given by the sill. Because the variance is linear in the

number of aggregated days, C(h) is divided by σ2 to enable us to compare the results from

the different aggregation periods. By using the covariogram instead of semivariogram, we

can again compare our estimated values against the theoretical convergence value 0, which is

reached when there is no dependence left.

For quantities with spatial dependence varying with direction, an anisotropic model must

be applied instead of the isotropic model described in Equation (3.2). Isotropic models, i.e.

models only depending on distance and not direction, can be turned into anisotropic models

by replacing the distance parameter h with a distance vector h, which then will be associated

with both a length and a direction. The bin h ±δ now represents both a distance range and

an angular tolerance, e.g. all stations in a 45°segment.
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Given that we have a dense station network, we can explore how C(h) varies in different

directions by estimating a covariogram map. A covariogram map is a lattice where each square

represents a distance and an angle and is symmetric because of the square term in Equation

(3.2). To construct a covariogram map, select one of the stations and place a square lattice

over the region with your chosen station in the centre. Calculate the difference in k-day aggre-

gated amount between your selected station and all other stations. Calculate the average within

each square of the lattice. Repeat this for all stations and all k-day periods. After taking the

average from all the individual maps, the resulting map describes the mean behaviour in all di-

rections as we move away from a station, hence displaying directions with a stronger correlation.

A minimum threshold of 1000 pairs for each square is used to make the estimation more

robust.

3.3 Results

3.3.1 Climatology of rainfall in Ghana

To describe the climatology of the rainfall in each agro-ecological zone shown in Figure 3.5 and

defined by GMet (Owusu and Waylen (2009)), the four stations marked with red dots are used

because they have the least number of missing values within each zone. Annual total amount

time series, Box and whisker plots over the monthly total amounts, maps of key rainfall esti-

mates and maps of Coefficient of Variation (CV) for each month not in the dry season are used

to demonstrate this. A day is defined as rainy if the measured amount is ≥ 1mm as used by Ex-

pert Team on Climate Change Detection and Indices, ETCCDI and in several other papers (e.g.

Moron et al. (2007) and Sillmann et al. (2013)). 30mm is chosen as the threshold for heavy

rainfall because this equals the 10-20% heaviest amounts on rainy days for most of the country.

Combining the information in Figure 3.6 and 3.7, one can clearly see the reason for the

partition, with the dry Coast region, the Forest region with a high proportion of rainy days, the

Transition region with much fewer rainy days but still a bimodal rainy season and the North

with only one rainy season. In some papers, the South-Western coastal region is classified as

a separate region, which Figure 3.6c confirms with the much higher proportion of days with

heavy rainfall in that area. One can notice a diagonal band of higher proportion of rainy days

from the SW coast up to Lake Volta, with a significantly drier region along the coast. This

was noted already in Acheampong (1982) and was explained by the complex atmospheric in-

teraction in that region, stemming from several components.
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Figure 3.5: Map of Ghana showing the four agro-ecological zones defined by GMet (Owusu
and Waylen (2009)) and the location of the 100 stations with the least number of missing
values. The red stations are the stations used in the following climatology analysis and
the region enclosed in the green box is used for the rest of the analysis.
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Figure 3.6: Maps of Ghana. (a) average annual total rainfall amount (mm), (b) the
distribution of proportion of rainy days (≥1mm) and (c) the proportion of heavy rainfall
days (≥ 30mm). (a) and (c) only uses stations with at least 23 years of data. Note the
different scales.
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The first is that moist air from the Atlantic ocean are often coming from SW, hence reach-

ing and releasing the rain on the south west coast instead of further East and travels parallel to

the eastern coast line. A second component is the difference in latitude between the western

and eastern part of the coast, resulting in convective systems generated by the ITCZ earlier

and later in the season affecting the west part of the coast. We can also see the decreasing

trend in rainfall as we move northward in Figure 3.6a, matching the movement of the ITCZ

and a decreasing presence of rainfall coming in from the Atlantic ocean.

In Figure 3.7 we can clearly see the different rainfall modes, with an unimodal rainy season

in the north zone and a bimodal in the rest of the country. This is because the ITCZ passes

through the bimodal part of the country twice in a year, firstly as it moves northward in the

early summer and secondly as it travels southward in September/October. The northern region

is where it changes direction and therefore only passes over once. The difference between the

bimodal regions is clearly visible, with both the major and the minor rainy season being of equal

intensity in the Forest region whereas the Transition region has a slightly more intense minor

season and the Coast has a much more intense major rainy season compared to the minor.

The reason for the very intense major season compared to the minor in the Coast region is

the movement of the ITCZ which brings a lot of moist air from the ocean as it propagates

northward, contributing to many days with heavy rainfall.

A common feature for all regions is the large interannual variation in monthly and annual

total amount. For all months during the rainy season, the difference between the whiskers are

around 300mm and the mean rainfall is between 100-250mm. June in Accra, which is at the

peak of the rainy season, has the largest range which is 450mm with a mean of 175mm. There

is also a common pattern of a slow increase in mean rainfall up until the peak of the rainy

seasons and then a quick decrease as the ITCZ retracts.

Studying the total annual rainfall in Figure 3.8 one can again see a very large interannual

variation for all locations with the biggest spread in the Forest and Transition regions, both

of which have two intense rainy seasons. Despite Tamale only experiencing one rainy season,

the mean annual rainfall is higher than Accra, due to the longer rainy season. Accra has the

lowest mean annual rainfall of the four stations, of around 750mm/year. Both Kintampo and

Effiduase have mean annual rainfall of around 1400mm/year, however Effiduase has a varying

pattern so the amount fluctuates over the studied time period. Accra has an interannual range

of about 1000mm, Tamale 800mm and Kintampo and Effiduase of nearly 1500mm.



Chapter 3. Correlation structure at local scale 46

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12
Month

M
on

th
ly

 ra
in

fa
ll 

(m
m

)

Tamale

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12
Month

M
on

th
ly

 ra
in

fa
ll 

(m
m

)

Kintampo

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12
Month

M
on

th
ly

 ra
in

fa
ll 

(m
m

)

Effiduase

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12
Month

M
on

th
ly

 ra
in

fa
ll 

(m
m

)

Accra

Figure 3.7: Box and whiskers plots showing the interannual variability of the total rainfall
for each month. Location of all the stations are displayed in Figure 3.5 (red dots). Months
with any missing values has been removed and the most extreme outliers are excluded in
the graph to improve readability.
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Figure 3.8: Time series over the full annual total amount for one station in each agro-
ecological zone; Tamale - North, Kintampo - Transition, Effiduase - Forest and Accra -
Coast. Gaps in the time series are years with more than 20% missing values.
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In contrast to Owusu and Waylen (2009) but similar to Lacombe et al. (2012) and Torgbor

et al. (2018), it does not appear like the Sahelian drought in the 70’s and 80’s had a big

impact on the average annual amount in any of the regions but there is a strong decrease in

the variability at Tamale and Kintampo during this period.

There is a distinct pattern of lower CV over monthly aggregated values (Figure 3.10) than

daily values (Figure 3.9). This means that there is a much larger variability in the daily rainfall

values compared to the interannual variability around the monthly mean. This is expected due

to the convective nature of the rainfall resulting in short intense storms and that the noise

reduces as the accumulation increases. We can also see a more coherent pattern over space in

the monthly compared to the daily values. The monthly CV values are however still large with

a mean value of 1 or higher for nearly all months, meaning that the variation around the long

term mean is of the same magnitude or larger than the mean. This is similar to the results in

Arvind et al. (2017) which looked at monthly values in a region of India but a lot higher than

Ayanlade et al. (2018) which studied a region in Nigeria. The most northern part of Ghana

is under the influence of the Harmattan in March and November as seen in Figure 3.7, hence

the monthly average rainfall is very low which inflates the CV value. For the daily values, we

can see a larger spread during the monsoon phase (May-October), with the exception of June

which has one of the smallest spreads. This is because the higher mean in June lowers the CV

estimate, even if the absolute variation is the same as May and July. There are no obvious

spatial patterns outside the main monsoon season, but from June-September there is a clear

pattern of highest values along the coast which decreases as we move north.

The monthly values exhibit a different pattern. Outside the main monsoon in the north

(October-April), there is a bimodal pattern with high CV values in the north and along the

coast and lower values inland. May and June is very non coherent, but still with high values

along the coast line. During the peak of the north rainy season (July-September), there is

a clear gradient with high values in the south and low values in the north. There is also a

West-East gradient in the southern part for all months except July-October, with lower values

in the West where we have higher annual rainfall and more rainy days.
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Figure 3.9: Maps of the distribution of Coefficient of Variation for daily values per month.
Note the different scales on the scale bars.
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Figure 3.10: Maps of the distribution of Coefficient of Variation for monthly aggregated
values per month. Note the different scales on the scale bars.
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3.3.2 Spatial distribution of rainfall events

In the papers mentioned in the introduction, all rainfall events were assumed to have the same

spatial variability. This must not necessarily be true since we might expect a moderately intense

rainfall event to have a larger extent than a low intensity rainfall or an intense shower storm. In

order to study this, the method of conditional probability curves will be applied to the intensity

classes described in Section 3.2.4. By comparing our measured results with the climatology

background (see Section 3.2.4), we can separate out the increased probability of rainfall at

a station because of rainfall at nearby stations and the overall probability of rainfall due to

the time of the year. This will both give information about the very local behaviour and the

spatial extent for the different intensities. In the first section we will model the variability for

increasingly larger intensity classes and the classes below, placing the highest intensity class in

the origin, and in the second section we will model the variability within each intensity class.

Extent of rainfall events for different intensities

By modelling both the conditional probability of observing rainfall amounts that are lower (Fig-

ure 3.12) or higher (Figure A.1 in the Supplementary material) than the origin station, we can

get information about both the extent of a large rainfall event and the probabilities of observing

higher rainfall amounts close to low rainfall. By subtracting the reference rainfall probabilities

from our measured co-occurrence probabilities, we can study how the anomalies changes over

the season.

The results shown in Figure 3.12 suggest that low rainfall events are localised whilst heavy

rainfall events have a larger spatial structure. In Figure 3.12 (a) and (c) we can see that

the 5km line very closely follows the baseline, showing the small scale behaviour depending

on the season. This would indicate that low rainfall events are very local, resulting in the

co-occurrence probability depending on the overall probability of rain. The peak in August in

(a) is most likely due to the significant difference in the rain intensity distribution in Accra.

For all months except July and August, the histogram over rainfall amounts (not included) are

very similar for the three southerly stations used in Section 3.3.1. However in July and August,

there is much higher probability of low intensity rainfall in Accra, and since there is a high

station density along the coast the results from that region has a higher weighting compared to

further north. This strong connection with rainfall distribution and co-occurrence probability

confirms the idea of local low intensity events.

If we instead consider Figure 3.12 (e) and (g), the 5km line is nearly constant over the

year, hence the small scale behaviour of heavy events are independent of the overall rainfall
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probability. The seasonality in the climatology background is due to the much smaller chance

of observing rainfall > 50mm outside the rainy seasons, hence the ’by chance’ probability of

observing this intensity of rainfall at two locations is much lower in the dry season. The near

constant 5km probability in the left plot therefore suggests that heavier rain events have a large

spatial structure that dominates the area wide behaviour. From the anomalies (right column

Figure 3.12), we can see that the co-occurrence probabilities follows the baseline from about

50km for moderately intense rainfall and from around 100km for heavy and very heavy rainfall.

This further confirms that heavier rainfalls have a larger spatial structure.

The seasonal behaviour in the baseline comes from the changes in probability of rainfall,

presented in Figure 3.11, which impacts the large scale co-occurrence probability because of a

higher proportion of dry stations. From Table 3.1, we can see the number of the number of

days where at least one station observed the intensity and the total number of observations

for each intensity. The ratio of these two gives us the average number of stations observing a

certain intensity, e.g. 30-50mm, given that at least one station observes that same intensity.

For very heavy rainfall, this ratio varies between 1:2 in the dry season up to 1:6 in June. The

average is 1:4 during the rainy season except August, when this drops to 1:3. This indicates

that during the dry season it is more common with just one heavy storm occurring, whereas

in the rainy season there are on average 4 stations affected by very heavy storms on the same

day. This can explain the peak in June in the baseline probability and the relatively constant

behaviour during the rest of the rainy season except August.

Similarly, the peak in October for moderate intense rainfall (Figure 3.12 (c)) can be ex-

plained by an increase in this ratio from September to October, meaning that there is a much

higher probability of moderate intense rainfall in other locations in October, given that it rains,

compared to September.

From the right column of Figure 3.12 we can see that the decorrelation distance increases

as we increase the rainfall intensity, strengthening our claim. No formal statistical test has

been applied to test the difference between the anomalies and 0 but by eye, we can see that for

low intensity rainfall already at 50km the anomaly is only around 0.05. For moderately intense

rainfall, the same value is not reached until 100km away. Heavy rainfall exhibits a very similar

range as moderate rainfall except a slightly larger peak in August. Very heavy rainfall has not

fully converged, and therefore reached its decorrelation range, even at a distance of 150km,

demonstrating a large-scale impact on the rainfall probability.
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Figure 3.11: Probability of rain ≥ 1mm on any day in each month for the four stations
Accra, Effiduase, Kintampo, Tamale.

Number of days and occurrences of each intensity

Intensity 1 2 3 4 5 6 7 8 9 10 11 12

Low
260 347 396 408 408 407 403 401 407 408 403 347
853 6708 13111 15309 18839 23572 16715 13528 19531 22057 12212 5725

Moderate
195 296 380 397 404 404 375 345 399 408 395 279
1255 3195 7025 8435 10178 12579 7154 4288 8678 10913 5365 2615

Heavy
98 188 313 341 344 387 280 224 341 357 287 164
317 837 2241 2664 3102 4561 2361 1118 2562 2814 1090 680

Very heavy
54 86 201 229 252 309 208 127 229 237 132 77
116 219 698 832 960 1798 1005 340 861 808 248 178

Table 3.1: Top row is the number of time steps with at least one station in the given
intensity and the bottom row is the total number of occurrences in the given intensity.
The maximum number of time steps is 408 and the maximum number of occurrences is
408*232.
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Figure 3.12: Seasonal evolution of the conditional occurrence probability for stations south of
8°N. (Left) raw co-occurrence probabilities, (right) the anomalies from the baseline. The solid
lines are distances away from the origin and the dashed line (left) the climatology background
at 50km (right) 0. The intensity bands are listed in Section 3.2.4. The rain-rain occurrence is 1
if the distant station is same or lower intensity. Note the different scales on the y-axis in the left
column.
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Spatial variability of rainfall occurrence

To better understand the spatial variability of rainfall occurrence for various intensities, and

thereby the differences in spatial extent of areas with the same rainfall intensity, conditional

probabilities for the separate intensity classes were calculated. The main point of the previous

section was to understand the reach of a storm defined by its peak intensity, but where the

other stations can record lower amounts. The aim here is instead to understand over what

distances the different intensities are sustained, in other words over what distances the obser-

vations fall in the same intensity class. The same method as the previous section is used to

again enable us to compare the measured probabilities with the climatology.

Figure 3.13 confirms the pattern in Figure 3.12, with the co-occurrence probability for heavy

and very heavy rainfall not varying much with the season, even at long distances, whereas low

and moderate rainfall has a strong seasonal pattern, from small to large scales. This implies

that the probability of observing low or moderate rainfall at two nearby locations at the same

time is mostly dependent on the seasonal probability of observing this intensity, but not for

heavier intensities. In other words, it does not matter if we observe heavy rainfall in February

or June, the chance of observing heavy rainfall at a nearby stations remains the same. The

seasonal pattern in the baseline for low and moderate rainfall again highlight the different

overall probability during the monsoon season.

At all distances, there is a peak in the probability in August for low (brown) intensity but

a trough for all other intensities. This is most likely explained by the higher frequency of low

intensity rainfall events compared to other intensities in the short dry season, which increases

the probability of co-occurring low intensity events and decreases the other intensities. The

climatology co-occurring probability of low and moderate (blue) intense rainfall is however

close to identical during the build up phase, March-May. For moderately intense rainfall,

there is an increasing overall probability until June, decreasing during July and August and

then increasing again. For heavy (green) and very heavy (orange) rainfall, the climatology

probability is relatively constant over time. Low intensity rainfall has nearly converged to the

climatology at 100km whereas moderately intense rainfall has converged at 150km. Hence areas

where all stations record moderately intense rainfall has a larger extent than areas with low

intense rainfall. Neither heavy nor very heavy rainfall has converged, indicating that rainfall

events that persistently releases more than 30mm of rain has a spatial dependence even at

150km away.



Chapter 3. Correlation structure at local scale 56

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12
Month

Pr
ob

ab
ilit

y 
ra

in
−r

ai
n Intensity

Low

Moderate

Heavy

Very heavy

5km

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12
Month

Pr
ob

ab
ilit

y 
ra

in
−r

ai
n Intensity

Low

Moderate

Heavy

Very heavy

50km

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12
Month

Pr
ob

ab
ilit

y 
ra

in
−r

ai
n Intensity

Low

Moderate

Heavy

Very heavy

100km

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12
Month

Pr
ob

ab
ilit

y 
ra

in
−r

ai
n Intensity

Low

Moderate

Heavy

Very heavy

150km

Figure 3.13: Seasonal evolution of the conditional probability at different distances for
stations south of 8 °N, using Algorithm 1 in Section 3.2.4. The solid lines are the proba-
bilities from the original dataset and the dashed lines the probabilities from the random
sampling method. The rain-rain occurrence is 1 if both the distant station and the origin
station are in the given intensity class.
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Figure 3.14: Distribution maps in June over Ghana. The maps show (a) mean of 5-day
aggregated values (mm), (b) variance of 5-day aggregated values (mm) and the region
used to estimate the covariogram maps.

Spatial shape of rainfall events

To study if the large scale drivers such as the East African jet also can be seen on the small

scale, we estimated covariogram maps. This will be done using 2-, 3- and 5-day aggregated

June data, which as previously described is to reduce the level of noise while still looking at

short time scales. Since the aim here is to look at the potential anisotropic pattern generated

by all rainfall, we are now including all days without splitting it into intensity classes. We know

from Figure 3.6(a) that there is a strong rainfall gradient in the NW-SE direction in annual

amount, but we want to see if there might be a different spatial variability pattern when looking

at accumulation over only a few days. Because of the significantly larger mean and variance

in the south west corner (Figure 3.14), the following analysis will be done on the indicated

region in Figure 3.14(b), to work with the assumption of equal mean and variance over the

entire region. This difference in mean and variance did not affect our previous results since we

worked with intensity occurrence instead of amounts. Covariogram maps were also estimated

over the coast region, but are excluded due to their very noisy pattern.

The patterns in the covariogram maps in Figure 3.15 have a lot of similarities for all

aggregation periods but some small differences as well. One can clearly see a higher correlation

distance in the E-W direction compared to the N-S direction in all aggregation periods. There
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is however no clear difference in the NE-SW and NW-SE direction. Hence even on a 2-day scale

we can see the pattern of dominantly westward propagating convection systems. The mean

propagating speed in this region is 8ms−1 (Maranan et al. (2018)), hence the average storm

would travel roughly 700km in a day. This would imply that multiple rainfall events could pass

over the 150km window in a 2-day period, and the covariance would therefore be an average

of these. This averaging is what reduces the noise and instead highlights the main patter. The

correlation drops off very rapidly with a correlation of around 0.5 just 20km away and as we

increase the aggregation period, the correlation gets coherently increased in all directions. The

area with a correlation of 0.25 is however extended much further in the E-W direction compared

to N-S, demonstrating an increased anisotropic pattern for longer aggregation periods. Even

at 160km, there is some correlation which is due to the climatology similar to the previous

results. The higher correlation in E-W is not due to the fact that the region is wider than long,

which was checked by doing the same calculation over a square region.
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Figure 3.15: Covariogram maps over the mid region in June. Each square is the average
covariance value in that distance and direction bin and each distance bin is 20 km. The
graphs shows (a) 2-day, (b) 3-day and (c) 5-day accumulated daily data.

3.4 Discussion and conclusion

Estimating and predicting rainfall over west Africa will probably remain a difficult task for

some years ahead due to the sparse and degrading rain gauge network. In this paper, we have

provided some insights on the spatial behaviour of daily rainfall within Ghana. In contrast to

previous studies, we have not assumed that all rainfall events have the same spatial structure,

but instead studied the rainfall events split into four different intensity classes to understand

differences in the co-occurrence structure at small scales over the season. We have showed

that the conditional probability of observing rainfall of the same intensity varies seasonally for

low and moderately intense rainfall, but not for heavy and very heavy. This might partly be
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explained by changes in the proportion of rainfall events in each intensity class over the season,

however the same pattern is observed when treating all lower intensities as occurrences. This

shows that heavy rainfall events have a stronger influence at the local scale and therefore is not

affected by the overall probability of rainfall, whereas low and moderate rainfall are much more

localised. The anomalies structure is also very similar for all intensities except low, demon-

strating a different structure in drizzle events compared to other rainfall events.

Our results show a decorrelation distance of around 100-150km for all intensities, except

low which is around 50km, similar to the one obtained by Ricciardulli and Sardeshmukh (2002)

(150km) and positive amount in Teo and Grimes (2007) (150km), but about three times fur-

ther than their occurrence range (50km). This difference probably results from several factors,

such as the scale difference of gridded data and station data, how dense the dataset is and

the method used. But a non-negligible part most likely also comes from the use of different

regions. Because of the complex atmospheric systems over central Africa, the rainfall structure

varies greatly, as shown in Funk et al. (2015b). This makes it difficult to directly compare large

scale estimates, such as correlation ranges, with previous studies. Small scale estimates on

the other hand such as hourly rainfall amounts or similar, which mostly depend on the rainfall

system and not the current rainfall state, could be more comparable assuming the convective

systems are similar across tropical Africa. It would however be difficult to compare with Eu-

ropean studies since the rainfall there mostly comes from moist air masses from the Atlantic

and Mediterranean being advected over land.

For the spatial shape of rainfall events, even at the small scale it is possible to see the in-

fluence of large scale drivers such as the African easterly jet. As we increase the accumulation

period, the covariance range is increased in the E-W direction, which is the direction of stronger

covariance. The pattern of stronger correlation at longer accumulation periods was also noted

by Bacchi and Kottegoda (1995) which can be explained by the decreased dependence of the

individual rainfall events, which are local scale events, and more on the large scale drivers which

usually affect a hole region.

The results in this paper demonstrate the issues with describing all rainfall events with the

same correlation structure, but that we can assume isotropy for short accumulation periods.

We hope that this method will be applied in other regions since it is easy to adapt by changing

the intensity classes to suitable country levels and the results from different studies can be

directly compared. It would be especially interesting to see how this compares to other tropical

regions where we might expect to see the same type of rainfall systems but with a different

occurrence distribution compared to our study region.
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3.A Algorithms for calculating co-occurrence proba-

bilities

Algorithm 1 - Co-occurrence within intensity class (Figure 3.16)

1. For each unique day, that is for one of our 408 time steps, transform all amounts that

are within our chosen intensity class to a 1 (green dot) and all other amounts to 0

(black dot). E.g. if we are interested in modelling the moderate intense rainfall, then

all locations with a measured rainfall in the range 10-30mm will be assigned a 1 and all

other locations a 0.

2. Choose one of the stations that are assigned a 1 to be the origin station (pink dot) and

calculate the distance from this station to all other stations.

3. Within each 10km distance bin (blue circle), that is for all stations with a distance of

0-10km, 10-20km,..,140-150km of the origin station, calculate the proportion of stations

assigned a 1 in step 1.

