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Weather Predictability:

Some Theoretical Considerations

Tsz Yan Leung

Abstract

The chaotic nature of atmospheric dynamics presents a central challenge to the

accurate prediction of future weather. It is a well-known fact that the predictability of

instantaneous weather is inherently limited to about two weeks, beyond which skilful

prediction is impossible no matter how small the initial error is. This study seeks to

advance the knowledge related to the limited predictability by addressing three theoretical

topics.

The first topic concerns the mathematical origins of the predictability barrier.

In a simplified context, what appears to be a contradiction between the finite-time limit

and the regularity of the governing equations is reconciled through understanding the

practical role of the slope of the energy spectrum in the latter.

The next topic explores the properties of error growth under the hybrid k−3-

k−
5
3 energy spectrum that approximates the atmosphere. With the aid of simplified

turbulence models, the synoptic-scale k−3 range is found to substantially dampen the fast

error growth characteristic of a k−
5
3 spectrum in the first decade of wavenumbers in the

mesoscale range, so that the fast growth may only emerge when global numerical weather

prediction models begin to resolve scales on the order of a few kilometres.

The final topic focusses on the relationship between metrics that quantify error

growth and predictability. Two popular metrics, namely the Continuous Ranked Proba-

bility Score and the root-mean-square error, are found to be mathematically related under

certain conditions. Simulated results show that the relationship approximately holds in

idealised turbulent environments despite the required conditions not being fully met.

This study demonstrates that simple models can often be useful in identifying

key mechanisms of error growth that lead to the limit of predictability. Future work

involving simple models is encouraged to substantiate such understanding further.

v





Contents

Declaration i

Acknowledgements iii

Abstract v

List of Abbreviations xi

1 Introduction 1

1.1 The early days of weather forecasting . . . . . . . . . . . . . . . . . . . . . 1

1.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The birth of numerical weather prediction . . . . . . . . . . . . . . . . . . 5

1.4 The predictability horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Probabilistic forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Estimates of the predictability horizon . . . . . . . . . . . . . . . . . . . . 17

1.7 Practical predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.8 Predicting beyond the predictability horizon . . . . . . . . . . . . . . . . . 21

1.9 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.10 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Revisiting the inherent finite-time barrier 29

2.1 Lorenz’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 An evolution equation for the error energy spectrum . . . . . . . . 30

2.1.2 Discretisation and reduction to a system of ODEs . . . . . . . . . . 40

2.1.3 Solving the ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.4 An argument for the finite predictability horizon . . . . . . . . . . . 51

vii



2.1.5 A k−3 basic-state energy spectrum . . . . . . . . . . . . . . . . . . 52

2.2 Aspects from PDE theory: the incompressible 2D Navier-Stokes equations 54

2.2.1 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2.2 Uniqueness of solutions and their continuous dependence on initial

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.2.3 Implications for predictability . . . . . . . . . . . . . . . . . . . . . 60

2.3 Reconciling the paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Impact of the mesoscale range on error growth and the predictability

limit 69

3.1 Numerical experiments using an idealised 2D turbulence model . . . . . . . 70

3.1.1 Construction of the hybrid k−3-k−
5
3 energy spectrum . . . . . . . . 71

3.1.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.3 Numerics of the model . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Assessing the error growth rate . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Fitting the error growth to a parametric model . . . . . . . . . . . 77

3.2.2 Inferring predictability from the parameters . . . . . . . . . . . . . 79

3.3 Exploring the asymptotic behaviour using Lorenz’s model . . . . . . . . . . 80

3.3.1 Reproducing the results of the numerical experiments . . . . . . . . 81

3.3.2 Error growth in the infinite-resolution limit . . . . . . . . . . . . . . 82

3.3.3 The predictability horizon: a renewed estimate . . . . . . . . . . . . 84

3.4 Other initial error profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Forecast verification: relating deterministic and probabilistic metrics 102

4.1 Evaluating forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.1 Proper Scoring rules . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.2 Root-mean-square error . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.3 Continuous Ranked Probability Score . . . . . . . . . . . . . . . . . 107

4.2 Derivation of the CRPS-RMSE relationship . . . . . . . . . . . . . . . . . 109

4.3 Verifying the relationship on an idealised 2D turbulence model . . . . . . . 112

viii



4.3.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3.3 Non-normality of the ensemble distribution . . . . . . . . . . . . . . 120

4.4 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Conclusions and outlook 129

Appendix A Proofs and derivations of certain formulae related to the Con-

tinuous Ranked Probability Score 135

A.1 Equivalence of the CRPS and its kernel representation . . . . . . . . . . . 135

A.2 CRPS of a single event with a normal predictive distribution . . . . . . . . 137

A.3 Expected CRPS for normal predictive and verifying distributions . . . . . . 138

Bibliography 141

ix





List of Abbreviations

2D two-dimensional

3D three-dimensional

CDF cumulative distribution function

CRPS Continuous Ranked Probability Score

DA data assimilation

ECMWF European Centre for Medium-Range Weather Forecasts

MSE mean squared error

NWP numerical weather prediction

ODE ordinary differential equation

PDE partial differential equation

PDF probability density function

RMSE root-mean-square error

SPPT Stochastically Perturbed Parametrisation Tendencies

SQG surface quasi-geostrophic

xi





1 Introduction

1.1 The early days of weather forecasting

The weather has been an inseparable part of human civilisation since time immemorial.

Across the world, agricultural decisions are based on weather and climate. These then

influence a region’s economy through trading of agricultural yields. In this way, weather

is pivotal to one’s income and livelihood in agricultural economies. Before the advent of

scientific understanding to weather phenomena, many cultures regarded weather events,

and perhaps the success or failure to predict them, as divine interventions. Some polythe-

istic religions even had deities for specific weather phenomena. The religious attribution

of weather, however, did not prevent humans from pursing their fundamental desire to

predict the weather. Conventional wisdom gave rise to weather lores, mainly in the form

of rhymes and short poems. Presumably based on anecdotal evidence, they described how

certain observations would correlate with the local weather some time ahead, thereby giv-

ing rise to a pathway for predicting the weather. For example, the English saying red sky

at night, shepherd’s delight; red sky in the morning, shepherd’s warning tells that a red

sky at dusk (in the west) usually brings good weather on the next day, whereas a red sky

at dawn (in the east) is an alert for inclement weather. As things turn out, this saying is

supported by a typical feature of synoptic weather in the mid-latitudes where upper-level

winds are predominantly westerly. Red sky around sunrise and sunset results from high

atmospheric pressure through Rayleigh scattering. When a region of high pressure in the

west is brought in by the westerly winds, it leads to fine weather on the next day. If the

high pressure is to the east instead, unsettled weather in low-pressure regions may be on

the way, since the high pressure has passed.
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Other weather lores involve longer-term predictions. In medieval European cul-

tures in particular, predictions on the sub-seasonal or seasonal scale were made based on

weather elements or biological signs on given religious feast days. Some of these traditions

were brought into the New World through colonial expansion and emigration (Groundhog

Day being an example), despite that these long-term predictions, if of any value, would

have been geographically local. Into the 21st century, St Swithun’s Day (15th July) still

remains as a notable example of folklore sub-seasonal weather prediction here in England,

although its weather has no obvious relation with rainfall over the next 40 days (Sutton

1955).

Weather lores also exist in oriental cultures. Indeed, the red-sky saying above

has a Chinese equivalent 朝霞不出門，晚霞行千里(morning glow, stay at home; evening

glow, walk a thousand miles). However, the best-known oriental weather lore by far —

the set of 24 solar terms — is more descriptive than predictive. These half-monthly solar

terms tell a mixture of the arrival of seasons, typical weather phenomena, agricultural

practices and biological signs, and is part of the traditional agricultural wisdom in east

Asia.

Weather lores can be seen as a forerunner of analogue weather prediction, a

class of forecasting methods based on exploiting historical patterns. An analogue fore-

caster makes statistical inferences on the future weather using purely historical knowledge.

The invention of meteorological instruments in the 17th century gave rise to systematic

and quantitative recording of weather observations. In this way, analogue forecasting

gained momentum, which is still practised today in lesser-developed countries where it is

too expensive to run atmospheric models. The discovery of the telegraph in the 19th cen-

tury enabled near-real-time transfer of weather information across geographical locations,

the seas included thanks to advances in marine navigation. Its impacts are profound.

For weather prediction, it allowed the incorporation of spatial information into analogue

forecasting, which had up to then been impossible. It also gave birth to synoptic meteorol-

ogy, the understanding of how regional weather systems evolve. The growing knowledge

in synoptic meteorology together with the abundance of observations in the Atlantic re-

sulted in the success of perhaps the most important forecast ever issued by the United

Kingdom’s Meteorological Office, the forecast for D-day, 6th June, 1944 (Meteorological
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Office n.d.). However, forecasts at that time were still made by “crude techniques of

extrapolation, knowledge of local climatology and guesswork based on intuition” (Lynch

2008), and failed to fully capture the complex, non-linear advective processes of weather

systems. As such, predictability was probably limited to no more than two or three days.

Indeed, the forecasting team at the Meteorological Office was only confident enough to

advise the Allied Forces of the D-day weather one and a half days ahead of the Normandy

landings.

1.2 Equations of motion

The atmosphere is a fluid, whose motion can be understood by the fundamental principles

of fluid dynamics. Fluid dynamics as a rigorous mathematical discipline dates back to the

18th century, when Leonhard Euler (1757) derived partial differential equations (PDEs)

representing the conservation of mass and momentum in an inviscid hydrodynamic envi-

ronment with the gravity g being the only external force:

∂ρ

∂t
+∇ · (ρu) = 0 (1.1)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g (1.2)

where t is the time, ∇ =
(
∂
∂x
, ∂
∂y
, ∂
∂z

)
the differential operator for the three canonical

directions (x, y, z), u the three-dimensional (3D) velocity field, ρ the density and p the

pressure. These equations are known as the Euler equations. Claude-Louis Navier later

modified the momentum equation (Equation 1.2) to incorporate the effects of viscosity

for Newtonian fluids:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g + ν∇2u (1.3)

where ν is the kinematic viscosity coefficient. This equation, together with the continuity

equation (Equation 1.1), are collectively referred to as the Navier-Stokes equations, which

are also named after George Gabriel Stokes for his contribution in the dynamics of strongly

viscous flows (Bistafa 2018).

A fundamental difference between atmospheric flows and idealised environments
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where Equations 1.1 and 1.3 apply is the fact that Earth is rotating. The continuity

equation does not change in a rotating frame of reference, but the momentum equation

is further modified as

∂u

∂t
+ u · ∇u + 2Ω× u = −1

ρ
∇p+ g + ν∇2u (1.4)

where Ω is the angular velocity of Earth’s rotation. The gravitational term g now incor-

porates a contribution from the centrifugal force associated with it (Vallis 2017).

Equations 1.1 and 1.4 together give four scalar equations but five unknown scalar

variables (the three components of u, ρ and p), an under-determined problem. The ideal

gas law

p = ρRT, (1.5)

where R is the universal gas constant, diagnostically draws a link between the pressure

and the density yet introduces a new variable, T , the absolute temperature (Vallis 2017).

To close the system, therefore, it is necessary to invoke thermodynamic principles. The

first two laws of thermodynamics together with the assumption that fluid motions are

thermodynamically reversible give rise to a diagnostic quantity

θ = T

(
p

p0

)− R
cp

(1.6)

known as the potential temperature, the temperature of a fluid parcel had it been brought

adiabatically to a certain reference pressure p0. Here, cp is the specific heat capacity of

air at constant pressure. Finally, by specifying the rate of diabatic heating Q̇ one obtains

the equation

cp

(
∂θ

∂t
+ u · ∇θ

)
=
θ

T
Q̇ (1.7)

which completes the set of equations of motion (Vallis 2017).

In summary, Equations 1.1, 1.4, 1.5, 1.6 and 1.7 form a closed set of seven scalar

equations for seven unknown scalar variables (u (three components), ρ, p, T and θ). This

is a combination of hydrodynamic and thermodynamic principles, whose understanding

flourished quickly in the 19th century.
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1.3 The birth of numerical weather prediction

Revolutionary ideas for scientific and rigorous weather forecasting emerged at the turn

of the 20th century. In 1901, the American scientist Cleveland Abbe argued that longer-

range predictions could be made possible by pointing out that meteorological observations

are broadly consistent with physical laws (Abbe 1901). He was soon echoed by the

Norwegian Vilhelm Bjerknes, who framed weather forecasting more precisely as an initial-

value problem: the future state of the atmosphere can be determined by its current state

and the seven aforementioned equations of motion that govern it (Bjerknes 1904). Despite

acknowledging that an analytic solution is out of question, he raised hope for longer-range

predictability when numerical methods for solving these equations are developed and the

network of meteorological observations become more extensive.

Lewis Fry Richardson, an Englishman working at the Meteorological Office, was

inspired by Bjerknes’ idea. He envisoned a forecast factory of human ‘computers’ (Figure

1.1) and made an attempt to calculate a forecast in retrospect. Although the forecast

went badly wrong1, the numerical methods employed in solving the problem were solid

and laid a foundation for modern-day numerical weather prediction (NWP) (Richardson

1922, Lynch 2006). That being said, however well NWP methods are able to accurately

predict the future weather, they would be useless without a machine that is capable

of solving the initial-value problem fast enough for the forecast to be issued before the

weather event materialises. The lack of computers thus put an effective halt to further

progress in NWP until the mid-century, when the arrival of the Electronic Numerical

Integrator and Computer facilitated the first computer forecasts in 1949. This was a sig-

nificant accomplishment, not only because the forecasts were computed faster (albeit very

slightly) than weather advanced, but also because synoptic-scale features were predicted

with reasonable accuracy despite the simplest barotropic model being used (Charney et al.

1950). With further preparations, real-time NWP became operational in 1954 in Sweden

and the year after in the United States of America (Persson 2005).

In the meantime, the understanding of atmospheric dynamics as a mathematical

1The error was attributed to an imbalance in the initial condition which resulted in spurious gravity
wave oscillations (Lynch 2006).
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Figure 1.1: Artist Stephen Conlin’s depiction of Richardson’s forecast factory. Courtesy 
of the Irish Times.

discipline continued to develop. Through the study of linearised barotropic and baroclinic 

flows, it became clear that the idealised atmosphere is a dynamically unstable system in 

the sense that small disturbances would amplify and contaminate predictions (Charney 

1947, Eady 1949, Thompson 1953). This naturally provokes the question how far ahead 

weather could potentially be predicted. Thompson (1957) foresaw the existence of a 

point beyond which fast-growing error would rapidly diminish the benefits of doubling 

the density of weather stations. Later, Edward Lorenz (1963) famously demonstrated 

the chaoticity of atmospheric motions using a simple 3D homogeneous, autonomous and 

non-linear system of ordinary differential equations (ODEs)

dx

dt
= 10(y − x)

dy

dt
= x(28− z)− y

dz

dt
= xy − 8

3
z

(1.8)

that represents cellular convection. Mathematically, finite-dimensional chaos can be char-

acterised by the co-existence of the following three properties on the attractor of the

dynamical system (Devaney 1989):

1. topological transitivity, which can in a loose sense be thought of as ‘nearly every

solution trajectory visits everywhere’;

6



2. sensitive dependence of solutions on initial conditions;

3. density of periodic solutions.

Lorenz’s discovery is profound in two aspects. First, on the theoretical side, it establishes

that three-dimensionality of the dynamical system is not only necessary but also sufficient

for chaotic behaviour (the earlier Poincaré-Bendixson theorem stipulates that chaos can-

not happen with only two degrees of freedom). The existence of a strange attractor —

an attractor with a fractal structure — suggests that the dynamics of this three-variable

system is extremely complicated. Second, it shows that all periodic orbits are unsta-

ble: unless an initial condition sits exactly on a periodic orbit, its solution trajectory

may never approach a given periodic orbit. This means it would be futile to predict

the weather in the long range by identifying the periodic solutions of the atmosphere’s

governing equations.

1.4 The predictability horizon

While Lorenz’s 1963 paper precludes predicting the weather by an essentially analogue

method taking advantage of the system’s periodic solutions, skilful weather prediction

is still possible by dynamical methods. The divergence of solution trajectories resulting

from the system’s sensitive dependence on initial conditions implies that such predictions

would become useless beyond a certain range of predictability. However, this range is

generally expected to increase as the initial condition generating the prediction becomes

more accurate. Since solutions of Lorenz’s three-variable system are known to depend

continuously on initial conditions despite being sensitive to them (Palmer et al. 2014),

there is no upper bound to the range of predictability in the limit of small initial errors.

In other words, the predictability horizon is infinite.

The concept of a predictability horizon can be motivated in a mathematically

rigorous manner. In a perfect-model context of a deterministic autonomous dynamical

system Φ : R × X → X where X is the state space, the dynamics of the error ε =

Φ(t, x + ε0) − Φ(t, x) can be fully described by the lead time t, the initial error ε0 and

7



the initial state of the system x. The lead time is the time elapsed since the introduction

of the error. To quantify the accuracy of a given forecast, a measure of accuracy S can

be defined as a continuously increasing function of some norm ‖·‖ of the error, which

makes it a function of t, ε0 and x. Here we have assumed that the accuracy measure is

negatively oriented, i.e. lower S implies better accuracy. Now, averaging over the initial

states on some (non-trivial) attractor D of the system, we may define the overall measure

of accuracy S(t, ε0) :=
∫
x∈D S(t, ε0, x) dx of the forecast system. If we further assume that

the error norm increases with t in the average, which is a generic property of atmospheric

flows up to a certain threshold where it asymptotes, then S(t, ε0) monotonically increases

in time.

Let’s say that a prediction loses its skill when S exceeds some threshold value α.

The range of predictability T̃ (ε0) for a given initial error ε0 is the solution to S(t, ε0) = α,

whose uniqueness is guaranteed by the monotonicity assumption of S. The predictability

horizon is the limit of T̃ as ‖ε0‖ → 0 if it exists, or lim inf‖ε0‖→0 T̃ (ε0) more generally.

It should be noted that the range of predictability and therefore its limit depend on

the specification of S (or S) and α. In deterministic weather forecasts, S is often the

energy of the full error or some scale-filtered error, in which case α is a multiplicative

factor of the basic-state flow’s climatological energy level close to two, where the error

eventually saturates (Leung 2017). Yet, since T̃ (ε0 = 0) = ∞ by the very definition

of deterministic systems, a well-posed system like Lorenz’s 1963 system (Equations 1.8)

would have indefinite predictability, i.e. lim inf‖ε0‖→0 T̃ (ε0) =∞, regardless of how S and

α are defined.

In a seminal paper a few years later, this time using the vorticity form of the

two-dimensional (2D) incompressible Euler equations2

∂θ

∂t
+ J(ψ, θ) = 0, θ = ∆ψ (1.9)

where ψ is the velocity streamfunction3, θ is the vorticity, ∆ is the 2D Laplacian operator4

and J(A,B) = ∂A
∂x

∂B
∂y
− ∂A

∂y
∂B
∂x

, Lorenz argued that the predictability horizon for Earth’s

2This is also known as the 2D barotropic vorticity equation or the 2D barotropic vorticity model.
3The velocity streamfunction ψ is related to the velocity (u, v) by u = −∂ψ∂y and v = ∂ψ

∂x .

4∆ = ∇ · ∇, where ∇ =
(
∂
∂x ,

∂
∂y

)
.
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atmosphere is inherently finite (Figure 1.2), that is, T̃ cannot be made arbitrarily large

by reducing ‖ε0‖ to anything below a threshold unless ε0 is exactly zero (Lorenz 1969).

Mathematically, this is equivalent to lim inf‖ε0‖→0 T̃ (ε0) <∞, a more radical notion than

the mere chaos demonstrated in the 1963 model (Palmer et al. 2014). A crucial assump-

tion behind Lorenz’s conclusion is that the wavenumber spectrum of the flow’s energy

E(k) (where k is the scalar wavenumber) scales as k−
5
3 . A remark near the end of the

paper speculates that whether the predictability horizon is finite depends on the energy

spectrum’s so-called ‘spectral slope’ −p, wherein E(k) ∝ k−p. It also hypothesises, by

extrapolation, that predictability would become indefinite if the small scales had suffi-

ciently little energy compared to the large scales in such a way that p ≥ 3. This claim

will be reviewed in Chapter 2 as Lorenz’s argument on the predictability horizon is being

discussed in detail.

Figure 1.2: A depiction of faster-growing errors at smaller scales that results in a finite
predictability horizon, taken from Lorenz (1969). The thick curve represents the basic-
state energy spectrum, while each thin curve, together with the portion of the thick curve
to the right of their intersection, represents the error energy spectrum at the specified
forecast lead time.

Earth’s atmospheric energy spectrum was not so well-known at Lorenz’s time

of writing. He seems to have based his choice of p = 5
3
, from which he derived that

atmospheric predictability is inherently finite, on Kolmogorov’s theory of 3D idealised

9



(incompressible, homogeneous and isotropic) turbulence (Kolmogorov 1941, Vallis 2017).

The theory suggests that the k−
5
3 spectrum is generated through an inertial downscale

cascade of energy. However, atmospheric flows are quasi-two-dimensional in scales down to

O(10) kilometres, and a theory of 2D turbulence had only emerged shortly before Lorenz

wrote his 1969 paper. Apart from p = 5
3
, 2D idealised turbulence admits another spectral

slope corresponding to p = 3 (Kraichnan 1967). Lorenz’s conclusion would probably have

changed had the latter spectral slope been chosen for the predictability analysis.

On the observational side, early indications using limited data showed that the

large-scale atmospheric energy spectrum follows a power-law closer to k−3 than k−
5
3 (Horn

& Bryson 1963, Charney 1971). A global analysis had not been possible until satellite

measurements became available a couple of decades later. Using a dataset derived from

satellite data, Boer & Shepherd (1983) confirmed a k−3 spectrum at the large scales.

Later, with the aid of aircraft observations, Nastrom & Gage (1985) reported a transition

from a k−3 range to a k−
5
3 range in the mesoscale, at a wavelength of about 400 kilometres

(Figure 1.3).

Yet, it should be kept in mind that atmospheric turbulence is far from being

idealised. The classical picture of 3D and 2D turbulence (Kolmogorov 1941, Kraichnan

1967) assumes a spectrally localised forcing that generates an inertial cascade of some

invariant quantity either upscale or downscale5. However, some sources of forcing have a

continuous spectrum instead, orography being an example (van Niekerk et al. 2016). The

presence of orography also makes the turbulence inhomogeneous. Moreover, the effects of

Earth’s rotation and the existence of coherent vortices add anisotropy to the turbulence.

A study by Maltrud & Vallis (1991) suggests that the hybrid k−3-k−
5
3 atmo-

spheric spectrum can be simulated with 2D idealised turbulence by forcing separately at

large and small scales. While there is a general consensus that the synoptic-scale k−3

range, or indeed its logarithmically corrected version (Bowman 1996), is indeed a feature

of 2D turbulence with a downscale enstrophy cascade, the physical origins of the k−
5
3

mesoscale range remain under debate. On one hand, it is thought to be a result of bal-

5The k−3 range in 2D turbulence represents a downscale transfer of enstrophy, whereas the k−
5
3 range

in 2D (resp. 3D) turbulence represents an upscale (resp. downscale) transfer of energy.
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Figure 1.3: Power spectra of wind and potential temperature near the tropopause from
aircraft data, taken from Nastrom & Gage (1985). The spectra for meridional wind and
potential temperature are respectively shifted by one and two decades to the right. Lines
showing the k−3 and k−

5
3 scalings are inserted for reference.

anced6 mesoscale motion, cascading energy upscale as in 2D idealised turbulence (Lilly

1989, Vallis et al. 1997). Lindborg (1999) however argued the opposite, that the mesoscale

range cannot be explained by the inverse energy cascade in 2D turbulence theory. Rather,

as it was later proposed, a k−
5
3 spectrum is generated through the downscale transfer of

energy associated with unbalanced motion, but it is masked at larger scales by the k−3

range for being too weak compared to the spectrum of balanced motion (Waite & Snyder

2009). More recently, Waite & Snyder (2013) discovered that moist processes such as

convection and clouds play an important role in the shallowing of the spectrum from k−3

6Atmospheric motion can be decomposed into a balanced part and an unbalanced part. Balanced
motion is characterised by the conservation of potential vorticity, whereas the unbalanced part refers to
the residual motion. Inertia-gravity waves are a primary contributor to unbalanced motion.
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to k−
5
3 , a result that was echoed by Sun & Zhang (2016).

Whatever the origins of the k−
5
3 range are, they may not be so relevant to the

error growth properties and the finite predictability horizon associated to this shallower

spectrum, for Rotunno & Snyder (2008) pointed out that predictability properties are

primarily a function of the energy spectrum rather than model dynamics per se. They

demonstrated this by generalising Lorenz (1969)’s model to the surface quasi-geostrophic

(SQG) equations (Held et al. 1995), which can be equivalently expressed as

∂θ

∂t
+ J(ψ, θ) = 0, θ = − (−∆)

1
2 ψ, (1.10)

and studied the sensitivity of the results to the dynamics and the energy spectrum inde-

pendently. It is thought that the finite atmospheric predictability horizon is a result of

the shallower mesoscale spectrum, independent of the spectral slope in the synoptic scale.

Yet, it remains not so obvious as to how the presence of the k−3 range in the synoptic

scale could have an impact on error growth in the mesoscale and the predictability limit.

This will be investigated in Chapter 3.

Lorenz’s hypothesis that the predictability horizon is finite if and only if the

spectral slope −p is shallower than −3 is also supported by dimensional analysis (Vallis

1985, Lilly 1990), a tool often used in turbulence studies. Perhaps for this reason the

hypothesis has now become an accepted theory attributed to Lorenz himself. In the

dimensional analysis formulation, the characteristic timescale T (k) taken for an error

to grow from wavenumber 2k to k depends only on k itself and the energy spectral

density E(k) ∝ k−p, due to the turbulence’s self-similarity. Since k has the dimension of

inverse length and E(k) has the dimension of length cubed divided by time squared, the

only way of combining them to form a characteristic timescale is T (k) ∝ (k3E(k))
−0.5

.

Therefore, for an initial perturbation at wavenumber kp = kn (where n ∈ N), the range

of predictability at wavenumber k is

T̃k(kp) =
n−1∑
j=0

T (2jk) ∝
n−1∑
j=0

(2jk)
p−3

2 =


k
p−3

2

(
1−2

p−3
2 n

1−2
p−3

2

)
p 6= 3

n p = 3

. (1.11)
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Hence, the predictability horizon limkp→∞ T̃k(kp) = limn→∞ T̃k(k
n) is finite if and only

if p < 3. For a spectral slope equal to or steeper than −3, T̃k(kp) can indefinitely be

extended by reducing the scale of the initial error (i.e. increasing kp).

When predictability is inherently finite, the predictability horizon is a function

of spatial scale. Taking the limit of Relation 1.11 for the case p < 3 gives

lim
kp→∞

T̃k(kp) ∝ k
p−3

2 . (1.12)

In particular, for a k−
5
3 spectrum, the predictability horizon scales as k−

2
3 with the

wavenumber of interest. This is consistent with Lorenz (1969)’s observations and sug-

gests that doubling the length scale increases the predictability horizon by a factor of

roughly 1.6 (Table 1.1).

Length scale Predictability horizon Successive ratio
20000 – 40000 km 16.8 days 1.66
10000 – 20000 km 10.1 days 1.80
5000 – 10000 km 5.6 days 1.75
2500 – 5000 km 3.2 days 1.78
1250 – 2500 km 1.8 days 1.64
625 – 1250 km 1.1 days 1.68
313 – 625 km 15.7 hours 1.65
156 – 313 km 9.5 hours 1.64
78.1 – 156 km 5.8 hours 1.56
39.1 – 78.1 km 3.6 hours 1.64
19.5 – 39.1 km 2.2 hours 1.69
9.77 – 19.5 km 1.3 hours 1.53
4.88 – 9.77 km 51.1 minutes 1.59
2.44 – 4.88 km 32.1 minutes 1.58
1.22 – 2.44 km 20.3 minutes 1.56

610 m – 1.22 km 13.0 minutes 1.55
305 – 610 m 8.4 minutes 1.47
153 – 305 m 5.7 minutes 1.43
76.2 – 153 m 4.0 minutes 1.29
38.1 – 76.2 m 3.1 minutes 1.07
19.1 – 38.1 m 2.9 minutes —

Table 1.1: Predictability horizons at various length scales estimated by Lorenz (1969),
and their successive ratios (the predictability horizon in the current row divided by that
in the next row) correct to two decimal places.

The popular term ‘butterfly effect’ refers to this stronger notion of unpredictabil-

ity. While earlier authors had used the same or similar metaphors to describe certain

degrees of unpredictability of the atmospheric system (Franklin (1898) used grasshoppers
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whereas Smagorinsky (1969) used butterflies), it was only until 1972 when the term ‘but-

terfly effect’ was coined after a scientific presentation given by Lorenz about his recent

(1969) discovery of the finite predictability horizon. Some have instead attributed the

butterfly effect to his three-variable chaotic system of 1963 (Equations 1.8), probably be-

cause its attractor coincidentally resembles the shape of a butterfly when viewed from a

certain angle. However, this is just one of the many examples in which the true meaning

of a phrase “has become distorted by the passage of time” (Palmer et al. 2014).

1.5 Probabilistic forecasts

The discoveries that atmospheric motions depend sensitively on initial conditions and

a finite-time predictability horizon exists make it impossible to fully base weather fore-

casting on deterministic methods. Bjerknes’ vision that weather can be deterministically

predicted as an initial-value problem (Bjerknes 1904) would be ruined by the inevitable

errors in estimating the atmosphere’s initial state, let alone the incomplete understand-

ing of the physical laws, the effects of boundaries, and numerical errors resulting from

the discretisation of the equations and the limited precision of the machines that solve

them. This is not to say that deterministic models are of no use, as operational fore-

casting centres are still using them today (Haiden et al. 2019), but an alternative avenue

of prediction had to be sought. One way of such is to frame the forecasting problem as

a probabilistic one. Conceptually, the initial conditions and the model parameters are

treated as random variables in abstract probability spaces, and the evolution of weather

is treated as a stochastic-dynamic process Epstein (1969). Yet it should be noted that the

probabilistic framework does not suggest a random element in the evolution of weather;

it merely accounts for our imperfect knowledge about it.

On a practical level, instead of running a single forecast using the forecaster’s

best estimate of the initial state and the best model, an ensemble of ‘equally probable’

scenarios is integrated in time using models with stochastically perturbed parameters.

This first became operational at the United States’ National Meteorological Center and

the European Centre for Medium-Range Weather Forecasts (ECMWF) in 1992 (Toth &
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Kalnay 1993, Molteni et al. 1996). The statistics of the results are reported as proba-

bilities, which facilitate decision-making with a risk-based approach. Richardson (2000)

showed that probabilistic predictions have generally better potential economic value than

deterministic forecasts.

The accurate estimation of probability distributions of the initial conditions

and the model parameters, or equivalently the accurate sampling of ‘equally probable’

scenarios, remains the central challenge in the development of probabilistic forecasting.

With an idealised turbulence model, Leith (1974) argued that a Monte-Carlo sampling

from a known Gaussian distribution around the best initial-condition estimate would

produce a more skilful mean-square wind forecast than a deterministic prediction. Yet, the

applicability of Leith’s approach to the real atmosphere is uncertain, since the estimation

of covariances in an inhomogeneous and anisotropic environment is a difficult task even

when Gaussian distributions are assumed (Massart 2019). Even if the covariances can

be reasonably well-modelled, Monte-Carlo sampling alone does not guarantee that the

model’s prognostic variables could be initialised in a dynamically consistent way. Such

dynamical inconsistencies would induce unrealistic shocks in the short-range forecast that

would compromise the forecast model’s skill.

At the ECMWF, the ensemble of initial conditions is generated using a combina-

tion of singular vectors and ensemble data assimilation approaches. The singular-vector

method (Leutbecher & Lang 2014) provides a dynamical estimate of the initial state’s

uncertainty. It identifies the most unstable modes of the atmospheric system on which

random Gaussian perturbations are applied. The ensemble data assimilation algorithm

(Isaksen et al. 2010) uses a Bayesian framework to compute, for each ensemble member,

the optimal combination between the previous model integration for that member and the

latest observations. Information about covariances between errors of model variables are

implicitly incorporated into the optimisation algorithm, as are the covariances between

observation errors. Its results are combined with the singular vectors to initialise ensemble

forecasts.

Accounting for model uncertainty is a much more challenging task. The ideal

is to build a stochastic equivalent of the dynamical model (Equations 1.1, 1.4–1.7), thus
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allowing a stochastic representation of uncertainty in every dynamical and physical pro-

cess. However, the work around the mathematics of such a complex model, let alone

its discretisation, has only started in recent years (Holm 2015). While the NWP com-

munity awaits the development of such new science, model uncertainty is represented by

empirical methods, primarily in a scheme known as SPPT — Stochastically Perturbed

Parametrisation Tendencies (Palmer et al. 2009). Parametrisation of sub-grid-scale pro-

cesses is unavoidable due to the closure problem inherent to turbulence (Vallis 2017). It

empirically seeks an aggregated representation of motions beyond the model’s resolution

in terms of motions at larger scales. By perturbing the effects (the ‘tendencies’) these

parametrisations have on the model’s variables, the SPPT scheme improves the variability

produced by the ensemble, especially in the tropics where convective activity is strong

(Buizza et al. 1999, Palmer et al. 2009). The strength of the SPPT scheme is experimen-

tally tuned so that the variance of the ensemble may match the mean squared error (MSE)

of the ensemble mean in a broad sense. Recent studies have shown that introducing in-

dependent SPPT patterns among different parametrisation schemes further improves the

ensemble’s skill (Christensen et al. 2017). Apart from the SPPT scheme, other options of

representing model uncertainty such as perturbing the parameters themselves (instead of

their tendencies on model variables) are being explored (Ollinaho et al. 2017, Leutbecher

et al. 2017).

We have seen in Section 1.4 that for deterministic forecasts, measures of accu-

racy are functions of error norm. In the context of probabilistic forecasts, they become

functions of error distribution7, i.e. distribution of ε = Φ(t, x+ ε0)− Φ(t, x). A range of

such measures, often known as ‘scoring rules’ or simply ‘scores’ in a probabilistic context,

are commonly used in NWP operations to evaluate forecast performance. They can be

categorised by type of state space X of the forecast (Gneiting & Raftery 2007). For scalar

variables (X ⊆ R), the Continuous Ranked Probability Score (CRPS) is most commonly

used. It is the integral of the squared difference between the cumulative distribution func-

tion (CDF) of Φ(t, x+ ε0) and the Heaviside step function8 at Φ(t, x), or equivalently the

integral of the squared difference between the CDF of ε and the Heaviside step function

7In a probabilistic framework, the initial error ε0 and therefore the error ε are interpreted as random
variables to account for the ensemble of initial conditions. For the sake of notational simplicity, the effects
of model errors are not included so that Φ remains a deterministic function.

8The Heaviside step function Hy(x) at a given threshold y takes the value 1 if x ≥ y and 0 if x < y.
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at zero. Scoring rules need not take into account the full forecast distribution like the

CRPS does. For example, the quantile score compares the observed value with a certain

quantile of the predictive distribution (Gneiting & Raftery 2007). Scores for scalar fields

can be obtained through spatial integration of scores for scalar variables. For dichotomous

forecasts (X = {0, 1} depending on whether an event takes place), a popular choice is the

Brier score (Wilks 2019), which for a single forecast is (E [ε])2, the squared difference be-

tween the forecast probability E [Φ(t, x+ ε0)] and the outcome Φ(t, x) ∈ {0, 1}. Gneiting

& Raftery (2007) also discussed scores more generally for categorical variables (X being

a finite set). All scoring rules named above are strictly proper, an essential requirement

for them to be put into practical use. Being strictly proper essentially means that the

overall score S (i.e. the averaged score over many instances) is optimised if and only if the

forecast and observed distributions agree. This will be discussed in more detail in Chapter

4, in which the relationship between forecast verification metrics will be investigated in

light of concepts related to strictly proper scoring rules.

Probabilistic forecasts are shown to perform better than deterministic predictions

in the medium-range. Haiden et al. (2015) quantified the additional skill in terms of the

CRPS and saw a 30% improvement for five-day forecasts for the extra-tropics, up from

15%–20% ten years before their study. Another aspect in which ensembles outperform

deterministic forecasts is forecast consistency, which measures the jumpiness of forecasts

issued at successive times yet valid at the same time. Jumpy forecasts, even if relatively

rare, can damage the credibility of the forecast system as a whole. Richardson et al.

(2020) showed that ensembles greatly reduce these jumps, especially at longer lead times

about two weeks ahead of the actual event.

1.6 Estimates of the predictability horizon

The first estimate of the predictability horizon was provided by Lorenz (1969) in the

same paper as the revolutionary idea of inherently finite predictability was proposed.

With the overall measure of accuracy S being the error energy and the threshold α for

the loss of predictability being about 1.3 times the basic-state energy level, the global
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predictability horizon was estimated as 16.8 days. Lorenz also came up with estimates

of the predictability horizons at smaller scales which, as already noted in Section 1.4,

nicely conform to the scaling estimate for a k−
5
3 spectrum (Relation 1.12, Table 1.1). In

addition, the predictability horizon was found to be insensitive to the spatial scale of the

initial error.

In probabilistic forecasts, the threshold α for the loss of predictability is custom-

arily chosen as the S of the climatological distribution. Predictability is deemed to have

been lost when the prediction ceases to be statistically distinguishable from a random

prediction from the climatology. It is not clear from a theoretical perspective whether

probabilistic predictions extend the predictability horizon. However, empirical estimates

reaffirm the existence of a finite-time global predictability horizon for probabilistic fore-

casts on the order of two to three weeks (Buizza & Leutbecher 2015, Selz 2019, Zhang

et al. 2019). This is echoed by a recent estimate of the deterministic predictability hori-

zon using global convection-permitting model simulations (Judt 2018). Based on these

estimates, it appears unlikely that the predictability horizon for probabilistic predictions

is any different from that for deterministic predictions, although probabilistic predictions

are more skilful at shorter lead times, as discussed earlier in Section 1.5.

Some of these studies estimated the predictability horizon with the aid of para-

metric error growth models. Essentially, error growth data were fitted to a simple paramet-

ric equation representing the generic pattern of error growth. The predictability horizon

was then inferred using the parametric equation with the fitted parameters but with the

initial error changed to a small value compared to the typical initial error of today’s NWP

models. One of such equations used is a scaled and translated hyperbolic tangent function

E(t) = A tanh(at+ b) +B, (1.13)

where E is some measure of error energy, t is the lead time, and A ≥ 0, B ∈ R, a ≥ 0

and b ∈ R are parameters to be fitted (Žagar et al. 2017). The measure of error energy

can either be the total error energy or that at selected wavenumbers. It may or may not

be normalised by the saturation energy level. The E given in Equation 1.13 satisfies the
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autonomous ODE

dE

dt
=
a

A
(Emax − E)(E − Emin) (1.14)

where Emax := A + B and Emin := B − A are respectively the supremum and infimum

attainable values of E over all t ∈ R. Equation 1.14 can thus be considered as an

evolution equation for the error, with an initial condition of E(0) = A tanh(b) +B. From

this equation, it can be seen that the parametric model is equivalent to the one proposed

by Dalcher & Kalnay (1987)

dE

dt
= (α1E + α2)

(
1− E

Emax

)
(1.15)

by noting that α1 = a
A
Emax and α2 = − a

A
EmaxEmin (Žagar et al. 2017). Loosely speaking,

α1 represents the rate of exponential growth of the initial-condition error, α2 accounts for

the short-term linear growth induced by model errors, and the factor 1− E
Emax

parametrises

the slowing down of error growth towards saturation. Yet, the growth of model errors is

not necessarily linear (Vannitsem & Toth 2002, Leung 2017), and strictly speaking the

effects of initial and model errors cannot be decoupled (Leung 2017, Žagar et al. 2017).

Although the physical basis for Equation 1.15 has not been fully justified, it nevertheless

often provides a nice fit to error growth data.

Although the fit using Equations 1.13–1.15 is popular among the meteorological

community, it is not unique. Another parametric error growth model used in the literature

is

E(t) = E0 exp
(
β1

(
1− e−β2t

))
(1.16)

where E0, β1, β2 > 0 (Selz & Craig 2015, Selz 2019), which is equivalent to the autonomous

ODE

dE

dt
= β2(β1 − log

E

E0

)E (1.17)

with the initial condition E(0) = E0. Here, the meaning of the parameters is less obvious

than in Equation 1.15. Yet, both parametric models consistently suggest a predictability

horizon of about 17 days (Selz 2019, Zhang et al. 2019) and the result agrees with other

estimates of the predictability horizon (Buizza & Leutbecher 2015, Judt 2018). Therefore,

it is safe to conclude that the estimate is robust, although its agreement with Lorenz
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(1969)’s original estimate might be a coincidence, as Lorenz’s assumption of a single-range

k−
5
3 energy spectrum is now known to be incorrect (Boer & Shepherd 1983, Nastrom &

Gage 1985, Judt 2018).

Judt (2020) recently discovered that the predictability horizon varies substan-

tially among latitudinal zones due to their different dynamical characteristics. Notably,

the tropical region remains predictable beyond 20 days, despite a faster error growth in

the short term than the mid-latitudes and the polar regions. This is attributed to the

presence of equatorial waves which modulate the weather over longer timescales, such as

equatorial Kelvin, Rossby and mixed Rossby-gravity waves. Compared to baroclinic waves

in the mid-latitudes, these waves are less prone to error growth and therefore provide the

additional predictability.

The predictability horizon also varies in time. The recent study by Selz (2019)

concluded that the predictability horizon changes with hemispheres and seasons. It was

found to be longer in the Southern Hemisphere than in the Northern Hemisphere, and in

winter than in summer. Moreover, retrospective analyses of ‘forecast busts’ — cases in

which all major NWP models experienced a temporary drop of skill and failed to produce

the right forecast — have shown that the predictability in these cases was intrinsically

lower (Rodwell et al. 2013). This suggests that forecast busts are sometimes unavoidable,

although it is not clear whether the flow-dependent predictability can itself be predicted

so that potential cases of forecast bust can be warned in advance.