4. Repeat step 2-3 for all stations assigned a 1 (green dots) in step 1.

5. Repeat step 1-4 for each unique day.

To model the dependence structure of co-occurring rainfall events between an intensity

class and either lower or higher intensity classes, the above method is used with a few changes

(Figure 3.17). In step 1, transform all amounts that are within our chosen intensity class to a

1, all stations with a measured amount in all lower or higher intensity classes with a 2 (orange

dot) and all other stations to 0. In step 3, calculate the proportion of 1’s and 2’s instead of just

1’s. The rest of the algorithm is identical. Just as for measurements within an intensity class,

taking the average in each distance bin, we can get a climatological average on the probability

of observing rainfall of the same intensity or lower (higher) as the origin station for a given

distance.

Algorithm 2 - Background state within intensity class (Figure 3.18)

1. For each unique day, that is for one of our 408 time steps, calculate the proportion of

rainy stations (≥ 1mm) (blue dots).

2. Transform all amounts that are within our chosen intensity class to a 1 (green dots) and

all other amounts to 0 (black dots). E.g. if we are interested in modelling the moderate

intense rainfall, then all locations with a measured rainfall in the range 10-30mm will be

assigned a 1 and all other locations a 0.
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3. Choose one of the stations that are assigned a 1 to be the origin station (pink dot) and

calculate the distance from this station to all other stations.

4. For all other stations, randomly assign it to be rainy (blue squares) or dry (black dots)

so the proportion of rainy stations equals the proportion in step 1.

5. For each station assigned rain (blue square), randomly assign a measured rainfall amount

from that station in that unique month. E.g. for the unique time step 6th of May 1965

and station 120, draw any measured amount ≥ 1mm from the measurements taken at

station 120 in May 1965.

6. For all stations with an amount in the chosen intensity after step 5, assign 1 (green dot)

else 0 (black dot).

7. Within each 10km distance bin (blue circles), that is for all stations with a distance of 0-

10km, 10-20km,..,140-150km from the station selected in step 3, calculate the proportion

of stations assigned 1 in step 6.

8. Repeat step 3-7 for all stations assigned 1 in step 1.

9. Repeat step 1-8 for each unique day.

For the calculation between intensity classes the above method is applied with the modifi-

cation:

• Change step 6 to the method used in the between intensities cases.

• Change step 7 to calculating the proportion of 1’s and 2’s instead of just 1’s.

3.B Schematic overview of the algorithms
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Figure 3.16: Schematic figure on the method to calculate the spatial co-occurrence depen-
dence within an intensity band. The green stations are within the chosen intensity band
and assigned a 1 and the black stations are of other amounts and assigned a 0. The pink
dot is the station chosen as the origin station. Step 2 and 3 are repeated for each green
station in step 1 and step 1-3 are repeated for all 408 unique days.
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Figure 3.17: Schematic figure on the method to calculate the spatial co-occurrence depen-
dence between lower (higher) intensity bands. The green stations are within the chosen
intensity band and assigned a 1, the orange stations are the lower (higher) intensity bands
assigned a 2 and the black stations are of other amounts and assigned a 0. The pink dot is
the station chosen as the origin station. Step 2 and 3 are repeated for each green station
in step 1 and step 1-3 are repeated for all 408 unique days.
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Figure 3.18: Schematic figure on the method to calculate the spatial co-occurrence depen-
dence within an intensity band. The green stations are within the chosen intensity band
and assigned a 1 and the black stations are of other amounts and assigned a 0. The pink
dot is the station chosen as the origin station. Step 2 and 3 are repeated for each green
station in step 1 and step 1-3 are repeated for all 408 unique days.



Chapter 4

An analysis of the conditional

amount distribution for gauge

observations associated with satellite

measurements

In order to match ground observations to satellite rainfall estimates, the relation between the

two needs to be understood. In this chapter, question 3 in the thesis aims is addressed by eval-

uating the fit of two different skewed distributions to daily rain gauge data that are associated

with a TAMSAT satellite rainfall estimate. This is achieved by applying a number of different

qualitative tools, such as histograms and QQ-plots. The improved information is important

for applications such as merging gauges with satellite rainfall estimates or for generating an

ensemble of rainfall estimates for a given satellite image.

A discussion of several possible extension of this work, by including a wider set of distri-

butions and possible quantitative methods for comparing the distribution fit to the conditional

gauge values, is also provided.

65
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4.1 Overview

To estimate rainfall amounts using satellite data, two commonly used techniques are available

which naturally come with their individual limitations and drawbacks. The Thermal Infrared

(TIR) method, which all products described here use to some extent, in principal assumes that

all cold clouds generate rainfall but not warm clouds. However the complete lack of rainfall

from warm clouds can be adjusted in the calibration process. The huge advantage with these

sensors is that they are placed on geostationary satellites, i.e. satellites that stay in the same

place in relation to Earth, and therefore can capture everything that occurs in that region.

These types of observations have been collected since the 1970s through the European Organ-

isation for the Exploitation of Meteorological Satellite (EUMETSAT) project, meaning long

available records which allows climate studies to be made on these (Maidment et al. (2020)).

Passive microwave (PMW) sensors measure the thermal emission of raindrops using low fre-

quencies, and from the earth for higher frequencies. These sensors are however only available

on polar-orbiting platforms, and therefore only pass over any location for very short periods

and with uneven intervals (Joyce et al. (2004)), but the 30 min interval data it returns can

better capture the intensity compared to the TIR method. Unfortunately, the understanding

around separating the rainfall scattering from the background (Earth) scattering is best under-

stood over the ocean, resulting in poorer estimates over land where we have the biggest interest.

To reduce the error from the individual information sources, a combination of the two types

of satellite products and gauge data is commonly used. African Rainfall Climatology v2 (ARC2)

produced by NOAA includes TIR data and gauge data from Global Telecommunications Sta-

tion (GTS) network to produce a climate record product (Novella and Thiaw (2013)). Their

merging technique is based on an algorithm introduced in Reynolds (1988), which uses the

gauge values where these are ’dense enough’, called anchor points, and otherwise estimates

the amount numerically by solving the Poisson equation ∇2B = ∇2C, where B is the merged

product, C the satellite estimate and boundary conditions given by the anchor points (Xie and

Arkin (1996)). An extension of this is the Rainfall Estimation Algorithm (RFE 2.0) which also

includes PMW estimates (Climate Prediction Center (The NOAA Climate Prediction Center

African Rainfall Estimation Algorithm Version 2.0)). The drawback with this product is the

short record (1997) of PMW measurements, which means that the product cannot be used

for climate applications. The three satellite sources included (two PMW and TIR) are linearly

combined with associated weighting coefficients based on the satellite products random error,

which is derived by comparing the estimates with the Global Precipitation Climatology Centre

(GPCC) gauge measurements. These weighted satellite estimates are then combined with sta-

tion data in the same fashion as in ARC2. Both of these products, ARC2 and RFE 2.0, return
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daily estimates with a 0.1°resolution and a latency of around 1 day.

Another product that utilises all three information sources is the Climate Prediction Center

(CPC) CMORPH , which uses TIR imaginary from geostationary TIR satellites to create back-

and forwards propagation vectors, so called ’morphing’, for the PMW observed rainfall clouds

to return half-hour estimates at a 8km × 8km grid (Joyce et al. (2004)). These estimates

are then bias reduced using CPC daily gauge analysis over land. The bias reduction technique

is based on matching the satellite and gauge estimate PDFs for each 0.25°grid box. This is

performed in two steps, the first one reducing the climatological bias and the second step the

inter annual bias. One drawback with the method is that it is unable to shift a non rainy

estimate to a positive value and the requirement of a dense gauge network to construct all

the individual PDFs (Xie et al. (2017)). Due to the bias reduction method, it has a latency

of 3-4 months. The 30 min product is released in the native 8km × 8km resolution and an

aggregated daily product at a 0.25°resolution grid.

A very similar product to CMORPH is the NASA Integrated Multi-satellite Retrievals GPM

(IMERG) product (Huffman et al. (2015)), which is the successor of the since 2014 retired

Tropical Rainfall Measurement Mission (TRMM) (Huffman et al. (2007)). It produces 3-hourly

rainfall estimates on a 0.1°grid, combining a multitude of PMW sensors, TIR images and where

possible, bias adjusted by matching the monthly total rainfall with the GPCC monthly gridded

gauge data. The monthly totals gridded gauge data is available at resolutions between 0.25°and

2.5°and stretches back to 1981. They use an interpolation method called SPHERMAP, which

builds on the empirical Inverse Distance Weighting (IDW) method derived by Shepard (1968)

(Becker et al. (2013)). This includes a power parameter p that controls the influence given to

close and distant points, coupled with a spherical adaptation to take into account the direction

of the interpolation points and the gradients of the data field. If stations only are found within

a small radius r1, a simple arithmetic mean is calculated, else all stations are interpolated using

the weighting method. The GPM IMERG data is also released with a up to three months

latency.

TAMSAT and CHIRP are two high resolution products only using TIR satellite derived

estimates which are calibrated against gauges, with CHIRP also existing as a product with

gauge data blended with the satellite estimate, called CHIRPS. The TAMSAT data set, ini-

tially named TARCAT, has been produced since the 1980s based on the TAMSAT rainfall

estimation algorithm (Grimes et al. (1999), Milford et al. (1996), Dugdale et al. (1991)),

which will be described in the following section. It originally was released as dekadal (10 day)

data and only covered the main rainy season months in the northern and southern/eastern
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Africa, before being extended to cover the full continent in 2014 (Tarnavsky et al. (2014),

Maidment et al. (2014)). The extension was achieved by introducing large, irregular calibra-

tion zones for each calender month, that were determined from knowledge about the local

weather, availability of gauges and the frequency bias between all gauge-CCD (Could cloud

duration, see Section1.2.3) pairs. In 2017 two new daily data versions were released, one

disaggregating the 10-day calibration zone data (v2.0) into daily estimates and a completely

new data set, where the calibration zones are replaced by 1.0°calibration boxes and the initial

estimates are made on pentadal (5 day) instead of dekadal time scale (Maidment et al. (2017)).

The satellite-only product CHIRP builds on first estimating the 0.05°monthly precipitation

climatology product CHPclim (Funk et al. (2015a); Funk et al. (2015b)). CHPclim is derived

from two long-term, monthly means station data sets, and incorporates information from the

commonly used physiographic predictors; elevation, latitude and longitude, along with informa-

tion from five satellite products that are all resampled to a common 0.05°grid. The resulting

product is a pentadal means field which represents the 1980-2009 climate normals.

CHIRP data is then estimated as variations from the CHPclim, using CCD measurements at

the fixed temperature threshold 235K at a 0.25°grid, from which monthly regression parameters

are estimated using TRMM data. This is then resampled to the 0.05°grid before producing the

pentadal rainfall estimate by multiplying the deviation fraction with the CHPclim estimate. To

incorporate station data and obtain the blended product CHIRPS, a modified IDW algorithm

is utilised. CHIRP is used to estimate the decorrelation range, which is described in Section

3.1. A bias ratio vector, b, is calculated from the 5 closest stations, by dividing the station

observation by the CHIRP value. For stations beyond the decorrelation range, the bias is set to

1. The station values are also weighted by a factor α = RCHIRP/(RCHIRPS +Rns) where Rns

is the expected correlation with the nearest station and RCHIRP is the correlation between the

true rainfall value and CHIRP data. The final CHIRPS estimate is given by CHIRPS= αCHIRP

+ (1− α)bCHIRP.
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Summary table over satellite rainfall products

Name Data input
Spatial

resolution

Temporal

resolution

(shortest provided)

Latency Start year

ARC2
TIR,

GTS gauge
0.1° Daily 1 day 1983

RFE 2.0
TIR, PMW,

GTS gauge
0.1 ° Daily 1 day 1995

CMORPH TIR, PMW 0.07° 30-min 3-4 months 2002

GPM IMERG
TIR, PMW,

GPCC gauge
0.1° 3-hour 3 months 2014

TAMSAT TIR, gauge 0.0375° Daily Up to 6 days 1983

CHIRP TIR, TRMM 0.05° Daily Up to 6 days 1981

CHIRPS
TIR, TRMM,

GTS gauge
0.05° Daily

3 weeks

(initial 2 days)
1981

4.2 The TAMSAT estimation method and gauge-RFE

merging

4.2.1 TAMSAT estimation process

TAMSAT satellite-only rainfall estimates, which throughout will be denoted as RFE (not to

be confused with the rainfall product RFE 2.0), are derived from the assumption that the

amount of rainfall over an area is linearly related to CCD, especially over longer accumulation

periods. The CCD is the accumulated time that a satellite pixel records clouds with a certain

or lower temperature. Since the CCD depends on which temperature threshold we select, we

will hereafter denote it CCDT to highlight this dependence. The linear assumption between

CCDT and rainfall has been shown to be accurate for Africa since the majority of the rainfall

(around 90% of the annual rainfall) is coming from deep convective systems (Nesbitt et al.

(2000); Mathon et al. (2002)). The CCDT values are estimated from TIR sensors through a

calibrated Inverse Planck function, a relation that has been improved over the past 20 years

(Maidment et al. (2014)). The Meteosat TIR data is obtained every 15 min since July 2006,

and every 30 min prior to this.

The correlation between CCD and RFE is stronger for longer accumulation periods, which

is why the current TAMSAT v3.1 estimates the total pentadal rainfall and then disaggregates
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this to daily amounts based on the proportion of the total CCDT observed that day. The

relationship between the pentadal CCDT and RFE is given by

RFE =

a0 + a1 CCDT CCDT > 0

0 CCDT = 0

The specific temperature threshold T is calibrated from a range between -30°C and -65°C for

1°grid boxes that contain rain gauges. The calibration process selects the optimal temperature

based on a ’rain, no rain’ contingency table matched against the rain gauges. These values

are then interpolated to grid boxes without any gauges (Maidment et al. (2017)), after which

the linear coefficients a0, a1 are fitted using the gauge values.

4.2.2 Merging gauges with satellite grid data

In the current satellite-only version of TAMSAT, gauge information is only used in the cal-

ibration process, whereas a merged product would continuously incorporate this information

to improve the estimates. The merging method 1 is based on estimating the rainfall using

satellite data at ungauged locations and gauge measurements where these exists. This is

achieved through the method illustrated in Figure 4.1, where captial letters mark input data or

data conversions and lower case letters information flow. The satellite-only TAMSAT rainfall

estimates (A) provides the conditional rainfall distribution to be used (a) for the observed

gauge measurements (B). The normal score for the gauge measurement is derived through a

cumulative density function (CDF) transformation (C) mapped to the corresponding standard

normal distribution value. The normal score value is mapped (c) onto a TAMSAT resolution

grid (D), with grid cells containing a gauge and therefore a normal score marked by green.

Grid boxes ’close enough’ to the gauged green boxes are marked by orange and are assigned an

estimate and variance through kriging and the rest are assigned 0. Once the grid is filled, the

normal score values are back transformed (E) to an updated rainfall estimate, which provides

an adjusted rainfall map (F).

The contribution of this thesis to the methodology is in the improvement of the gauge

distribution conditioned on the satellite estimate (C and E in Figure 4.1), to better capture

the full range of observed values and thereby a correct distribution of normal score values (see

next section).

1The proposed merging method developed here is in development within the wider TAMSAT pro-
gramme, with a final description of the methodology in preparation for publication (E. Black and R.
Maidment Pers. Comm). The methodology in Section 3.2.1 and the process in 3.2.2 are developed by the
TAMSAT group. Section 3.3 and the flow charts in Section 3.2.2 are developed in this thesis.
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Figure 4.1: Flow chart demonstrating the steps in the merging method explained in the
first paragraph in section 4.2.2. Capital letters marks input data or processes and lower
case letters information flows.

The method is inspired and based on the work by Teo and Grimes (2007) and Greatrex

et al. (2014), where a similar approach is used, but for other applications. The aim of these two

papers were to generate a realistic ensemble of satellite rainfall estimates given one TIR image,

and thereby investigate the uncertainty of the rainfall estimate which then could be compared

to gauge measurements. There are however some crucial differences between their method

and the one described here. Firstly, they worked with CCD data since the goal was to produce

multiple maps of rainfall estimates given the same input, by for each iteration assign a grid

cell wet or dry based on a Bernoulli trial (sampling 0 (dry) or 1 (rain), with the probability of

choosing 1 equal to p) and then sample from a conditional CCD rainfall distribution. Secondly,

they randomly selected a number of ’seeds’ (green boxes) to start the kriging process, whereas

here all grid boxes with gauges are naturally set as ’seeds’.

The following subsections describe the individual steps of the method before introducing

where the findings in this work can make an improvement.
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Normal scores

The principal idea behind the method developed within TAMSAT is that given an estimated

RFE value, all rain gauge measurements that can be associated (i.e. observed in the same

gridbox) with this value follow some continuous distribution, as illustrated in Figure 4.2. From

this distribution, one can evaluate how anomalous an observed rain gauge measurement is com-

pared to the expected value. This information can then be used to shift surrounding values

based on the deviation from the mean by obtaining estimates through the method of kriging

on the calculated deviations. The anomalies are calculated by converting the rainfall amount

into a standard normal distribution z-value, here called normal score. This is done by mapping

the rainfall value to its quantile value given by the Cumulative Distribution Function (CDF),

which further is mapped to the corresponding z-value. This mapping method will be denoted

a CDF translation and Figure 4.3 graphically describes this process.
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Figure 4.2: Illustration of the conditional distribution for gauge values given a RFE.
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Figure 4.3: Illustration of converting a gauge value to the associated normal score through
a CDF translation. The green dot marks the gauge value and the orange the corresponding
normal score. The red arrow marks the CDF translation.

In more mathematical terms this means:

Let x be a rain gauge value and y the associated RFE value. We assume that the conditional

distribution of x is given by

f(x|y) = DRFE(g) (4.1)

where DRFE is some probability density function whose parameter vector g depends on the RFE

value y. To convert x into a normal score value, ns, with F denoting the absolute continuous

conditional distribution function associated with (4.1), the density value of x is mapped into

its equivalent z-value through the process below

p = F [x|y]

ns = Φ−1(p) (4.2)

where Φ−1 is the inverse of the standard normal CDF. Hence if DRFE accurately models the

distribution of x given y, then ns is now by construction normally distributed with µ = 0 and

σ2 = 1.
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Kriging

The method of kriging is explained in Section 2.1, where several types of kriging are listed.

Due to the construction of the merging method, simple kriging is used. This comes from using

the transformation to a standard normal distribution as earlier done in Teo and Grimes (2007)

and later Greatrex et al. (2014), which leads to the mean and variance known a priori to be 0

and 1 respectively, hence fulfilling the requirements of simple kriging.

Back transform normals score to RFE

After converting all gauge measurements into normal scores, the entire grid (given that it is

within the correlation distance of some gauge) can be kriged out, returning both a kriged

estimate and variance given by Equations (2.3), (2.4) respectively. Grid cells outside the range

of any gauged cells are assigned 0. The process in Equation (4.2) can now be reversed on

both the estimate and some confidence interval values, e.g. ±2σ, to obtain the adjusted

rainfall estimate and its associated uncertainty. Grid cells outside the influence of gauges are

by default assigned the initial RFE value (since a 0 normal score is mapped to the mean value of

the distribution) and gauged cells to the measured value since their normal scores has not been

changed in the kriging step. Given the sparse and unevenly distributed rain gauge network over

much of Africa (see Chapter 1), this is an important feature since at each grid point the rainfall

estimate is based on the most reliable source of information. This however risks generating a

slightly unrealistic map since only locations with gauges, or that are nearby, can be assigned

the higher adjusted values, potentially creating the skewed view that it consistently rains less

in ungauged areas. But this is an issue that is nearly impossible to get around if one wants to

improve the estimates where it is possible.

4.3 Conditional amount distribution

One very important part of this method is the choice of the distribution function D and the

expressions for the associated parameter vector, g, since this determines the normal scores

for the kriging algorithm. A too light tailed distribution will result in many very large normal

scores, since the heavier rain gauge values will occur much more frequently than modelled by

the distribution. This will result in unrealistically large normal score values and a positive skew

being applied much more frequently than expected. A too heavy tailed distribution will on

the other hand concentrate all gauge values around a subset of normal scores and return too

wide and therefore non-informative CI. Figure 4.4 demonstrates the impacts of the light tailed

misspecification, which both can be due to wrongly specified distribution function D or the

parameter vector g.
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A commonly used method for accurately capturing different parts of a distribution where no

single model provides a good fit, is to introduce a mixed model where one distribution function

models the main part of the distribution and an extreme value distribution the tails. This is

however not an option here due to the back transform step (E in Figure 4.1), which requires

a continuous distribution function which a mixed distribution will not have.
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Figure 4.4: Illustration of the impact on the normal score by incorrectly defining the
conditional distribution. The blue line and arrows is the lognormal and the orange the
gamma distribution.
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In the conceptual framework described in Teo and Grimes (2007) and Greatrex et al. (2014),

D is a gamma distribution where the vector g is the shape and scale parameters, defined such

that the mean and variance are given by

E[X|y] = y (4.3)

Var[X|y] = κ yθ (4.4)

That is, g=(RFE2/σ, σ/RFE ), where σ = κ∗ RFEθ. The justification for the mean can be

seen in Figure 4.5, where the gauge values for each 2mm RFE value bin are shown in a Box

and Whiskers plot. The centre RFE value, and therefore the assumed mean, is marked by blue

crosses and in general align well with the observed median, especially for low and moderate

RFE values where we have a large number of gauge observations. The poorer fit for the larger

RFE values stems from too few gauge observations to get an accurate distribution. A slightly

poorer result is shown in September, but as a first general assumption this appears to be a

reasonable choice. The expression for the variance is derived in Grimes et al. (1999) and stems

from the knowledge that the rainfall variance is heteroscedastic and increases with the rainfall

amount.

The aim in this chapter is to demonstrate that a lognormal distribution, with suitably de-

fined parameters, better models the conditional gauge measurements compared to the gamma

distribution. In particular, it will demonstrate a significant improvement in representing the

heavier rainfall amounts, resulting in a more realistic distribution of normal scores.
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Figure 4.5: Box and Whiskers over observed gauge values given the RFE value in 2 mm
bins. The blue crosses marks the RFE value.

4.3.1 Distribution functions

It is well known that rainfall follows a skewed distribution since it is capped from below at 0 but

unbounded from above, and lower amounts are more common than heavier. Several different

skewed distributions are commonly used to model rainfall, however in most cases the aim is to

model the full rainfall distribution of all the observations from a single gauge. Here the aim is

instead to model some conditional distribution, hence only a subset of the observations, which

therefore might not follow the same type of distribution. Below is a short description of the

gamma and the lognormal distribution that are considered here.

Gamma

The gamma distribution is defined by:

f(x) =
xk−1e−x/β

Γ(k)βk
, x ∈ (0,∞)
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with mean and variance given by:

E[X] = kβ

Var[X] = kβ2

where k > 0 is the shape and β > 0 the scale parameter and Γ(k) the gamma function

previously defined. These two parameters control the spread and position of the peak of the

distribution with the mode given by (k − 1)β for k > 1 and else undefined.

Lognormal

Y is said to have a lognormal distribution with mean µ and variance σ2, if X = log(Y ) follows

the distribution N (µ, σ2). The reason for defining the distribution through the corresponding

normal distribution instead of on the native scale, is the much easier methods of estimating

and interpreting the parameters associated with the normal distribution.The lognormal random

variable Y has probability density function f given by:

f(y) =
1

y σ
√

2π
exp

(
−(log y − µ)2

2σ2

)
, y ∈ (0,∞)

The expected value and variance of Y are, respectively, given by:

E[Y ] = exp

(
µ+

σ2

2

)
Var[Y ] =

[
eσ

2 − 1
]
e2µ+σ2

The lognormal distribution has a heavier tail compared to the gamma distribution, but is

however still classified as a light-tailed distribution.

4.4 Evaluate the amount distribution fit with south-

ern Ghana as case study

To evaluate the improvement in using the heavier tailed lognormal distribution compared to

the gamma, and also the values for the variance parameters κ, θ, the gauge data set over

Ghana introduced in Section 3.2.2 will be used. This data set consists of 590 gauges, with a

majority of them located in the southern half of Ghana, and some dating back to 1940. Only

gauges from the southern region will be used because of its better data availability and only

the year 2008 to keep the rest of the years as verification data. This was a relatively wet year

and therefore has a large number of sample points, resulting in a more robust analysis. It
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additionally has a large number of heavier rainfall events, the representation of which this work

aims to improve. Due to the region being mostly dry from November-February and only small

amounts of rain during March, the performance evaluation will be done over the monsoon

months April-October (see Section 3.3.1 for a full description of the rainfall climatology).

For the RFE values, TAMSAT v3.1 data will be used. This is based on the same algorithm

as v3.0, of which a full description is provided in Maidment et al. (2017), with additional

gauges used for the CCD calibration and allowing the minimum temperature extend to -65°C.

To evaluate the change in performance when using the lognormal instead of the gamma

distribution, a range of qualitative diagnostic plots will be used. The first set of plots are

histograms and Quantile-Quantile plots (QQ-plots) to evaluate the distribution fit for the log-

normal distribution and how it compares to the gamma distribution. Several parametrisations

of the lognormal distribution with the same expression for the mean, but different combinations

of κ, θ for the variance defined by Equation (4.4), are included for assessing the goodness-of-fit.

The third diagnostic plot is a scatter plot of the normal scores for the gauge values as a function

of the RFE value. This aims to demonstrate the improved fit with the lognormal distribution,

especially for larger RFE values, with a substantial reduction of normal scores larger than 3.

From some initial analysis, it was clear that the gamma distribution was not a good fit for

any combination of κ and θ. It was further clear that the choice of κ = 1.19, θ = 0.67, derived

by the method outlined in Grimes et al., 1999, with the lognormal distribution resulted in a too

small variance for low RFE values but a good fit for the larger values. Three other combinations

of parameters have therefore been evaluated, chosen so that Equation 4.4 returns similar values

as for the choice κ = 1.19, θ = 0.67 for large RFE values (y) but a range of values for smaller

RFE (y) values. Figure 4.6 shows the standard deviation to be used, calculated from the square

root of Equation 4.4, as a function of RFE (y). The initial choice of κ = 1.19, θ = 0.67, is in

blue and the three new combinations in orange, magenta and green. This clearly shows how

the different choices of the parameters returns different values for the standard deviation to

be used in the lognormal distribution for smaller RFE values and near equal for large values

(> 30mm). The standard deviation value is for the normal distribution associated with the

lognormal distribution, to be fitted on the log transformed amounts.



Chapter 4. Relating gauge measurements with satellite estimates 80

0 10 20 30 40

1
2

3
4

5 κ = 1.19, θ = 0.67
κ = 8, θ = 0.2
κ = 3.5, θ = 0.4
κ = 5, θ = 0.3

RFE value

st
an

da
rd

 d
ev

ia
tio

n

Figure 4.6: Standard deviation for the corresponding normal distribution for each non-
transformed RFE value up to 40mm.

4.4.1 Histograms and QQ-plots

The first set of tools to asses the fit to the two distribution functions and the four different vari-

ance parameter combinations, are histograms and QQ-plots. Since there is a strong seasonal

cycle (see Section 3.3.1), the data will be split into months to be analysed separately. If for

instance one model would fit the peak monsoon months June, July, September but not the less

rainy April and August, this would be obscured due to the dominance from the rainier months.

With the aim being to find the most suitable conditional density function, with parameters

depending on the RFE value, the data points are further split into separate groups depending

on their associated RFE value, as visualised in Figure 4.2. To not have too few sample points

in each group, a range of 2mm RFE values will be used, as done in Figure 4.5. For all graphs,

the RFE value printed is the median in the 2mm range.

In histograms, the bin width must be decided and is a trade off between choosing a small

enough width to accurately capture the different frequencies for different values, and a too small

width resulting in too few samples within each bin, and thereby ending up with essentially a

uniform distribution. Two set of histograms will be presented, both with the gauge measure-

ments kept in their native scale and with a log transform. For the original measurements, the

bins are 5mm wide and for the log transform log(2)mm wide. On top of each histogram, the

assumed density functions are plotted. By plotting the densities on the log transformed scale,

we can easily see how the lognormal distribution behaves like a normal distribution. For the

gamma distribution, only the variance parameters corresponding to the blue line in Figure 4.6
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are used, since it was concluded that it provided a poor fit for any combination of parameters

as is therefore only included here to demonstrate the difference to the lognormal distribution.

For the lognormal curves, all four sets of parameter choices are included with the colour of the

density line matching the variance parameter colour. For all density functions, the mean is set

to be the RFE value and therefore for the log transformed scale this is set to be the logarithm

of the RFE value.

The QQ-plot maps the quantiles of a sample to the quantiles of a theoretical distribution

model, and a linear relation of these points indicate that the sample distribution can be modelled

by the theoretical distribution model. For a sample x1, .., xn, the unknown sample quantiles are

replaced by their empirical quantiles defined at each plotting position p. There are numerous

choices for the plotting positions, with the most straightforward being:

p ∈
{

1

n
,

2

n
, ...,

n− 1

n
, 1

}
To avoid overflow problems at p = 1, one might instead use

p ∈
{

1

n+ 1
,

2

n+ 1
, ...,

n− 1

n+ 1
,

n

n+ 1

}
In this work, the latter choice of pi,n := i/(n + 1), i = 1, ..., n will be used, and so the

sample-quantile coordinate is given by (pi,n, xi,n). The corresponding coordinate values from

the theoretical distribution model can be obtained through the associated distribution func-

tion F , and are therefore given by (pi,n, F (pi,n)). Hence the plotting positions in the QQ-plot

are given by (F (pi,n), xi,n) and a correctly specified distribution should result in a linear pattern.

Through these scatter points a straight line can now be fitted by more or less robust

methods. The simplest method is to select two points, commonly the first and third quartile

(i.e. p = (0.25, 0.75)) and draw a straight line through these two. A more suitable method is

to fit the line by the means of linear regression on the scatter points. Through the classical

least-squares algorithm, the slope and intercept is obtained by minimising the sum of squares

n∑
i=1

(xi, n− a F (pi,n))2

If the theoretical distribution is wrongly specified, the sample points will deviate from the

straight line due to different tail behaviour. Further, if the theoretical distribution model is

correct but the parameters differ between the sample and the theoretical model, the sample

points will fall on a straight line but the values xi,n, F (pi,n) will differ. This is due to the
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proportion of the density function for each plotting position is constant for a given distribution

model, but the value associated with it is different. A simple example is the normal distribution

where a change in the mean from 0 to 2, will result in an equal shift in the value of F (0.5),

but the shape of the distribution and therefore the quantile spacing is the same. Figure 4.7

demonstrates the QQ-plot patterns associated with correctly assumed model but difference in

mean or variance between the sample points and the theoretical distribution. Here the model

is assumed to be normally distributed, but this would be true for any distribution. The red line

is the linear regression fitted line and the black is the x = y diagonal line.

−5 0 5 10

−
4

−
2

0
2

4
6

8

Too large s.d

norm quantiles

sa
m

pl
e

−2 0 2 4 6

−
4

−
2

0
2

4
6

8

Too small s.d

norm quantiles

sa
m

pl
e

0 5 10

−
4

−
2

0
2

4
6

8

Too large mean

norm quantiles

sa
m

pl
e

−10 −5 0 5 10 15

−
4

−
2

0
2

4
6

8

Too large mean and s.d

norm quantiles

sa
m

pl
e

Figure 4.7: Patterns for correctly assumed model but difference in parameter values in
QQ-plots. The title refers to the theoretical distribution in relation to the sample points.

Only a selection of the months, specifically April, June, August and September, will be

presented here to demonstrate the fit for the different phases of the monsoon. Further, only

a selection of the 2 mm RFE subsets will be presented to demonstrate the fit of both the

gamma and lognormal distribution for low, moderate and large RFE values. The full range of

RFE subsets with the lognormal fit are provided in Appendix B. Since we defined the lognormal

distribution in terms of its associated normal distribution, we will present the results for the

log transformed rain gauge values and their fit to the normal distribution. To simultaneously

compare the fit for the different combinations of variance parameters κ, θ, the linear regression
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fitted lines for the different choices will be presented in the same graph. That is, for a given

RFE value one can get the corresponding standard deviation value for each set of κ, θ from

Figure 4.6. For each of these variance values, a separate linear regression fitted line will be ob-

tained for that set of scatter points (xi,n, Fκ,θ(pi,n)). All of these fitted lines are then added to

the same QQ-plot, with the theoretical quantiles given by the parameter pair (κ = 8, θ = 0.2)

(orange line) and the black line is again the x = y line.

Histograms

It is clear from the histograms in Figures 4.8 - 4.11 that the gamma distribution (dashed black

line) is a much too light tailed distribution, with a large part of the observations found outside

the tails . The lack of spread in the density curve also leads to the much higher mean peak than

what is observed. This will as previously described result in a very high proportion of gauge

measurement being assigned normal scores over 2, when if the distribution is correctly assumed

should occur for about 2.5% of the observations. For the lognormal distribution (coloured solid

lines) a significantly improved fit for all choices of the variance parameters κ, θ can be observed,

especially for the moderate RFE values. In general the peak of the observations align with the

density peaks for smaller RFE values, confirming that the expected value of our transformed

normal scores should be 0. However for larger RFE values, the assumed mean is larger than the

observed which leads to more negative normal scores than expected. For the higher RFE values

(bottom rows), there tends to be a slight negative skew in the log transformed gauge values,

which further increases the number of negative normal score values compared to positive. This

is nevertheless still a large improvement compared to the gamma distribution, and a reasonably

good fit considering that we are seeking a ’one-distribution-fits-all’ for a wide range of cases.
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Figure 4.8: Histograms for a selection of RFE values in April, with median RFE value and
number of points indicated. (Left) gauge values in 5mm wide bars, (right) logarithm of
the gauge values in log(2)mm wide bars. Black dashed line is the gamma density and the
coloured to the lognormal, with colour indicating the parametrisation defined in Figure
4.6.
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Figure 4.9: Histograms for a selection of RFE values in June, with median RFE value and
number of points indicated. (Left) gauge values in 5mm wide bars, (right) logarithm of
the gauge values in log(2)mm wide bars. Black dashed line is the gamma density and the
coloured to the lognormal, with colour indicating the parametrisation defined in Figure
4.6.
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Figure 4.10: Histograms for a selection of RFE values in August, with median RFE value
and number of points indicated. (Left) gauge values in 5mm wide bars, (right) logarithm
of the gauge values in log(2)mm wide bars. Black dashed line is the gamma density and
the coloured to the lognormal, with colour indicating the parametrisation defined in Figure
4.6.
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Figure 4.11: Histograms for a selection of RFE values in September, with median RFE
value and number of points indicated. (Left) gauge values in 5mm wide bars, (right)
logarithm of the gauge values in log(2)mm wide bars. Black dashed line is the gamma
density and the coloured to the lognormal, with colour indicating the parametrisation
defined in Figure 4.6.
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QQ-plots

From the QQ-plots in Figure 4.12 - 4.15, with the normal quantile mapped to the log-

transformed gauge values at the top and the gamma distribution mapped to the non-transformed

gauge values at the bottom, we can once again see the large improvement in using the lognor-

mal distribution. Most of the observations fall in a straight line, confirming the suitability of the

assumed theoretical distribution, whereas the points fall on a skewed curve in the gamma plot,

demonstrating the heavier tails in the observations compared to the theoretical distribution.

In the lognormal plots, one can clearly see the improvement when parametrising the variance

with a larger κ, especially for the smaller RFE values. For the smaller RFE values, the blue

line fitted through the points (xi,n, Fκ=1.19,θ=0.67(pi,n)) has a much steeper slope compared to

the x = y black line, which from Figure 4.7 we know corresponds to a smaller variance in the

theoretical distribution compared to the sample. This is a pattern that is not present for the

other combinations. For the larger RFE values, the difference between the different parameter

choices are very small which is due to the close to equal values for the standard deviation values

in Figure 4.6, and the mean is equal for all distributions (µ =RFE). Since the performance of

the different parameter choices are equally good (or bad) for all of them, the optimal choice for

κ, θ will therefore be determined based on the smaller RFE values performance. An important

thing to remember is that we need one model and set of parameters for modelling all RFE

intensities since we cannot fit a separate model for each, so the aim is to find the overall best

performing model and not the optimal choice for each individual RFE value.
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Figure 4.12: QQ-plot for a selection of RFE values in April. (Top) logtransformed gauge
values and lognormal distribution associated with κ = 8, θ = 0.2 as reference distribution.
Coloured lines represents best linear fit to the lognormal distributions with the standard
deviation given by the corresponding colours in Figure 4.6. (Bottom) gauge values with
the gamma distribution as reference distribution. The black line marks the x = y line.



Chapter 4. Relating gauge measurements with satellite estimates 90

Ga
m
m
a

Lo
gn
or
m
al

June

−1 0 1 2 3 4

−2
0

1
2

3
4

3 
m

m
 q

ua
nt

ile
s

−1 0 1 2 3 4 5

−2
0

1
2

3
4

7 
m

m
 q

ua
nt

ile
s

−1 0 1 2 3 4 5

−2
0

1
2

3
4

11
 m

m
 q

ua
nt

ile
s

0 1 2 3 4 5 6

0
1

2
3

4

15
 m

m
 q

ua
nt

ile
s

0 1 2 3 4 5 6

−1
0

1
2

3
4

19
 m

m
 q

ua
nt

ile
s

0 1 2 3 4 5 6

1
2

3
4

23
 m

m
 q

ua
nt

ile
s

norm quantiles

0 2 4 6 8

0
10

20
30

40

3 
m

m
 q

ua
nt

ile
s

4 6 8 10 12

0
20

40
60

7 
m

m
 q

ua
nt

ile
s

6 8 10 14 18

0
20

40
60

11
 m

m
 q

ua
nt

ile
s

10 14 18 22

0
10

30
50

15
 m

m
 q

ua
nt

ile
s

15 20 25

0
20

40
60

19
 m

m
 q

ua
nt

ile
s

20 25 30

0
20

40
60

23
 m

m
 q

ua
nt

ile
s

gamma quantiles

1
Figure 4.13: QQ-plot for a selection of RFE values in June. (Top) logtransformed gauge
values and lognormal distribution associated with κ = 8, θ = 0.2 as reference distribution.
Coloured lines represents best linear fit to the lognormal distributions with the standard
deviation given by the corresponding colours in Figure 4.6. (Bottom) gauge values with
the gamma distribution as reference distribution. The black line marks the x = y line.
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1Figure 4.14: QQ-plot for a selection of RFE values in August. (Top) logtransformed gauge
values and lognormal distribution associated with κ = 8, θ = 0.2 as reference distribution.
Coloured lines represents best linear fit to the lognormal distributions with the standard
deviation given by the corresponding colours in Figure 4.6. (Bottom) gauge values with
the gamma distribution as reference distribution. The black line marks the x = y line.
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1Figure 4.15: QQ-plot for a selection of RFE values in September. (Top) logtransformed
gauge values and lognormal distribution associated with κ = 8, θ = 0.2 as reference dis-
tribution. Coloured lines represents best linear fit to the lognormal distributions with
the standard deviation given by the corresponding colours in Figure 4.6. (Bottom) gauge
values with the gamma distribution as reference distribution. The black line marks the
x = y line.
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4.4.2 Scatter plots

The most important aspect of getting the distribution function correct is to make sure that

the resulting normal scores are sensibly and approximately normally distributed to not skew the

satellite rainfall field too often (incorrect mean) or too much (incorrect variance). The follow-

ing scatter plots are therefore demonstrating the normal scores for all gauge measurements as

a function of the RFE values, including values larger than the ones presented in the previous

section. From the above analysis, the variance setting with κ = 8 and θ = 0.2 was deemed

the most suitable, hence will be used here. The values when using the gamma distribution

are marked with the lighter in colour triangles and the lognormal the darker circles. Orange or

red markers have a normal score of more than 3, which should be highly unlikely to observe if

accurately modelled, and the dashed line marks the value of ±2 where we expect to observe

95% of the values for a normal distribution.

The first sign of the improvement in changing to a lognormal distribution in Figure 4.16

is the near elimination of normal scores larger than ±3. A few positive large values can be

observed for very low (< 5mm) RFE values, and some on the negative side for larger RFE

values, which is to be expected as discussed based on the skewed histograms. The other is the

good spread of points between ±2, indicating that we have chosen a sensible function for the

variance which constraints the normal scores without condensing them.



Chapter 4. Relating gauge measurements with satellite estimates 94

-10

-5

0

5

10

0 10 20

RFE (mm)

N
o

rm
a

l s
c
o

re

Month 04

-10

-5

0

5

10

0 10 20 30 40 50

RFE (mm)

N
o

rm
a

l s
c
o

re

Month 05

-10

-5

0

5

10

0 20 40 60

RFE (mm)

N
o

rm
a

l s
c
o

re

Month 06

-10

-5

0

5

10

0 20 40 60

RFE (mm)

N
o

rm
a

l s
c
o

re

Month 07

-10

-5

0

5

10

0 10 20 30 40

RFE (mm)

N
o

rm
a

l s
c
o

re

Month 08

−10

−5

0

5

10

0 10 20 30
RFE (mm)

N
or

m
al

 s
co

re

Month 09

−10

−5

0

5

10

0 10 20 30
RFE (mm)

N
or

m
al

 s
co

re

Month 10

Figure 4.16: Scatter plots of lognormal (dark, circles) distribution with standard deviation
corresponding to the orange line in Figure 4.6 and gamma (light, triangles) distribution
for the gauge values. The red/orange dots have a normal score of larger than 3 and the
dashed lines marks a normal score of ±2. All values larger than ±10 are capped to this.

4.5 Comparison in performance for the full grid

To demonstrate the impact from changing the distribution, a few examples from the merging

algorithm are presented in Figure 4.17. Examples from April, June and August, are included

to display the improvement for the full range of intensities. In April (top) the gauge measuring

around 54mm is included with the lognormal transform but most likely capped out from the

gamma due to a too large normal score, as can be noticed from the lack of grid values above

30mm. For June (middle), even the extreme values of 150mm are merged with the lognormal,

which the gamma is far from achieving, with no grid values going above around 40mm. The

August graph (bottom) highlights the improvement even for moderate amounts where the

merged product using the lognormal distribution produces grid values of up to 32mm but

gamma only 16mm, showing that the impact can be seen for all intensities.
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(a)

(b)

(c)

Figure 4.17: Preliminary plots of rainfall estimates from merging TAMSAT estimates with
gauge data using the (left) gamma and (right) lognormal distribution. The results are for
single days in (a) April, (b) June, (c) August. Plots produced by Dr. Ross Maidment.
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4.6 Discussion and further work

In this chapter, evaluation of the improvement in modelling the conditional rain gauge observa-

tions for a given RFE value with the lognormal distribution compared to the gamma distribution

is presented. The motivation came from the frequently occurring very large normal scores in the

TAMSAT merging algorithm with the latter distribution, indicating that the gamma distribution

did not accurately model the observed gauge values. It further was not possible to use a mixed

distribution with an Extreme value distribution for the tail due to the back transformation step

(E in Figure 4.1), which requires a continuous distribution function. Even though the lognormal

distribution is not easily interpretable in its native form, it can easily be applied after a log-

arithmic transform on the measurements, making it a distribution that one can easily switch to.

From the variance parametrisation analysis, done by simultaneously comparing several

choices for the parameters κ, θ, we can see that even though there is some heteroscedas-

ticity in the conditional rainfall values this is not very pronounced. The most suitable set of

parameters, Var[X|RFE] = 8 ∗ RFE0.2 has a large and nearly constant value for the low RFE

values as well as the larger.

An issue with working in the logspace is the non physical behaviour for very small rainfall

values. Since log(1) = 0 and negative for values smaller than that, a negative variance will be

returned for very small RFE values. This can however relatively easy be solved by imposing

a fixed variance for RFE values below this, and apply the RFE dependent function for values

above.

4.6.1 Further work

As we in this work were interested in finding a relatively simple distribution that performed

better than the gamma, many other skewed distributions were determined to be beyond the

scope of this thesis. Further work would include a wider distribution comparison analysis,

including skewed distributions such as Burr and Log-gamma, which are more commonly used

to model economics data such as household incomes, or the log-logistic which previously has

been used to model streamflows and rainfall.

An extension to the work presented here would be to complement the qualitative analysis

with quantitative analysis through the use of goodness-of-fit test. This could be utilised to

compare the different choices of κ and θ, but also to evaluate the most suitable model when

comparing the multiple skewed distributions mentioned above. To evaluate the current lognor-

mal distribution choice, a collection of the many tests for detecting deviations from a normal

distribution would be used since they all have their individual drawbacks. A full review of the
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power of 33 normality tests was undertaken in Romão et al. (2010) for symmetric, asymmetric

and tainted normal distributions. From our results here, a test with a high power for asymmet-

ric distributions would be most appropriate. In the paper they conclude that the test with the

best power for asymmetric distributions are ZA, ZC Zhang-Wu tests, CS Chen-Shapiro and

W Shapiro-Wilk test. Due to the close relation between the latter two, only the second would

be used as it has the slightly higher power.

With a separate test needed for each RFE value distribution and month, around 100 indi-

vidual tests would be performed. We would therefore have to account for the multiple testing

issue, i.e. as the number of test increases the probability of observing false-positives (Type

I error) is increased. A commonly used class of methods to adjust for this is to control the

Family-wise error rate (FWER), the probability of making at least one Type I error in the family

of hypothesis tests. The aim with all of these methods is to adjust the nominal significance

level α, which we will denote αa, such that FWER ≤ αa. The most commonly used method is

the ”Bonferroni” test, which simply divides α/m = αa, where m is the total number of tests.

This however becomes very conservative if many tests are used. A different approach to just

adjusting α, is to arrange all the hypothesis test values pi, i = 1, ..,m in increasing order and

let the critical value depend on the ranked position. ”Holm-Bonferroni” is one of the most

well-known where the null hypothesis H0 is rejected until pk ≥ α
m+1−k , k being the position

among the increasingly ranked pi. Other examples of methods in this class are ”Hochberg and

Holm’s”, ”Dunn-Sidak ” and ”Holm-Sidak” (which combines ”Holm-Bonferroni and Dunn-

Sidak).

A completely different method to the one above would be to assume that the expected

number of rejections can be modelled as discrete, rare events by a Poisson distribution with

λ = m ∗ α, with α,m defined as above. The observed number of rejections would then be

tested at the level αPo, where the null hypothesis H0 is rejected if this is larger than the critical

value.



Chapter 5

Estimation and reduced bias

estimation of the coefficient of tail

dependence

In order to address thesis aim question number 2 fully, a separate method suitable for modelling

the extreme values is needed. In this chapter, based on multivariate EVT, an improved method

for estimating the association between two variables in the case of asymptotic independence

will be proposed alongside a reduced bias estimator. The performance is evaluated in an exten-

sive simulation study and compared to the well-known Hill estimator. This estimator is used

in Chapter 6 to investigate the dependence in extremes as a function of distance between the

stations.