1.7 Practical predictability

Over the past decades, NWP performance and hence the (practical) range of predictability

has steadily improved. Figure 1.4 shows such improvement at the ECMWF since the early

1980s. On average, about one day of predictive skill has been gained every decade — a

five-day forecast today is as skilful as a four-day forecast ten years ago or a three-day

forecast 20 years ago.

The practical predictability of the atmosphere is influenced by the overall mag-
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Figure 1.4: 12-month running-mean Anomaly Correlation Coefficients of the ECMWF’s
three-, five-, seven- and ten-day deterministic forecasts of the 500 hecto-pascal geopoten-
tial height in the Northern and Southern Hemispheres respectively, 1982–2019. Courtesy
of the ECMWF.

nitude of initial error which can be reduced by extending the network of observations

and improving the data assimilation (DA) system. DA is the process of finding the best

estimate of the present atmospheric state to initialise a forecast, by optimally combining

information from the previous forecast and the latest observations (Daley 1991, Kalnay

2002). A better observational network helps reducing the uncertainty and hence the error

in the DA algorithm. This has much improved over the recent decades, thanks to the in-

creasing availability of meteorological satellites (Rabier 2005). Satellite observations are

particularly helpful in the Southern Hemisphere, where conventional observations (air-

craft, ships, weather stations, etc.) are sparse. Together with an improving DA system,

the inter-hemispheric predictability gap has much reduced over the years (Figure 1.4).

Today, the vast majority of observations used in the DA algorithm are from satellites,

without which the forecast quality would have been substantially worse (English et al.

2013).

Despite the gradual increase in forecast performance, there is still some room

for further improvement before the predictability horizon is reached. Figure 1.4 suggests
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that synoptic-scale features can now be skilfully predicted up to about nine days ahead9.

Zhang et al. (2019) estimated that another three to five days of potential synoptic-scale

predictability can be gained. Work on multiple fronts towards this goal are in constant

progress: increase in model resolutions to allow explicit simulation of convection (Bauer

et al. 2015), a unified (‘coupled’) DA system across components of the Earth system (such

as the atmosphere, oceans and sea ice) to reduce initial errors (Lea et al. 2015), and more

scalable computational infrastructure to support these calculations (Bauer et al. 2020),

just to name a few.

1.8 Predicting beyond the predictability horizon

The existence of the finite predictability horizon seems to imply that there is no hope in

getting information from weather forecasts beyond two or three weeks that is more use-

ful than a random guess from the climatological distribution. However, this is not true.

Behind the discussion of the finite predictability horizon sits a crucial assumption: the

dynamical system being predicted governs the instantaneous pattern of fluid flow. There-

fore, the two-week (or three-week) predictability horizon only applies to the prediction

of instantaneous weather. For example, a dynamical forecast made on 1st July for the

weather at 14:27 on 31st July may only be about as good as a climatological guess. Yet, it

does not imply that skilful prediction of the average weather of the week from 28th July

to 3rd August is impossible. This is because mathematically, the dynamical system that

governs the averaged weather is no longer the one specified by Equations 1.1, 1.4–1.7. In-

stead, it is governed by the time-average of these equations, a separate dynamical system

whose theoretical predictability properties have never been studied before in the same

way as the instantaneous system. We do not know whether the predictability horizon for

such a time-averaged system is finite. One thing we know, however, is that given the same

initial error profile, the time-averaged system has a longer range of predictability than the

instantaneous system, because time-averaging filters out high-frequency motions, which

are often less predictable as they typically correspond to spatial structures with a short

wavelength. Thus it is logical to deduce that even if the predictability horizon remains

9A 60% Anomaly Correlation Coefficient is commonly adopted by the NWP industry as the standard
threshold of skill (Owens & Hewson 2018).
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finite, it increases with the timescale with which the predictions are averaged (Wheeler

et al. 2017).

This provides the basis of long-range forecasts beyond the predictability limit

of instantaneous weather. A probabilistic approach enables the extraction of predictable

signals in the extended range (Buizza & Leutbecher 2015). Conceptually, long-range

predictions can be thought of as more of a problem of boundary forcings and less of an

initial-value problem (Robertson et al. 2020). The source of predictability at these long

timescales can be attributed to characteristic patterns of variability in the atmosphere (or

more generally, the Earth system) at the respective timescale, such as the Madden-Julian

Oscillation (Zhang 2005) and stratospheric signals for sub-seasonal forecasts, and the El

Niño-Southern Oscillation (Wang & Fiedler 2006) for annual predictions. The role of the

oceans becomes important at even longer timescales, as are anthropogenic forcings such as

carbon dioxide emissions. The literature in the dynamics and modelling of these patterns

is rich and research has been active, yet they are beyond the scope of this thesis.

1.9 Thesis outline

Despite the many developments in the prediction of weather over the past century, many

fundamental problems remain unanswered. This thesis attempts to address a few of them:

• The finite predictability horizon suggests some form of discontinuity in the dynam-

ical system governing the error, since T̃ (ε0 = 0) = ∞ but lim inf‖ε0‖→0 T̃ (ε0) < ∞.

Lorenz (1969) arrived at this conclusion using the incompressible 2D Euler equa-

tions, yet the closely related system of 2D Navier-Stokes equations is known to be

well-posed (Robinson 2001) which implies indefinite predictability. This suggests

a potential contradiction with Lorenz’s theory that is now accepted as a ‘canon of

dynamical meteorology’ (Rotunno & Snyder 2008). While the equations governing

Earth’s atmospheric flow together with the boundary conditions are too complex for

a rigorous mathematical analysis of the dynamical system’s regularity, could under-

standing the paradox in the context of 2D flows shed some light on the admissibility

of a truly finite predictability barrier in Earth’s atmospheric system, and therefore
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the admissibility of its mathematical irregularity?

• Although the atmospheric energy spectrum is known to consist of a k−3 range in

the synoptic scale and a k−
5
3 range in the mesoscale (Nastrom & Gage 1985, Judt

2018), and the characteristic error dynamics in each of these ranges stand-alone has

been extensively studied (Lorenz 1969, Lilly 1990, Rotunno & Snyder 2008), the in-

terplay between these two ranges under the hybrid spectrum is a largely unexplored

territory. Would error dynamics resemble mixed characteristics of the two ranges?

Would this change as atmospheric models begin to resolve the mesoscale k−
5
3 range,

and what would happen in the limit of infinite model resolution?

• The philosophy of forecast verification is rather different between deterministic and

probabilistic predictions. Scores for deterministic forecasts quantify differences be-

tween the forecast and the verification (known as the ‘analysis’ in the NWP context),

whereas metrics for probabilistic forecasts assess the reliability of ensembles and the

sharpness of their distributions. While the loss of information and reliability in

probabilistic prediction should be somehow related to the growth of the determin-

istic error of individual ensemble members, is this relationship quantifiable?

These questions will be discussed in Chapters 2, 3 and 4 respectively. Underlying

these discussions will be Lorenz’s model of 1969 and a simple idealised 2D barotropic

turbulence model, which allow one to gain insights into the essential properties of multi-

scale fluids in the context of these questions. With the aid of these simple models, it will

be shown, respectively, that the finite predictability horizon may not be incompatible with

the possible regularity of the atmospheric system, that the synoptic-scale k−3 range in

the hybrid k−3-k−
5
3 spectrum acts to slow down mesoscale error growth, and that certain

verification metrics such as the CRPS and the root-mean-square error (RMSE) can be

functionally related under certain conditions. Towards the end of the thesis (Chapter 5),

some conclusions will be drawn and a few possible directions outlined for future research.
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1.10 Publications

The work presented in this thesis has resulted in a couple of journal articles. Chapter 2

is based on a paper published in the Journal of the Atmospheric Sciences (Leung et al.

2019). Chapter 3 is based on a paper published in the same journal (Leung et al. 2020).

Additionally, small parts of the present chapter are drawn from these two papers: the

rigorous mathematical motivation of the predictability horizon in Section 1.4 is based on

an appendix of Leung et al. (2019), whereas the discussion of parametric error growth

models in Section 1.6 follows on from the corresponding material in Leung et al. (2020).

The candidate for this thesis was responsible in preparing the first draft of both

papers in full, and was the first-drafter of all revisions in response to the reviewers’ com-

ments. The supervisors as co-authors were only involved in commenting and improving

these drafts. Overall, the candidate is estimated to have contributed towards 90% of the

work of each of these papers.

Apart from the two said papers, a third paper is being written up based on the

material in Chapter 4 and is expected to be submitted soon to the Quarterly Journal of

the Royal Meteorological Society.

25





2 Revisiting the inherent finite-time

barrier

Lorenz’s argument which led to his famous conclusion in 1969 that atmospheric pre-

dictability is inherently limited will be revisited in detail in this chapter. A counter-

argument based on analytic results of the 2D Navier-Stokes equations will be presented,

which suggests that the predictability horizon cannot be finite. It turns out that both are

right: the paradox will be reconciled through understanding the practical role of the spec-

tral slope in a certain inequality among the analytic results, in the context of increasing

model resolutions and decreasing spatial scales of the initial error.

2.1 Lorenz’s model

The starting point of Lorenz (1969)’s derivation is the linearised error equation

∂

∂t
(∆ε) + J(ψ,∆ε) + J(ε,∆ψ) = 0 (2.1)

of Equation 1.9 around a basic-state ψ(t,x), where t is the time and x = (x, y) ∈ R2 is

the generic 2D position vector. ε(t,x) := Ψ(t,x)−ψ(t,x) denotes a small departure from

ψ(t,x), where Ψ(t,x) refers to another solution to Equation 1.9. In a nutshell, Lorenz

reduced Equation 2.1 to a system of ODEs through a series of assumptions and by solving

it argued inherently finite predictability for spectral slopes shallower than −3.
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2.1.1 An evolution equation for the error energy spectrum

The derivation of Lorenz (1969) will be reproduced in full, with a few modifications for

mathematical consistency which will be discussed below. To begin, consider an ensemble

M0 of basic-state streamfunction fields ψ(t,x). The streamfunction can be characterised

by its spatial Fourier transform

S(t,k) =
1

4π2

∫
R2

ψ(t,x) exp (−ik · x) dx, (2.2)

whereupon ψ(t,x) can be recovered by

ψ(t,x) =

∫
R2

S(t,k) exp (ik · x) dk. (2.3)

Here k = (kx, ky) ∈ R2 is the 2D wavevector. It follows from multiplying Equation 1.9 by

ψ(t,x) and integrating spatially that the total energy1

Eψ(t) :=
1

2

∫
R2

|∇ψ(t,x)|2 dx (2.4)

is a time-invariant quantity, so that Eψ(t) = Eψ. In the ensemble mean, the total energy

E can be written as

E := EM0 [Eψ]

=
1

2

∫
R2

EM0

[
|∇ψ(t,x)|2

]
dx

=
1

2

∫
R2

VarM0 [∇ψ(t,x)] dx +
1

2

∫
R2

|EM0 [∇ψ(t,x)]|2 dx.

(2.5)

By assuming that

1. the streamfunction averages to zero over the ensemble M0, i.e. EM0 [ψ(t,x)] ≡ 0

and therefore EM0 [S(t,k)] ≡ 0,

1Strictly speaking, this should be the total energy per unit mass. Yet, throughout the rest of the
thesis, the designation ‘per unit mass’ is implied whenever an energy quantity is referred.

28



the second term on the right-hand-side of Equation 2.5 drops out. This reduces E to

E =
1

2

∫
R2

VarM0 [∇ψ(t,x)] dx. (2.6)

E can also be decomposed in terms of Fourier coefficients. Starting from the

definition of Eψ in Equation 2.4 and using the fact that ikS(t,k) and ∇ψ(t,x) is a

Fourier-transform pair,

E = EM0

[
1

2

∫
R2

|∇ψ(t,x)|2 dx

]
= EM0

[
1

2

∫
R2

∇ψ(t,x) ·
(∫

R2

ikS(t,k) exp (ik · x) dk

)
dx

]
= EM0

[
1

2

∫
R2

ikS(t,k) ·
(∫

R2

∇ψ(t,x) exp (ik · x) dx

)
dk

]
= EM0

[
1

2

∫
R2

ikS(t,k) ·
(∫

R2

∇ψ(t,x) exp (−ik · x) dx

)∗
dk

]
= EM0

[
1

2

∫
R2

ikS(t,k) · 4π2 [ikS(t,k)]∗ dk

]
= 2π2

∫
R2

|k|2EM0 [S(t,k)S(t,−k)] dk,

(2.7)

where an asterisk denotes complex conjugation.

Now, for each basic-state streamfunction ψ(t,x), consider an ensemble Mψ of

error streamfunctions ε(t,x). Instead of defining the mean error energy

Fψ(t) = EMψ

[
1

2

∫
R2

|∇ε(t,x)|2 dx

]
=

1

2

∫
R2

EMψ

[
|∇ε(t,x)|2

]
dx (2.8)

over Mψ, we shall work with the variance-like quantity

Gψ(t) =
1

2

∫
R2

EMψ

[
|∇ε′(t,x)|2

]
dx =

1

2

∫
R2

VarMψ
[∇ε(t,x)] dx, (2.9)

where ε′(t,x) := ε(t,x) − EMψ
[ε(t,x)] is the departure of ε(t,x) from its mean over

Mψ. With ε′(t,x) as the primary variable for the error, we can define its spatial Fourier

transform

e(t,k) =
1

4π2

∫
R2

ε′(t,x) exp (−ik · x) dx (2.10)
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and inverse transform

ε′(t,x) =

∫
R2

e(t,k) exp (ik · x) dk. (2.11)

Proceeding in a similar manner to Equation 2.7, we may write

Gψ(t) = 2π2

∫
R2

|k|2EMψ
[e(t,k)e(t,−k)] dk. (2.12)

Equation 2.12 can be averaged over M0 to obtain an expression for the statistical-mean

error energy over the grand ensemble:

G(t) = 2π2

∫
R2

|k|2e(t,k)e(t,−k) dk, (2.13)

where the overbar denotes an average over M0 ×Mψ. Since Equation 2.7 is constant

over Mψ, it shall follow that

E = 2π2

∫
R2

|k|2S(t,k)S(t,−k) dk. (2.14)

In the remainder of this section, E and G(t) shall simply be referred to as the basic-state

energy and error energy respectively.

A comment should be made about the choice of ε′(t,x) in place of ε(t,x) as

the primary prognostic variable for the error. Note that the Gψ(t) in Equation 2.9 is

equivalent to

1

2

∫
R2

VarMψ
[∇Ψ(t,x)] dx (2.15)

as far as the ensembleMψ is concerned. In the limit t→∞ when the statistical properties

of Ψ(t,x) in Mψ become indistinguishable from those of ψ(t,x) in M0, we have

G(t) = EM0 [Gψ(t)] =
1

2

∫
R2

VarM0 [∇ψ(t,x)] dx = E (2.16)

in view of Equation 2.6. Had Fψ(t) (Equation 2.8) been used to define the error energy
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instead, the asymptotic (t→∞) statistical-mean error energy would have been

EM0 [Fψ(t)]

=
1

2

∫
R2

|∇(Ψ(t,x)− ψ(t,x))|2 dx

=
1

2

∫
R2

|∇(Ψ(t,x)− EMψ
[Ψ(t,x)] + EM0 [ψ(t,x)]− ψ(t,x))|2 dx

=
1

2

∫
R2

(
|∇(Ψ(t,x)− EMψ

[Ψ(t,x)])|2 + |∇(ψ(t,x)− EM0 [ψ(t,x)])|2
)

dx

=

∫
R2

VarM0 [∇ψ(t,x)] dx

= 2E

(2.17)

under the same condition of statistical indistinguishability. Therefore, using ε′(t,x) allows

the error energy to saturate at the basic-state energy level rather than twice of it.

Now, substituting Equations 2.3 and 2.11 into Equation 2.1 and rearranging, we

have

∂

∂t

∫
R2

−|k|2e(t,k) exp (ik · x) dk =

− J
(∫

R2

S(t,k) exp (ik · x) dk,

∫
R2

−|k|2e(t,k) exp (ik · x) dk

)
− J

(∫
R2

e(t,k) exp (ik · x) dk,

∫
R2

−|k|2S(t,k) exp (ik · x) dk

)
.

(2.18)

By the orthogonality of the Fourier basis, Equation 2.18 implies

−|k|2 d

dt
e(t,k) =−

∫
R2

i(kx − lx)S(t,k− l)
(
−|l|2ilye(t, l)

)
dl

+

∫
R2

i(ky − ly)S(t,k− l)
(
−|l|2ilxe(t, l)

)
dl

−
∫
R2

ilxe(t, l)
(
−|k− l|2i(ky − ly)S(t,k− l)

)
dl

+

∫
R2

ilye(t, l)
(
−|k− l|2i(kx − lx)S(t,k− l)

)
dl

(2.19)

for all k, where l = (lx, ly) is the dummy integration variable. Defining

A(k, l) := −|k− l|2 − |l|2

|k|2
(kxly − kylx) , (2.20)
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we obtain

d

dt
e(t,k) =

∫
R2

A(k, l)S(t,k− l)e(t, l) dl, (2.21)

an evolution equation for the error’s Fourier coefficients.

We would like to build an evolution equation for the error energy G(t) or its

Fourier decomposition. As an intermediate step, we can use Equation 2.21 to write

an equation for d
dt

(e(t,k)e(t,−k)). Since it is clear from the definition of A(k, l) that

A(−k,−l) = A(k, l), we have

d

dt
(e(t,k)e(t,−k))

= e(t,−k)
d

dt
e(t,k) + e(t,k)

d

dt
e(t,−k)

= e(t,−k)

∫
R2

A(k, l)S(t,k− l)e(t, l) dl + e(t,k)

∫
R2

A(−k,−l)S(t, l− k)e(t,−l) d(−l)

= e(t,−k)

∫
R2

A(k, l)S(t,k− l)e(t, l) dl + e(t,k)

∫
R2

A(k, l)S(t, l− k)e(t,−l) dl

=

∫
R2

A(k, l) (S(t,k− l)e(t, l)e(t,−k) + S(t, l− k)e(t,−l)e(t,k)) dl.

(2.22)

Hence, in the statistical mean,

d

dt

(
e(t,k)e(t,−k)

)
=

∫
R2

A(k, l)
(
S(t,k− l)e(t, l)e(t,−k) + S(t, l− k)e(t,−l)e(t,k)

)
dl.

(2.23)

In Equation 2.23 we have a new, cubic quantity S(t,k− l)e(t, l)e(t,−k), for which we

would like to find an expression. Using Equation 2.21 again and proceeding similarly, we

have

d

dt

(
S(t,k− l)e(t, l)e(t,−k)

)
= e(t, l)e(t,k)

d

dt
S(t,k− l)

+

∫
R2

A(l,m)S(t,k− l)S(t, l−m)e(t,m)e(t,−k) dm

+

∫
R2

A(k,m)S(t,k− l)S(t,m− k)e(t, l)e(t,−m) dm,

(2.24)

where m is yet another dummy variable. Now a quartic quantity enters a cubic equation.

It should be clear at this point that we would never be able to close the system should
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we continue in this way by writing an equation for the quartic quantity. It would only

give rise to higher-order expressions. This is the classic closure problem of turbulence

(Orszag 1970, Vallis 2017). To proceed in a meaningful way, it is necessary to represent

higher-order moments in terms of lower-order moments at some point. Such a functional

relation is known as a closure scheme or closure approximation. Here, Lorenz has chosen

to close the system using a form of quasi-normal approximation (Lorenz 1969, Orszag

1970) which expresses quartic statistics in terms of quadratic statistics. More precisely,

he made the following assumptions:

2. d
dt
S(t,k − l) is a quadratic quantity in S only (it cannot be a function of e, since

the basic-state flow cannot depend on the error);

3. quadratic quantities of S and e are independent;

4. the ensemble for which the statistics is taken is homogeneous.

A few implications are drawn from these assumptions. First of all, Assumptions 2 and 3

suggest that the term e(t, l)e(t,k) d
dt
S(t,k− l) in Equation 2.24 is equal to the quantity

e(t, l)e(t,k) d
dt

(
S(t,k− l)

)
, which vanishes after applying Assumption 1. Using Assump-

tion 3 (the closure assumption), the quartic expression in the second term of Equation 2.24

can be expressed as S(t,k− l)S(t, l−m) e(t,m)e(t,−k). The homogeneity Assumption

4 demands the invariance of statistical quantities to spatial translations. This implies

that

ψ(t,x)2 =

∫
R2

∫
R2

S(t,k′)S(t, l′) exp (i(k′ + l′) · x) dk′ dl′ (2.25)

cannot depend on x, which forces S(t,k′)S(t, l′) = 0 whenever k′ + l′ 6= 0. Hence

S(t,k− l)S(t, l−m) = 0 for all k 6= m. Similarly, e(t,m)e(t,−k) = 0 whenever the

same condition is satisfied. This allows us to write

S(t,k− l)S(t, l−m)e(t,m)e(t,−k) = δ(k−m)S(t,k− l)S(t, l−m) e(t,m)e(t,−k)

(2.26)

where δ(·) is the Dirac delta function at the zero vector. The quartic expression in the
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third term of Equation 2.24 can likewise be simplified as

S(t,k− l)S(t,m− k)e(t, l)e(t,−m) = δ(l−m)S(t,k− l)S(t,m− k) e(t, l)e(t,−m).