5.1 Introduction

Multivariate EVT has received an increasing amount of attention in the past two decades,

commonly with the aim of determining the probability of joint exccedances above a high

threshold. This is often motivated by the fact that compound extremes can pose a much

greater risk compared to the two individual extremes occurring separately. In the environmental

science, there are numerous examples of where this occurs, both by a combination of variables

or locations. Flooding can become significantly more severe if multiple locations around the

same river basin experience extreme rainfall simultaneously. Extreme drought is usually a

combination of very high temperature and large negative rain anomalies, and extreme coastal

flooding is often a combination of high winds and wave height. Since the interest usually lies

in modelling the most extreme events, and in extrapolating outside the observed values, EVT

98
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is the most suitable framework to work in.

In bivariate extreme value statistics, the dependence is classified as either asymptotically

dependent or asymptotically independent (Sibuya (1960)). The two definitions are essentially

separated by if there is a non-zero probability of the two variables being extreme simultane-

ously, with the two being asymptotically dependent if this is true. The estimator proposed

here falls into the asymptotically independent class, motivated by Sang and Gelfand (2009)

recommending that such as model should be used for African rainfall. Since the aim of this

improved estimator is to more accurately estimate the dependence structure in rainfall over

west Africa, this was seen as the appropriate choice. The contribution in this chapter is mainly

the improved estimator and the unified marginal distribution.

5.2 Modelling asymptotic independence

5.2.1 Coefficient of tail dependence definition

Like most previous work on multivariate EVT, the focus will be on the bivariate case. Extensions

to higher dimensions are often possible in theory but not feasible in practice. Given that (Xi, Yi),

i = 1, ..., n are independent copies of the random vector (X, Y ) with joint distribution function

F , we are interested in estimating the probability of

P(Xi > u and Yi > v) (5.1)

where u, v are large thresholds. We assume that that the marginals, FX , FY , are known

and denote the sequence of component-wise maxima by MX,n := max1≤i≤nXi and MY,n :=

max1≤i≤n Yi. We further assume that there exist normalising constants an, cn > 0 and bn, dn ∈
R such that

lim
n→∞

P
(
MX,n − bn

an
≤ x,

MY,n − dn
cn

≤ y

)
= G(x, y) (5.2)

where G is a non-degenerate distribution function. When this holds, G is called a bivariate

extreme value distribution. The component-wise maxima MX,n,MY,n are said to be asymp-

totically independent if G(x, y) = G(x,∞)G(∞, y) =: G1(x)G2(y) for all x, y. The given

expression of Equation (5.2) is of little use when attempting to estimate (5.1), something that

however can be improved if we rewrite it in terms of the distribution function F

lim
n→∞

P
(
MX,n − bn

an
≤ x,

MY,n − dn
cn

≤ y

)
= lim

n→∞
F n(an + bnx, an + bny)
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and by further taking the logarithms, we obtain

lim
n→∞

nP
(
X − bn
an

> x or
Y − dn
cn

> y

)
= − logG(x, y)

which ultimately, after some rearranging, results in

lim
n→∞

nP
(
X − bn
an

> x,
Y − dn
cn

> y

)
= logG(x, y)− logG1(x)− logG2(y). (5.3)

The right hand-side in the above is equal to zero if the marginals of the limiting distribution

are independent and we are presented with the case of asymptotic independence in extremes.

A way to work around the problem of this equalling to zero for all cases of asymptotic inde-

pendence was derived by Ledford and Tawn (1996) through the introduction of a submodel

t 7→ q(t) := P(1−FX(X) < t, 1−FY (Y ) < t), which is assumed to be regularly varying at 0

with index 1/η. That is q(t) = t1/ηL(t) where L(t) is a slowly varying function, i.e. L(tx)
L(x)
→ 1

as t → 0 for all fixed x > 0. The coefficient η ∈ (0, 1] is the so called coefficient of tail

dependence (CTD), or sometimes referred to as the residual dependence index, where η = 1

and L(t)→ c > 0 implies asymptotic dependence and η < 1 asymptotic independence. Heffer-

nan (2000) showed that a majority of the bivariate distribution functions can be written in this

format and provides a list with the value of η and the expression for L(t) for these distributions.

The main purpose of introducing the CTD was to separate out three different types of

asymptotic independence, highlighting the various joint behaviour between two variables despite

being independent in the limit. The three cases of asymptotic independence identified are:

(i) η ∈ (1/2, 1) or η = 1 and L(t) → 0 : X, Y are positively associated and will exceed a

high threshold more frequently than if exactly independent;

(ii) η = 1/2 : X, Y are close to independent, with exact independence attained for L(·) = 1;

(iii) η ∈ (0, 1/2) : X, Y are negatively associated and will exceed a high threshold less frequent

than if exactly independent.

A visual interpretation of these different cases can be seen in Figure 2.9 in Chapter 2, where

the Bivariate normal copula in the top row has η = (0.1, 0.55, 0.995). For the first value of η,

there is a strong negative correlation between the two variables largest values, for close to 0.5

no preference is seen, and close to 1 a very strong positive correlation for the largest values is

present.
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If one defines the variable Zi = min{Xi, Yi}, then since q is regularly varying with index

1/η, we have

P(Zi > z) = P(Xi > z, Yi > z) = z−1/ηL(z)

The parameter η can therefore be seen as the extreme value index of the minimum of two

components, and all the classical estimators, such as the Hill (Hill (1975)), moment (Dekkers et

al. (1989)) and maximum-likelihood (Smith (1987)) estimator, are suitable. These estimators

are however all biased, but unbiased versions for the univariate case have been presented in

for example Feuerverger and Hall (1999) and Caeiro et al. (2005), and for the bivariate case

in Beirlant et al. (2011). The estimator in Beirlant et al. (2011) is unbiased but does not

take into account the uncertainty arising from the marginal transformation by means of the

empirical distribution. It is also based on maximum likelihood estimation, hence no explicit

expression for the estimator is available. The estimator proposed here deals with both of these

issues by adjusting for the marginal transformation bias, and is given in analytical form with

an explicit expressions for the variance, hence a CI can easily be obtained.

5.2.2 Estimation of the coefficient of tail dependence

Take F to be a bivariate probability distribution function in the domain of attraction of an

extreme value distribution with continuous marginal distribution functions respectively defined

by FX(x) := F (x,∞) and FY (y) := F (∞, y) and (X, Y ) a random vector following the

distribution F . Suppose that for x, y > 0,

lim
t↓0

P(1− FX(X) < tx, 1− FY (Y ) < ty)

P(1− FX(X) < t, 1− FY (Y ) < t)
=: S(x, y) (5.4)

exists positive. Then the joint tail distribution function q(t) := P(1 − FX(X) < t, 1 −
FY (Y ) < t) is regularly varying at zero with index 1/η, that is q(t) = t1/ηL(t) for some

η ∈ (0, 1], where L is as previously a slowly varying function at zero. Condition (5.4) implies

that S is homogenous of order 1/η, i.e. S(ax, ay) = a1/ηS(x, y). From this, we can see that

condition (5.4) implies

lim
t→∞

P
(

1
1−FX(X)

∧ 1
1−FY (Y )

> tx
)

P
(

1
1−FX(X)

∧ 1
1−FY (Y )

> t
) = S

(
1

x
,

1

x

)
= x−1/ηS(1, 1) = x−1/η (5.5)

for all x > 0. Defining the tail distribution function as

T :=
1

(1− FX(X)) ∨ (1− FY (Y ))
(5.6)
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condition (5.4) implies that the tail distribution function F̄T := 1−FT is of regular variation

at infinity with index −1/η.

Since the marginal distributions FX , FY are unknown in practice, their empirical counter-

parts need to be used instead. Let R(Xi) denote the rank of Xi among (X1, ..., Xn), or

specifically R(Xi) :=
∑n

j=1 1Xj≤Xi and R(Yi) defined in a similar way. Then Equation (5.6)

can be rewritten as

T
(n)
i :=

n+ 1

n+ 1−R(Xi)
∧ n+ 1

n+ 1−R(Yi)
(5.7)

Note that the margins are transformed to unit Pareto, which was favoured in Draisma et al.

(2004) and later in Goegebeur and Guillou (2012), due to be observed smaller bias compared

to unit Fréchet margins. We denote the ascending order statistics of the sequence {T (n)
i }ni=1

by Tn,1 ≤ Tn,2 ≤ ... ≤ Tn,n. Since the limit S(x, x) in (5.4) is completely defined up to one

parameter, the CTD η, but the marginals are unspecified and therefore need to be estimated,

here by the empirical counterparts, our proposed estimator will take place in a semi-parametric

setting.

The class of estimators proposed is based on combining the empirical tail quantile function

with a functional, similar in form to the ”mean-of-order-p” estimator presented in Gomes and

Caeiro (2014), but in a bivariate setting. Our approach for estimating the parameter η follows

the work of Draisma et al. (2004) and Goegebeur and Guillou (2012), which stems from the

univariate work in Drees (1998).

For this aim, define the empirical tail quantile function of T
(n)
i as Qn(s) := Tn,n−bmsc,

for 0 < s < n/m, where bxc denotes the integer part of x. As shown in Goegebeur and

Guillou (2012), (m/n)Qn(1)
P−→ l, with l positive, as m → ∞, whereas for an intermediate

sequence of positive integers k(n) = nq←(m/n) → ∞, k/n → 0, as n → ∞, we have that

(k/n)Qn(1)
P−→ 1. Our proposed class of estimators for the CTD builds on the functional

Ma,b(z) :=
(Aa(z))b − 1

b
, with Aa(z) :=

{∫ 1

0

(
z(s)

z(1)

)a
ds

}1/a

, a, b ∈ R (5.8)

for any measurable function z : [0, 1] → R. For a = 0 and/or b = 0, this is interpreted in

the limiting sense as log z, which corresponds to the classical Hill estimator for the tail index

given by the functional

M0(z) :=

∫ 1

0

log+ z(s)

z(1)
ds (5.9)

where log+(w) = max(log(w), 0), hence only allows positive values.
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Provided that a/b is set at approximately -1 and that suitable conditions stemming from a

second order refinement of (5.4) are met, Ma,b(Qn(s)) is a consistent (i.e. converges in proba-

bility to the correct value), asymptotically normal estimator for the CTD η. The second order

condition will be defined and the asymptotic distribution and consistency will be demonstrated

in the next section.

The main specific estimator considered in this work, is defined by the coefficient pair

(a, b) = (1/p, 1/q−1) with conjugate constants p ∈ R, q > 0, i.e. 1/p+1/q = 1. Substituting

this and Qn(s) into (5.8), with k denoting the number of upper order statistics included and

i the counting index, returns the estimator

η̂q(k) :=

{[
1
k

∑k−1
i=0

(
Tn,n−i
Tn,n−k

)a]1/a
}−(1−1/q)

− 1

−(1− 1/q)
, a =

1

p
(5.10)

with now q = 1 recovering the Hill estimator defined in (5.9). The coefficient pair

(a, b) = (1/(1− p), q − 1) equals the before mentioned ”mean-of-order-p” estimator.

In the original paper by Ledford and Tawn (1996) they proposed that one standardise the

margins to unit Fréchet, instead of unit Pareto as outlined above, and this approach has been

used in numerous papers (see for example Draisma et al. (2004) and Beirlant et al. (2011)).

We will therefore use this transformation here as well. Like for the unit Pareto transformation

FX , FY are unknown and will therefore be replaced by their empirical counterparts, F
(n)
X , F

(n)
Y ,

on the basis of their usual plotting positions i/(n+ 1) to avoid division by 0. Specifically,

V
(n)
i :=

(
− 1

log F
(n)
X (Xi)

)
∧

(
− 1

log F
(n)
Y (Yi)

)
=

{(
− log

R(Xi)

n+ 1

)
∨
(
− log

R(Yi)

n+ 1

)}−1

(5.11)

where R(Xi), R(Yi) are the ranks defined as before. We again denote by Vn,1 ≤ V2,n ≤ ... ≤
Vn,n the ascending order statistics and an estimator corresponding to Equation (5.10) with the

Ti replaced by the Vi can be defined.

A third possible expression for the marginals that we proposed here, is to shift the pseudo

unit Fréchet random variables Vi by 1/2. This location-shifted class of estimators for η,

defined through the functional Ma,b(Vn,n−bmsc + 1/2) with a/b → −1 defined through the
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same conjugate constants p, q, is given by

η̂
(S)
a,b (k) :=

{[
1
k

∑k−1
i=0

(
1/2+Vn,n−i
1/2+Vn,n−k

)a]1/a
}b
− 1

b
(5.12)

We will demonstrate that the estimator η̂
(S)
a,b is asymptotically equivalent to η̂a,b (Equation

5.10 before substituting in specific expressions for (a, b)) when defined with unit Pareto margins,

and thereby establish the asymptotic distribution of η̂
(S)
a,b . In the simulations we will further

demonstrate that this simple shift of the Fréchet random variables substantially decreases the

finite sample bias for the Hills’ estimator, as discussed in both Draisma et al. (2004) and

Goegebeur and Guillou (2012).

5.3 Asymptotic results

By establishing the asymptotic distribution of our estimator, we can learn about any potential

bias that might exist because of terms not converging to 0 fast enough, and the variability

around the estimate. Specifically, if the estimator is asymptotic normally distributed we can

use standard methods for deriving the CI around the estimated value of η.

To establish the asymptotic distribution of the class of estimators Ma,b(Qn(s)) defined in

(5.8) in the two-dimensional setting, a second order refinement of condition (5.4) is needed.

Similarly to the condition defined in Goegebeur and Guillou (2012), assume that condition

(5.4) holds with S being continuously differentiable,

lim
t↓0

P(1−FX(X)<tx,1−FY (Y )<ty)
q(t)

− S(x, y)

q1(t)
=: D(x, y) (5.13)

exists for all x, y ≥ 0, x + y > 0, with q1 a function of ultimately constant sign and tending

to 0 as t ↓ 0 and a function D which is neither constant nor a multiple of S. Moreover,

we assume that the convergence is uniform on {(x, y) ∈ [0,∞)2 | x2 + y2 = 1}, and that

D(x, x) = x1/η xτ/η−1
τη

. With the joint tail distribution function q(t) being regularly varying at

zero with index 1/η, it can be shown that condition (5.13) implies that |q1| is regularly varying

at zero with index τ/η ≥ 0. Finally, we also assume that l := limt↓0 q(t)/t exists, something

that is always satisfied if η < 1 and τ > 0 (Goegebeur and Guillou (2012)). From all of the

above assumptions, the asymptotic normality of the estimator η̂q can be derived through the

following Theorem and accompanied Corollary.
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Theorem 1. Let Tn,1 ≤ Tn,2 ≤ ... ≤ Tn,n be the ascending order statistics associated with

the random variables T
(n)
i , i = 1, .., n defined in (5.7), whose tail distribution is denoted

by F̄T = 1−FT . Assume the following second order condition of regular variation for F̄T ,

implied by (5.13) and its given assumptions: there exist η ∈ (0, 1], τ > 0 and a function

q?(t)→ 0, as t→∞, not changing sign eventually such that, for all x > 0,

lim
t→∞

P
(

1
1−FX (X)

∧ 1
1−FY (Y )

>tx
)

F̄T (t)
− x−1/η

q? (1/F̄T (t))
= x−1/ηx

−τ/η − 1

ητ

Assume the equivalent relation in terms of high quantiles:

lim
t→∞

(
1

1−FT

)←
(tx)/

(
1

1−FT

)←
(t)− xη

q?(t)
= xη

x−τ − 1

τ
(5.14)

for all x > 0.

For a sequence of integers k = k(n) → ∞, k/n → 0, as n → ∞, there exists a

Brownian bridge1 B such that, with a < 1/(2η), a 6= 0,

√
k

{
Ma,b(Qn)− (1− aη)−b/a − 1

b

}
+
√
kq?

(n
k

) (1− aη)−b/a+1

(1− aη)(1− aη + τ)

d−→ (1− aη)−b/a+1

∫ 1

0

ηs−(aη+1)B(s)ds

The following proof is based on Lemma 1 in Goegebeur and Guillou (2012), in which Lemma

6.2 in Draisma et al. (2004) is modified to include a bias term.

Proof of Theorem 1. Under the second order condition (5.13), with m := nq(k/n), k de-

fined as above, and m → ∞, there exists a function q? of constant sign near infinity and

tending to zero, by which
√
mq?(1/q

←(m/n)) = O(1), such that it is possible to define a

sequence of standard Brownian motions {Wn(s)}s≥0, such that, for all s0 > 0, ε > 0,

sup
0<t<t0

tη+ 1
2

+ε

∣∣∣∣√m(knQn(s)− s−η
)
− ηs−(η+1)Wn(s)−

√
mq?

(n
k

)
s−η

sτ − 1

τ

∣∣∣∣ = op(1)

(5.15)

We define, for a 6= 0,

Zn(s) :=
√
m

{(
Qn(s)

Qn(1)

)a
− s−aη

}
and redefine the auxiliary function involved in the second order condition relating to q?

1A stochastic process with the conditional probability distribution given by a standard Wiener process
with the condition that it equals to 0 for the start and end value.
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such that q?(t) ∼ q1(1/t), as t→∞. Coupling this with (5.15), we obtain

Zn(s) = aηs−(aη+1) (Wn(s)− sWn(1))+
√
mq?

(
1/q←

(m
n

))
s−aη

sτ − 1

τ
+op

(
max(s−(η+ 1

2
+ε), s−η)

)
where the op-term is uniform on a compact interval bound away from zero. After Tay-

lor expanding around 0, we obtain the following asymptotic expansion with {Bn(s)} d
=

{Wn(s)− sWn(1)}, s ∈ (0, 1], a sequence of Brownian bridges:∫ 1

0

Zn(s)ds = aη

∫ 1

0

s−(aη+1)Bn(s)ds+
√
mq?

( n
m

)∫ 1

0

as−aη
sτ − 1

τ
ds+ op(1)

as n→∞. With both a, b assumed fixed, the result in the theorem follows straightforward

via Cramèr’s delta-method for a < 1/(2τ):

√
m

{
Ma,b(Qn)− (1− aη)−b/a − 1

b

}
=

1

a
(1− aη)−b/a+1

∫ 1

0

Zn(s)ds

From Theorem 1, the following corollary naturally follows

Corollary 2. Under the conditions of Theorem 1, if
√
kq?(n/k) → λ ∈ R as n → ∞,

a < 1/(2η) and b/a = −1, then

√
k (η̂a(k)− η)

d−→ N (λba, σ
2
a)

with

η̂a = η̂a(k) := Ma,−a(Qn)

where

ba = ba(η, τ) =
(1− aη)

1− aη + τ

σ2
a = σ2

a(η) = η2 (1− aη)2

(1− 2aη)

Proof of Corollary 2. Theorem 1 ascertains that the random component Ma,b(Qn) with

its deterministic bias subtracted, converges to an integral of a Brownian bridge, which

essentially is a Gaussian process. Given that the increments of a Gaussian process are

independent, normal random variables, this integral can be written as a sum of normals

and is therefore a normal random variable itself. If
√
mq?(n/m) → λ ∈ R as n → ∞,

the bias term follows from simple integration. To derive the variance of the limiting

normal random variable, it is sufficient to consider the process Z(s) := ηs−(aη+1)B(s),
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0 ≤ s ≤ 1, since all other terms equal to zero. The variance of the process Z(s) is simply

V ar
(∫ 1

0
Z(s)ds

)
= E

[∫ 1

0

∫ 1

0
Z(s)Z(t)dsdt

]
= η2(1− aη)2/(1− 2aη)

As mentioned previously, letting a → 0 the Hill estimator is recovered. As one can easily

see from Corollary 2, the dominant component of the bias ba gets smaller for larger values

of τ > 0. This can be explained by the higher rate of convergence of the actual underlying

bivariate distribution F to its specific max-stable limit for larger values of τ . It is also apparent

that the asymptotic variance does not depend on τ and is therefore unaffected by this. This is

instead mainly controlled by the parameter a < 1/(2η), a condition required to keep σ2
a > 0

since η ∈ (0, 1]. Through some straightforward algebraic manipulation one can show that

σ2
a(η) ≥ η2, for all a, η with equality easily seen attained for a = 0, i.e. the Hill estimator,

which however does not have the smallest bias. Figure 5.1 visualises how the asymptotic

variance increases with increasing η and |a|, with η being the dominating parameter.

a

-0.4

-0.2

0.0

0.2
0.4

eta

0.0

0.2

0.4
0.6

0.8
var

0.0
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1.0

1.5

𝜼

a

Var

Figure 5.1: Asymptotic variance of η̂a as a function of |a| ≤ 0.4 and η ∈ (0, 0.8]

In order to establish the asymptotic distribution of the location-shifted class of estimators,

η̂
(S)
a,b , we will first show that it is asymptotically equivalent to η̂a with unit Pareto margins. This

is determined through the following Theorem, with the proof deferred to Appendix 5.A.

Theorem 3. Assume the same conditions as in Theorem 1. Let k = k(n) be an intermedi-

ate sequence such that
√
kq?(n/k)→ 0 as n→∞. Then, for every a, b ∈ R, the estimator

η̂
(S)
a,b (k) defined in (5.12), stemming from the transformation to unit Fréchet marginals with

a shift by one half, is asymptotically equivalent to its standard counterpart η̂a,b(k) in the

class (5.10), i.e. as n→∞

√
k
∣∣∣η̂(S)
a,b (k)− η̂a,b(k)

∣∣∣ P−→ 0

Hence, the two estimators have the same asymptotic distribution and only differ by a

potential second order deterministic bias, which can be made explicit in terms of η ∈ (0, 1],
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ρ > 0. Thanks to the condition
√
kq?(n/k) → o(1) in the theorem which imposes a further

mild restriction on the growth of k, this difference is dominated by the bias term ba(η, τ)

defined in Corollary 2. In the next section, we will present an estimator where this larger bias

has been removed.

5.4 Reduced bias estimator

The estimator η̂a presented in the previous section is clearly not unbiased except for some

special cases. We will therefore in this section derive a reduced bias version of the estimator,

based on subtracting the leading bias without significantly increasing the variance. Before

introducing this estimator, we first need to establish a similar relation to (5.14), but with the

quantile function associated with transformation to unit Fréchet instead of Pareto. The proof

of this relation will also guide the particular form of the estimator. With the usual notation

of U := (1/(1 − F ))← and F the distribution function, the unit Fréchet quantile function is

given by,

V (t) :=

(
− 1

logF

)←
(t) = U

(
1

1− e−1/t

)
Before we are able to prove Theorem 5 we need a lemma, similar to the statement in

Theorem 3, but now involving the extreme quantile functions V and U associated with the

unit Fréchet and Pareto transform respectively. The proofs for both the lemma and the theorem

are deferred to Appendix 5.B.

Lemma 4. Define V ∗(t) := V (t)+1/2 and supposed that (5.14), the high quantile relation

in Theorem 1, holds for some η ∈ (0, 1] and τ > 0. Then, limt→∞ U(t)/V ∗(t) = 1.

Theorem 5. Let U be a quantile function of regular variation at infinity with index η ∈
(0, 1], i.e. limt→∞ U(tx)/U(t) = xη, for x > 0, which we denote by U ∈ RVη. Assume that

the second order condition of regular variation (5.14) is satisfied for U with the second

order parameter τ > 0. Then V ∗ is also of regular variation with the same index η and is

such that, for x > 0,

lim
t→∞

V ∗(tx)
V ∗(t)

− xη

q̃(t)
=

{
xη x

−τ−1
τ

, τ < η

xη x
−η−1
η

, τ ≥ η
(5.16)

where

q̃(t) =



q?(t) τ < η,

q?(t) +
η

2

1

V ∗(t)
, τ = η,

η

2

1

V ∗(t)
, τ > η
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Moreover, |q̃(t)| ∈ RV−τ̃ with second order parameter governing the speed of convergence

given by

τ̃ =

{
τ, 0 < τ < η,

η, 0 < η ≤ τ

From the above theorem we can find the relevant Hall-Welsh-type model, defined in Hall and

Welsh (1985), aligning with the estimator proposed here. Specifically, we are interested in the

distribution functions whose extreme quantile function of the type V ∗ determines the following

expansion as t → ∞, V ∗(t) = Cηtη(1 + ηD1C
−τ t−τ + ηD2C

−ηt−η), for C > 0, D1 ∈ R and

D2 6= 0. This leads to q̃/τ̃ = ηβ̃t−τ̃ with β̃ = DjC
−τ̃ , j = 1 if τ̃ = τ and j = 2 if τ̃ = η.

As mentioned in the beginning of the section, the reduced bias estimator stems from

subtracting the leading bias term in the asymptotic distribution for the estimator η̂
(S)
a,b , i.e. based

on the shifted by 1/2 unit Fréchet marginals. Through the asymptotic equivalence condition

established in Theorem 3 together with the asymptotic distribution derived in Corollary 2 and

Theorem 5, the following reduced bias estimator is proposed:

η̃a(k) := η̂(S)
a (k)

{
1−

(
β̂
(n
k

)−τ̂
+

1

1 + 2Vn,n−k∗

)
1− a η̂(S)

a (k)

1− a η̂(S)
a (k) + τ̂

}
, (5.17)

with k∗ ≤
√
k, k → ∞, k/n → 0, as n → ∞ and β̂, τ̂ denote consistent estimators for

β̃ and τ̃ > 0. This next steps will demonstrate that this is indeed asymptotically normal

distributed with zero mean for sufficiently large n. Express Vn,n−k∗ in terms of V ∗ and assume

that
√
kq̃(n/k) = O(1), then the sequence

√
k (η̃a(k)− η) =

√
k

{
η̂(S)
a (k)

(
1− β̂

(n
k

)−τ̂ 1− a η̂(S)
a (k)

1− a η̂(S)
a (k) + τ̂

)
− η

}

+
√
k
η̂

(S)
a (k)

2

1

V ∗n,n−k∗

1− a η̂(S)
a (k)

1− a η̂(S)
a (k) + τ̂

(5.18)

with the method developed in Caeiro et al. (2005) certifying that the remaining bias in the first√
k-term converges to zero sufficiently fast as n→∞. The asymptotic expansion is therefore

√
k

{
η̂(S)
a (k)

(
1− β̂

(n
k

)−τ̂ 1− a η̂(S)
a (k)

1− a η̂(S)
a (k) + τ̂

)
− η

}
= Za + op

(√
kq̃(n/k)

)
(5.19)

where Za is a zero mean normal variable with variance σ2
a > 0 defined in Corollary 2. The

second term in (5.18) becomes negligible for sufficiently large n, as shown below. Recall Lemma

4, which proved that limt→∞ U(t)/V ∗(t) = 1, where U(t) is associated with the unit Pareto

transform, and the following corollary from Haan and Ferreira (2006):
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Lemma 6. Let Y1,n ≤ Y2,n ≤ ... ≤ Yn,n be the order statistics associated with a sample of

n i.i.d standard Pareto random variables with common CDF F (y) = 1−1/y, y ≥ 1. Then

for an intermediate sequence k = k(n)→∞, k/n→ 0 as n→∞,

√
k

(
k

n
Yn,n−k − 1

)
is asymptotically standard normal.

By the Taylor expansion 1/(1 + y) = 1− y + y2/(y + 1) and the condition k∗ ≤
√
k, the

second term in (5.18) is bounded by

0 <

√
k k∗/n(

k∗

n
V ∗n,n−k∗ − 1

)
+ 1

=
√
k
k∗

n

{
1−

(
k∗

n
V ∗n,n−k∗ − 1

)
+

(
k∗

n
V ∗n,n−k∗ − 1

)2

k∗

n
V ∗n,n−k∗

}

≤ k

n

{
1 +Op

(
1√
k

)
+ op

(
1√
k

)}
hence becomes dominated by the first term for large enough n.

In the next section the finite sample performance of the estimators proposed will be demon-

strated and compared to the Hill estimator. Defining the parameters by: k is the number of

upper order statistics, k∗ ≤
√
k, n is the sample size, a the tuning parameter and τ̂ , β̂ second-

order parameters, and the three empirical marginal distributions given by

• Pareto

T
(n)
i :=

n+ 1

n+ 1−R(Xi)
∧ n+ 1

n+ 1−R(Yi)

• Fréchet

V
(n)
i :=

{(
− log

R(Xi)

n+ 1

)
∨
(
− log

R(Yi)

n+ 1

)}−1

• Shifted Fréchet

V ∗i (n) = V
(n)
i + 1/2

The estimators to be compared are

• Hill defined by

η̂H :=
1

k

k−1∑
i=0

log

(
Wn,n−i

Wn,n−k

)
and asymptotic distribution given by

N
(
η + λ

1

1 + τ
, η2

)
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with Wn,n−i being either Pareto, Fréchet or shifted Fréchet empirical marginals.

• Extended mean-of-order-p defined as

η̂q(k) :=

{[
1
k

∑k−1
i=0

(
Wn,n−i
Wn,n−k

) 1
p

]p}−(1−1/q)

− 1

−(1− 1/q)

and asymptotic distribution given by

N
(
η + λ

1− aη
1− aη + τ

, η2 (1− aη)2

(1− 2aη)

)
with Wn,n−i as above being either Pareto, Fréchet or shifted Fréchet empirical marginals.

• Reduced bias extended mean-of-order-p defined as

η̃a(k) := η̂(S)
a (k)

{
1−

(
β̂
(n
k

)−τ̂
+

1

1 + 2Vn,n−k∗

)
1− a η̂(S)

a (k)

1− a η̂(S)
a (k) + τ̂

}
,

and asymptotic distribution given by

N
(
η, η2 (1− aη)2

(1− 2aη)

)

with η̂
(S)
a (k) defined by the above estimator with shifted Fréchet empirical marginals.

5.5 Finite sample simulations

The aim of this section is to demonstrate the finite sample performance of the estimators

proposed in Section 5.2.2 and 5.4. For the estimators presented in Section 5.2.2 the focus is

to compare the results for the three possible marginal distributions and the dependence on the

parameter q. The reduced bias estimator will only include the shifted Fréchet marginals V ∗

and the aim is instead to evaluate the impact of the bias reduction.

To simulate bivariate samples with given marginals and known values of η, τ , a selection

of copula models will be used. Several copulas are chosen due to their different behaviours

in both the main part of the distribution and the tails (see Figure 2.9) and we want to make

sure that our estimator can accurately estimate the tail dependence for all these cases. Section

2.2.2 details the basics of copulas, hence only a very brief definition will be provided here.
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The method of copulas stems from the famous Sklar’s theorem (Sklar (1959)), which

states that if F is a two-dimensional distribution function with continuous marginal distribution

functions FX , FY , then there exists a unique copula C : [0, 1] → [0, 1] such that F (x, y) =

C (FX(x), FY (y)). Coupling this with the definition

P(X > x, Y > y) = 1− FX(x)− FY (y) + F (x, y)

we arrive at the following relation

P(1− FX(X) < tx, 1− FY (Y ) < ty) = tx+ ty − 1 + Cθ(1− tx, 1− ty)

with Cθ(x, y) a particular copula function of the joint distribution function F , from which we

can simulate data. A thorough introduction to copulas and their relation to various depen-

dence measures is found in Nelsen (2006). From this definition the corresponding values of

η and second-order parameter τ , which controls the rate of convergence to the true bivariate

distribution F , can be derived. Heffernan (2000) provides a comprehensive list for values of

η for a large number of copula models. To robustly evaluate the performance, four parent

bivariate distributions with different combinations of η, τ will be used, namely:

(i) Farlie-Gumbel-Morgenstern distribution which is defined by the copula function

Cθ(u, v) = uv{1 + θ(1− u)(1− v)}, (u, v) ∈ [0, 1]2, θ ∈ [−1, 1]

For θ ∈ (−1, 1],

P(1− F1(X) < tx, 1− F2(Y ) < ty)

P(1− F1(X) < x, 1− F2(Y ) < y)
= xy

[
1− θt

1 + θ
(x+ y − 2) +O(t2)

]
which from (5.13) corresponds to η = 0.5, τ = 1.

In the simulation we will use θ = −0.25;

(ii) Frank distribution with copula function

Cθ(u, v) = −1

θ
log

(
1−

(
1− e−θu

) (
1− e−θv

)
1− e−θ

)
, (u, v) ∈ [0, 1]2, θ > 1

Expanding the above leads to

P(1− F1(X) < tx, 1− F2(Y ) < ty)

P(1− F1(X) < x, 1− F2(Y ) < y)
= xy

[
1− θt

2
(x+ y − 2) +O(t2)

]
which satisfies (5.13) with η = τ = 1/2.
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In the simulation we use θ = 0.5;

(iii) Ali-Mikhail-Haq distribution with copula defined by

Cθ(u, v) =
uv

1− θ(1− u)(1− v)
, (u, v) ∈ [0, 1]2, θ ∈ [−1, 1]

For θ = −1 we get

P(1− F1(X) < tx, 1− F2(Y ) < ty)

P(1− F1(X) < x, 1− F2(Y ) < y)
= xy

[
x+ y

2
− t2

2
(x+ y)(xy − 1) +O(t3)

]
satisfying (5.13) with η = 1/3 and τ = 2η = 2/3.

(iv) Bivariate Normal distribution with copula function

Cθ(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− θ2
exp

(
−s

2 − 2θst+ t2

2(1− θ2)

)
dsdt, (u, v) ∈ [0, 1]2

θ ∈ [−1, 1], falls outside the scope of our study since τ = 0, but is included in the

simulation study to evaluate the robustness of our estimator. η = 1+θ
2

, D(x, y) =

(xy)1/(1+θ) and we refer to Draisma et al. (2004) and Ledford and Tawn (1997) for

detailed calculations.

We will set θ = 0.6 which corresponds to η = 0.8.

From each of the above distributions, N = 1000 independent samples are drawn with

n = 500 pseudo-random i.i.d sample points from (X, Y ) each. The estimators are computed

for k = 5, ..., 300, where k denotes the number of upper order statistics of the Ti, Vi for

the estimation of η. To determine the range of values for the distortion parameter q, which

defines our primary estimator a = 1 − 1/q, and recall the necessary condition a < 1/(2η).

In the case of η = 1/2, which defines the case of the bivariate pair (X, Y ) being close to

exactly independent, this implies that q > 0 (since η ∈ (0, 1]). For η > 1/2, corresponding

to a positive association between (X, Y ) we get an upper bound on q, whereas for η < 1/2

which represents negative association, we get a negative lower bound, hence not adding any

further restrictions to q. Since none of the copulas introduced above, satisfying τ > 0, have a

corresponding η > 1/2 we will take q = 0.1(0.1)1.9.

To estimate τ, β in the reduced bias estimator given by Equation (5.17), the algorithm

outlined in Gomes et al. (2016) will be used, as described below.
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For a tuning parameter ρ ∈ R

τ̂ρ := min

(
0,

3(T
(ρ)
n (k)− 1)

T
(ρ)
n (k)− 3

)

dependent on the statistics

T (ρ)
n (k) :=


(
M

(1)
n (k)

)ρ
−
(
M

(2)
n (k)/2

)ρ/2
(
M

(2)
n (k)/2

)ρ/2
−
(
M

(3)
n (k)/6

)ρ/3 , if ρ 6= 0

ln
(
M

(1)
n (k)

)
− 1

2
ln
(
M

(2)
n (k)/2

)
1
2

ln
(
M

(2)
n (k)/2

)
− 1

3
ln
(
M

(3)
n (k)/6

) , if ρ = 0

where

M (j)
n (k) :=

1

k

k∑
i=1

[lnXn−i+1,n − lnXn−k,n]j , j = 1, 2, 3

Thanks to the very stable sample path of τ as a function of the sample size k1, the number of

upper order statistics included in the estimation process of τ is set to be k1 = n∗0.999, where

n∗ is the number of non-zero sample points (which here equals the sample length since the

probability of observing {X = 0} or {Y = 0} is zero in our simulations). To choose ρ, we

follow the stability algorithm proposed in Gomes and Pestana (2007) which selects the value

with the most stable path for large k1.

Denoting the estimate τ̂ , β is estimated through

β̂τ̂ :=

(
k

n

)τ̂
dτ̂ (k)D0(k)−Dτ̂ (k)

dτ̂ (k)Dτ̂ (k)−D2τ̂(k)

where for any α ≤ 0,

dα(k) :=
1

k

k∑
i=1

(
i

k

)−α

Dα(k) :=
1

k

k∑
i=1

(
i

k

)−α
Wi

where Wi, i = 1, ...k are scaled log-spacings defined by

Wi := i

(
ln
Xn−i+1,n

Xn−i,n

)
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5.5.1 Marginal distribution impact

As discussed in Chapter 2, the choice of marginal distribution should theoretically not have

an impact. This is however only true if we have an infinite sample, i.e. if n → ∞, which

naturally can never be true in practice. We further do not have the true distribution function

but only the empirical distribution. These two factors means that the marginal distribution

can have an impact because of the potential bias associated with them, something that can

only be discovered through finite sample simulations, i.e. take n much smaller than ∞. By

understanding which marginal transformation results in the smallest bias and MSE, we can

learn which transformation we should apply in our real world analysis in Chapter 6.

Figures 5.2 - 5.5 shows as a function of the top sample fraction k/n on the left the es-

timated mean, taken as the sample mean of the 1000 samples, and the mean squared error

(MSE) on the right for each of the four copulas introduced above, estimated by the proposed

specific estimators η̂q (5.10) and η̂
(S)
q (5.12). The three marginal distributions, unit Fréchet

(top), shifted by 1/2 unit Fréchet (middle) and unit Pareto (bottom) are all included in order to

compare the bias and MSE associated with each. The green horizontal line marks the optimal

value, i.e. correct η for the mean and 0 for the MSE plots. The dashed lines are for q < 1 and

solid for q > 1, with the orange and red marking the limits, and the blue dot-dashed highlights

the Hill estimator which is recovered for q = 1.

As discussed in previous papers, the bias in unit Fréchet case is significantly larger com-

pared to the unit Pareto. This difference in bias additionally gets large for increasing values

of k/n, since the bias for the unit Fréchet grows larger whereas it stays nearly constant for

the unit Pareto. This is however not the case for the shifted Fréchet marginals, which very

much behaves like the Pareto case for small values of k/n, with an increasing influence from

the additional bias term for larger values. This nicely confirms the asymptotic results derived

in Theorem 3.

For the Gaussian copula, which is out of the scope for our defined estimator due to τ = 0,

a similar general behaviour is seen for the different marginals with an increasing pattern for the

Fréchet and stable for the others. The bias is however significantly larger, demonstrating the

slower convergence rate.

In Figure 5.1 we saw that the asymptotic variance increases as a function of |a|, here repre-

sented mainly by q < 1, and η. This is again confirmed in these simulations, with significantly

larger variance for q = 0.1, which also is partly due to the associated higher bias. This is



Chapter 5. Coefficient of tail dependence estimator 116

however only visible for the smallest value of q, showing that the value of q in general has a

relatively small impact on the variance and mainly the bias. The impact from η can mainly

be seen in the difference between the Frank (η = 1/2) and Ali-Mikhail-Had copula (η = 1/3)

(Fig. 5.3, 5.4), where the bias is similar but the former has a significantly smaller variance for

smaller values of k/n.

Focusing on the bias, q > 1 seems to be advisable with values close to 1 generally having a

smaller bias compared to the other values of q for low values of k/n. This is however not true

for the Farlie-Gumbel-Morgenstern copula with shifted Fréchet and Pareto marginals where

0.2 < q < 1 provides the slightly smaller bias. Considering all the copulas except the Gaussian,

it is advisable to only consider a small top fraction of k/n ∼ 0.05, before the bias becomes

significantly larger.
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Figure 5.2: Farlie-Gumbel-Morgernstern copula with θ = −0.25. The marginal distribu-
tions are (top) unit Fréchet, (middle) shifted by one half unit Fréchet and (bottom) unit
Pareto. Dashed lines corresponds to q < 1 with orange line for the lower limit q = 0.1;
solid lines identify q > 1 with red highlighting the upper bound q = 1.9. The blue dot-
dashed line marks the Hill estimator (q = 1). Note the different scales on the y-axis for
the mean.
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Figure 5.3: Frank copula with θ = 0.5. The marginal distributions are (top) unit Fréchet,
(middle) shifted by one half unit Fréchet and (bottom) unit Pareto. Dashed lines corre-
sponds to q < 1 with orange line for the lower limit q = 0.1; solid lines identify q > 1
with red highlighting the upper bound q = 1.9. The blue dot-dashed line marks the Hill
estimator (q = 1). Note the different scales on the y-axis for the mean.
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Figure 5.4: Ali-Mikhail-Had copula with θ = −1. The marginal distributions are (top)
unit Fréchet, (middle) shifted by one half unit Fréchet and (bottom) unit Pareto. Dashed
lines corresponds to q < 1 with orange line for the lower limit q = 0.1; solid lines identify
q > 1 with red highlighting the upper bound q = 1.9. The blue dot-dashed line marks the
Hill estimator (q = 1). Note the different scales on the y-axis for the mean.



Chapter 5. Coefficient of tail dependence estimator 120

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

k/n

η

Gaussian(0.6), Frechet

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.00 0.05 0.10 0.15 0.20 0.25 0.30

k/n

M
S
E

Gaussian(0.6), Frechet

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

k/n

η

Gaussian(0.6), Frechet + 0.5

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.00 0.05 0.10 0.15 0.20 0.25 0.30

k/n

M
S
E

Gaussian(0.6), Frechet + 0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

k/n

η

Gaussian(0.6), Pareto

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.00 0.05 0.10 0.15 0.20 0.25 0.30

k/n

M
S
E

Gaussian(0.6), Pareto

Figure 5.5: Bivariate Gaussian copula with θ = 0.6. The marginal distributions are (top)
unit Fréchet, (middle) shifted by one half unit Fréchet and (bottom) unit Pareto. Dashed
lines corresponds to q < 1 with orange line for the lower limit q = 0.1; solid lines identify
q > 1 with red highlighting the upper bound q = 1.9. The blue dot-dashed line marks the
Hill estimator (q = 1). Note the different scales on the y-axis for the mean.
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5.5.2 Reduced bias estimator

The focus is now on the reduced bias estimator η̃
(S)
q (5.17), therefore only including the shifted

Fréchet marginals, and only the three copulas with τ > 0 are considered. The values for q are

the same as above. In the definition of the reduced bias estimator we imposed that k∗ ≤
√
k,

and here two values for the fractional power of k∗ are selected, specifically 0.3, 1/2, to evaluate

the dependence on this choice.

Figure 5.6 - 5.8 similarly to above displays the estimated mean to the left and the MSE to

the right, with the lines representing the same range of values. From these, we can immediately

see that the two copulas that had a positive bias, Frank and Ali-Mikhail-Had, has their bias

nearly fully reduced to zero. The Farlie-Gumbel-Morgenstern on the other hand has a slightly

increased bias, which results in the Hill estimator performing better both in terms of bias and

MSE. This is due to the estimation process for β, which always returns a positive β̂, leading

to a subtracting term.

For all copulas, a value of q slightly below 1 seems the most appropriate since it has a stable

minimal bias for all values of k/n. The specific choice of this parameter however becomes less

important for increasing k/n, with very little difference between the estimates corresponding

to the values q = [0.5, 1.5] for k/n ≥ 0.1. A larger fraction of the sample can also be used

compared with the estimator η̂
(S)
q , since the remaining bias is approximately constant for values

k/n ≤ 0.1. The number of top samples k∗ does not seem to have a significant impact, as long

as it is not greater than
√
k, which can be seen in the minimal difference between the plots

using k∗ = k0.3 and k∗ = k1/2.
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Figure 5.6: Farlie-Gumbel-Morgernstern copula with θ = −0.25. Reduced bias estimator
η̃

(S)
q with for (top row) k∗ =

√
k and (bottom row) k∗ = k0.3. Dashed lines corresponds

to q < 1 with orange line the lower limit q = 0.1; solid lines identify q > 1 with red
highlighting the upper bound q = 1.9. The blue dot-dashed line marks the Hill estimator
(q = 1).
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Figure 5.7: Frank copula with θ = −0.25. Reduced bias estimator η̃
(S)
q with for (top row)

k∗ =
√
k and (bottom row) k∗ = k0.3. Dashed lines corresponds to q < 1 with orange line

the lower limit q = 0.1; solid lines identify q > 1 with red highlighting the upper bound
q = 1.9. The blue dot-dashed line marks the Hill estimator (q = 1).
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Figure 5.8: Ali-Mikhail-Had copula with θ = −0.25. Reduced bias estimator η̃
(S)
q with for

(top row) k∗ =
√
n and (bottom row) k∗ = k0.3. Dashed lines corresponds to q < 1 with

orange line the lower limit q = 0.1; solid lines identify q > 1 with red highlighting the
upper bound q = 1.9. The blue dot-dashed line marks the Hill estimator (q = 1).

5.A Proof of Theorem 3

(The proofs in the Appendices 5.A and 5.B have been devised by Cláudia Neves, co-author of

the submitted paper ’Estimation and reduced bias estimation of the residual dependence index

with unnamed marginals’.)

Proof. Consider the random pairs (Xi, Yi), i = 1, ..., n, representing i.i.d copies of (X, Y ).

The primary focus is on the direct empirical analogue to the copula survival function

C(1−x, 1−y) such that C(x, y) = P(1−FX(X) < x, 1−FY (Y ) < y), which has at its core

a summation of Bernoulli random variables associated with the non-independent albeit

identically distributed, V
(n)
i . For an intermediate sequence m = nq(k/n) and m→∞, we

have for each x ∈ [0, T ], T > 0 and i = 1, .., n on the one hand, that
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n∑
i=1

1{Xi≥Xn−bkxc+1,n,Yi≥Yn−bkxc+1,n}

=
n∑
i=1

1{
1−F (n)

X (Xi)≤1−F (n)
X (Xn−bkxc+1,n),1−F (n)

Y (Yi)≤1−F (n)
Y (Yn−bkxc+1,n)

}

=
n∑
i=1

1{
T

(n)
i ≥ n

bkxc

}
(5.20)

with T
(n)
i defined in (5.7), which the following properly standardised version satisfies, as

n→∞,

√
m


1
n

∑n
i=1 1{ k

n
T

(n)
i ≥x

}
q(n/k)

− x−1/η

 d−→ W (x, x)

in D([0, T ]), where W is a zero-mean Gaussian process (cf. Haan and Ferreira (2006)

p.268). On the other hand,

n∑
i=1

1{Xi≥Xn−bkxc+1,n,Yi≥Yn−bkxc+1,n} =
n∑
i=1

1{
− 1

logF
(n)
X

(Xi)
≥− 1

F
(n)
X

(Xn−bkxc+1,n)
,− 1

logF
(n)
Y

(Yi)
≥− 1

F
(n)
Y

(Yn−bkxc+1,n)

}

=
n∑
i=1

1{(
− 1

logF
(n)
X

(Xi)

)
∧
(
− 1

logF
(n)
Y

(Yi)

)
≥− 1

log(1−bkxcn )

}

=
n∑
i=1

1{
V

(n)
i ≥− 1

log(1−bkxcn )

}

(5.21)

with V
(n)
i defined in (5.11). Owing to the power-series

∑
n≥0

tn

n+1
= − log(1−t)

t
, for |t| < 1,

we can write the following stochastic inequalities for (5.21): there exists ε > 0 such that

1{ k
n
V

(n)
i ≥(1− k

n
x
2 (1−ε( knx)

ε
))
} ≤ 1{

k
n
V

(n)
i ≥− k/n

log(1−bkxcn )

} ≤ 1{ k
n
V

(n)
i ≥(1− k

n
x
2 (1+ε( knx)

ε
))
}

uniformly in x on a compact set bounded away from zero. This gives information about

the error in the approximation of (5.21) to
∑n

i=1 1{ k
n

(
V

(n)
i + 1

2

)
1
x

}. Specifically, for each

δ > 0, there exists ε′ > 0 chosen arbitrarily small, such that

lim sup
n

P
(

max
1≤i≤n

|I(n)
i (x)− I(n)

i,ε′ (x)| > 1− δ, for 0 ≤ x ≤ T

)
< δ
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with intervening

I
(n)
i (x) = 1{

k
n
V

(n)
i ≥− k/n

log(1−bkxcn )

} and I
(n)
i,ε′ (x) = 1{ k

n
V

(n)
i ≥(1− k

n
x
2 (1±ε( knx)

ε
))
}

The above inequalities thus imply, for each n ∈ N, with δ, ε′ > 0 as before,

P
(∣∣∣I(n)

i (x)− I(n)
i,ε′ (x)

∣∣∣ ≤ 1− δ for all i = 1, ...,m; for 0 ≤ x ≤ T
)
> 1− δ.