(2.27)

Now, applying the quasi-normal approximation (Equations 2.26 and 2.27), Equa-

tion 2.24 can be re-written as

d

dt

(
S(t,k− l)e(t, l)e(t,−k)

)
= S(t,k− l)S(t, l− k)

(
A(k, l)e(t, l)e(t,−l) + A(l,k)e(t,k)e(t,−k)

)
.

(2.28)

This can be combined with Equation 2.23 to form a closed system of second-order ODEs

d2

dt2

(
e(t,k)e(t,−k)

)
= 2

∫
R2

S(t,k− l)S(t, l− k)
(
A(k, l)2e(t, l)e(t,−l) + A(k, l)A(l,k)e(t,k)e(t,−k)

)
dl.

(2.29)

We are now in a position to write an equation for the evolution of the 2D error

energy spectrum Z2D(t,k), whose integral over R2 in spectral space gives the G(t) in

Equation 2.13. As such,

Z2D(t,k) = 2π2|k|2e(t,k)e(t,−k). (2.30)

Similarly, with reference to Equation 2.14, the basic state’s 2D energy spectrum X2D(t,k)

is

X2D(t,k) = 2π2|k|2S(t,k)S(t,−k). (2.31)

The basic-state spectrum is stationary when the turbulence is spun up to a steady state,

so that X2D(t,k) = X2D(k). Substituting Equations 2.30 and 2.31 into Equation 2.29

returns

d2

dt2
Z2D(t,k) =

∫
R2

1

π2

X2D(k− l)

|k− l|2

(
A(k, l)2 |k|2

|l|2
Z2D(t, l) + A(k, l)A(l,k)Z2D(t,k)

)
dl.

(2.32)

This corresponds to Equation 22 of Lorenz’s original work in 1969. Our derivation up
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to this point is different from Lorenz’s primarily in one aspect. While we decomposed

the ψ and ε′ fields using Fourier transforms, Lorenz used Fourier series instead, and only

at this equation did he take the limit to obtain an equation for continuous wavevectors.

As we shall see later, the equation will be discretised for numerical computations after

some further manipulations. Therefore, Lorenz’s approach of starting with a discrete

system, taking the continuous limit then discretising again seems to be mathematically

not as neat as starting the derivation with a continuous framework. In particular, the

above Assumption 4 could not be correctly applied to yield the Dirac delta functions in

Equations 2.26 and 2.27 without considering the continuous model, since the Dirac delta

would have to be preceded by a factor of the inverse square of the discretisation interval in

spectral space. The extra factor is not obvious, and even Lorenz himself failed to mention

it in his work.

Another difference is in the choice of definition of the Fourier basis. The def-

inition that we have adopted in Equations 2.2, 2.3, 2.10 and 2.11 assumes that waves

corresponding to wavevectors of unit magnitude have a period of 2π. While the cor-

responding definition in Lorenz’s paper would have suggested the same (his Equations

8 and 9), his subsequent analysis implicitly presumed a unit period for unit-magnitude

wavevectors. This can be reflected in, for example, his Equations 10 and 11 which define

expressions for the energy quantities. We have decided to adhere to the former definition

as it is physically more intuitive: a zonal wave of wavenumber 1 in the atmosphere has

only a crest and a trough along a given latitudinal circle and therefore has a wavelength

of 2π radians. For this reason, our Equations 2.7, 2.12–2.14 and 2.30–2.32 differ from

Lorenz’s corresponding expressions by a factor of 4π2.

Now, Equation 2.32 is concerned with 2D energy spectra. To simplify the anal-

ysis, we make another assumption:

5. the turbulence is isotropic, so that statistical quantities depend on k only through

its magnitude k := |k| but not its direction.

The isotropy assumption is standard in turbulence analysis. It allows us to define energy

spectra in terms of the scalar wavenumber, thus highlighting the dependence of energy

on spatial scale regardless of direction.
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The scalar energy spectral density X(k)
k

and Z(t,k)
k

, whereupon2

E =

∫
R
X(k) d(log k) =

∫ ∞
0

X(k)

k
dk,

G(t) =

∫
R
Z(t, k) d(log k) =

∫ ∞
0

Z(t, k)

k
dk,

(2.33)

can be obtained by integrating the 2D spectra (Equations 2.30 and 2.31) over circles of

constant k. Thanks to the isotropy Assumption 5, this is as simple as multiplying X2D(k)

and Z2D(t,k) by 2πk. Hence

X(k) = 2πk2X2D(k) = 4π3k4S(t, k)S(t,−k),

Z(t, k) = 2πk2Z2D(t,k) = 4π3k4e(t, k)e(t,−k).

(2.34)

We would like to write Equation 2.32 in terms of scalar wavenumbers. For a fixed

k, each vector l can almost be characterised by the scalar values l := |l| and m := |k− l|,

the only issue being that l and m also give rise to another vector which is the reflection

of l along k. But this does not prevent us from transforming the integration element dl

into dl dm, if we account for the fact that each (l,m) pair corresponds to two possible

vectors l.

To find the Jacobian determinant of the transformation (lx, ly) → (l,m), it is

easier to work it out via the Jacobian determinant J of the inverse transformation (l,m)→

(lx, ly) than to compute it directly. With l =
√
l2x + l2y and m =

√
(kx − lx)2 + (ky − ly)2,

we have

J =

∣∣∣∣∣∣∣det

 ∂l
∂lx

∂l
∂ly

∂m
∂lx

∂m
∂lx


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣det

 lx
l

ly
l

lx−kx
m

ly−ky
m


∣∣∣∣∣∣∣ =
|kxly − kylx|

lm
. (2.35)

The numerator |kxly−kylx| is the magnitude of the 3D vector product (kx, ky, 0)×(lx, ly, 0),

which is also the the area of the parallelepiped spanned by these two vectors. Hence,

J =
2α(k, l,m)

lm
, (2.36)

where α(k, l,m) is the area of the triangle with side lengths k, l and m. The Jacobian

2In this section, the notation used by Lorenz in respect of integration limits is retained. For integrals
involving the element d(f(x)) where f(·) is a function, the integration limits are expressed in f(x)-
coordinates instead of x-coordinates.

36



determinant of the forward transformation (lx, ly) → (l,m) is therefore J−1 = lm
2α(k,l,m)

.

Now, taking into account that each pair of (l,m) corresponds to two pairs of (lx, ly), we

have

dl = dlx dly =
lm

α(k, l,m)
dl dm =

l2m2

α(k, l,m)
d(log l) d(logm). (2.37)

The integration limits are determined by the triangle inequality. For fixed k

and l, it is only possible that m falls in the range (|k − l|, k + l). If the m-integration

is performed before the l-integration, then the proper integration limits are logm ∈

(log|k − l|, log(k + l)) and log l ∈ R. In this case, Equation 2.32 becomes

d2

dt2
Z(t, k) = 2πk2

∫
R

∫ log(k+l)

log|k−l|

1

π2

X(m)

2πm4

(
A(k, l)2k

2

l2
Z(t, l)

2πl2

+A(k, l)A(l,k)
Z(t, k)

2πk2

)
l2m2

α(k, l,m)
d(logm) d(log l),

(2.38)

where we have also used Equations 2.34. Now, Equation 2.20 together with the reference

above on the area of the parallelepiped implies that

|A(k, l)| = 2
m2 − l2

k2
α(k, l,m). (2.39)

Finally, substituting Equation 2.39 into Equation 2.38 gives

d2

dt2
Z(t, k) =

∫
R

(C1(k, l)Z(t, l)− C2(k, l)Z(t, k)) d(log l), (2.40)

where

Cj(k, l) =

∫
R
Bj(k, l,m)X(m) d(logm), j = 1, 2 (2.41)

and

B1(k, l,m) =


2
π3

(m2−l2)2

l2m2 α(k, l,m) m ∈ (|k − l|, k + l)

0 otherwise

,

B2(k, l,m) =


2
π3

(m2−l2)(m2−k2)
k2m2 α(k, l,m) m ∈ (|k − l|, k + l)

0 otherwise

.

(2.42)

We have extended the range of integration in the m-integral to allow logm to run along
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the whole real line, by defining B1(k, l,m) and B2(k, l,m) to take the value zero whenever

the lengths k, l and m cannot form a triangle.

Equations 2.40–2.42 define the evolution of the error energy spectrum under

some fairly general assumptions, most notably homogeneity, isotropy and quasi-normal

closure of the turbulence. They require that the basic-state energy spectrum be prescribed.

Since the equations are too complex to be analytically solvable, it will be necessary to

introduce numerical approximations so as to simplify the system and solve it. These will

be discussed in the next sub-section.

2.1.2 Discretisation and reduction to a system of ODEs

By performing Fourier transforms on ψ(t,x) and ε′(t,x) it has been implicitly assumed

that the transformed functions S(t, ·) and e(t, ·) belong to the Schwartz space of rapidly

decaying functions (as |k| → ∞). It follows that X(·) and Z(t, ·) are also Schwartz

functions. Together with Equations 2.34 which imply X(k), Z(t, k) → 0 as k → 0, we

may choose some N0 ∈ R+, ρ > 1 and n ∈ N such that X(k) and Z(t, k) are negligibly

small whenever k /∈ (N0, Nn]. Here, N0 and Nn := ρnN0 are respectively the minimum

and maximum resolved wavenumbers, ρ is the resolution factor, and n is the number of

resolved scales.

Under this approximation, we may write E =
∑n

K=1 XK andG(t) =
∑n

K=1 ZK(t)

such that

XK =

∫ aK

aK−1

X(k) d(log k),

ZK(t) =

∫ aK

aK−1

Z(t, k) d(log k),

(2.43)

where aK := logNK and NK := ρKN0 for K = 0, 1, . . . , n. Note that we have introduced a

new index K representing the logarithm of scalar wavenumbers k. We may now integrate

both sides of Equation 2.40 with respect to log k over the interval (aK−1, aK ] to obtain

d2

dt2
ZK(t) =

∫ aK

aK−1

∫
R

(C1(k, l)Z(t, l)− C2(k, l)Z(t, k)) d(log l) d(log k). (2.44)

38



Applying the negligibility approximation on the right-hand-side gives

d2

dt2
ZK(t) =

∫ aK

aK−1

n∑
L=1

(∫ aL

aL−1

(C1(k, l)Z(t, l)− C2(k, l)Z(t, k)) d(log l)

)
d(log k). (2.45)

We now introduce another approximation, that X(k) and Z(t, k) are step func-

tions in log k. Owing to the constraint in Equations 2.43, it is necessary that they take

their mean values (log ρ)−1XK and (log ρ)−1ZK(t) respectively on the interval log k ∈

(aK−1, aK ]. Using this, Equation 2.45 becomes

d2

dt2
ZK(t) =

n∑
L=1

(
C(1)KLZL(t)− C(2)KLZK(t)

)
(2.46)

where

C(j)KL = (log ρ)−1

∫ aK

aK−1

∫ aL

aL−1

Cj(k, l) d(log l) d(log k), j = 1, 2. (2.47)

Substituting Equation 2.41 and applying the two approximations again, Equation 2.47

can be re-written as

C(j)KL = (log ρ)−2

∫ aK

aK−1

∫ aL

aL−1

n∑
M=1

(∫ aM

aM−1

Bj(k, l,m)XM d(logm)

)
d(log l) d(log k),

j = 1, 2.

(2.48)

A third approximation specifies that for fixed k and l, Bj(k, l,m) takes the

constant value Bj(k, l, NM) over each interval logm ∈ (aM−1, aM ]. Unlike the previous

approximation wherein X(k) and Z(t, k) take their mean values over the appropriate in-

terval, Bj(k, l,m) takes the value at an end-point of the interval. This is presumably to

save some computational effort when the function is integrated later. With this approxi-

mation, Equation 2.48 simplifies to

C(j)KL = (log ρ)−1

∫ aK

aK−1

∫ aL

aL−1

n∑
M=1

(Bj(k, l, NM)XM) d(log l) d(log k), j = 1, 2.

(2.49)

To further simplify C(j)KL, we note from Equations 2.42 that Bj(k, l,m) = m2Bj(
k
m
, l
m
, 1)
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for any m ∈ R+. It follows that

C(j)KL

= (log ρ)−1

∫ aK

aK−1

∫ aL

aL−1

n∑
M=1

(
N2
MBj

(
k

NM

,
l

NM

, 1

)
XM

)
d(log l) d(log k)

= (log ρ)−1

n∑
M=1

(∫ (K−M) log ρ

(K−M−1) log ρ

∫ (L−M) log ρ

(L−M−1) log ρ

N2
MBj(k

′, l′, 1)XM

)
d(log l′) d(log k′)

=
n∑

M=1

B(j)K−M,L−MN
2
MXM , j = 1, 2

(2.50)

where

B(j)K,L = (log ρ)−1

∫ K log ρ

(K−1) log ρ

∫ L log ρ

(L−1) log ρ

Bj(k
′, l′, 1) d(log l′) d(log k′), j = 1, 2. (2.51)

Now, putting Equations 2.46 and 2.50 together, we end up with

d2

dt2
ZK(t) =

n∑
L=1

n∑
M=1

(
B(1)K−M,L−MN

2
MXMZL(t)−B(2)K−M,L−MN

2
MXMZK(t)

)
=

n∑
L=1

n∑
M=1

(
B(1)K−M,L−M − δKL

n∑
L′=1

B(2)K−M,L′−M

)
N2
MXMZL(t)

=
n∑

L=1

CKLZL(t)

(2.52)

where

CKL =
n∑

M=1

(
B(1)K−M,L−M − δKL

n∑
L′=1

B(2)K−M,L′−M

)
N2
MXM (2.53)

and where B(j)K,L, j = 1, 2 are as specified in Equation 2.51. This is different from Lorenz’s

original work, in which Equation 2.53 (his Equations 41 and 42 combined) would have

been

CKL =
n∑

M=1

(
B(1)K−M,L−M − δKL

∞∑
L′=−∞

B(2)K−M,L′

)
N2
MXM . (2.54)

The change was not discussed in Lorenz’s paper, nor was it justified in the more recent

work of Rotunno & Snyder (2008) which revisited Lorenz’s model with great detail. After

some investigation, we speculate that Lorenz tweaked the definition of CKL in order that

the error may grow as physically expected upon integration of the model (Equation 2.52).

Had Lorenz’s results been reproduced using the expression in Equation 2.53 instead, the

error would have been stuck in an unrealistic oscillatory regime. In order to proceed
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meaningfully, we therefore have to accept Lorenz’s modification, albeit reluctantly. The

physical and technical reasons for such a qualitative discrepancy are beyond the scope of

this thesis.

To allow for the computation of CKL — which now includes an infinite sum —

on a computer, we further approximated Equation 2.54 by

CKL =
n∑

M=1

B(1)K−M,L−M − δKL
n−1∑

L′=−(n−1)

B(2)K−M,L′

N2
MXM . (2.55)

We believe that Lorenz (1969) and Rotunno & Snyder (2008) handled the infinite sum in

a similar manner although neither of them discussed this explicitly. We do not expect the

results of the model’s integration to depend sensitively on the choice of the approximation.

Now, we may write Equation 2.52 as a linear, homogeneous and autonomous

system of second-order ODEs

d2

dt2
Z(t) = CZ(t), where Z(t) =


Z1(t)

...

Zn(t)

 and C =


C11 · · · C1n

...
. . .

...

Cn1 · · · Cnn

 . (2.56)

This is equivalent to the first-order system

d

dt

 Z(t)

W(t)

 =

0 I

C 0


 Z(t)

W(t)

 , (2.57)

where W(t) is the first derivative of Z(t), and I and 0 are respectively the n× n identity

and zero matrices3.

It remains to specify N0, ρ, n and XM (or XK , since M is a dummy variable for

the summation). Lorenz (1969) suggested that the basic-state energy spectrum follow a

−5
3

power-law, i.e. X(k)
k
∼ k−

5
3 . It follows that X(k) ∼ k−

2
3 , or XK ∼ ρ−

2
3
K . A correction

to the power-law is added so that X(k) may indeed be small enough to be negligible when

3Where there is no ambiguity, the notations I and 0 may later refer to the identity and zero matrices
(resp.) of other sizes, and 0 may also refer to the zero vertical vector of an appropriate size.
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k ≤ N0, as demanded by the earlier approximation. For this, Lorenz prescribed

XK = c
(
ρ−

2
3
K − ρ−K

)
(2.58)

where c is chosen to normalise the total basic-state energy to unit value, i.e. E =∑n
K=1XK = 1. Additionally, he set N0 = 1, ρ = 2 and n = 21. In this thesis, N0

and ρ will be fixed throughout, but n and XK will remain variable.

2.1.3 Solving the ODEs

Solving the system of ODEs (Equation 2.56 or 2.57) first requires that the coefficients of

C be computed using Equations 2.51 and 2.55. It involves integrating Bj(k
′, l′, 1), j = 1, 2

which, as Rotunno & Snyder (2008) pointed out, are nearly singular in certain regions of

the (k′, l′) plane. Therefore, the evaluation of the integrals has to be handled with care.

Rather than simply integrating over the box ((K−1) log ρ,K log ρ]×((L−1) log ρ, L log ρ]

as Equation 2.51 suggests, the geometry of the region in which B1(k′, l′, 1) and B2(k′, l′, 1)

are non-zero (Figure 2.1) was taken into account so that resources were not wasted in

integrating the zero regions of these functions. In addition, the integrals were evaluated

using two different ways on Python (with scipy.integrate.nquad) to make sure that

the results were accurate:

1. with logarithmic coordinates as stated in Equation 2.51;

2. applying a coordinate change to canonical coordinates: d(log l) d(log k)→ 1
kl

dl dk.

The first method returned a warning message about the bad behaviour of the integrand

whereas the second method did not. Moreover, the second method was about 10 times

more efficient in terms of the computation’s wall-clock time. As such, the second method

was preferred over the first.

The coefficients CKL were then computed according to Equation 2.55, with

Lorenz’s choices of n and the basic-state energy spectrum. Since the entries of C computed

by these two methods were found to differ by no more than 0.0025%, we are confident

that the computations are accurate. Table 2.1 displays the first eight rows and columns
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Figure 2.1: The region of the (k′, l′) plane in which B1(k′, l′, 1) and B2(k′, l′, 1) are non-
zero. The figure is taken from Lorenz (1969). Note that the axes, which Lorenz named
as (K ′, L′) instead, are logarithmic.

of the matrix C, which agree with the values computed by Rotunno & Snyder (2008) up

to the factor-of-4π2 difference that had been carried over from the very beginning of the

derivation. As Rotunno & Snyder (2008) remarked, the small discrepancy between their

entries and Lorenz’s remained unknown, since they were unable to access the numerical

code which Lorenz used for his own computations. A similar pattern goes beyond the 8th

row and column: the entries on the diagonal are negative, and are of a similar magnitude

but opposite sign as the entries to their left (smaller L); whereas entries to their right are

positive yet much smaller except the ones immediately next to them which are typically

the largest of the row. Asymptotically, the large positive entries at small L increase by a

factor of about 2.5 every row.
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1 2 3 4 5 6 7 8
1 0.005 0.006 0.002 0.000 0.000 0.000 0.000 0.000
2 0.073 0.010 0.046 0.006 0.001 0.000 0.000 0.000
3 0.339 0.259 −0.031 0.221 0.017 0.003 0.001 0.000
4 1.14 1.05 0.838 −0.320 0.865 0.049 0.009 0.002
5 3.37 3.30 3.04 2.57 −1.56 2.98 0.134 0.025
6 9.43 9.38 9.19 8.45 7.55 −6.00 9.50 0.359
7 25.6 25.5 25.4 24.9 22.9 21.6 −20.4 28.6
8 68.0 68.0 68.0 67.6 66.2 60.8 60.1 −64.0

Table 2.1: The first eight rows and columns of the matrix C for the k−
5
3 spectrum accord-

ing to Equation 2.58. The entries are correct to 3 significant figures or 3 decimal places
as appropriate.

The matrix C carries all the information about scale-interactions, which is in

itself an important and much studied topic of theoretical turbulence (see, for example,

Burgess & Shepherd (2013)). According to Equation 2.56, the rate of change of the

error growth rate (the ‘acceleration’) at a particular scale K is the dot product of row

K of C with the vector Z of error energies. Hence, the coefficient CKL represents scale

L’s instantaneous effect on accelerating error growth at scale K. As such, the primarily

negative entries along the diagonal indicate the slowing down of error growth at a scale

itself as a result of energy transfer to other scales, whereas the large positive entries in the

strictly lower-triangular part of the matrix represent the fast downscale spread of errors

(Rotunno & Snyder 2008). They contrast the strictly upper-triangular part, where the

only entries substantially different from zero are found in the super-diagonal. The latter

feature suggests that upscale error growth is dominantly controlled by local interactions.

That said, the role of the very weak non-local interactions in upscale error growth (the

small numbers at the top-right of the matrix) cannot be ignored. This is because once a

small-scale error triggers a tiny error at the large scales, the latter error in turn spreads

to the small scales quickly (as a result of the large entries in the matrix’s bottom-left),

thus creating a positive feedback effect. In fact, this feedback mechanism is crucial to

the error growth of the system as a whole, with the size of the bottom-left entries often

serving as a proxy for the scale-dependency of the growth rate.