By noting that

1

n

∣∣∣∣∣
n∑
i=1

I
(n)
i (x)− I(n)

i,ε′ (x)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣I(n)
i (x)− I(n)

i,ε′ (x)
∣∣∣ ≤ max

1≤i≤n

∣∣∣I(n)
i (x)− I(n)

i,ε′ (x)
∣∣∣

and letting ε′ > 0 be sufficiently close to zero, we arrive at

P
(

max
1≤i≤n

∣∣∣I(n)
i (x)− I(n)

i,ε′ (x)
∣∣∣ = 0 for 0 ≤ x ≤ T

)
> 1− δ.

Now, invoking a Skorokhod construction, we have that, as n→∞, almost surely,

sup
x∈[0,T ]

∣∣∣∣∣∣ 1n
n∑
i=1

1{
V

(n)
i ≥− 1

log(1−bkxcn )

} − 1

n

n∑
i=1

1{ k
n

(
V

(n)
i + 1

2

)
≥ 1
x

}
∣∣∣∣∣∣ −→ 0. (5.22)

Together with (5.20), the above entails the asymptotic, almost sure, approximation of the

suitably shifted Fréchet marginals to the unit Pareto marginals. This tells us that, for each

x, the normalised sum 1
n

∑n
i=1 1{ k

n

(
V

(n)
i + 1

2

)
1
x

} amounts to the rescaled empirical distribu-

tion function 1− F (n)
T (x) := 1

n

∑n
i=1 1{ knTn,n−i≥x} and is such that (1− F (n)

T (x))/q(k/n) =

S(1/x, 1/x)+Op

(
1/
√
nq(k/n))

)
. Then, a functional representation of the estimator con-

sidered on the basis of the tail empirical processes involved in (5.22) follows through the

identification of the order statistics Vn,n−i + 1/2 = Tn,n−i in relation to the unit Pareto

marginals. Such an asymptotic representation is at the origin of the Hill estimator, in

particular through the functional

η̂H ≡
n

m

∫ ∞
Tn,n−m

(log x− log Tn,n−m) dF
(n)
T (x),
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as well as to the general class of estimators

η̂a,b =
1

b

[ n
m

∫ ∞
Tn,n−m

(
x

Tn,n−m

)a
dF

(n)
T (x)

]b/a
− 1

 ,

and the result in the theorem thus follows.

Remark 1. From the proof of Theorem 3 we find that the assertion involving

1− F (n)
T (x) := 1

n

∑n
i=1 1{ k

n
T

(n)
i ≥x

} is essential to establish the approximation∣∣∣∣ 1
n

∑n
i=1 1{ k

n
V

(n)
i > 1

x(1− k
n
x
2 )
} − 1

n

∑n
i=1 1{ k

n

(
T

(n)
i − 1

2

)
> 1
x(1− k

n
x
2 )
}∣∣∣∣ = op(1), for k →∞, k/n→ 0

as n → ∞. This is the change in location upon pseudo-observations for estimating the

CTD η ∈ (0, 1]. In essence, it follows from Einmahl (1997) and Peng (1999) that,

√
m

(
1

m

n∑
i=1

11−FX(Xi)≤ knx,1−FY (Yi)≤ knx
− x−1/η

)
d−→ W (x, x)

with W (x, x) ≡ W (x) a zero-mean Gaussian process as before, and this corresponds to the

properly reduced and standardised stochastic process

√
m

 1
n

∑n
i=1 1{ k

n
T

(n)
i ≥x

}
q
(
n
k

) − x−1/η

 d−→ W (x),

through the linkage m/k := (n/k)q(n/k), as n → ∞. Upon this development, a suitable

second order condition can be imposed which will determine an extra term in the approx-

imation, akin to asymptotic bias. This condition of second order will then pin-down any

potential changes in the second order parameter τ resulting for the shift by 1/2. It also

outlines the key idea to serve as basis for the shaping of Theorem 5.

5.B Proof of Lemma and Theorem in Section 4.

Proof of Lemma. With the defined V and U it holds that V (t) = U
(
1/(1− e−1/t)

)
,

whence
U(t)

V ∗(t)
=

U∗(t)

U∗
(

1
1−e−1/t

) − 1/2

U∗
(

1
1−e−1/t

) , U∗ := U +
1

2
(5.23)
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with the latter term finishing as t → ∞. With q̃(t) = t−ηq?(t)U(t), |q̃(t)| ∈ RV−τ , the

second order regular variation for U in (5.14) is expressed as

lim
t→∞

(tx)−ηU(tx)− tηU(t)

q̃(t)
=
x−τ − 1

τ
(5.24)

for all x > 0. It implies in turn that with U∗ := U + 1/2, as t→∞

(tx)−ηU∗(tx)− tηU∗(t)
q̃(t)

=
x−τ − 1

τ
(1 + o(1)) +

x−η − 1

2U(t)q?(t)
, |U∗q?| ∈ RV−τ+η

i.e.,

x−η
U∗(tx)

U∗(t)
− 1 =

{
x−τ − 1

τ
q?(t)

U(t)

U∗(t)
+
x−η − 1

2

1

U∗(t)

}
(1 + o(1)) (5.25)

Additionally, we note that because U ∈ RVη, η > 0, we have for any constant c ∈ R,

U(tx)− c
U(t)− c

=
U(tx)

U(t)

(
1− c

U(t)

)−1

(1 + o(1)) =
U(tx)

U(t)
(1 + o(1)).

Therefore, with c = 1/2 in particular, we get that U∗(t) ∼ U(t), as t→∞, and also that

by taking y = U∗(tx)/U∗(t) in the equality 1/(1 + y) = 1− y + y2/(1 + y), y 6= −1, then

relation (5.25) entails

xη
U∗(t)

U∗(tx)
− 1 = −

x−η U
∗(tx)
U∗(t)

− 1

x−η U
∗(tx)
U∗(t)

=
x−τ − 1

τ
q?(t)(1 + o(1)) +

x−η − 1

2

1

U∗(t)
(1 + o(1))

Finally, Taylor’s expansion of y/(1− e−y) around zero ascertains the result:

U∗(t)

U∗
(

1
1−e−1/t

) =

(
1/t

1− e−1/t

)−η
= 1− η

2

1

t
+
η(1 + 3η)

24

1

t2
+ o(max(q?(t), 1/U

∗(t))

as t→∞, whereby we conclude that U(t) ∼ V ∗(t) from the stated equality (5.23) at the

beginning of this proof.

Proof of Theorem. The proof essentially hinges on translating second order regular vari-

ation into extended regular variation for an appropriate function related to the former.

With the already defined quantile function V , such that V (t) = U
(
1/(1− e−1/t)

)
, and
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q̃(t) = t−ηq?(t)U(t), |q̃(t)| ∈ RV−τ , we have that

(tx)−ηV (tx)− tηV (t)

q̃(t)
=

(tx)−ηV (tx)− tηU(t)

q̃(t)
− (x)−ηV (t)− tηU(t)

q̃(t)

=
(tx)−ηU

(
1/(1− e−1/tx)

)
− tηU(t)

q̃(t)
−

(tx)−ηU
(
1/(1− e−1/t)

)
)− tηU(t)

q̃(t)
.

Owing to the second order regular variation for U with index η > 0 encapsulated in (5.24),

which holds locally uniformly for x > 0, and by noting that x(t) = t−1/(1 − e−1/t) → 1,

as t→∞, we find the representation:

(tx)−ηV (tx)− tηV (t)

q̃(t)
=

(
1/t

1−e−1/(tx)

)−τ
− 1

τ
(1 + o(1))− t−η

(
1/t

1−e−1/(t)

)−τ
− 1

τ
(1 + o(1))

Now it is only a matter of applying Taylor’s expansion followed by judicious manipulation

in order to have, for all x > 0, the next order representation:

x−η V (tx)
V (t)
− 1

q?U(t)/V (t)
=
x−τ − 1

τ
− 1

2t
x−τ−1 + o

(
1

t

)
, (5.26)

as t→∞. Moving on to tackling V ∗(t) = V (t) + 1/2, we consider the above development

to approaching the extended regular variation property as follows:

(tx)−ηV ∗(tx)− tηV ∗(t)
q̃(t)

=
(tx)−ηV (tx)− tηV (t)

q̃(t)
+
t−η

2

x−η − 1

q̃(t)

=
x−τ − 1

τ
+
t−η

q̃(t)

x−η − 1

2
− 1

t

x−τ−1

2
+ o(t−1) + o(1).

Given that the present setting of asymptotic independence, the range η ≤ 1 is to be

imposed, the third order term that trickled down from (5.26) becomes negligible (note

that |tη q̃(t)| ∈ RV−τ+η and η < 1+ τ, τ > 0), thus resulting in the following representation

for V ∗:
x−η V

∗(tx)
V ∗(t)

− 1

q?(t)U(t)/V ∗(t)
=
x−τ − 1

τ
+

1

q?(t)U(t)

x−η − 1

2
+ o

(
1

q?U(t)

)
Under the conditions of this theorem, Lemma 4 enables replacement of U with V ∗ every-

where in the expansion above and the desired result of second order regular variation for

V ∗ arises. Specifically,

V ∗(tx)

V ∗(t)
= q?(t)x

ηx
−τ − 1

τ
+
η

2

1

V ∗(t)
xη
x−η − 1

η
+ o(q?(t)) + o

(
1

V ∗(t)

)
, t→∞



Chapter 6

Seasonal and regional variability in

the extremal asymptotic dependence

in daily rainfall

The statistical properties of the extremes might not necessarily be the same as the bulk of the

data, a feature that the bivariate Gaussian copula clearly demonstrates by potentially exhibiting

strong dependence in the central part of the distribution underlying the data, but asymptotic

independence in the extremes, except for the limiting case with asymptotic dependence when

the correlation coefficient ρ = 1. This chapter also addresses question 2 in the thesis aims

by considering how the dependence in the extremes potentially differ from the regular part

of the data. This is to better understand how the risk of co-occurring large events changes

for increasingly extreme events, hence extending the work and conclusions from Chapter 3.

Since only the very largest values are considered, the work here is based on the Extreme value

framework, which shifts the focus from the mean of the distribution to the tail.Since EVT is

specifically developed to model the tail behaviour of the observed largest values and derive the

best estimate for values larger than these, it provides support to comment on the behaviour

for larger values than the ones we have observed.

6.1 Overview

Studying the spatial behaviour of extreme rainfall has so far mostly been focused on fitting

a model from which one can estimate return levels. The most commonly used method to

address this are max-stable processes (Haan and Ferreira (2006)), which are closely related to

the univariate and multivariate extreme value distributions (Tawn et al. (2018)). The extremal

dependence structure for the random process is summarised by the exponent measure VN(·),

130
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which in theory can be a function of N finite, but in practice is most often defined for N = 2

because of the very complex calculations or explosion in the number of terms involved when

trying to extend it to more dimensions. This means that even if one in theory directly could

estimate the dependence between 3 or more variables, in practice this can only be estimated

for pairs of variables and then averaged together. There are several well established models for

the max-stable processes, however a common drawback with them is that they often do not

allow for asymptotic independence (e.g. Huser and Davison (2014)).

This inability to in practice attain both dependence classes, even though possible in the-

ory, is a common issue for extremal dependence models. That is, asymptotically dependent

max-stable models never reach the asymptotically independent value and vice versa for asymp-

totically independent models. This poses an issue for applications, such as rainfall modelling,

where we expect the dependence to decrease both as the distance increases and potentially also

as we move into extremes much larger than the ones we have observed. To make the distinc-

tion for the second issue, that the extremal dependence estimated holds for the observed levels

of extremes and values a bit larger, but potentially not for infinitely large values, Huser and

Wadsworth (2020) renamed these models subasymptotic instead of asymptotic. This renaming

highlights the fact that the EVT framework allows us to extrapolate our findings ’a bit’ outside

our measured range, but we cannot be sure that this holds for ’much larger’ values. Both

the definition of ’a bit’ and ’much larger’ will depend on the application and the statistician

performing the analysis.

To address the issue of changing dependence structure with distance, that is the variable

exhibits some dependence for distances d ≈ 0 but independence as d → ∞, and most likely

at distances far shorter than that, several methods have been proposed. Shooter et al. (2021)

approach this problem by introducing a spatial conditional extremes model, building on the

work by Shooter et al. (2019) and Wadsworth and Tawn (2019). The model includes two

parameters α, β, both which depend on the distance between locations, and are either as-

sumed piecewise linear or to follow a parametric function. The parametric function however

does not allow for the boundary values (α, β) = (1, 0) corresponding to the asymptotically

dependent case, effectively reducing the model to only allow for asymptotic independence.

Wadsworth and Tawn (2012) introduced the inverted max-stable process, which has asymp-

totically independent extremes instead of asymptotically dependent extremes as is the case

for the regular max-stable processes, but still do not allow for both dependence classes. This

therefore still remains an active area of research that is mentioned but not further explored here.

Most of the previous studies on spatial extremal rainfall has been focused outside of the
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tropics and using asymptotically dependent models, such as the UK (Atyeo and Walshaw

(2012)) which used a Bayesian hierarchical model in order to model many stations at the

same time. This model would be unsuitable for most of Africa because it requires relatively

many stations (in there 25), with very similar rainfall structure and long time series. In Shang

et al. (2011), a max stable process was fitted to the winter maximum precipitation collected

in the US and Thibaud et al. (2013) also used a max-stable process, but fitted to threshold

exceedances instead of annual maxima and on data collected over Switzerland. A comparison

of the performance of using Latent variable, copula and max-stable models was performed in

Davison et al. (2012) on annual maximum daily rainfall collected over Italy. In there they con-

cluded that a Latent variable method performed the worst in modelling the joint distribution,

hence a copula or max-stable model was preferred. Since all of these results were obtained

with asymptotically dependent models and for non tropical regions, we cannot compare our

results with them. However, if one wants to do a similar analysis, either the copula method or

the max-stable on threshold exceedances would be the most suitable considering our sample

sizes.

There has been very limited amount of work done over the continent of Africa, stemming

from the re-occurring issue of data scarcity and poor representation of extremes in satellite

and climate model data. A recent paper by Debusho and Diriba (2021) applied the conditional

multivariate exceedance model by Heffernan and Tawn (2004) to daily rainfall gauge data

collected over South Africa between 1991-2019. They however faced the issue of a very sparse

gauge network, with some station-pairs exhibiting negative dependence due to being located

in different seasonal rainfall regimes.

Sang and Gelfand (2009) also addressed the spatial extreme behaviour over South Africa.

Their aim was to construct a model with given marginals and some dependence between lo-

cations, therefore naturally chose a copula model. They specifically chose to work with a

Gaussian copula, hence by construction assumed asymptotic independence (Sibuya (1960)).

The model is assumed to have an exponential correlation function and the fitted parameter is

around 0.042, indicating a small correlation range.

Blanchet et al. (2018) is one of the very few studies in west Africa, specifically the Sahel re-

gion. They used daily data from 1950-2014, hence nearly the exact same period as the data set

previously used in this thesis covers, in the central Sahel and the very dense but spatially small

AMMA-CATCH rainfall network in Niger which has 5min measurements collected since 1990.

Arguing that an increase in the number of storms should not imply a decrease in the extent

of them, they choose the asymptotically dependent max-stable Brown-Resnick model for their
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analysis, but acknowledge that their findings might not be suitable to extrapolate from. They

calculated the probability of two locations co-exceeding the 99% individual quantiles, which

their chosen model however overestimated compared to the pairwise estimates for distances

less than 300km, a distance from which one can question if there is any true dependence left.

To determine the changes in extremal dependence for increasing distances for rainfall pro-

cesses, and in particular convective tropical rainfall, the use of an asymptotically independent

model seems most appropriate. This is since convective rainfall clouds are usually formed and

released over a relatively short period of time and rain usually falls as intense showers, result-

ing in large rainfall amounts over a very local area. The aim here is to understand how the

dependence changes with distance, and specifically at what distance locations can be assumed

independent. This is different from the aim of most of the previously mentioned papers where

the focus is instead on estimating return levels (see Section 2) which requires an asymptoti-

cally dependent model. This aim, together with the results in Sang and Gelfand (2009), and

our knowledge about the rainfall climate over our study region, provides support for using the

reduce bias coefficient of tail dependence estimator η̃ developed in Chapter 5 in the following

analysis.

6.2 The station selection process

To estimate the spatial extent of extremal dependence and how this varies with the monsoon

phase and presence of advective rainfall, the same daily rainfall data set presented in Chapter 3

will be used, comprising 590 rain gauges unevenly distributed over Ghana with daily measure-

ments between 1940-2017. With only the largest observations being considered in the EVT

statistical setting, and therefore only a very small sample size, our analysis becomes much

more sensitive to missing values since removing a few of the largest values can significantly

change the estimate. In the analysis in Chapter 3, a large proportion of the stations could be

included based on the argument that the potential bias from missing values would be averaged

out, something that cannot be relied upon here. Therefore only a small subset of high quality

stations containing the smallest possible number of missing values are included in the analysis

performed here.

Following the analysis in Chapter 3, only data from 1950 are used since very few stations were

available before that. Similarly to Chapter 4, only April, June, August and September will be

presented as representative months for the different monsoon phases. The country is split into

two regions by the 8°N latitude line which separates the uni- and bi-seasonal rainfall regimes

(Dunning et al. (2016)). Due to the large difference in the density of stations in the southern

and northern part of the country, slightly different selection criteria will be used to define the
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optimal stations. Initially, all stations with more than 50% missing values are removed since

these have less than 30 years of data, which is the standard minimum for climate analysis,

leaving us with 246 stations. This might still appear rather liberal, however this is set as the

lowest requirement, and for nearly all station-pairs this will be improved by carefully selecting

the optimal pair.

In addition, a requirement of maximum 10% missing values allowed in any month is im-

posed, with the station kept in the analysis but the data from that particular month is discarded

if more is present. Usually, either a full month is missing or just a single day so this has a

very small impact. In the southern region, between 12-15 stations has about 30 sample points

discarded with this restriction and in the north it is either 1 or 2 stations with 5-26 sample

points removed.

In order to estimate how the asymptotic independence estimate varies with distance, a few

centre stations, Sc, are selected and for each of these stations a set of pair stations Sc,p. Each of

the pair stations are located in a separate 10km distance bin, hence only one station-pair exists

for each centre station and distance (see last step in Figure 3.16 for distance bin visualisation).

From these station-pairs, a similar approach as in Chapter 3 can be taken by estimating the

dependence in 10km distance bins, up to a distance of 200km away from the centre station.

For the southern region, there are 200 stations with less than 50% missing values and

61 of these stations have at least one pair station within each 10km distance bin. This set

of 61 stations will be denoted ’distance-complete’. From this rich set of distance-complete

stations, 3 stations are chosen with the least number of missing values and the identifiers of

these stations are: ACC, AKU, SAL. For the northern region, there are only 43 stations and

none of them are ’distance-complete’. Additionally, the station with the best distance coverage

has many missing values, making it unsuitable to be the centre station for the analysis. The

stations TLE is therefore selected, although only having 15 instead of 17 distances covered, it

only contains 43 missing values which is determined to be more important in this case.

Since only days where both stations have measurements can be used, the optimal pair

station will be the one that has the minimum number of non-overlapping missing values.

Therefore, for both of the regions the pair station is selected that jointly with the centre sta-

tion has the least number of missing values, thereby always extracting the maximum number

of bivariate sample points. Table 6.1 presents the number of bivariate sample points for the

four stations in Sc and their associated pair stations Sc,p for each month. Figure 6.1 marks the

location of the centre pairs Sc with filled circles and their associated stations Sc,p with the same

colour, but different shapes. ACC stations are blue triangles, AKU has orange crosses, SAL
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green up-side-down triangles and TLE red stars. The south region stations have some common

pair stations, which is to be expected since the matching station with the least number of

missing values is always selected.

We note that even though there are similar number of samples for all months (accounting

for the difference in number of days of the month), there are some small differences between

them, highlighting that the missing values are not spread out evenly over the year. There are

generally more missing values in April, but not always. Another thing to notice is the generally

larger number of missing values in the northern region (TLE), however there are at least the

equivalence of 30 years of data for all station-pairs except the shortest distance in September,

which is just slightly below.

 
Longitude 

La
tit

ud
e 

Figure 6.1: Map of Ghana with all the stations in Sc (filled circles) and Sc,p marked.
Stations associated with ACC are blue up triangles, AKU orange crosses, SAL green
down triangles and TLE red stars.



Chapter 6. Extremal asymptotic dependence in rainfall 136

D
is

ta
n
ce

(k
m

)
A

C
C

A
K

U
S
A

L
T

L
E

A
p
ri

l
J
u
n
e

A
u
g

S
ep

A
p
ri

l
J
u
n
e

A
u
g

S
ep

A
p
ri

l
J
u
n
e

A
u
g

S
ep

A
p
ri

l
J
u
n
e

A
u
g

S
ep

0-
10

12
00

13
19

12
40

12
30

13
49

13
80

14
26

14
40

11
70

12
29

12
40

12
00

90
0

10
20

99
2

84
0

10
-2

0
18

28
19

18
20

14
19

20
14

65
14

65
14

19
14

36
13

20
12

57
13

33
11

70
19

50
19

19
19

84
18

59
20

-3
0

13
20

13
79

13
02

13
20

14
99

16
49

16
74

16
19

19
80

19
80

20
46

19
50

14
70

15
30

15
81

15
60

30
-4

0
19

20
19

79
20

46
19

50
14

69
15

89
16

42
15

25
14

40
15

59
15

49
14

40
0

0
0

0
40

-5
0

14
40

14
99

15
19

15
00

18
27

18
59

19
22

18
28

18
90

19
20

18
91

18
30

10
20

11
10

11
47

11
10

50
-6

0
18

28
18

59
19

22
18

28
17

69
17

99
18

29
17

70
17

70
17

40
17

98
16

80
0

0
0

0
60

-7
0

19
49

20
38

21
08

20
40

20
09

20
38

21
08

20
40

12
00

12
90

13
02

12
60

0
0

0
0

70
-8

0
17

40
17

99
18

29
17

70
17

09
17

69
17

67
16

20
17

70
17

70
17

98
16

80
0

0
0

0
80

-9
0

19
50

19
79

20
15

20
40

13
78

14
09

14
57

14
40

18
90

19
19

19
83

18
28

12
00

12
30

12
71

12
00

90
-1

00
18

30
19

19
18

91
18

60
18

59
19

18
19

83
18

58
18

60
18

60
18

29
17

40
20

10
20

40
21

08
20

10
10

0-
11

0
19

80
20

39
21

08
20

10
17

39
17

98
18

29
17

10
19

80
20

39
21

8
20

10
0

0
0

0
11

0-
12

0
17

10
16

76
17

04
16

79
17

69
17

40
17

98
17

10
19

50
19

20
20

15
18

29
18

00
19

20
19

22
18

60
12

0-
13

0
19

20
19

79
20

46
19

80
17

39
17

69
18

28
17

70
17

40
17

70
17

67
15

90
12

90
13

80
15

19
13

80
13

0-
14

0
19

80
20

09
21

08
20

40
18

59
19

19
18

91
18

60
20

40
20

09
21

08
20

10
19

79
19

48
20

77
19

80
14

0-
15

0
12

30
13

49
12

40
12

60
16

50
17

09
15

81
16

20
18

30
18

00
19

84
18

60
20

40
20

40
21

07
20

10
15

0-
16

0
18

30
18

89
19

53
18

30
17

99
18

29
18

91
18

30
19

80
19

50
20

15
19

20
12

00
11

70
12

09
11

70
16

0-
17

0
17

70
18

29
18

91
18

30
20

09
20

39
21

08
20

10
20

09
20

39
21

08
20

10
11

70
11

70
11

46
11

10
17

0-
18

0
18

00
18

88
18

90
18

27
19

49
19

79
20

46
19

80
20

10
20

10
20

77
19

80
13

20
13

80
14

57
12

00
18

0-
19

0
18

90
19

19
20

15
18

90
17

69
18

59
19

21
18

30
15

00
15

00
15

50
14

69
19

50
19

50
19

53
19

19
19

0-
20

0
19

50
19

49
20

15
19

80
20

09
20

39
21

07
20

40
20

10
19

80
20

15
20

10
20

40
20

39
21

08
20

10

T
ab

le
6.

1:
T

ot
al

n
u
m

b
er

of
b
iv

ar
ia

te
sa

m
p
le

p
oi

n
ts

fo
r

ea
ch

op
ti

m
al

st
at

io
n
-p

ai
r

in
S
c,
p

an
d

m
on

th
.

T
h
e

m
ax

im
u
m

p
os

si
b
le

n
u
m

b
er

fo
r

A
p
ri

l,
J
u
n
e

an
d

S
ep

te
m

b
er

is
20

40
an

d
fo

r
A

u
gu

st
21

08
(t

im
e

p
er

io
d

19
50

-2
01

7)
.



Chapter 6. Extremal asymptotic dependence in rainfall 137

6.3 Stationarity and clustering in time

Before investigating the tail dependence, some initial data exploration needs to be performed

to establish stationarity and independence in time for the individual time series. This will

complement the work done in Section 3.3.1 by focusing on the daily extreme values instead

of the bulk data statistics on annual or monthly aggregates. By plotting the monthly time

series for each of the stations in Sc, changes in occurrence and magnitude of extreme values

can be analysed, and thereby detect non-stationarity. The processes generating the extremes

must not necessarily be stationary over our time period despite the total annual amount has

been largely unchanged (see Figure 3.8). Due to the very short time series, any changes in the

magnitude of the extreme values will not be quantified, by for example estimating the extreme

value index for different time periods. Changes in magnitude will instead solely be visually

inspected and commented on from the time series. Changes in frequency are however more

difficult to visually inspect from time series and can be estimated non-parametrically, making it

feasible despite our small sample size. To estimate changes in frequency, the scedasis function

developed in Einmahl et al. (2016) will be used, which builds on the tail equivalence function

c introduced in Haan et al. (2015).

The skedasis function is based on estimating the kernel density for the largest observations

and thereby gain a graphic representation of how frequent and even these extreme observations

occur. Figure 6.2 demonstrates how this works and the limitations with this method. The

sample points are marked by the black points and the blue line is the kernel density curve

for the whole sample, below denoted by G(s). We can view the kernel density as a ’sum’ of

the individual density curves associated with each individual sample point, which are plotted

as orange lines. Peaks in the blue curve indicates that there are several sample points in the

vicinity of that location (high frequency) and a value close to 0 that there are no sample points

around that value. If the sample points are evenly distributed and the orange density curves

have an appropriate width, the blue line will be horizontal, except at the ends which are outside

the range of possible sample values.
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Figure 6.2: Kernel density estimate for the whole sample (blue line) and the individual
sample points (orange line) with the sample points marked by the black points.

Below follows the formal definition of the skedasis functions and the mathematical defini-

tion of the kernel density function. The skedasis function is defined in the following way:

Let i = 1, ..., n be the time points at which we collect the independent observations X
(n)
1 , ..., X

(n)
n

which follow various continuous distribution functions Fn,1, ..., Fn,n that share a common right

end point x∗ = sup{x : Fn,i(x) < 1} ∈ (−∞,∞], and there is a continuous distribution func-

tion F with the same right end point. Additionally there exists a continuous positive function

c defined on [0, 1] such that

lim
x→x∗

1− Fn,i(x)

1− F (x)
= c

(
i

n

)
uniformly for all n ∈ N and all 1 ≤ i ≤ n, and∫ 1

0

c(s)ds = 1.

The case c ≡ 1 corresponds to the uniform density, meaning that we have ’homoscedastic

extremes’ or equivalently equal tail frequency. The function c is here estimated by using a kernel

density estimation function G, which is a weighting function to non-parametrically estimate

the density. Formally, let G be a continuous, symmetric kernel function on [−1, 1] such that∫ 1

−1
G(s)ds = 1 and set G(s) = 0 for |s| > 1. Further let h := hn > 0 be a bandwidth (width

of the orange lines in Figure 6.2) such that h→ 0 and kh→∞ as n→∞, k as usual being
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the number of top order statistics. The function c is then estimated by

ĉ(s) =
1

kh

n∑
i=1

1
X

(n)
i >Xn,n−k

G

(
s− i/n
h

)
(6.1)

and therefore only exceedances at a maximum distance of h from s are included in the

estimate at the time point s.

There exists a variety of commonly used kernel functions with different shapes, giving

different proportional weight to close or distant points (Figure 6.3). The uniform function

assigns the same weight to all points within the bandwidth window whereas all other functions

give more weight to points closer to s. We will take G to be the commonly used biweight

kernel defined by

G(x) =
15(1− x2)2

16
, x ∈ [−1, 1]
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Figure 6.3: Examples of different kernel density functions with the same bandwidth.

In many environmental applications, clustering of high values are common and will result

in the assumption of independent sample points being invalid. This is frequently occurring for

high temperatures (Winter (2016)), as noticed with the past years heatwaves, due to the slower

and smoother processes but can also be observed in rainfall despite its stochastic nature. The

skedasis function described above cannot easily be used to distinguish if two extreme observa-

tion occur in two consecutive days, or if there are a few days between because of the smoothness

of the function. The first case would violate the independence assumption whereas the second

would not because the autocorrelation of tropical rainfall is only a couple of days (Figure A.2).
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A measure of the presence of clusters in consecutive days is the extremal index, θ ∈ [0, 1],

whose inverse, θ−1, is roughly a measure of the mean cluster size. θ = 1 indicates that there

is one exceedance within each cluster and the extremes are therefore independent, whereas a

smaller value corresponds to more than one exceedance within the cluster and thereby violates

the independence assumption.

To avoid this issue, the most common method is to decluster the data by enforcing that

only one extreme value exists within each cluster. To identify the cluster and to get an estimate

on the presence of clusters two widely adopted methods exists: the runs method (Smith and

Weissman (1994)) and the interval method (Ferro and Segers (2003)). In the runs method,

we define the threshold u over which only one exceedance is allowed within a cluster, and a run

length r which is the minimum number of non-exceedances required between two clusters. The

extremal index can also be estimated through the runs estimator (Haan and Ferreira (2006)),

where for 1 < l < n and N(un) :=
∑n

i=1 1Xi>un ,

θ̂ :=
1

N(un)

n−l∑
i=1

1Xi>un1Xi+1≤un ...1Xi+l≤un

For this estimator both the threshold and the run length needs to be decided by the user

and the choice of run length can be rather arbitrary in certain applications, as highlighted by

Hsing (1991). This prompted Ferro and Segers (2003) to develop a method that estimates

the extremal index without specifying the run length but instead inferring it from the data.

This method builds on the limit distribution of the interexceedance times between threshold

exceedances and equating theoretical moments with their empirical counterparts.

Since we have a good understanding of the physical processes behind our data and there-

fore know the length required between exceedances, the runs method will be used. The same

approach as Roth et al. (2014) will be taken by using the 95% quantile of the non-zero values

as the threshold for each location, and require there to be at least 1 day between exceedances.

For univariate Peak-over-threshold methods the non-maximum exceedances within a cluster

can be replaced by the threshold values, since these are ignored in the estimation process of

the extreme value index (see Section 2). In our multivariate setting however all non-zero mea-

surements are included in the coefficient of tail dependence (CTD) estimation since there might

be a large value at the other location, hence the non-maxima sample point will be removed

instead of replaced.

In the analysis, all time series are declustered before estimating the CTD but only results
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from our base stations Sc are presented here to demonstrate the presence of clusters and the

effect on the extremal index when removing them.

6.3.1 South region

Figure 6.4-6.6 shows the full monthly time series before declustering to the left and the associ-

ated skedasis function estimated by Equation (6.1) to the right, with k = b0.05∗n∗c where n∗ is

the number of non-zero observations and bxc denotes the integer part of x. From this, the fol-

lowing k values for the four chosen months for each base station are obtained; ACC (21, 48, 22,

26), AKU (27, 45, 22, 36) and SAL (27, 55, 28, 31). The much and slightly larger values of k

in June and September respectively are due to the larger proportion of rainy days (Figure 3.11).

Consistent for all stations is that there is not a clear trend in neither the frequency nor the

magnitude of the extreme observations but there has been some variability over time, especially

in the frequency. A decrease in frequency of large observations around the year 1990 can be

seen for all stations in June coupled with a slight decrease in the magnitude as well. Except

for this, there are no clear common patterns between the three stations, indicating that there

has not been a regionally common change in the extreme rainfall distribution, but mostly local

fluctuations. The close to 0 value in the skedasis function for the boundary years, but not

in the centre, is due to the shrinking bandwidth window near the edges. For year close to

1950, only later years can be included in the estimate of 6.1 since no data for earlier years are

available, hence reducing the possible number of extremes. The opposite is true for years close

to 2015, where only data from earlier years are available.

ACC (Figure 6.4) has larger variability in frequency compared to the other two stations and

a decrease in the most extreme values in September. SAL (Figure 6.6) on the other hand has

a generally stable fluctuation around the c = 1 value, with the exception of the large dip in

April and peak in September around 1990. AKU (Figure 6.5) has a decrease both in magnitude

and frequency in September since 1990, but the frequency has recovered in the later years.

Noteworthy is the lack of clear decrease in the 1970s and early 80s during the Sahelian drought

(see Section 3.1), further showing that the Guinea Coast was relatively unaffected by this.

Since the non-stationarity in the extremes appears to mainly be in the frequency and not

the magnitude, and the skedasis function is mostly fluctuating around 1, we will assume our

time series to be stationary in time in order to keep a sufficiently large sample size. Incorpo-

rating non-stationarity into the estimation process, by for example including covariates such as
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sea surface temperature or other large scale drivers could be a potential extension of this work.

Slater et al. (2021) gives an extensive review of potential drivers and methods for handling

non-stationarity in hydrological applications.

To address the independence assumption, Figure 6.7 displays the scatter plots of pairwise

realisations of Xt, Xt+1, with the rainy days 95% quantile represented by the vertical and hori-

zontal lines, for the three south stations. Since the observations for each year are independent

of each other, consecutive exceedances are allowed if there is a year break between them. Hence

a month with d days will result in d−1 points. Points in the upper right corner mark temporal

clusters since two consecutive days had measurements above the high threshold, hence the

smaller of these values will be excluded to obtain independent observations. To demonstrate

the impact of removing these, the extremal index will be estimated with the runs method before

and after this declustering.

As one would expect from the mainly convective nature of west African rainfall, most of the

extreme values are isolated in time, which can be seen from the low number of points in the

upper right corner. The effect of removing these few occurrences is seen in Table 6.2. Before

declustering, most time series have nearly independent extremes as indicated by a value close,

but not equal, to 1 and after they are as expected equal to 1. Despite the small difference and

low number of sample points removed, the declustered time series will be used to not give a

couple of events more weight than the rest, given the very few sample points considered for

the subsequent CTD estimation.
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Figure 6.4: Time series of daily rainfall for the station ACC for (top to bottom) April,
June, August and September. (Left) Time series with blank areas corresponds to missing
values and (right) estimated skedasis function of exceedances above the 95% rainy day
quantile.
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ĉ

Station  07003AKU , month 4

0
5

0
1

0
0

1
5

0

1950 1960 1970 1980 1990 2000 2010

Station  07003AKU , month 6

Time

R
a

in
fa

ll 
(m

m
)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1955 1965 1975 1985 1995 2005 2015

Time

ĉ
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Figure 6.5: Time series of daily rainfall for the station AKU for (top to bottom) April,
June, August and September. (Left) Time series with blank areas corresponds to missing
values and (right) estimated skedasis function of exceedances above the 95% rainy day
quantile.
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ĉ

Station  23022SAL , month 8

0
2

0
4

0
6

0
8

0
1

2
0

1950 1960 1970 1980 1990 2000 2010

Station  23022SAL , month 9

Time

R
a

in
fa

ll 
(m

m
)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

1955 1965 1975 1985 1995 2005 2015

Time

ĉ

Station  23022SAL , month 9

Figure 6.6: Time series of daily rainfall for the station SAL for (top to bottom) April,
June, August and September.(Left) Time series with blank areas corresponds to missing
values and (right) estimated skedasis function of exceedances above the 95% rainy day
quantile.
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Figure 6.7: Scatter plots for Xt and Xt+1 from the station ACC (top), AKU (middle) and
SAL (bottom) for (left to right) April, June, August and September. Lines marks the
rainy days 95thpercentile.

ACC AKU SAL

April June Aug Sep April June Aug Sep April June Aug Sep

Before 1 0.915 0.905 0.96 0.962 0.953 0.952 1 0.962 0.926 0.926 0.933

After 1 1 1 1 1 1 1 1 1 1 1 1

Table 6.2: Values of the extremal index before (top) and after (bottom) declustering the
south region time series, using the runs method requiring 1 day between observations
above the 95% non-zero rainfall quantile.
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6.3.2 North region

Similarly to above, Figure 6.8 shows the full monthly time series before declustering to the left

and the associated skedasis function to the right. Using the same method to determine k, the

number of exceedances for the skedasis function for the four months are k = (20, 38, 49, 57) .

In contrast to the southern region, in the 1970s during the Sahelian drought a drop in

the frequency of extreme observations can be seen for all months except August, with this

being especially pronounced in June. Similarly to the southern region there is clear lack of

extreme values around 1990, however most notably here in April instead of June. There is also

a peak in the frequency of extreme observations during the 1960s in September, which also has

been noted in Nicholson et al. (2018). The magnitude of the extremes has however remained

fairly constant for the entire time period and all months. The overall pattern is therefore a

non-regular variability around the uniform 1 line, supporting the assumption of approximate

stationarity in the extremes.

Just as for the southern region, Figure 6.9 demonstrates that there are very few occurrences

of consecutive days recording extreme amounts, which is confirmed by the close to 1 extremal

index values in Table 6.3. Based on the same arguments as for the southern region and for

consistency, the analysis in the next section will be based on the declustered time series.
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Figure 6.8: Time series of daily rainfall for the station TLE for (top to bottom) April,
June, August and September.(Left) Time series with blank areas corresponds to missing
values and (right) estimated skedasis function of exceedances above the 95% rainy day
quantile.
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Figure 6.9: Scatter plots for Xt and Xt+1 from the station TLE for April, June, August
and September. Lines marks the rainy days 95th percentile.

TLE

April June August September

Before 1 0.973 0.979 0.911

After 1 1 1 1

Table 6.3: Values of the extremal index before (top) and after (bottom) declustering the
TLE time series, using the runs method requiring 1 day between observations above the
95% non-zero rainfall quantile.

6.4 Modelling spatial extremal dependence

To estimate the tail dependence at the different distances and months, the reduced bias esti-

mator of the CTD developed in Chapter 5 will be used to investigate the positive or negative

association between extreme events occurring simultaneously at two stations. Recalling that

the CTD, η, is essentially putting a measure on the probability of X and Y being large at the

same time when they are asymptotically independent, we can obtain a visual interpretation of

the η value through bivariate scatter plots. By transforming the station time series data to

standard uniform scale to remove differences in magnitude between the two variables, and plot

the resulting bivariate sample points, we can gain an understanding of the two stations joint

behaviour. To transform the data to the uniform scale, assign each sample point Xi, i = 1, ...n

its rank divided by the sample size, i.e. U(Xi) := 1
n

∑n
j=1 1Xj≤Xi . Ties gets assigned the mean

rank value, hence if there exists 5 days with the smallest possible amount of rainfall observed,

each of these will be assigned 3/n. In case there exist some positive association between the

two variables, that is 0.5 < η < 1 and equivalently P (X > u|Y > u) > P(X > u), a higher

density of points will be found in the top right corner compared to the exact independence

case η = 0.5. In the near exact independence case, a uniform pattern should emerge for the

largest values since there would be no preference for high or low values at station 2 given a
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high value at station 1.

Figures 6.10 - 6.11 demonstrates how the bivariate scatter plots over rainy days are related

to η and the impact from the sample size. The construction and interpretation of the two line

graphs in the bottom of each plot is detailed in Section 6.4.1. For now, only the value of η in

the right bottom plot, marked by arrows, are of interest.

Figure 6.10 shows examples of how the scatter pattern is related to the value of η when a

sufficiently large number or samples exist.

If a smaller number of sample points exist, the estimation becomes significantly poorer and

it is very difficult to graphically evaluate the pattern, as demonstrated in Figure 6.11, where

the station-pair with 25km apart appears much more associated than the 5km apart pair. An

important thing to remember is that the CTD only considers the tail of the distribution and

provides no information about the remaining dependence structure. This can however be dif-

ficult to separate out from a visual inspection, since we are naturally drawn to the overall or

dominating features of a graph. The two scatters in Figure 6.12 have the same tail dependence

structure, but the 5km can easily appear more correlated since the main part of the graph has

a distinct linear structure.

These three examples demonstrates that the uniformly transformed bivariate scatter plots

can serve as an initial exploration tool of positive association between two variables, but a

quantitative tool is needed to not draw conclusions about the tail behaviour from the main

part of the distribution. They also demonstrate the sensitivity of the estimator to very small

sample sizes, highlighting that the estimates needs to be evaluated in combination with their

sample size.
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Figure 6.10: Combination plot for June at the station ACC, linking the bivariate uniform
scatter pattern with coefficient of tail dependence values ranging between η̃ ∼ 1 and η̃ =
0.5. The scatter plots are over rainy days only with sample sizes: 5km=498, 25km=356,
155km=497. Details of the two bottom graphs are given in Section 6.4.1.
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Figure 6.11: Combination plot for September at the station SAL, with examples of poor
estimates of η̃ due to small bivariate sample sizes (left and right scatter) in comparison
to a larger sample size (middle scatter). The scatter plots are over rainy days only with
sample sizes: 5km=161, 25km=415, 185km=254. Details of the two bottom graphs are
given in Section 6.4.1.
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Figure 6.12: Combination plot for August at station AKU, with two examples of scatter
plots associated with the same value of η̃. The scatter plots are over rainy days only with
sample sizes: 5km=211, 55km=297. Details of the two bottom graphs are given in Section
6.4.1.

6.4.1 Estimation of tail dependence

Supported by the three examples shown in the previous section and the need for quantifying

the positive association, the tail dependence will be estimated by applying the reduced bias

estimator η̃a given by Equation (5.17) presented in Chapter 5, with the parametrisation a =

1−1/q and shifted by 1/2 unit Fréchet marginals. That is, given that k is the number of upper

order statistics, k∗ ≤
√
k, n the sample size, a the tuning parameter and τ̂ , β̂ second-order

parameters, the estimator is given by

η̃a(k) := η̂(S)
a (k)

{
1−

(
β̂
(n
k

)−τ̂
+

1

1 + 2Vn,n−k∗

)
1− a η̂(S)

a (k)

1− a η̂(S)
a (k) + τ̂

}
,

with

η̂(S)
a (k) :=

{[
1
k

∑k−1
i=0

(
1/2+Vn,n−i
1/2+Vn,n−k

)a]1/a
}−a
− 1

−a
and

V
(n)
i :=

{(
− log

R(Xi)

n+ 1

)
∨
(
− log

R(Yi)

n+ 1

)}−1

The reason for working with an asymptotic independent model is supported by the results
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in Chapter 3, where even for the very heavy rainfall the probability of co-occurrence was never

above 0.8 and dropped down to the climatological value at a distance of ∼ 150km, indicating

near exact independence. Although the process behind extremal observations is often different

to the regular regime, it seems suitable to work with a model that allows for exact independence

rather than one that assumes the two variables to be dependent, to not artificially inflate the

dependence range.

In the simulation study in Chapter 5, it was concluded that there was a significantly larger

bias for q close to 0 and often a lower bias for values larger than 1, where 1 is the value at

which we recover the Hill estimator. With the behaviour being more stable for q > 1 and the

bias for small k/n generally smaller for values close to 1, the value q = 1.1 is chosen here.

Similarly to the co-occurrence estimation in Section 3.2.4, the aim here is to estimate the

dependence in the rainfall amounts but not the occurrence since as mentioned previously these

are governed by different processes. Therefore only days where both stations record non-zero

values are used in the subsequent analysis. However, we still want to preserve the information

about what proportion of the measured days has been used for the estimation, hence n will

still be the number of measured days instead of the number of rainy days. This additionally

makes it easier to compare the estimates between the different months, since we have a similar

number of missing values over a given year, but a much higher proportion of dry days outside

the main monsoon season (Figure 3.11).

Since there is a large difference in the number of sample points (see Table 6.1) for the

station-pairs in Sc,p, especially for the north station TLE, all results will be presented as a

function of k/n =: kn rather than k. To determine the optimal kn, η̃a is estimated for the

10 closest station-pairs (0-100km apart) for k = 10, 15, ...., b0.1 ∗ nc (Figures 6.13-6.16, left

column), hence enforcing that at least 10 sample points are included in the estimation. By

plotting the estimates as a function of kn, we select the proportion at which the estimates lines

are approximately linear to the left of this value, in Figures 6.13-6.16 indicated by the black

vertical line. This is the sample principle as the one for univariate statistics for choosing the

POT threshold (Figure 2.8). If they are not stable at one value, the point at which they start

to stably fluctuate around a value is chosen.

After selecting the most suitable proportion, and thereby fixing kn, the estimates are there-

after plotted as a function of the distance (Figure 6.13-6.16, right column) now extending to

the full range 5-200km. This essentially corresponds to taking a vertical slice of the first plot

at the fixed kn value, which is marked by the vertical black line. The 95% CI is estimated
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using the variance expression in Corollary 2 and added to the fixed kn distance plot. As a

reference these plots also include the corresponding Hill estimates (dashed line) but without

the corresponding CI to ease the readability of the graph.

6.4.2 Southern region

In general, there is a lot of variation between the three stations despite being located in the

same region and sharing multiple pair-stations as can be seen in Figure 6.1. This is partly due

to the variability in sample size between the station pairs (see Table 6.1), but also due to the

common problem in Extreme value statistics of highly variable estimates for small changes in k.