To integrate Equation 2.57, it is necessary that the initial conditions for Z and

W be specified. For Lorenz’s first experiment, the initial error was concentrated at the

second smallest scale. He set Zn−1(0) = 2−16E and ZK(0) = 0 for K = 1, . . . n − 2 and

K = n. An initial condition for W was not explicitly provided, but it would be natural to
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assume that the error spectrum initially has zero tendency, i.e. W(0) is the zero vector.

With such initial conditions, Lorenz integrated Equation 2.57 using a simple second-order

Runge-Kutta scheme. However, we note that the equation admits an analytic solution,

since it is a linear system with constant coefficients. We have thus decided to solve it

explicitly by writing out the general solution in terms of the eigenvalues and eigenvectors

of 0 I

C 0


and projecting the vector (Z(0),W(0))T of initial conditions onto such an eigenspace to

determine the constants of the general solution. Such an exact approach is a good and

easy alternative to the numerical schemes used by Lorenz (1969) and Rotunno & Snyder

(2008) and its extension by Durran & Gingrich (2014).

Although Lorenz’s error growth model results from a linearised equation (Equa-

tion 2.1) and is therefore linear, the linear approximation breaks down as the error becomes

large. Indeed, the error energy saturates at the basic-state energy level (Equation 2.16),

which would not have happened had the turbulence been linear. As such, a treatment

of non-linear effects has to be included in the error growth model. In Lorenz (1969), the

non-linear effects were incorporated into the solution procedure by removing the corre-

sponding components of Z(t), W(t) and C when the relative error energy ZK(t)
XK

reached

a certain threshold (≈ 0.815), but here we require ZK(t) = XK for such components

to be removed. Although the effects of the saturated scale on error growth at the un-

saturated scales were no longer represented in the prognostic equation thereafter, they

were nevertheless retained through an inhomogeneous forcing term added to the right-

hand-side of Equation 2.57. This treatment was non-linear because its implementation

was dependent on the solution itself. Time-integration with the resulting inhomogeneous,

lower-dimensional system was carried on, until all scales became saturated.

We recognise that Durran & Gingrich (2014) has suggested another treatment of

the turbulence’s non-linearity by modifying the governing equation (Equation 2.57) itself.

Their modification allows error growth to gradually slow down towards saturation and

is no doubt a better description of it than the scheme above. However, we wish to stick

to Lorenz’s original proposal in this thesis as it would enable us to easier work with the
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model’s analytic properties.

Considering all the above, we have solved Lorenz’s model using the following

procedure:

1. Set a time-step h; in this case, h = 10−3.

2. Initialise the run by setting time t = 0. Also initialise t0 = 0. (t0 is the time when

the previous saturation occurs.)

3. Project the initial condition (Z(0),W(0))T onto the eigenspace of the block matrix

0 I

C 0


to determine the constants of the general solution.

4. Compute the solution at time t − t0 and check if any of the scales K saturates by

time t.

5. If none of the scales saturates, reset t = t+ h and repeat step 4.

6. If, for any K, ZK(t) > XK by time t, then the clock is reset to the previous time-step

t− h, and h is refined to 10−6.

7. Repeat steps 4 and 5 with the new value of h until ZK(t) > XK . The saturation

time of scale K is determined as if ZK(t) increased linearly between times t−h and

t.

8. Reset h = 0.001 and set t0 to be the current time t. Remove the row and column of

the matrix C corresponding to the saturated scale K and the corresponding entries

of Z(t0), W(t0) and all the Fj terms (more on the Fj terms below). The reduced-size

system

d2

dt2
Z(t) = CZ(t) +

∑
j

Fj, (2.59)

where the summation is performed over all saturated scales, has a new inhomoge-

neous term FK which accounts for the contribution of scale K’s saturated energy
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to error growth at the remaining scales. (FK equals to XK multiplied by the Kth

column of C restricted to the rows corresponding to the remaining scales.) As the

new system is equivalent to the reduced-size first-order system

d

dt

 Z(t)

W(t)

 =

0 I

C 0


 Z(t)

W(t)

+

 0∑
j Fj

 (2.60)

and
∑

j Fj is a constant vector, its solution (Z(t),W(t))T can be expressed as the

sum of a particular solution (Zp,Wp)
T and a solution (Zh(t− t0),Zh(t− t0))T of the

homogeneous system in the variable t− t0. A particular solution to the differential

equation can be obtained by solving

−

0 I

C 0


 Zp

Wp

 =

 0∑
j Fj

 . (2.61)

Re-calculate the eigenvalues and eigenvectors of the new

0 I

C 0


and project (Z(t0),W(t0))T − (Zp,Wp)

T onto such an eigenspace to determine the

constants of (Zh(t− t0),Zh(t− t0))T and thus the full solution.

9. Repeat steps 4 – 8 until all scales saturate.

The distribution of eigenvalues of the block matrix

0 I

C 0


deserves a mention. In the original matrix, i.e. before any rows and columns are removed

from the matrix by the above procedure, the 2n = 42 eigenvalues consist of 5 pairs of

real numbers and 16 pairs of complex conjugates. Each pair of real eigenvalues are of

the same magnitude but opposite-signed. The remaining eigenvalues can be treated as

purely imaginary, as their real parts have magnitudes smaller than 10−12. As such, we
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may consider that all the eigenvalues fall on either the real or the imaginary axis. The

magnitudes of these eigenvalues span rather evenly (on a logarithmic scale) across a few

orders of magnitude, from about 5.5× 103 down to about 8.6× 10−2. The largest positive

real eigenvalue which determines the overall rate of error growth has a magnitude of about

1.9 × 103. This gradually decreases as the size of the matrix is reduced throughout the

solution procedure, by about an order of magnitude for every five scales removed from

the prognostic system. Yet the basic structure of the eigenvalues’ distribution remains

the same, namely that they exist in opposite-signed pairs of the same magnitude on

either axis, and that the ratio between the number of real and imaginary eigenvalues is

approximately 1 : 3. Having said that, the only remaining pair of eigenvalues just before

the saturation of the error energy at the largest scale is real-valued, or else the largest

scale would never be able to saturate.

The mathematics of the dynamical system (Equation 2.57) in no way precludes

the physically unrealistic occurrence of negative error energies. Indeed, it is a known

shortcoming of the quasi-normal approximation of turbulence closure (Orszag 1970). As

Lorenz (1969) remarked himself, the solution trajectory corresponding to his initial condi-

tion is found to oscillate back and forth a few times before it gains a sufficient projection on

the real, positive eigenvalues to grow monotonically. This is especially the case when the

initial condition has a substantial projection on eigenvectors whose corresponding eigen-

values have an imaginary component. Given that about three quarters of the eigenvalues

are imaginary, it is hardly surprising that such oscillatory behaviour happens. Qualita-

tively, the oscillations represent a time-delay in error growth, which in the real world may

correspond to an initial geostrophic adjustment process of unbalanced mesoscale errors

(Bierdel et al. 2017, 2018).

Figure 2.2 shows the results of solving Lorenz’s model for the k−
5
3 basic-state

spectrum (Equation 2.58) and the small-scale initial condition specified above. The error

energy spectrum spreads upscale in a more or less self-similar fashion and peaks at the

smallest scale yet to be saturated (Figure 2.2(a)). The only exception to this is near the

initial time, when the error is still concentrated at the very small scales and is transitioning

from the oscillatory regime to the monotonic growth regime. The saturation times tK

(Figure 2.2(b)) largely agree with the values which Lorenz (1969) himself reported (see
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also Table 1.1), and scale nicely as ρ−βK with a β > 0, thus implying that the error at

small scales saturates much faster than at large scales. By fitting the tK ∝ ρ−βK scaling

to the data, it was found that β = 0.6933.
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Figure 2.2: (a) Evolution of the error energy spectrum (blue, from bottom-right to top-
left) in Lorenz (1969)’s model, under the basic-state energy spectrum of slope −5

3
shown

in the red curve. The equivalent energy spectral densities ρ−KZK(t) and ρ−KXK are
depicted in the vertical axis. These are functions that smoothly distribute ZK(t) and
XK (resp.), which would have been densities in k had K been a continuous variable.
The error energy spectrum is plotted whenever it saturates at some scale, rather than at
equal time-intervals. (b) Saturation times tK of the error energy as a function of scale K
(red), compared to the values reported by Lorenz but appropriately non-dimensionalised
(green). The blue curve shows a line-of-fit tK ∝ ρ−βK for the red curve, where β = 0.6933.

2.1.4 An argument for the finite predictability horizon

The parameter β is an important indicator for determining the predictability horizon. In

Lorenz (1969)’s original formulation, the fitting was performed on the successive differ-

ences tK − tK+1 of the saturation times, rather than the saturation times tK themselves.

He suggested that tK − tK+1 would scale as ρ−βK so that, given an initial error at an

infinitesimally small scale, the predictability horizon would be finite if and only if the

telescoping series

tK =
∞∑
j=K

(tj − tj+1) ∝
∞∑
j=K

ρ−βj (2.62)
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is summable. This happens if and only if β > 0, in which case the predictability horizon

tK may be estimated as

tK ∝
∞∑
j=K

ρ−βj =
ρ−βK

1− ρ−β
∝ ρ−βK , (2.63)

hence our choice of fitting tK to the scaling ρ−βK .

Lorenz observed that β = 2
3

for a k−
5
3 spectrum, which is slightly different from

the value of β that we have obtained by a standard least-squares fitting algorithm. Ac-

cording to the argument above, this would imply a finite predictability horizon for the

atmosphere, since the atmospheric energy spectrum was presumed to be k−
5
3 . Addition-

ally, he found that β depends on the spectral slope, with β = 1
3

for a hypothetical k−
7
3

spectrum. By linear extrapolation, Lorenz thus hypothesised that β would become zero

and predictability would become indefinite if the spectral slope were steepened to −3.

Lorenz’s result is supported by arguments on dimensional grounds (Vallis 1985,

Lilly 1990). Relation 1.12 in Section 1.4 suggests that the predictability horizon scales

with the wavenumber as k
p−3

2 ≈ ρ
p−3

2
K , where −p is the spectral slope. Hence β = 3−p

2
,

implying that β = 2
3
, 1

3
and 0 respectively for spectral slopes −5

3
, −7

3
and −3.

2.1.5 A k−3 basic-state energy spectrum

It would be of interest to study the theoretical error growth and predictability properties

under a −3 spectral slope, as it has been shown to appear in the atmospheric energy

spectrum in the synoptic scale (Boer & Shepherd 1983, Nastrom & Gage 1985), and

also because such properties are thought to be very different from those under a k−
5
3

spectrum (Lorenz 1969). This can be done by modifying the inputs of Lorenz’s model.

Rotunno & Snyder (2008) have already solved for the growth of the error energy spectrum

in this context. To assess the range of predictability in Lorenz’s framework, we extend

their calculations to investigate the dependence of tK on K. This will enable us to check

whether indefinite predictability is indeed achieved with a spectral slope of −3, as Lorenz

hypothesised.
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The input spectrum is updated according to the proposal of Rotunno & Snyder

(2008) to reflect a k−3 spectrum. This is done by multiplying Equation 2.58 by a factor

of ρ−
4
3

(K−3) when K > 3, and retaining the original values otherwise so that the spectrum

at the largest scales remains unaffected. This implies

XK = c
(
ρ−

2
3
K − ρ−K

)
×min{1, ρ−

4
3

(K−3)}, (2.64)

where c is as in Equation 2.58 (as a result, the total energy in this case is not normalised

to unit value). In addition, the initial condition for Zn−1 is updated as 2−40, since the

original value would now exceed the basic-state energy level Xn−1. Apart from these

changes, everything in the set-up remains the same as before.

The re-computed matrix C, whose first 8 rows and columns are displayed in

Table 2.2, is distinctively different from that for the k−
5
3 spectrum (Table 2.1). In any

given row, the largest entries in magnitude are those on the diagonal, super-diagonal and

sub-diagonal. This indicates that the primary mechanism for error growth is local triad

interactions, both upscale and downscale. The relatively small entries in the bottom-left

of the matrix suggest that the quick spreading of large-scale errors into the small scales is

absent. Since it is the primary mechanism of the fast error growth under a k−
5
3 spectrum,

one may expect that error growth under a k−3 spectrum is much slower.

1 2 3 4 5 6 7 8
1 0.005 0.006 0.002 0.000 0.000 0.000 0.000 0.000
2 0.073 0.010 0.046 0.005 0.000 0.000 0.000 0.000
3 0.339 0.259 −0.031 0.202 0.006 0.000 0.000 0.000
4 0.608 0.538 0.412 −0.453 0.692 0.007 0.001 0.000
5 0.733 0.709 0.625 0.744 −1.79 1.81 0.007 0.001
6 0.824 0.816 0.789 0.694 1.64 −4.89 4.09 0.008
7 0.894 0.891 0.882 0.852 0.749 3.67 −11.4 8.67
8 0.948 0.947 0.944 0.935 0.903 0.792 7.96 −24.8

Table 2.2: The first eight rows and columns of the matrix C for the k−3 spectrum according
to Equation 2.64. The entries are correct to 3 significant figures or 3 decimal places as
appropriate.

The eigenvalues of this C range from approximately 1.1 × 10−1 to 5.0 × 102

and are therefore less spread out than those for the matrix corresponding to the k−
5
3

spectrum. Like the latter matrix, the real eigenvalues come in pairs of opposite-signed

numbers of the same magnitude. However, there are only two such pairs out of the 21,
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and the larger pair has a magnitude of only about 9.4 × 10−1. This may also explain

the slow error growth under the k−3 spectrum. On the other hand, the many remaining

pairs of purely imaginary eigenvalues suggest that the error trajectory is likely to spend

a long time in an oscillatory regime while struggling to project itself sufficiently on the

eigenspace corresponding to the real and positive eigenvalues. Indeed, the trajectory for

the initial condition specified above has spent almost the same amount of time to saturate

the smallest scale K = 21 as the time it takes to grow from K = 21 to K = 3 (Figure

2.3(b)).
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Figure 2.3: As in Figure 2.2, but for a k−3 spectrum according to Equation 2.64 and a
smaller initial error magnitude of 2−40 at K = 20. There is no green curve in (b), as
Lorenz did not run the model for a k−3 spectrum himself. The line-of-fit shown by the
blue curve in (b) corresponds to β = 0.0504.

Rather than growing upscale, the error energy spectrum seems to grow up-

magnitude at a more or less uniform rate across all scales (Figure 2.3(a)). This presents

a major qualitative difference from error growth under a k−
5
3 spectrum. The β for which

tK ∝ ρ−βK is found to be small but positive (about 0.05), so that the predictability

horizon represented by the sum in Equation 2.62 remains finite. Although this is contrary

to Lorenz’s prediction as well as the dimensional theory, we acknowledge that this β is

only marginally away from the critical value of zero. Having said that, one should bear

in mind that Equation 2.63 is invalid when β = 0. Instead, since tK − tK+1 is constant

in K, the range of predictability (given a certain initial error) should scale as β1 − β2K,

which would have been a curve of constantly changing slope had it been plotted with a

logarithmic tK axis as in Figure 2.3(b). Hence, the straight segment of the red curve in

Figure 2.3(b) reaffirms our deduction that Lorenz’s model fails to predict the indefinite
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predictability associated with the k−3 spectrum.

The results in Figure 2.3 can be compared with the corresponding results (Fig-

ure 2.4) from an identical-twin perturbation experiment with idealised 2D turbulence,

whose set-up will be discussed in Section 3.1. Figure 2.4(a) shows the growth of the error

energy spectrum. Like in Lorenz’s model (Figure 2.3(a)), the error spectrum grows quite

uniformly across the scales. However, its flatness presents a contrast with the sharp large-

scale peak predicted by Lorenz’s model. The range of predictability T̃ scales nicely as k−β

with β = 0.2365 > 0 (Figure 2.4(b)), again reinforcing (this time with greater confidence

as β is further away from zero) that indefinite predictability may have not been reached

with a k−3 spectrum. This could be an indication that the existing theory on dimensional

grounds might be too simplistic to describe the non-linear dependence between the pre-

dictability diagnostic β and the slope −p of the basic-state energy spectrum. On top of

this, the unrealistic shape of the error energy spectrum that results from Lorenz’s model

in the k−3 case may further complicate matters.
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Figure 2.4: As in Figure 2.3, but for directly simulated 2D turbulence averaged over four
independent realisations. The blue dot in (a) shows the initial perturbation. The magenta
curves show the error spectrum at non-dimensional times t = 0.3, 0.6, . . . , 3, and the blue
curves at t = 6, 9, . . . , 66. The basic-state energy spectrum (scaled by a factor of two, see
Equation 2.17) at the final time of the simulation (t = 66) is shown in red. In (b), the
blue line-of-fit corresponds to β = 0.2365.
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2.2 Aspects from PDE theory: the incompressible

2D Navier-Stokes equations

A very different approach to understanding predictability is the analytic theory of PDEs.

The Navier-Stokes equations (Equations 1.1 and 1.3), which are essentially fluid-dynamical

representations of the mass-conservation principle and Newton’s Second Law of Motion,

are always useful as a pedagogical first step towards understanding and modelling mo-

tions of real fluid flows in the atmosphere. As such, their analytical properties have been

extensively studied. Building on these analytic results, we now consider their implications

for predictability.

Here, we restrict our attention to the 2D incompressible case but with a general

forcing term f(t,x) ∈ R2. By an appropriate rescaling of the variables, the constant

density can assume a unit value without loss of generality. In this case, the Navier-Stokes

problem can be mathematically reduced to

∂u

∂t
+ u · ∇u = −∇p+ f + ν∇2u

∇ · u = 0

(2.65)

where ν > 0 is a constant, and the fields u(t,x) ∈ R2 and p(t,x) ∈ R are to be solved for

t > 0 in a square domain Ω := [0, 2π) × [0, 2π) subject to an initial condition u0(x) :=

u(0,x) and doubly periodic boundary conditions. We shall further assume that both u0(x)

and f(t,x) integrate spatially to zero. In the remainder of this chapter, we shall drop the

reference ‘incompressible’ and simply refer to these equations as the ‘2D Navier-Stokes

equations’.

Unlike its 3D counterpart whose regularity problem remains open, the above

initial-boundary-value problem for the 2D Navier-Stokes equations is known to be well-

posed: a solution exists, is unique, and depends continuously on initial conditions. This

style of rigorous analysis can be traced back to the early work of Leray (1933, 1934). An

overview of such analytic results is given in Robinson (2013), which are discussed in detail

in a book by the same author (Robinson 2001). The proof of the solution’s uniqueness
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and continuous dependence on initial conditions will be reproduced below, as it is relevant

to the study of predictability.

2.2.1 Weak formulation

We shall focus on the weak formulation of the initial-boundary-value problem described by

Equations 2.65, which admits a more general class of solutions than the strong formulation.

It casts the 2D Navier-Stokes equations in the form of an ODE in an appropriate function

space. To begin, we note that the solution u(t,x) always has a spatial mean of zero. This

can be shown by spatially integrating the first of Equations 2.65:

d

dt

∫
Ω

u dx +

∫
Ω

u · ∇u dx = −
∫

Ω

∇p dx +

∫
Ω

f dx +

∫
Ω

ν∇2u dx. (2.66)

The first term on the right-hand-side is zero, since each vector component4 is an integral

of a derivative of a periodic function. The same applies to the third term, because the

divergence included in the ∇2 can be interpreted as a sum of derivatives. The second

term on the right-hand-side is also zero due to the zero-mean assumption of f . For each

component of u, the second term on the left-hand-side equals

∫
Ω

u ·∇ui dx =

∫
Ω

∇· (uiu) dx−
∫

Ω

ui∇·u dx =

∫
∂Ω

uiu · dS−
∫

Ω

ui∇·u dx = 0 (2.67)

(∂Ω denotes the boundary of Ω), thanks to the periodic boundary conditions and the non-

divergent condition ∇ · u = 0 of Equations 2.65. Equation 2.66 thus suggests a constant

spatial mean of u, whose value is given by the initial condition which has been assumed

to be zero.

We thus define a function space

V :=

{
u(t, ·) ∈

[
C∞p (Ω)

]2
: ∇ · u = 0,

∫
Ω

u dx = 0

}
, (2.68)

where
[
C∞p (Ω)

]2
is the space of two-component smooth and doubly periodic functions on

Ω. Let V be the completion of V in the H1(Ω) norm, where H1(Ω) is the space of two-

4Throughout this section, components of vectors are denoted by subscripts, such as ui, vj and xi for
the components of u, v and x respectively.
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component, divergence-free, zero-mean and continuously differentiable functions whose

L2 norm and whose first derivative’s L2 norm are finite. In the weak formulation of the

2D Navier-Stokes equations, V is the function space to which the test function v belongs,

so that solutions belong to its dual space V ∗, the space of linear functionals on V .