In the left hand plots in Figures 6.13 - 6.15, it can be seen how the estimate varies as a func-

tion of k/n, hence of the same format as the plots presented in the simulation study in Chapter

5. In all the left hand plots we can clearly see the convergence of all distance-dependence lines

to a value of around 0.6-0.7 as we move away from the extremes and into the normal part of

the sample. The black line indicating the common optimal proportion kn at which the lines are

approximately constant to the left, and before they have converged to the non-extreme esti-

mate, is around 3% for nearly all months. This corresponds to between 35-120 sample points,

depending mainly on the month but also on the station-pair. The right hand plots instead show

the dependence as a function of distance, for each distance using the k corresponding to the

kn proportion marked with the vertical black line. Due to the small sample size, the 95% CI in

the right hand estimates plots are relatively wide, something that we mention but cannot do

anything to address at this stage. A second thing to notice is the near exact agreement between

our reduced bias estimator and the Hill estimator, with the dashed Hill line only being slightly

larger than the reduced bias estimator. In the simulation study in Section 5.5.2, the Hill esti-

mator was always significantly larger than the reduced bias, indicating that the less pronounced

pattern seen here could be due to difference in performance when applying the estimators to

real world data compared to perfect model data. By recalling that the variance is given by η2

for the Hill estimator and η2(1 − aη)2/(1 − 2aη) with a = 1 − 1/1.1 for the specific version

of the reduced bias estimator, the variance of the two differ by less than 0.01 for all values of η.

For ACC (Figure 6.13), there appears to be some dependence at short but not moderately

long distances in April and September, with an estimate of around 0.75 for short distances that

drops down to the 0.5 exact independence line at around 50km. In June at the peak of the

monsoon and when the ITCZ draws in moist air from the Atlantic ocean, there is near exact

asymptotic dependence for the station-pair with 5km apart with an estimate close to 1. This is

also one of the few estimates where the CI is far away from the 0.5 line, indicating that there



Chapter 6. Extremal asymptotic dependence in rainfall 155

definitely is some positive association between the two stations. August exhibits a relatively

constant pattern for the first 120km, fluctuating around the 0.7 line, which the estimator seems

to converge to as we move away from the extreme values. August being the little dry season

means that we have much fewer rainy days and therefore significantly less sample points, which

we could see in Figure 6.12 has an impact on the estimate. If we further compare this with

the co-occurrence probability in Figure A.1 and use the 95% threshold marked in Figure 6.7,

we can see that August would belong to the ’moderate’ intensity class (10− 30mm) which in

general exhibits a much longer decorrelation range compared to the higher amounts.

AKU (Figure 6.14) displays generally lower values compared to ACC and SAL, with April

being the exception. Even though the estimate never reaches the independence line in April,

there is a significant decrease between 5km and 60km, after which the estimate stabilises and

the CI envelope encloses the exact independence line. August appears to have a decreasing

trend for he first 55km, after which it fluctuates around the 0.5 line, however the estimate

is close to 0.5 for all distances indicating a very weak positive association. AKU, compared

to the other two south region stations is located inland with many of its pair-stations located

even further inland. These stations might therefore experience less rainfall coming from moist

maritime air being advected and released over land, and instead more small scale convective

rainfall, which could explain some of the weaker patterns seen here.

The other coast station SAL (Figure 6.15) is more similar to ACC in patterns, with the clear

difference that the estimate does not cross the exact independence line for both August and

September. A comparably strong positive association for short distances in June can be seen

with an estimate of around 0.85 and CI away from the exact independence line. The tendency

of values around 0.6-0.7 for longer distances in August compared to the other months can be

seen here as well, with a slowly decaying pattern all the way until 180km. September is very

inconclusive, with a patten more similar to August at ACC, exhibiting a near constant value

of 0.6-0.65 for all distances. This could be due to the same reason as for August, the largest

values are not very large in the absolute sense. Looking back at Figure 6.7, we can see that

the threshold line is around 20mm for SAL, whereas ACC and AKU has threshold values of

30mm and 45mm respectively, indicating generally more moderate amounts at SAL which we

already know has a slower decaying correlation.
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Figure 6.13: Estimation of the coefficient of tail dependence through estimator η̃a as a
function of k/n (left) and distance (right) for the station ACC. (left) The coloured lines in
the left hand plots corresponds to distances up to 100km, with darker colour representing
shorter distances and the black vertical line marks the k/n value used for the right hand
plots. (right) Solid line is η̃a and dashed Hill, the envelope on the right hand plots encloses
the 95% CI.
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Figure 6.14: Estimation of the coefficient of tail dependenc through estimator η̃a as a
function of k/n (left) and distance (right) for the station AKU. (left) The coloured lines in
the left hand plots corresponds to distances up to 100km, with darker colour representing
shorter distances and the black vertical line marks the k/n value used for the right hand
plots. (right) Solid line is η̃a and dashed Hill, the envelope on the right hand plots encloses
the 95% CI.
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Figure 6.15: Estimation of the coefficient of tail dependence through estimator η̃a as a
function of k/n (left) and distance (right) for the station SAL. (left) The coloured lines in
the left hand plots corresponds to distances up to 100km, with darker colour representing
shorter distances and the black vertical line marks the k/n value used for the right hand
plots. (right) Solid line is η̃a and dashed Hill, the envelope on the right hand plots encloses
the 95% CI.
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6.4.3 North region

Since several of the crucial distances are missing, it is even more difficult to draw conclusions

about the dependence structure in this region compared to the south, but some similarities

and differences can be observed. In Figure 6.16 it can be seen that there is a very strong

positive association at the shortest distances in both April and June, but this quickly drops

of to near exact independence at 45km. Despite August being one of the rainier months in

this region, there is a much weaker association even at short distances, the reason for which is

still unclear. September, which is the peak of the rainy season has a relatively high, constant

value for the 3 first distance bands and does not seem to reach the independence line until

115km away, which is significantly further away than for the other months. However, due to

the large number of missing distances we cannot conclude if the underlying pattern follows

linearly between the estimates, or rapidly drops down to a value around 0.5, and the higher

value at 90km is a temporarily higher value as seen in June. This is therefore only seen as a

first indication of seasonal differences and not exact estimates of decorrelation distances.
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Figure 6.16: Estimation of the coefficient of tail dependence through estimator η̃a as a
function of k/n (left) and distance (right) for the station TLE. (left) The coloured lines in
the left hand plots corresponds to distances up to 100km, with darker colour representing
shorter distances and the black vertical line marks the k/n value used for the right hand
plots. (right) Solid line is η̃a and dashed Hill, the envelope on the right hand plots encloses
the 95% CI.
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6.5 Discussion and further work

In this chapter, we have attempted to obtain one of the first estimates of the dependence struc-

ture in extreme rainfall over west Africa through the application of multivariate EVT. This can

be seen as an extension of the analysis performed in Chapter 3, drawing on asymptotic theory

and only considering the largest observations instead of the full sample. Although convective

systems over west Africa can spread several hundred kilometres, so called MCSs, the presence

of local storms and the natural assumption that the dependence between any two locations

should diminish as the distance increases, an extremal dependence model which models the

asymptotic independence rather than asymptotic dependence was deemed appropriate. This

has also been recommended in some recent papers when considering extreme rainfall over

South Africa (Sang and Gelfand (2009)). The reduced bias estimator of the CTD developed

in Chapter 5 was therefore applied to our daily rainfall data set.

One general conclusion from this chapter is the need for mixed models which can seamlessly

transition between modelling extremal asymptotic dependence and asymptotic independence

for increasing distances. Comparing the results here with the distances of around 100-200km

obtained in Blanchet et al. (2018), one can conclude that max-stable dependence models prob-

ably inflate the dependence range. The asymptotically independent model on the other hand

does not provide information about the potential asymptotic dependence existing between the

two variables, leading to both type of models currently available less than ideal for this type of

analysis.

A problem here, which is shared with the limited number of previous papers on extreme

rainfall over Africa, is the relatively short time series which causes issues since very few rainy

sample points are available for each month, especially outside the most rainy months. With

the strong seasonality in rainfall due to the WAM, pooling data from several months could

potentially add more variability by violating the assumption of identically distributed data. It

further became clear that as with most extreme value analysis, one needs to be careful what

k/n, or essentially k, one chooses since the estimator seems to converge to a general value

of 0.6-0.7 when the central part of the data is included. These shortcomings added together

results in very wide CI, leading to any conclusions drawn here rather weak and mainly a first

indicator of how this method performs on tropical rainfall data.

One of the main conclusions drawn is that the distance at which any positive association

instead of exact independence is a reasonable assumption between two stations, is much shorter

than the distances seen in Chapter 3. This seems to mainly be dependent on the presence of
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extreme values in the absolute sense, with months such as August in the south exhibiting a

much longer dependence range but also has smaller maximum amounts and less spread be-

tween the largest amounts. The north region appears to have the opposite pattern with the

longest dependence distance for the peak month September. It is however a much less robust

result since we are missing several distance bands in the first 100km, which means that any

conclusions at those distances assumes a linear interpolation between the available distances.

We can further conclude that there is a difference between the coast stations compared to the

inland in the south region, which could be highlighting the difference in nature of convective

and advective rainfall.

To better understand how the estimator performs on measured data, compared to perfect

model data, an additional simulation study similar to the one presented in Chapter 5 on

tainted model data could be performed. This could potentially shine some light on why the

reduced bias estimator η̃a and the Hill estimator returns the same estimate here but not in

the previous simulation study for any copula model. By mixing in a certain proportion of a

different distribution or introducing missing values in a similar proportion as observed in our

time series, we could gain a better understanding of how large influence these deviations have

on the estimate. This simulation study should also be done with sample sizes ranging from

the smallest ones available here, ∼130, up to the ones used in Chapter 5 (n=500) to better

understand at what stage this starts to have a significant impact.



Chapter 7

Conclusions

In this chapter the main conclusions drawn from Chapter 3-6 are presented and how these

relate to the aim questions defined in Chapter 1. For each of the aim questions, the scientific

advancements and the limitations for answering them are discussed. Several directions for

further work are outlined and how these can improve on some of the limitations faced here. The

chapter ends with a final conclusion on how the results presented addresses the overall thesis

aim of improving the estimation of the key components for relating rain gauge observations

with satellite estimates.

7.1 Summary of main outcomes

7.1.1 New methods for estimating correlation distances

Building on the methodology used in Ricciardulli and Sardeshmukh (2002), a detailed algo-

rithm for calculating the correlation range for daily rainfall has been developed in Chapter 3.

A significant advantage of using this method compared to previously proposed methods, is the

random sampling step which determines the background probability for the events of interest.

Instead of fixing it to a user determined value, it naturally allows for a data informed ’null

hypothesis’ value that changes with the season. By only incorporating the events that are of

interest, such as a specific intensity band, it provides a method for investigating the differences

between different rainfall events. A second advantage is the non-parametric form of this esti-

mation method, therefore not requiring the user to make assumptions about the nature of the

correlation relation, such as for the Pearson’s correlation.

In Chapter 5, a semi-parametric estimator for estimating the bivariate extremal dependence

in the case of asymptotic independence, as advised by Sang and Gelfand (2009) for tropical

rainfall, has been developed and further a reduced bias version of the same estimator. The es-
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timator is based on the mean-of-power-p estimator proposed by Gomes and Caeiro (2014) but

with the bivariate extension following the work of Goegebeur and Guillou (2012) and Draisma

et al. (2004). Due to the format of the submodel proposed by Ledford and Tawn (1996), all

the classical estimators for the extreme value index, such as the Hill and moment estimators,

can be utilised however all of these suffer from significant bias as the included sample size

increases. The reduced bias estimator proposed here is one of the few available estimators

incorporating the error that stems from the marginal distribution transformation. It is shown

to significantly reduce the bias compared to the Hill estimator and due to its analytical instead

of maximum likelihood form, confidence intervals can cheaply be obtained.

A common limitation for both of the models developed here is the need for a relatively

large sample size, something that still is rare for most parts of Africa. The non-parametric

estimator relies on the Law of Large Numbers for the averaging of the individual co-occurrence

probabilities to converge to the true value. As with all extreme value methods, only a very small

proportion of the largest values are included in the estimation, resulting in very few sample

points in the case of a small sample size. This ultimately leads to very large CI, often resulting

in uninformative estimates. The information obtained by the coefficient of tail dependence

estimator can further not be used to estimate return periods or similar estimates of interest,

which is a limitation in case of risk analysis.

7.1.2 Intensity dependent correlation range

Despite the wide range of rainfall processes occurring over west Africa, the correlation range

is almost always assumed to be intensity invariant. In this work this assumption has proved to

be unrealistic, with significant difference between the area of influence from varying intensity

classes. Chapter 3 demonstrated that low intensity rainfall has a much smaller correlation range

compared to high intensity rainfall. It further concludes that there is a strong seasonal cycle on

the short-distance correlation for low intensity rainfall, but not for the heavier intensities where

this stay constant. Since rainfall events of low intensity are much more frequently occurring

than heavy (Maranan et al. (2018)), estimating one general correlation range will result in an

underestimation of locations receiving rainfall in the case of heavier events. This also reduces

the amount of information that could be obtained in data sparse regions, by not maximising

the number of observations that can be utilised.

A change in the pattern of longer correlations for higher intensity is found in Chapter 6,

where the dependence range of extreme values is found to be of similar distance as for low

intensity events. This is in line with previous assumptions that physical phenomena tend to
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become more localised for the highest quantile events (Huser and Wadsworth (2020)). The

robustness of these findings are however very weak due to the limited data available. Even

though the data set used here is both longer and more dense than most other African rain

gauge data sets, the strong seasonality and the limited number of stations with few missing

values results in very few bivariate points left for the individual estimations. In the north region,

the gauge network is not dense enough to find suitable station-pairs for several of the crucial

distances, leading to rather weak conclusions drawn since a linear interpolation between the

distances available is not realistic as discussed previously.

7.1.3 Distributional properties of conditional rainfall

Evaluation of the conditional distribution of gauge observations for a given satellite rainfall esti-

mate has been performed for several parametrisations of the lognormal distribution in Chapter

4. Using the same formulation for the mean and variance as proposed in Teo and Grimes

(2007) and Greatrex et al. (2014), this distribution has been shown to provide a good fit

based on a range of qualitative tools. It has previously been shown that the conditional rainfall

is heteroscedastic as a function of the cold cloud duration, this is however shown to nearly

completely be removed when taken as a function of satellite rainfall estimates instead. These

findings provide an improved understanding of the nature of the relation and variability between

ground point observations and satellite area estimates.

These findings can provide more realistic uncertainty estimates through the sequential

simulation framework initially proposed in Teo and Grimes (2007), by better capturing the tail

behaviour. It further improves the possibility to incorporate gauge observations with satellite

estimates by providing a correct measure for how anomalous an observation is in relation to the

estimate (see Section 4.2.2). A large limitation to this work is the very small set of distribution

families investigated here, leaving the possibility that more suitable distributions exists. Further

work to address this is detailed in 4.6.1.

7.2 Further work

Some directions for further work to extend the analysis performed in this thesis are already

mentioned in the chapters, especially in Chapter 4 where a detailed description of how to include

quantitative tools and suggestions on more sophisticated skewed distributions are detailed.

Other directions for further work identified by this thesis are the following:
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Other regions to establish generality of the results

All the results presented here are only from one case study area, and the regular intensity

analysis in Chapter 3 only from the southern half. Even though the climate over west Africa is

similar due to the large scale drivers controlling it, there are large variabilities across the region

as demonstrated by Funk et al. (2015a), and further highlighted here by the differences even

within Ghana. To establish how general these findings are, it would be useful to apply the

methods developed here to other countries in west Africa as a first step, and later on to other

regions.

Include non-stationarity

Throughout the thesis, stationarity has been assumed since no obvious trend has been identified

that could easily be adjusted for, and reducing the sample size further by splitting the data

into different time periods would have led to too small samples. West Africa has however

experienced large scale, decadal variabilities in rainfall amounts (Nicholson et al. (2018)), and

trends in the frequency and contributions from MCSs (Taylor et al. (2017)). Even though

most of these strong trends has been identified for the Sahel region (see 3.1 for the Sahelian

drought), which is located north of our study region, variability has been observed for the

Guinea coast as well. Incorporating well-known large scale drivers, such as the sea surface

temperature and the Saharan Heat Low (Parker and Diop-Kane (2017)), to remove some of

this temporal variability could improve the identically distributed condition and thereby reduce

the sample variability. This could especially be of interest for the extremes analysis, since

variability was observed for nearly all months in Chapter 6.

Simulation study on coefficient of tail dependence estimator with

increasingly tainted data

In the simulation study in Chapter 5, a large difference between the here proposed reduced

bias estimator with suitable choices for the tuning parameter and the classic Hill estimator

was found. This result was however not seen in the analysis on observed data in Chapter 6,

where virtually no difference between the two could be detected, regardless of the sample size

available. In order to better understand the reason for this behaviour, a simulation study that

better mimics real world data could be carried out. The two main issues with real compared

to simulated data is the deviation from all sample points stemming from the exact same dis-

tribution and the presence of missing values.

The impact from the first factor could be analysed by increasingly ’tainting’ the simulated
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data set by mixing in a set proportion of samples draw from a different distribution, which

essentially would be the same things as simulating data from a mixed distribution. By either

mixing in sample points from a distribution with the same theoretical value for the coefficient

of tail dependence, or one with a different tail dependence, the sensitivity on these deviations

can be thoroughly investigated. This could for example be done by taking 80% of the sample

points from a Frank copula (η = 1/2) and 20% from a Ali-Mikhail-Haq (η = 1/3). A similar

idea can be applied for introducing missing values, by randomly sampling a set proportion of

the simulated sample and remove these observations.

The main aim of this simulation study would be to examine how quickly the potential

additional bias would be visible and if the difference between the reduced bias estimator and

the Hill diminishes or persists.

7.3 Conclusions

The amount of high quality rainfall data over Africa does not seem to improve, but rather

deteriorate in many countries. It is therefore vital to extract the maximum amount of in-

formation possible from the available observations. The overarching aim of this thesis was

to introduce improved methods for estimating some of the key components needed to relate

satellite observations with ground rain gauge measurements. Specifically the focus was on

estimating intensity dependent correlation ranges which is needed when performing kriging,

and the conditional gauge distribution. A flexible, inexpensive, non-parametric model based on

comparing estimated and observed probabilities, and a semi-parametric bivariate coefficient of

tail dependence model have been developed. Applying these to the same rain gauge data set

has demonstrated an increase in the correlation range for increasing intensities up to a high

level, but a significantly shorter dependence range when considering the most extreme values.

In a kriging setting, this would result in the use of different values for the range parameter in

the covariance function. Particularly in the merging setting of Chapter 4, gauges measuring

large values would be associated with a larger number of orange grid boxes compared to low in-

tensities and extreme values. A lognormal distribution has been shown to provide a good fit for

daily gauge measurements related to daily satellite estimates, providing a better understanding

of the relation between the two.



Appendix A

Supplementary material, Chapter 2

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12
Month

Pr
ob

ab
ilit

y 
ra

in
−r

ai
n Distance

5km

50km

100km

150km

Low

(a)

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12
Month

Pr
ob

ab
ilit

y 
ra

in
−r

ai
n Distance

5km

50km

100km

150km

Moderate

(b)

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12
Month

Pr
ob

ab
ilit

y 
ra

in
−r

ai
n Distance

5km

50km

100km

150km

Heavy

(c)

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12
Month

Pr
ob

ab
ilit

y 
ra

in
−r

ai
n Distance

5km

50km

100km

150km

Very heavy

(d)

Figure A.1: Seasonal evolution of the conditional occurrence probability for stations south
of 8°N. The solid lines are distances away from the origin and the dashed line is the random
sampling baseline at 50km. The intensity bands are as described in Section 3.2. The rain-
rain occurrence is 1 if the distant station is in the same or higher intensity class (see
Algorithm 2 in Section 3.2). Note the different scales on the y-axis.
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Data points for 5km line

Intensity 1 2 3 4 5 6 7 8 9 10 11 12

Low 557 1308 2212 2425 3087 4099 3452 3348 3710 3906 2436 1157

Moderate 323 866 1715 1973 2426 2857 1732 1053 2010 2828 1461 695

Heavy 58 236 570 606 747 1009 492 245 569 689 274 184

Very heavy 43 79 253 264 320 648 340 101 294 277 80 66

Table A.1: Number of data points used to estimate the 0-10km line for Figure 3.12.
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Figure A.2: Autocorrelation plot for each synoptic station used in Section 3.3.1.
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Additional histograms and QQ-plots

for Chapter 3

Histograms (Figure B.1 - B.4) and QQ-plots (Figure B.5 - B.8) for all 2mm RFE bin subsets

between the RFE values 2-24mm. QQ-plots with fewer than 5 points are not included.
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Figure B.1: Histograms for April on the logarithm of the gauge values. The mm value
is the mid value for the 2mm RFE bin. Each bar is log(2)mm wide. The density curves
corresponds to the normal distribution with µ = log(RFE) and standard deviation given
by the coloured lines in Figure 4.6.
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Figure B.2: Histograms for June on the logarithm of the gauge values. The mm value
is the mid value for the 2mm RFE bin. Each bar is log(2)mm wide. The density curves
corresponds to the normal distribution with µ = log(RFE) and standard deviation given
by the coloured lines in Figure 4.6.
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Figure B.3: Histograms for August on the logarithm of the gauge values. The mm value
is the mid value for the 2mm RFE bin. Each bar is log(2)mm wide. The density curves
corresponds to the normal distribution with µ = log(RFE) and standard deviation given
by the coloured lines in Figure 4.6.



Chapter B. Additional histograms and QQ-plots for Chapter 3 175

Histogram for 3 mm bin

Gaugeval

D
en

si
ty

−4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 5 mm bin

Gaugeval

D
en

si
ty

−2 0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 7 mm bin

Gaugeval

D
en

si
ty

−4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 9 mm bin

Gaugeval

D
en

si
ty

−4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 11 mm bin

Gaugeval

D
en

si
ty

−2 0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 13 mm bin

Gaugeval

D
en

si
ty

−2 0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 15 mm bin

Gaugeval

D
en

si
ty

−2 0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 17 mm bin

Gaugeval

D
en

si
ty

−2 0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 19 mm bin

Gaugeval

D
en

si
ty

0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 21 mm bin

Gaugeval

D
en

si
ty

−4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 23 mm bin

Gaugeval

D
en

si
ty

−2 0 2 4 6 8

0.
0

0.
2

0.
4

Histogram for 25 mm bin

Gaugeval

D
en

si
ty

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

Figure B.4: Histograms for September on the logarithm of the gauge values. The mm
value is the mid value for the 2mm RFE bin. Each bar is log(2)mm wide. The density
curves corresponds to the normal distribution with µ = log(RFE) and standard deviation
given by the coloured lines in Figure 4.6.
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Figure B.5: QQ-plot for the logarithm of the gauge values for April with the lognormal
distribution associated with κ = 8, θ = 0.2 as reference distribution. The coloured lines
are the lognormal distributions with the standard deviation given by the corresponding
colours in Figure 4.6 and the black line the x = y line.
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Figure B.6: QQ-plot for the logarithm of the gauge values for June with the lognormal
distribution associated with κ = 8, θ = 0.2 as reference distribution. The coloured lines
are the lognormal distributions with the standard deviation given by the corresponding
colours in Figure 4.6 and the black line the x = y line.
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Figure B.7: QQ-plot for the logarithm of the gauge values for August with the lognormal
distribution associated with κ = 8, θ = 0.2 as reference distribution. The coloured lines
are the lognormal distributions with the standard deviation given by the corresponding
colours in Figure 4.6 and the black line the x = y line.
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Figure B.8: QQ-plot for the logarithm of the gauge values for September with the lognor-
mal distribution associated with κ = 8, θ = 0.2 as reference distribution. The coloured
lines are the lognormal distributions with the standard deviation given by the correspond-
ing colours in Figure 4.6 and the black line the x = y line.
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