Now, taking the inner product of the evolution equation (the first of Equations

2.65) with v and applying Green’s first identity, we have

∫
Ω

∂u

∂t
·v dx +

∫
Ω

(u · ∇u) ·v dx = −
∫

Ω

∇p ·v dx +

∫
Ω

f ·v dx−
∫

Ω

ν∇u ·∇v dx, (2.69)

where ∇u·∇v =
∑2

i=1∇ui ·∇vi. Arguing in the same way as Equation 2.67, the first term

on the right-hand-side vanishes, and thus the dependence on pressure is dropped. This

can be expected, as the pressure is a diagnostic quantity in the Navier-Stokes equations

— there is no equation for the time-evolution of the pressure. Defining a bi-linear form

a(u,v) :=

∫
Ω

∇u · ∇v dx (2.70)

and a tri-linear form

b(u,v,w) :=

∫
Ω

(u · ∇v) ·w dx =
2∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wj dx, (2.71)

and writing (·, ·) for the inner product on V , Equation 2.69 reduces to

(
∂u

∂t
,v

)
+ νa(u,v) + b(u,u,v) = (f ,v). (2.72)

To require Equation 2.72 to hold for all v ∈ V is equivalent to satisfying the ODE5

du

dt
+ νAu +B(u,u) = f (2.73)

in V ∗, where A : V → V ∗ is the linear operator defined by

(Au,v) = a(u,v) (2.74)

5The use of the total derivative d
dt in Equation 2.73 in place of the partial derivative ∂

∂t is to emphasise
that the spatial dependence of u and f have already been treated through the introduction of the space
V ∗ so that only the temporal dependence remains (see Robinson (2001), pp. 194–195 and 240–241).
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and B : V × V → V ∗ is the bi-linear operator defined by

(B(u,v),w) = b(u,v,w). (2.75)

Equation 2.73 in V ∗ defines the weak formulation of the 2D Navier-Stokes equations’

initial-boundary-value problem described above.

2.2.2 Uniqueness of solutions and their continuous dependence

on initial conditions

Using Equation 2.73, we shall prove the uniqueness of weak solutions and their continuous

dependence on u0. Since any strong solution is also a weak solution, it shall automatically

follow from the proof that strong solutions are unique and depend continuously on initial

conditions.

We first demonstrate an elementary property of the tri-linear form b(u,v,w),

that it is anti-symmetric with respect to the second and third arguments. Using the

product rule and the divergence theorem,

b(u,v,w) =

∫
Ω

2∑
j=1

((u · ∇)vj)wj dx

=

∫
Ω

2∑
j=1

(∇ · (vju))wj dx−
∫

Ω

2∑
j=1

vj(∇ · u)wj dx

=

∫
Ω

2∑
j=1

∇ · (vjwju) dx−
∫

Ω

2∑
j=1

vju · ∇wj dx−
∫

Ω

2∑
j=1

vj(∇ · u)wj dx

=

∫
∂Ω

2∑
j=1

vjwju · dS−
∫

Ω

2∑
j=1

((u · ∇)wj) vj dx−
∫

Ω

(v ·w)(∇ · u) dx

= −b(u,w,v)

(2.76)

due to the periodic boundary conditions and the non-divergent condition ∇ · u = 0.

We now proceed with the main proof. For two solutions u and v of Equation

2.73, not necessarily corresponding to the same initial condition, the error velocity field
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w := u− v satisfies

dw

dt
+ νAw +B(w,u) +B(v,w) = 0. (2.77)

Taking the inner product of this error equation with w, we have

1

2

d

dt
‖w‖2 + νA‖∇w‖2 = −b(w,u,w)− b(v,w,w), (2.78)

where ‖·‖ is the L2 norm. The second term on the right-hand-side drops out following

Equation 2.76. The remaining terms thus satisfy the inequality

1

2

d

dt
‖w‖2 + νA‖∇w‖2 ≤ |b(w,u,w)|, (2.79)

where |·| simply denotes the magnitude. The term on the right-hand-side can be bounded

above by M0‖w‖‖∇w‖‖∇u‖, following an application of Ladyzhenskaya’s and Hölder’s

inequalities (Robinson 2001), whose scope is beyond this thesis. The bound here, in which

M0 here is a positive constant, is specific to the 2D version of the tri-linear form b(·, ·, ·).

Using the elementary inequality |2xy| ≤ x2 + y2, we obtain

1

2

d

dt
‖w‖2 + νA‖∇w‖2 ≤ ν

2
‖∇w‖2 +

M2
0

2ν
‖w‖2‖∇u‖2 (2.80)

which upon rearrangement gives

d

dt
‖w‖2 + νA‖∇w‖2 ≤ M2

0

ν
‖w‖2‖∇u‖2. (2.81)

We can now invoke Grönwall’s inequality on

d

dt
‖w‖2 ≤ M2

0

ν
‖w‖2‖∇u‖2, (2.82)

which Inequality 2.81 implies, and arrive at

‖w(t,x)‖2 ≤ exp

(∫ t

0

M2
0

ν
‖∇u(s)‖2 ds

)
‖w(0,x)‖2. (2.83)
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Solutions thus depend Lipschitz-continuously on initial conditions, since

‖u(t,x)− v(t,x)‖ ≤ L(T )‖u(0,x)− v(0,x)‖, t ∈ [0, T ] (2.84)

where

L(T ) := sup
t∈[0,T ]

√
exp

(∫ t

0

M2
0

ν
‖∇u(s)‖2 ds

)
. (2.85)

In particular, uniqueness follows by setting u(0,x) = v(0,x), or equivalently w(0,x) ≡ 0.

2.2.3 Implications for predictability

As an immediate corollary to the Lipschitz-continuity of the solutions’ dependence on

initial conditions (Inequality 2.84), predictability is indefinite for the 2D Navier-Stokes

equations (Palmer et al. 2014). Indeed, if a prediction is defined to lose its skill when

‖w(t,x)‖ ≥ ε, then for any given time T ∈ R+, the prediction is skilful for at least

up to T when the initial error ‖w(0,x)‖ can be made sufficiently small, that is, smaller

than 1
L(T )

ε. This argument is independent of the spectral slope of the basic-state energy

spectrum, unlike Lorenz’s argument in Section 2.1.

2.3 Reconciling the paradox

At first glance, the indefinite predictability implied by the well-posedness theorem of the

2D Navier-Stokes equations seems to contradict Lorenz’s result for any spectral slope

shallower than −3. However, we have not discussed the role of the spectral slope in L(T )

which, as we will see in the following, reconciles the conflict.

Central to our argument are the Inequality 2.84 and Equation 2.85 above, and

an understanding of the distinction between the real atmosphere and its numerical model.

For simplicity, suppose the real fluid system has only one inertial range of slope −p in

its energy spectrum, which is stationary. In this case, |û(t, k)|2 = A0k
−p between its

large-scale cutoff wavenumber k1 and small-scale cutoff wavenumber k2, with A0 being a

constant. Here we have changed the notation: Fourier coefficients (denoted by the hat

59



symbol) are now defined in terms of scalar wavenumbers k. It follows that

‖∇us‖2 =

∫ ∞
0

k2|ûs|2 dk =

∫ k1

0

k2|ûs|2 dk + A0

∫ k2

k1

k2−p dk +

∫ ∞
k2

k2|ûs|2 dk, (2.86)

where the subscript s distinguishes the system itself from a model for the system which

we will denote with the subscript m. The three terms on the right-hand-side of Equation

2.86 represent contributions from the large scale, the inertial range and the viscous range

respectively. Compared to the first two terms, the term representing the viscous range is

assumed to be small. In particular, the integrand is assumed to decay rapidly enough so

that ‖∇us‖2 remains finite (this is in fact part of the definition of the function space V ∗

to which us belongs).

Now, suppose the model truncates at wavenumber kt � k2 and numerical dissi-

pation kicks in at some wavenumber k0 close to kt yet substantially greater than k1. We

therefore have k0 � k2, which is a key assumption of the present analysis. For the model,

‖∇um‖2 =

∫ kt

0

k2|ûm|2 dk =

∫ k1

0

k2|ûm|2 dk + A0

∫ k0

k1

k2−p dk +

∫ kt

k0

k2|ûm|2 dk. (2.87)

Again, we may neglect the contribution from the viscous range, so that

‖∇um‖2 ≈
∫ k1

0

k2|ûm|2 dk + A0

∫ k0

k1

k2−p dk. (2.88)

Because k0, kt � k2, the second integral in Relation 2.88 with p < 3 appears to diverge

as the model resolution kt and thus k0 increases. Combining this with Equation 2.85,

L(T ) — until k2 is reached — grows exponentially with k0. This makes the Lipschitz-

continuous bound in Inequality 2.84 almost useless. To keep the error ‖u(t,x)− v(t,x)‖

under control, the initial error ‖u(0,x) − v(0,x)‖ would have to decrease exponentially,

but decreasing the scale of the initial error without changing its magnitude relative to the

basic-state energy spectral density (as presumed in Lorenz’s thought experiment) would

only give a polynomial decrease. Therefore in practice, since the initial error cannot be

made to decrease fast enough as more scales are resolved (let alone the large-scale error be

constrained to zero (Durran & Gingrich 2014)), the corollary of indefinite predictability

discussed in Sub-section 2.2.3 fails to hold. As such, there is no contradiction between
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Lorenz’s argument of inherently finite predictability and the well-posedness theorem of

the 2D Navier-Stokes equations.

This concept, known as ‘asymptotic ill-posedness’, was put forward by Palmer

et al. (2014) as they argued that whether the system of 3D Navier-Stokes equations is ana-

lytically well-posed is practically irrelevant to the theory of inherently finite predictability.

We have now extended the discussion to the 2D system and given a mathematical basis

to the concept in our context.

When p > 3, the second integral on the right-hand-side of Relation 2.88 does

not appear to diverge as k0 → k2. This means one may indeed approximate ‖∇us‖2 by

the ‖∇um‖2 in Relation 2.88 with a sufficiently large value of k0. So would the L(T ) in

Equation 2.85 be approximated without regard to the model resolution, making it possible

for ‖u(t,x) − v(t,x)‖ < ε by making ‖u(0,x) − v(0,x)‖ small enough in scale and thus

achieving indefinite predictability.

So far our argument for the cases p < 3 and p > 3 are in harmony with Lorenz’s

result. For the borderline case p = 3, the analysis here suggests a possibly finite pre-

dictability horizon in practice. This is because Relation 2.88 gives

‖∇um‖2 ≈
∫ k1

0

k2|ûm|2 dk + A0

∫ k0

k1

k−1 dk =

∫ k1

0

k2|ûm|2 dk + A0 log
k0

k1

, (2.89)

which appears to diverge as k0 → k2. This disagrees with the established theory by Lorenz

(1969) and on dimensional grounds. Even with the logarithmic correction

|û(t, k)|2 ∼ k−3

[
log

(
k

kr

)]− 1
3

(kr > 0 constant), (2.90)

or more generally

|û(t, k)|2 ∼ k−3

[
A1 log

(
k

kr

)
+ A2

]− 1
3

(A1, A2, kr > 0 constants), (2.91)

to the −3 spectrum (Bowman 1996), an easy calculation along the previous lines still

suggests that the predictability horizon can be finite in practice. As such, we are unable

to explain the disagreement and leave the problem open.
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The above analysis has assumed that the fluid system exhibits only one inertial

range in its energy spectrum. This can easily be extended to systems with multiple

inertial ranges, since only the range immediately preceding the viscous range pertains

to the argument concerning the large-k0 behaviour. As such, the relevant p for Earth’s

atmosphere is 5
3

(Nastrom & Gage 1985). Since the typical kt for current-day atmospheric

models is smaller than k2 by “at least seven or eight orders of magnitude” (Palmer et al.

2014), the crucial assumption (kt � k2) is satisfied for our analysis to be applicable

to the real atmosphere. We therefore conclude that the inherently finite atmospheric

predictability as understood by the meteorological community is not inconsistent with

the regularity of the 2D Navier-Stokes equations.

2.4 Summary

Half a century since Lorenz’s pioneering discovery of the finite predictability horizon

for the atmosphere, it has now become an “accepted part of the canon of dynamical

meteorology” (Rotunno & Snyder 2008). His argument is based on solving a simple

system of ODEs representing error growth in the dynamics of the 2D barotropic vorticity

equation, and on exploring patterns in the error’s saturation times.

In this chapter, we have re-assessed the details behind Lorenz’s conclusion (Sec-

tion 2.1). His model of ODEs has been re-derived in a mathematically more consistent

manner, and solved analytically rather than numerically. The behaviour of error growth

produced by the model in relation to its mathematical properties has been discussed.

Furthermore, we have extended his calculations to the k−3 energy spectrum. While the

k−3 spectrum is thought to be associated with indefinite predictability, this has however

been refuted within the context of Lorenz’s model.

We have also discussed how the finite predictability horizon could be compatible

with an analytic theorem for the 2D Navier-Stokes equations, which implies indefinite

predictability regardless of the slope of the energy spectrum (Sections 2.2 and 2.3). The

apparent contradiction could be reconciled by noting how quickly the initial error has

to be brought down with increasing resolution to guarantee indefinite predictability, and
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by understanding how this is practically impossible when the spectrum is shallower than

k−3. Our analysis gives rise to an inconsistent result with the mainstream understanding

of indefinite predictability in the borderline case of a k−3 spectrum, yet it nevertheless

agrees with our own computations of Lorenz’s model.

Until recently, energy spectra in global NWP models had only resolved the

synoptic-scale k−3 range. As model resolutions extend into the mesoscale k−
5
3 range

(European Centre for Medium-Range Weather Forecasts 2016), the strong constraints on

the range of predictability envisaged by Lorenz is expected to become visible (Judt 2018).

However, the limits on predictability arising from initial errors on the large scales will

also limit predictability in practice (Durran & Gingrich 2014), and the interplay between

the two spectral ranges could be an interesting area to explore. These will be discussed

in the next chapter.
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3 Impact of the mesoscale range on

error growth and the predictabil-

ity limit

Despite the conflicting opinions on the predictability horizon associated with the k−3

range when the problem is presented in different perspectives, the previous chapter has

unequivocally established that a k−
5
3 energy spectrum imposes a finite-time predictability

barrier for all practical purposes, as errors develop more rapidly on smaller scales than

on larger scales. The k−
5
3 range, which appears only in the mesoscale part of the atmo-

spheric energy spectrum (Nastrom & Gage 1985), is now being increasingly resolved by

global NWP models (European Centre for Medium-Range Weather Forecasts 2016). It is

therefore becoming more relevant to ask how errors in the mesoscale range would grow

under the influence of the synoptic-scale k−3 range of the atmospheric energy spectrum,

and how it would be different from the classic pattern of error growth for a stand-alone

k−
5
3 spectrum. In this chapter, the error growth behaviour under such a hybrid k−3-k−

5
3

spectrum reminiscent of Earth’s atmosphere will be examined in Lorenz’s model and in

a series of identical-twin perturbation experiments using an idealised 2D barotropic tur-

bulence model at a range of resolutions. Implications on the predictability limit will also

be discussed.
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3.1 Numerical experiments using an idealised 2D tur-

bulence model

The numerical experiments are performed on a forced-dissipative version of the 2D barotropic

vorticity model (Equation 1.9), namely

∂θ

∂t
+ J(ψ, θ) = f + d, θ = ∆ψ, (3.1)

where f is the forcing and d the dissipation. The model is run pseudo-spectrally in a

doubly periodic domain D at various resolutions kt ∈ {256, 512, 1024, 2048} (where kt is

the truncation wavenumber), with the f and d prescribed in spectral space.

In the absence of f and d, Equation 3.1 possesses two invariant quadratic integral

quantities: the energy E =
∫
D
−1

2
ψθ dx and the enstrophy Z =

∫
D

1
2
θ2 dx. This can be

seen by multiplying the equation by −ψ and by θ respectively, followed by integrating

over D, upon which the Jacobian term J(·, ·) vanishes since the boundary conditions are

doubly periodic. E and Z are defined in such a way that they are positive-definite. This

should be obvious for Z, whereas the result for E can be obtained by applying Green’s

first identity.

The main reason for which this particular 2D model is chosen for the numerical

experiments is that its dynamics supports both k−3 and k−
5
3 energy spectra (Lindborg

1999, Vallis 2017). In addition, it is closely related to classical 2D turbulence models

which serve as a starting point for understanding large-scale atmospheric dynamics. If

d were chosen to be ν∆θ where ν > 0, then the incompressible 2D Navier-Stokes equa-

tions (Equation 2.65) would be recovered in the vorticity form. Equation 3.1 could also

represent 2D motions in a rotating frame if the rate of rotation were constant, since the

term 2Ω× u representing rotation (cf. Equation 1.4) would drop out in the 2D vorticity

formulation.
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3.1.1 Construction of the hybrid k−3-k−
5
3 energy spectrum

The addition of the f and d terms in Equation 3.1 is necessary for numerically sustaining

a quasi-stationary turbulence and therefore an inertial range in the energy spectrum.

Without these terms, the turbulence could quickly decay by numerical dissipation or

blow up by having unrealistically too much energy at the small scales. The shape of the

spectrum is determined by the way in which the turbulence is forced. Under the classical

picture of 2D turbulence (Kraichnan 1967), a large-scale forcing generates a k−3 inertial

range through a downscale enstrophy cascade, whereas a small-scale forcing generates a

k−
5
3 range through an upscale energy cascade. One way therefore to construct a hybrid

k−3-k−
5
3 spectrum is to force the system at both large and small scales. Inspired by

Maltrud & Vallis (1991), forcing is injected in limited bands of wavenumbers k ∈ [10, 14]

and k ∈ [5
8
kt,

165
256
kt]. Physically, the former represents synoptic-scale baroclinic forcing,

and the latter represents mesoscale forcing. The mesoscale forcing is made to depend on

the resolution kt of the model so that the extent to which the k−
5
3 range is resolved may

vary across model resolutions.

Compared to the choice of wavenumbers at which the forcing is injected, the

specific description of the forcing at a given wavenumber is less crucial. Maltrud & Vallis

(1991) provided a form of stochastic forcing in its time-discrete representation

fnt = Â
√

1−R2eiφ +Rfnt−1 (3.2)

where nt > 0 is the number of time-steps elapsed, Â > 0, R ∈ (0, 1), and φ is a uni-

form random number in [0, 2π) independent of f1, . . . , fnt−1. This form of forcing is to

be followed in the remainder of this thesis1. Yet, it would be useful to construct the

time-continuous form of Equation 3.2 in order to obtain a physical interpretation of the

1The simulation that generated Figure 2.4 is forced by a white-noise process at k ∈ [18, 22] only, so as
to obtain a k−3 spectrum.
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parameters. For this we compute the mean

µ = E [fnt ]

= E
[
Â
√

1−R2eiφ +Rfnt−1

]
= 0 +RE [fnt−1]

= 0 +Rµ

(3.3)

which implies

µ =
0

1−R
= 0, (3.4)

and the variance

V = E
[
fntf

∗
nt

]
= E

[(
Â
√

1−R2eiφ +Rfnt−1

)(
Â
√

1−R2e−iφ +Rf ∗nt−1

)]
= Â2(1−R2) +RÂ

√
1−R2 E

[
e−iφfnt−1 + eiφf ∗nt−1

]
+R2 E

[
fnt−1f

∗
nt−1

]
= Â2(1−R2) + 0 +R2V

(3.5)

which implies

V =
Â2(1−R2)

1−R2
= Â2. (3.6)

Â is therefore the standard deviation of the stochastic process. The auto-covariance of

the stochastic process is

λ(τ) = E
[
fntf

∗
nt+τ

]
− µ2 = E

[
fntf

∗
nt+τ

]
= E

[
fntÂ
√

1−R2e−iφ
]

+ E
[
fntRf

∗
nt+τ−1

]
= 0 +Rλ(τ − 1)

= · · ·

= Rτλ(0) = RτV,

(3.7)

so that the auto-correlation is V −1λ(τ) = Rτ . Hence, the e-folding de-correlation time tf

is one such that

R
tf
∆t =

1

e
(3.8)
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where ∆t is the time-step. We therefore obtain

R = exp

(
−∆t

tf

)
, (3.9)

with which Equation 3.2 can be expressed as

fnt = Â

√
2

tf
eiφ
√

∆t+

(
1− ∆t

tf

)
fnt−1 (3.10)

in the limit of small ∆t. In view of this, Equation 3.2 is therefore equivalent to the

complex-valued stochastic process

df = − 1

tf
f dt+ Â

√
2

tf
dW̃ , (3.11)

which is an Ornstein-Uhlenbeck process except that the noise W̃ is a uniform random

number on the unit circle in the complex plane. This will be applied independently on

each 2D wavevector in the wavebands specified above.

To mimic real-world models which do not compromise the quality of large-scale

predictions as the model resolution progressively increases, the fully resolved part of the

energy spectra must agree among runs of different kt. This is achieved by controlling the

forcing parameters in Equation 3.11. Unfortunately, this has to be done ad experimentum,

since no known formulae to our knowledge relate the parameters with the shape of the

spectrum. For convenience, tf is fixed at 0.5. The following choices of Â are found to be

appropriate following a series of fine-tuning tests: Â = 0.004 for the large-scale forcing

for all kt; and Â = 0.005, 0.006, 0.007, 0.008 for the small-scale forcing for the kt = 256,

512, 1024, 2048 experiments respectively.

Dissipation is introduced to remove energy cascaded into the largest scales and

enstrophy cascaded into the smallest scales. A standard dissipation operator is in the

form d = (−1)s+1ν∆sθ, where ν > 0 and s ∈ R. Like the forcing, the dissipation is

introduced scale-selectively2. At the largest scales k ∈ [1, 3], it is in the form of a linear

drag d = −0.0029 θ. At the smallest scales k ≥ 25
32
kt, d = −0.083 ∆8θ, which is a hyper-

2Except for the simulation corresponding to Figure 2.4, in which d is applied to all scales and is
proportional to −∆6θ.
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viscosity. At most wavenumbers, therefore, forcing and dissipation are both absent, thus

enabling clean energy and enstrophy cascades along the inertial ranges.

Figure 3.1 shows the basic-state energy spectra of the turbulence spun up using

the above choices of forcing and dissipation parameters. Such choices make the transition

between the k−3 and k−
5
3 ranges happen on the order of k = 100, in agreement with the

atmospheric energy spectrum observed by Nastrom & Gage (1985) where the spectral

break sits at a length scale of about 400 kilometres. The spectra shown in Figure 3.1 are

averages over five independent realisations, and are scaled by k
5
3 so that a perfect k−

5
3

range would appear as a horizontal line in the figure. It is apparent that the transition

to a k−
5
3 spectrum is gradual, and is not even achieved in the highest-resolution run

(kt = 2048), although it is getting very close.
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Figure 3.1: Basic-state energy spectra, scaled by a factor of k
5
3 , for model resolutions

kt = 256 (magenta), 512 (green), 1024 (blue) and 2048 (red). The black curve shows a

logarithmically corrected k−3 reference spectrum E(k) ∼ k−3
[
log
(
k
15

)]− 1
3 (cf. Relation

2.90), again scaled by a factor of k
5
3 . The spectra are averaged over five independent

realisations that differ in the random seed. The prominent peaks are associated with the
mesoscale forcing, while the steep drop-off at the smallest scales is associated with the
hyper-viscosity.
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3.1.2 Experimental design

The turbulence corresponding to the energy spectra in Figure 3.1 serves as a starting

point for the perturbation experiments described as follows. These experiments are in

the form of identical twins — pairs of runs that differ only in the initial condition. In

particular, the realisation of the stochastic forcing (Equation 3.11) is kept fixed within

each pair throughout the model’s integration, so that any error developed throughout the

integration can be solely attributed to the error in the initial condition.

The initial perturbations are introduced at a single wavenumber kp at a relative

magnitude of 1%, using the procedure established by Leung (2017) and Leung et al.

(2019). For each wavevector k whose modulus equals kp when rounded to the nearest

integer, a random phase shift Sδ := exp(−ik · δ) is applied on a pre-determined part

γ ∈ [0, 1] of the spectral coefficients ψ̂(0,k) and thus θ̂(0,k). Here, δ is a random vector

drawn from a bi-variate uniform distribution in [0, 2π) × [0, 2π), and ψ̂(t, ·) and θ̂(t, ·)

indicate the spatial Fourier coefficients of ψ(t,x) and θ(t,x) respectively. On average, the

2D error energy spectral density Ee(0,k) for that wavevector at the initial time is

E [Ee(0,k)]

= E
[
−1

2

(
(γSδ + (1− γ))∗ψ̂(0,k)∗ − ψ̂(0,k)∗

)(
(γSδ + (1− γ))θ̂(0,k)− θ̂(0,k)

)]
= E

[
−1

2
γ2|Sδ − 1|2ψ̂(0,k)∗θ̂(0,k)

]
= E

[
−1

2

(
2γ2(1− cos k · δ)

)
ψ̂(0,k)∗θ̂(0,k)

]
= 2γ2E(0,k),

(3.12)

where E(t,k) is the 2D energy spectral density of the basic-state flow. Therefore, γ is set

to be 1√
2

for a 1% relative error.

Two sets of perturbation experiments are performed. The first set explores the

dependence of error growth properties on the scale kp of the initial error. There the

model resolution is fixed to be the highest possible, i.e. kt = 2048, and perturbations

are introduced at kp = 128, 256, 512 and 1024. The second set explores the sensitivity

of error growth to the model resolution by making kt variable. Model resolutions of
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kt = 256, 512, 1024 and 2048 are considered. kp is fixed relative to kt at kp
kt

= 0.5 so that

the initial error is confined to a small scale yet unaffected by the forcing and dissipation.

The combination (kt, kp) = (2048, 1024) is therefore included in both sets. To reduce

noise in the results, the experiment for each combination (kt, kp) is repeated using the five

independently generated initial profiles specific to kt. The results are then averaged over

these realisations3 before being reported in Figures 3.2–3.7.

3.1.3 Numerics of the model

The model is run in pseudo-spectral space, with θ̂(t,k) = −|k|2ψ̂(t,k) being the prognostic

variable. Numerically, k runs inclusively from −(kt−1) to +kt in both components, taking

integer values. The scalar wavenumber k is determined by rounding |k| to the nearest

integer. Due to the square nature of the k grid, dynamics at scales beyond k = kt cannot

be fully resolved by the model. Without loss of generality, ψ(t,x) is assumed to have a

spatial mean of zero, so that both θ̂(t,0) and θ̂(t,0) are fixed at zero.

The Jacobian term J(·, ·) in Equation 3.1 is computed in physical space via a

pair of discrete Fourier transforms with a spectral de-aliasing filter introduced by Hou &

Li (2007). The dissipation term d is treated exactly by means of an integrating factor.

We have adopted the original formula for the forcing term f provided by Maltrud & Vallis

(1991) (Equation 3.2), with the parameter R computed exactly using Equation 3.9. The

model is integrated in time up to t = 150 using a standard fourth-order Runge-Kutta

method with an adaptive time-stepping scheme to ensure numerical stability. Since the

realisation of the stochastic forcing has to be uniform within each identical-twin pair, any

changes in the time-step ∆t as a result of the adaptive time-stepping scheme are applied

simultaneously to the control and perturbed runs.

3The result in Figure 2.4 is an average of only four independent realisations generated using the forcing
and dissipation terms described in the earlier footnotes of this chapter.
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3.1.4 Results

Error growth and its dependence on perturbation scale

Figure 3.2 shows the evolution of the error energy spectra for the various perturbation

scales kp in the highest-resolution (kt = 2048) model, in which a substantial part of the

basic-state energy spectrum follows the k−
5
3 power-law reasonably well (Figure 3.1). The

error spectra grow up-magnitude more or less uniformly across scales. As the mesoscale

saturates, the error growth slows down, as indicated by the more closely packed spectra

at later times. These observations are broadly consistent with the findings of Boffetta

& Musacchio (2001), who simulated error growth in the inverse-cascade regime of 2D

turbulence (i.e. a k−
5
3 basic-state spectrum). They also agree with Judt (2018)’s study

using a global convection-permitting NWP model.

Figure 3.2 also suggests that the dependence of error growth behaviour on per-

turbation scale kp is minimal, as manifested by the largely similar shapes of the error

spectra across the panels. This is in good agreement with Durran & Gingrich (2014), who

pointed out that the qualitative pattern of error growth is not so sensitive to the scale of

the initial error. Apart from these features shown in the figure, it is found that decreasing

the perturbation scale (increasing kp) introduces a time-lag in saturating a given synoptic

scale. Yet, this lag decreases as the synoptic-scale wavenumber decreases and becomes

negligible at the largest scales.

Dependence on model resolution

The results for the second set of experiments, in which the model resolution kt is variable,

are shown in Figure 3.3. There is a qualitative difference between the error energy spectra

of the low-resolution runs, where the k−
5
3 range is barely resolved (Figure 3.3(a,b)), and

those of the high-resolution runs where the k−
5
3 range is well-resolved (Figure 3.3(c,d)).

Without a resolved mesoscale range, the error spectra peak at the synoptic scale (about

k = 10) throughout the growth process, following a short initial adjustment. This is

consistent with previous studies (Rotunno & Snyder 2008, Durran & Gingrich 2014). In
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Figure 3.2: Evolution of error energy spectra (blue, from bottom to top within each panel)
for identical-twin experiments with kt = 2048 and kp = (a) 128, (b) 256, (c) 512 and (d)
1024. The error spectra are plotted at equal time-intervals. The blue dots indicate the
scale (kp) and magnitude of the initial perturbations, and the red curves indicate the
basic-state energy spectra (scaled by a factor of two, see Equation 2.17) at the same
times as the error spectra are plotted.

the presence of a mesoscale range, however, they initially peak at nearly the smallest

resolved scale, i.e. towards the end of the k−
5
3 range, again echoing earlier studies (Lorenz

1969, Rotunno & Snyder 2008, Durran & Gingrich 2014). After the mesoscale error

saturates, a separate, broad peak in the synoptic scale begins to emerge in the error

spectra, resembling the error growth paradigm under a k−3 range (cf. Figure 2.4). The

same has been reported by Judt (2018) in the context of a high-resolution global NWP

model.

Error energy spectra under a hybrid k−3-k−
5
3 spectrum thus show a stage-

dependent peak and an up-magnitude growth at almost all stages. The analysis of the

error growth behaviour may be done more quantitatively by fitting the error growth to

a parametric model and extracting information from the fitted parameters, as will be
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Figure 3.3: As in Figure 3.2, but for kt = (a) 256, (b) 512, (c) 1024 and (d) 2048, and
kp = 1

2
kt. Note that (d) is identical to Figure 3.2(d).

discussed in the next section.

3.2 Assessing the error growth rate

3.2.1 Fitting the error growth to a parametric model

Parametric error growth models offer a simple description of the time-evolution of the

error which is often useful for diagnostic analyses of error dynamics. A parametric model

is used in this section to systematically investigate the dependence of the rate of error

growth on spatial scale, based on the results of the numerical simulations in the previous

section. The parametric model of Žagar et al. (2017) (‘the Žagar model’), which has

already been discussed in Section 1.6, is chosen for this purpose. Here, the relative error
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energy spectral density Er(t, k), defined by

Er(t, k) =

∫
|k|=k Ee(t,k) dk

2
∫
|k|=k E(t,k) dk

, (3.13)

is fitted to a hyperbolic tangent function

Er(t, k) = A tanh(at+ b) +B (3.14)

individually for each wavenumber. The relative error energy is the ratio between the error

energy and twice the energy of the basic-state flow, at which the error eventually saturates

(see Equation 2.17). The parameters A, B, a and b are real-valued functions of the scalar

wavenumber k, yet without loss of generality A and a are assumed to be non-negative. The

fitting is carried out using Python’s scipy.optimize package, in which a least-squares

minimisation is performed by the Levenberg-Marquardt algorithm to compute the set of

parameters that best approximates the evolution of the error. Since the algorithm returns

only a local minimum but not necessarily the global minimum, it requires an appropriate

initial guess.

The definition of the relative error in Equation 3.13 implies that Er(t, k)→ 1 as

t → ∞. Moreover, one may expect Er(t, k) → 0 as t → −∞ as the initial error is small.

As such, A and B are expected to be both 0.5 regardless of k. While setting A = B = 0.5

can reduce the dimensionality of the parameter space and hence make the fitting easier,

this may compromise the quality of the fit as the error at especially the largest scales may

have not yet fully saturated by the end of the numerical experiment. For this reason, no

restriction on parameter values is imposed in the fitting algorithm.

To illustrate that the hyperbolic tangent function is capable in describing error

growth, Figure 3.4 shows the evolution of the relative error energy at a specific wavenum-

ber and its best fit according to Equation 3.14. The fit typically smoothens the error’s

fluctuations around the saturation level. Away from the saturation level, the fitting func-

tion matches the error almost perfectly.

The contour plot in Figure 3.5(a) is obtained by repeating the fitting procedure

independently for all wavenumbers k up to kt. The corresponding plot for the raw, unfitted
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Figure 3.4: Growth of the relative error energy Er at k = 70 in the (kt, kp) = (2048, 1024)
simulation (red). The blue curve shows the best fit of the red curve to the Žagar model
according to Equation 3.14.

error is shown in Figure 3.5(b). It is evident that the fitting removes noise and provides

a cleaner signal to the error growth pattern.

3.2.2 Inferring predictability from the parameters

Parameter a of Equation 3.14 carries a mathematical interpretation. It controls the width

of the hyperbolic tangent curve. By studying its dependence on k, kt and kp, the pre-

dictability of the system can be inferred. To see this, let E1 and E2 be two arbitrary error

energy levels with E1 < E2, and t1 and t2 be the times when these levels are attained. If

we write Fi = Ei−B
A

, i = 1, 2, then Equation 3.14 implies ati + b = tanh−1(Fi), so that

t2 − t1 =
1

a

(
tanh−1(F2)− tanh−1(F1)

)
. (3.15)
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Figure 3.5: Growth of the (a) fitted and (b) raw relative errors as functions of the
wavenumber, for the same simulations as in Figure 3.4. The colours and contours in-
dicate the relative error energy Er.

Since the hyperbolic tangent function is monotonically increasing, tanh−1(F2)−tanh−1(F1)

is always positive, meaning that a smaller a always gives a larger (longer) t2 − t1. As a

becomes larger, the curve narrows and thus suggests a more rapid error growth.

For the first set of experiments in which kt = 2048 and kp is variable, Figure 3.6

shows that a increases with k until the effects of the small-scale forcing become important4.

Hence, by the above argument, the error grows faster as the spatial scale decreases. This

is particularly apparent in the k−
5
3 mesoscale range, where the slope da

d(log k)
increases. This

is a hallmark of inherently finite predictability, and reinforces the agreement with Judt

(2018)’s earlier study using a more sophisticated NWP model.

It is interesting to see that a increases more rapidly in the mesoscale when kp

is smaller. In other words, error growth in the mesoscale is faster when the perturbation

is applied at a larger scale. This may be attributable to the fast transfer of larger-scale

errors into the smaller scales (Durran & Gingrich 2014).

Figure 3.7 shows a(k) for the second set of experiments, in which kp
kt

is fixed at

1
2
. It is quite remarkable that the values of a for the different resolutions are broadly

consistent (as long as they lie outside the forcing ranges), meaning that the error growth

at a given scale is not substantially altered by pushing the model to a higher resolution.

4The basic-state energy levels at the forcing ranges are substantially higher than the energy levels at
their neighbouring wavenumbers (Figure 3.1), and it takes much longer for the error to saturate these
scales if that ever happens (Figures 3.2 and 3.3). As such, the parameter a is not representative of the
error growth rate at these wavenumbers, and should therefore be discarded.
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Figure 3.6: Parameter a of the Žagar model, fitted to the relative error energy at individual
wavenumbers according to Equation 3.14, as a function of wavenumber, for perturbation
experiments of various kp for the highest-resolution model kt = 2048. Note that the
vertical axis is linear and not logarithmic.

Having said that, the distinctively changing slope da
d(log k)

for the highest-resolution run

kt = 2048 (the same magenta curve as in Figure 3.6) is not seen when kt is smaller.

The heuristic dimensional argument for homogeneous and isotropic turbulence

(Lilly 1990) implies that the parameter a should scale as (k3E(k))
1
2 , since it carries the

physical dimension of inverse time. Accordingly, a should be constant in k if the energy

spectrum is k−3, and should scale as k
2
3 if E(k) ∼ k−

5
3 . However, Figure 3.7 suggests that

a scales with k logarithmically in the large scales. Into the small scales of the highest-

resolution runs, a polynomial scaling seems to emerge, but in any case it falls well short

of k
2
3 which demands a more-than-fourfold increase in a for every decade of wavenumbers.

Hence, the observed behaviour of a remains in an intermediate, non-asymptotic regime,

as might be expected under a hybrid k−3-k−
5
3 energy spectrum.
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Figure 3.7: As in Figure 3.6, but for combinations (kt, kp) in which kp = 1
2
kt.

3.3 Exploring the asymptotic behaviour using Lorenz’s

model

It is of interest to investigate the characteristics of error growth under the hybrid spectrum

in the infinite-resolution limit. To achieve this, a much higher-resolution model is needed

to reasonably serve as a proxy for the infinite-resolution case. The primitive model of

Lorenz (1969) (Equation 2.56) is a good candidate for this purpose. Being computationally

inexpensive, it enables the running of ultra-high-resolution simulations.

3.3.1 Reproducing the results of the numerical experiments

We first demonstrate that Lorenz’s model is able to capture the essential aspects of error

growth observed in the numerical experiments of Sections 3.1 and 3.2. Specifically, we

show this for the set of experiments in which kp
kt

is fixed (cf. Figure 3.3). Since Lorenz’s
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model allows the basic-state energy spectrum to be independently specified, we recycle

such basic-state spectra recorded at the end of the identical-twin simulations in Section

3.1. This is then used to compute the matrix C and hence run the model. For each

(kt, kp) pair, a single basic-state spectrum is formed by averaging over the 5 independent

realisations. Next, the spikes induced by the forcing are removed, with the energy spectral

densities at the forced wavenumbers replaced by interpolation of the densities at the

neighbouring wavenumbers outside the forced ranges5. The resulting spectrum is then

discretised into the scales K. The number n of scales in the model depends on kt such

that n = logρ
kt
N0

= log2 kt = 8, 9, 10 and 11 respectively. A small but necessary tweak is

introduced: in Lorenz’s original formulation, scale K refers to wavenumbers in the half-

open interval (ρK−1N0, ρ
KN0], whereas here it refers to [ρK−1N0, ρ

KN0) instead — the

inclusion of end-points is reversed. In this way, contributions from wavenumber N0 = 1

is not discarded by Lorenz’s model. The contribution at wavenumber Nn = ρnN0 = kt is

now dropped, but its impact should be negligible as it carries little energy.

The model, with C computed from the discretised spectrum, is solved for one-

half of the initial error drawn from the respective numerical experiment. The factor of

one-half follows from Lorenz’s definition of error energy which allows the error energy to

saturate at the basic-state energy level rather than twice of it6. The initial condition for

dZ
dt

is set to be zero for all K, in the same way as it is for the rest of this thesis.

Figure 3.8 shows the parameter a of the Žagar model, which is now a function of

K. Compared to the growth rates for the numerical experiments (Figure 3.7), the single

most distinctive feature — that a generally increases as k or K increases, albeit much

slower than the heuristic scaling would suggest — is captured in Lorenz’s model. In other

words, Lorenz’s model is able to reproduce the moderate quickening of error growth in

the mesoscale, though not to the same extent as in the numerical experiments themselves

(the values of a in the mesoscale range in Figure 3.8 are generally smaller than in Figure

3.7 by a factor of two). Lorenz’s model also captures the suppression of error growth at

intermediate scales in the higher-resolution simulations, as seen in Figure 3.7.

It should be noted that the possibly unrealistic emergence of transient negative

5The interpolation is linear in log-log space in order to respect the power-law nature of the spectrum.
6See the discussion around Equations 2.8–2.17.
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Figure 3.8: As in Figure 3.7, but for Lorenz (1969)’s model.

error energy values discussed in Section 2.1.3 does not affect our concerned parameter

a of the Žagar model. This is because the erratic oscillatory behaviour qualitatively

represents nothing more than a time-delay in error growth, which is already represented

in the parameter b.

3.3.2 Error growth in the infinite-resolution limit

Having demonstrated the ability of Lorenz’s model to reproduce the basic features of

error growth, we turn our focus to an ultra-high-resolution case, n = 21. Physically,

it corresponds to a minimum wavelength of about 19 metres on Earth, well beyond the

resolution of today’s NWP models.

The discretised basic-state spectrum used for the n = 11 simulation above is

extended to K = 21, assuming a pure k−
5
3 range at these smaller scales. In other words,

for all integers K ∈ [11, 21),

XK+1

XK

= ρ−
2
3 = 2−

2
3 . (3.16)
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As explained in Section 2.1.2, the scaling ρ−
2
3
K ≈ k−

2
3 = k−

5
3

+1 is proportional to the

energy integrated over a unit logarithm of wavenumbers when the energy spectral density

scales as k−
5
3 .

Figure 3.9(a) illustrates the growth of a small-scale error under this hybrid basic-

state spectrum extended to K = 21. The error spectrum exhibits a fairly sharp peak at

all lead times, in contrast with the lower-resolution case (e.g. Figure 3.3(d)) in which the

peak is much broader. Figure 3.9(b) shows the same but for a single k−
5
3 range, defined by

Equation 2.58 yet normalised to such a level that the magnitude of the mesoscale part of

the spectrum agrees with that in Figure 3.9(a). This enables a direct comparison between

the two figures for examining the effects of an additional k−3 range in the synoptic scale

(it should be noted that in this way the hybrid spectrum is more energetic in absolute

terms). There is a very close agreement between the nature of the mesoscale error growth

in Figure 3.9(a) and in Figure 3.9(b). Moreover, the large positive entries in the bottom-

left of the matrix C for the hybrid spectrum (Table 3.1) increase by a factor of about 2.5

every row, the same type of behaviour as the matrix for the single-range k−
5
3 spectrum

(Table 2.1). It seems plausible, then, to suggest that the error under the hybrid spectrum

asymptotically behaves as the error under a single k−
5
3 range, and that the presence of the

k−3 range does not affect the fast error growth at the smallest scales. This comparison

also suggests that the resolution n = 21 is sufficient to be considered a proxy for the

infinite-resolution limit.

This can be expressed in more quantitative terms by considering the parameter

a of the Žagar model (Figure 3.10). For n = 21 (black solid curve), a grows exponentially

beyond K = 11. This growth is very similar in simulations at intermediate resolutions,

confirming that our results have converged in this respect. Indeed, the growth is even

faster than the theoretically expected scaling of k
2
3 ≈ ρ

2
3
K for a k−

5
3 spectrum. The

implication here is that it is necessary to fully resolve K = 11 (representing the range of

length scales between 19.5 and 39.1 kilometres on Earth) for the model to pick up the

fast error growth pertaining to the k−
5
3 range, despite it being more than a decade of

wavenumbers beyond the spectral break between the k−3 and k−
5
3 ranges (Figure 3.1).

Moreover, the results suggest that the synoptic-scale k−3 range acts to slow down error

growth in the first decade of the mesoscale. This is also supported by a(K)’s approximate

83



5 10 15 20
Scale K

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Eq
ui

va
le

nt
 e

ne
rg

y 
sp

ec
tra

l d
en

sit
y

(a)

5 10 15 20
Scale K

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Eq
ui

va
le

nt
 e

ne
rg

y 
sp

ec
tra

l d
en

sit
y

(b)

Figure 3.9: (a) Evolution of the error energy spectrum (blue and magenta, from bottom-
right to top-left) in the Lorenz (1969) model under the basic-state energy spectrum (red)
recovered from the (kt, kp) = (2048, 1024) simulations in Section 3.1 (with modifications,
details of which are given in the text) and extended to K = 21 via Equation 3.16, and
an initial condition Zn(0) = 5× 10−7 ×

∑n
L=1XL and ZK(0) = 0 for all other K. (b) As

in (a), but for a single-range k−
5
3 basic-state energy spectrum according to Equation 2.58

yet normalised to such a level that the magnitude of the mesoscale part of the spectrum
coincides with (a). The error spectra are plotted in blue at equal time-intervals of ∆t = 3
up to t = 60, and in magenta at intervals of ∆t = 30 thereafter. The vertical axes depict
the equivalent energy spectral densities ρ−KZK(t) and ρ−KXK , as in Figures 2.2(a) and
2.3(a).

proportionality to ρ
2
3
K for all K in the single-range k−

5
3 spectrum, which is not shown

here.

3.3.3 The predictability horizon: a renewed estimate

By solving Lorenz’s model for the hybrid spectrum, we can now update his estimate of the

predictability horizon which presumed a k−
5
3 basic-state spectrum. Table 3.2 lists the error

saturation time for each K, dimensionalised using Lorenz’s estimate of the root-mean-

square wind speed in the upper troposphere (17.1824 metres per second). The difference

with Lorenz (1969)’s list is substantial. While the difference at the smallest scales may be

attributed to the unrealistic oscillatory behaviour discussed earlier, which is intrinsic to

Lorenz’s model, the sensitivity of the saturation times to small changes in the shape of the

error energy spectrum can also contribute to the difference, especially at the intermediate

scales. This can be seen in Figure 3.9. In the case of the hybrid spectrum before the full

saturation of the mesoscale, the typical error energy spectrum peaks at several scales larger

than the scale most recently saturated, and forms a small angle with the basic-state energy
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1 2 3
1 0.003 0.008 0.003
2 0.122 0.030 0.062
3 0.693 0.529 0.032
4 1.27 1.12 0.797
5 1.25 1.20 1.04
6 0.833 0.822 0.784
7 0.642 0.640 0.634
8 1.01 1.01 1.01
9 2.05 2.05 2.05
10 4.51 4.51 4.51
11 10.3 10.3 10.3
12 25.3 25.3 25.3
13 63.7 63.7 63.7
14 161 161 161
15 405 405 405
16 1020 1020 1020
17 2570 2570 2570
18 6470 6470 6470
19 16 300 16 300 16 300
20 41 100 41 100 41 100
21 104 000 104 000 104 000

Table 3.1: The first three columns of the matrix C for the same hybrid energy spectrum
as in Figure 3.9(a). The entries are correct to 3 significant figures or 3 decimal places as
appropriate.

spectrum. Had the spectral distribution of the error been slightly sharper so that the error

spectrum peaked at the scale most recently saturated (as in Figure 3.9(b)), the saturation

times would have been made earlier. Hence, the saturation times could be sensitive to the

shape of the error spectrum and should therefore not be taken too literally. Having said

that, the predictability limit for the planetary scale is estimated to be about 15 to 20 days,

in line with recent estimates using more sophisticated models (Buizza & Leutbecher 2015,

Judt 2018, Zhang et al. 2019). The extra predictability (relative to Lorenz’s prediction)

at the large scales is likely a consequence of the additional k−3 range in the synoptic

scale. A more careful analysis is needed to confirm this, but a very recent result by

Sun & Zhang (2020) based on Lorenz’s model also supports extended predictability for a

hybrid spectrum compared to k−
5
3 . Indeed, our estimated saturation times in Table 3.2

are in good agreement with theirs, who constructed an evolution equation for the error

by combining Equation 2.56 for matrices C corresponding to barotropic dynamics for a

k−3 spectrum and SQG dynamics7 for a k−
5
3 spectrum, and solved the equation.

7An extension of Lorenz’s model to SQG dynamics was discussed by Rotunno & Snyder (2008).
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Figure 3.10: As in Figure 3.8, but for resolutions n = 11 (cyan), 13 (red), 15 (green), 17
(blue), 19 (magenta) and 21 (black), and an initial condition Zn(0) = 5×10−7×

∑n
L=1 XL

and ZK(0) = 0 for all other K. The vertical axis is logarithmic and the dashed line

indicates an appropriately normalised ρ
2
3
K scaling.

3.4 Other initial error profiles

In Section 3.3, we focussed on cases where the initial error is concentrated at the small-

est available scale, thereby approximating an infinitesimally small-scale error. This is

analogous to Lorenz (1969)’s well-known Experiment A. Initial error spectra in realistic

weather forecasts are, however, very different. To explore the sensitivity of error growth

behaviour to the initial error spectrum, Lorenz performed the lesser-known Experiments

B and C. In his Experiment B, the initial error was confined to the largest-available scale,

whereas Experiment C was initialised with a fixed fraction of the control energy spectrum

across all scales. He concluded that the predictability horizon at the planetary scale is

barely dependent on the initial error spectrum. Durran & Gingrich (2014) expanded on

Lorenz’s results to show that, despite the insensitivity of the predictability horizon, the

error spectra in Experiments B and C grow somewhat differently from Experiment A
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K Length scales
Predictability horizon

Our estimate Sun and Zhang’s estimate Lorenz’s estimate
1 20000 – 40000 km 20.1 days 16.8 days
2 10000 – 20000 km 15.8 days 10.1 days
3 5000 – 10000 km 12.6 days 19.2 days 5.6 days
4 2500 – 5000 km 10.3 days 13.8 days 3.2 days
5 1250 – 2500 km 8.74 days 10.4 days 1.8 days
6 625 – 1250 km 6.46 days 7.9 days 1.1 days
7 313 – 625 km 5.31 days 5.5 days 15.7 hours
8 156 – 313 km 4.30 days 4.0 days 9.5 hours
9 78.1 – 156 km 3.53 days 2.8 days 5.8 hours
10 39.1 – 78.1 km 2.52 days 1.9 days 3.6 hours
11 19.5 – 39.1 km 1.24 days 1.2 days 2.2 hours
12 9.77 – 19.5 km 20.4 hours 1.3 hours
13 4.88 – 9.77 km 10.8 hours 51.1 minutes
14 2.44 – 4.88 km 7.19 hours 32.1 minutes
15 1.22 – 2.44 km 4.89 hours 20.3 minutes
16 610 m – 1.22 km 2.62 hours 13.0 minutes
17 305 – 610 m 1.88 hours 8.4 minutes
18 153 – 305 m 1.35 hours 5.7 minutes
19 76.2 – 153 m 58.0 minutes 4.0 minutes
20 38.1 – 76.2 m 47.0 minutes 3.1 minutes
21 19.1 – 38.1 m 41.1 minutes 2.9 minutes

Table 3.2: Dimensionalised error saturation times tK for various length scales K, com-
puted using Lorenz’s model for the same hybrid energy spectrum and initial error as in
Figure 3.9(a). The corresponding values for a hybrid spectrum reported by Sun & Zhang

(2020) and for a k−
5
3 spectrum by Lorenz (1969) are shown for reference. (N.B. Lorenz’s

values are also shown in Table 1.1, and in Figure 2.2(b) in a non-dimensionalised form.)

(their Figures 2(a) and 3). They also demonstrated that additional small-scale ‘butter-

flies’ are practically irrelevant to the error growth pattern when the initial error spectrum

has a non-negligible contribution from the large scales.

Here, Durran & Gingrich (2014)’s experiments are repeated for the hybrid basic-

state spectrum with n = 21 scales. The growth of the error spectrum is shown in Figure

3.11. In Figure 3.11(a), the initial error is confined to the largest scale, whereas in Figure

3.11(b) the initial error is distributed across all scales in a uniform manner relative to the

basic-state spectrum. The error spectra have similar shapes beyond the initial time, and

both figures conform nicely to Durran & Gingrich (2014)’s results.

The Žagar error-growth parameter a(K) for both alternative initial conditions

is seen to follow the same general pattern as the case in which the initial error is at the

smallest scale (Figure 3.12). In particular, the exponential growth of a from K = 11
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Figure 3.11: As in Figure 3.9(a), but for the following initial conditions for Z: (a) Z1 =
5× 10−7 ×

∑n
L=1 XL and ZK = 0 for all other K; (b) ZK = 5× 10−7 ×XK for all K.

and the sluggish variation at smaller K still hold. Indeed, differences in a(K) across the

three cases are practically invisible for all K ≤ 14. Beyond K = 14, the curves for the

large-scale and proportional initial errors remain nearly identical to each other but are

distinct from the curve for the small-scale initial error by a small margin. The overall

excellent agreement across the three initial error profiles therefore extends Durran &

Gingrich (2014)’s conclusion — that “the loss of predictability generated by initial errors

of small but fixed absolute magnitude is essentially independent of their spatial scale” —

to the hybrid spectrum. Yet the comparison also shows that the inferences obtained from

our version of Lorenz’s Experiment A (on the quickening of error growth beyond K = 11

and therefore the need to fully resolve this scale) are robust to initial error distributions.

3.5 Summary

Building on Judt (2018)’s study which shows that model-world errors in a convection-

permitting global NWP model demonstrate mixed characteristics of error growth under

a hybrid k−3-k−
5
3 spectrum, we examined in this chapter the sensitivity of error growth

properties to the model resolution or, in other words, to the extent to which the k−
5
3

mesoscale range is explicitly resolved. This was done in a 2D barotropic vorticity model.

The use of simple models for casting light on error growth and predictability properties

in the real world is justified as long as the canonical hybrid k−3-k−
5
3 energy spectrum

(Nastrom & Gage 1985) is well-modelled, since these properties are largely determined
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Figure 3.12: As in Figure 3.10, but for various initial conditions for the error with the
n = 21 resolution only. The black curve is identical to the black curve in Figure 3.10. The
red and blue curves, which are essentially indistinguishable from each other, correspond
to the cases in which the initial condition of the same magnitude is moved to K = 1 (red)
and redistributed as a uniform fraction of the background spectrum (blue), respectively.

by the shape of the spectrum (Rotunno & Snyder 2008).

Results from identical-twin perturbation experiments with the 2D barotropic

vorticity model at a range of resolutions (Section 3.1) show that a stage-dependent peak

in the error energy spectrum begins to emerge as the model resolution increases from

kt = 256 (where there is essentially no room for the k−
5
3 range) to kt = 2048 (where the

mesoscale range is substantially resolved). Under the hybrid spectrum, the error spectrum

initially peaks at the small scales until the k−
5
3 range becomes saturated, then a synoptic-

scale peak characteristic of error growth under a k−3 spectrum starts to appear. These

observations echo Judt (2018)’s findings, and confirm that the 2D barotropic vorticity

equation can mimic the essential aspects of this process.

The dependence of error growth rate on spatial scale is used to quantitatively

characterise the predictability of the system. A measure of such rate is the parameter a of
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the parametric error growth model of Žagar et al. (2017) (Section 3.2). By fitting the error

energy data obtained from the perturbation experiments to this parametric model, it is

shown that the error indeed grows faster as the spatial scale decreases, thereby providing a

hint of limited predictability. This is particularly evident in the k−
5
3 range. However, the

increase in the growth rate as the spatial scale decreases falls well short of the theoretical

estimate, thus indicating that the error behaviour has not reached the asymptotic regime

pertaining to this mesoscale range.

The model of Lorenz (1969), which is also based on the 2D barotropic vorticity

equation, is used to investigate the asymptotic behaviour (Section 3.3). At a modest

computational cost, Lorenz’s model successfully captures the important characteristics

of error growth, thus enabling ultra-high-resolution simulations for estimating growth

patterns in the continuum. It is found that under the hybrid spectrum, the fast upscale

cascade of error energy characteristic of limited predictability becomes unambiguously

visible only beyond k = 2048 = 211 (19.5 kilometres), more than a decade of wavenumbers

beyond the spectral break between the synoptic-scale and mesoscale ranges. Until then,

the synoptic-scale range suppresses mesoscale error growth.

Applying these results to NWP would mean that models have to fully resolve

the dynamics at the scale of the typical grid resolution of today’s global ensembles (∼ 20

kilometres) in order for the fast mesoscale uncertainty growth to be accurately captured

within the model. Based on Skamarock (2004), this would suggest a grid resolution seven

times finer than typical of today, i.e. on the order of a few kilometres, after accounting

for the need for a dissipation range. Pushing NWP models to such a resolution can be

anticipated to provide a more realistic description of small-scale error growth and thus of

the uncertainty in the forecast, even when the initial errors are not confined to the smallest

scales (Section 3.4). Yet, we recognise that developing stochastic parametrisations for

processes on the O(1)-kilometre scale (e.g. cloud processes) may also achieve the same

purpose. It should also be noted that realistic initial error profiles have typically far

greater amplitudes than those considered in this chapter, whose focus is on predictability

properties in the limiting case.

Judt (2020) suggests that the canonical hybrid k−3-k−
5
3 spectrum, which has
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been assumed here throughout, is restricted to the mid-latitude upper troposphere only.

The applicability of these results to other parts of the atmosphere, or indeed to the

atmosphere as a whole, remains a topic of further research.
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4 Forecast verification: relating de-

terministic and probabilistic met-

rics

Lorenz’s model is often said to be the prototype model for ‘deterministic’ predictability.

Indeed, we have compared its predictions to results related to the error energy obtained in

the deterministic, identical-twin numerical experiments in the last chapter. However, as

we have seen earlier in Chapter 2, the so-called error energy in Lorenz’s model is actually

a measure of variance taken over an ensemble of error velocity fields (Equations 2.9–2.13).

While the use of the ensemble variance, or equivalently the mean squared departure from

the ensemble mean, allows us to view predictability from a probabilistic perspective, it

is nevertheless only one of the many ways of assessing probabilistic predictions. In this

chapter, we will present another verification metric, the CRPS, which is often used by

the NWP community and which condenses information associated with the full forecast

distribution (relative to the observed value) into a single number. Its relation with the

ensemble variance will be derived, as an example to illustrate that verification metrics can

be related under certain conditions. Finally, the CRPS-variance relation will be tested on

ensemble simulations of idealised 2D turbulence, and deviations from the derived relation

will be discussed.
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4.1 Evaluating forecasts

4.1.1 Proper Scoring rules

Gneiting et al. (2007) defined the maxim of probabilistic forecasting as “maximizing

the sharpness of the predictive distributions subject to calibration”. In other words,

probabilistic forecasting has two goals. The basic goal is to make reliable predictions:

the weather event should materialise according to the same distribution as it is forecast.

On top of this, forecast systems should strive to predict distributions whose variances

are small, so that they may contain more information useful for their users. In the

context of operational NWP, the practical need of monitoring forecast performance and

making decisions about model upgrades gives rise to a range of scoring rules, functions

which condense information contained in forecast distributions into scalar values. It is

imperative that these scoring rules respect the goals of probabilistic forecasting: not only

should they be optimised whenever the correct distribution is predicted, they should also

reward the prediction whose distribution is sharper when two reliable predictions are

concerned. This sub-section provides a few preliminaries related to the former of these

two properties, which was discussed in depth by Gneiting & Raftery (2007). Scores which

fulfil this property are known as proper scores.

Mathematically, let P denote the predictive distribution of a scalar random

variable U which materialises at value u. A scoring rule S(P, u) is a function of the

predictive distribution and the verification value. If the latter follows some distribution

Q, in which case it is also interpreted as a random variable, then the average score over

many predictions with distribution P can be denoted by S(P,Q) := EQ [S(P, u)], with

the second argument of the function S(·, ·) now being a distribution instead of a scalar

value1. Assuming without loss of generality that scores are negative-oriented so that

forecasts with lower scores are better, a score S is said to be proper over a class C of

distributions if

S(Q,Q) ≤ S(P,Q) ∀P,Q ∈ C, (4.1)

1Without ambiguity, S(·, ·) can mean either the score for an individual prediction or the expected
score over many predictions, depending on the second argument being a scalar variable or a distribution.
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i.e. for any verifying distribution in C, the minimal score is attained when the predictive

distribution (which is also assumed to be in C) agrees with it.

Note that the definition of proper scores does not require that the score associ-

ated with the rightly predicted distribution be its unique minimum. Scores which fulfil

this extra requirement — that Condition 4.1 holds only when P = Q (up to a set of

measure zero) — are known to be strictly proper.

Two scoring rules popular among the NWP community will be discussed in the

remainder of this section in light of their properness: the RMSE, which is closely related

to the ensemble variance used in Lorenz’s model, and the CRPS. This will become helpful

for deriving a CRPS-RMSE relationship in the next section.

4.1.2 Root-mean-square error

As its name suggests, the RMSE is the square-root of the MSE. The latter is defined as

MSE(P, u) := EP
[
(U − u)2

]
(4.2)

for an outcome u ∈ R and a distribution P of its forecast U . Mathematically speak-

ing, this is the MSE of u as an estimator of the ensemble mean, although it may seem

counter-intuitive in a forecasting context. Nevertheless, the well-known bias-variance de-

composition of MSE applies:

MSE(P, u) = EP
[
(EP [U ]− u+ U − EP [U ])2

]
= (EP [U ]− u)2 + EP

[
(U − EP [U ])2

]
= (µP − u)2 + σ2

P ,

(4.3)

where µP and σP are respectively the mean and the standard deviation of P . Assuming

that the verifying distribution Q for u has mean µQ and standard deviation σQ, the

expected score MSE(P,Q) is

MSE(P,Q) = EQ
[
(µP − u)2 + σ2

P

]
= σ2

Q + (µP − µQ)2 + σ2
P .

(4.4)
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The last equality can be established by observing that EQ [(µP − u)2] is the MSE of µP as

an estimator of u, whence the same bias-variance decomposition applies. From Equation

4.4, it follows that

RMSE(P,Q) =
√
MSE(P,Q)

=
√
σ2
Q + (µP − µQ)2 + σ2

P

= σQ
√

1 + b2 + r2,

(4.5)

where

b :=
µP − µQ
σQ

(4.6)

is the relative bias and

r :=
σP
σQ

(4.7)

is the ratio of standard deviations, or simply the spread ratio.

Note that we have not defined RMSE(P, u). Should it be defined by taking

the square-root of Equation 4.2, then the RMSE(P,Q) defined in Equation 4.5 would

generally not be equal to EQ [RMSE(P, u)]. Hence, strictly speaking, the RMSE does

not fit into the framework of scoring rules described in the last sub-section. It is simply a

convenient proxy for the scoring ruleMSE(P, u), since it has the same physical dimensions

as the variable u of interest. Given that the RMSE relates with the MSE bijectively and

monotonically, we may nevertheless apply the concepts of proper scoring rules to the

RMSE, bearing in mind that in this sense the two quantities are synonymous.

The RMSE is not a proper score over any non-trivial class of distributions, since

RMSE(Q,Q) =
√

2σQ is not the global minimum over µP , µQ ∈ R and σP , σQ ∈ R+.

One could have achieved a better score by, for example, making an unbiased (µP = µQ)

yet under-spread (σP < σQ) prediction. Figure 4.1, which shows 1
σQ
RMSE(P,Q) as a

function of b and r, illustrates this point. A possible modification which makes the score

proper while maintaining the property that it depends only on the first two moments of

the predictive distribution is

S(P, u) =

(
µP − u
σP

)2

+ log (σP )2 , (4.8)

see Gneiting & Raftery (2007).
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Figure 4.1: 1
σQ
RMSE(P,Q) as a function of relative bias b =

µP−µQ
σQ

and spread ratio

r = σP
σQ

.

The RMSE discussed here should not be confused with the RMSE of the ensem-

ble mean, which is often shortened as ‘the RMSE’ in the language of operational NWP

centres. It is a proxy score for the MSE of the ensemble mean, defined as

MSEmean(P, u) := (EP [U ]− u)2 = (µP − u)2. (4.9)

Considering the ensemble mean as a deterministic forecast in itself, MSEmean(P, u) and

therefore its associated RMSE can be seen as a deterministic score. Compared to Equation

4.3, MSEmean(P, u) lacks the contribution from the ensemble variance σ2
P . The alternative

formulation thus makes the RMSE independent from the standard deviation (‘spread’) of

the ensemble. This enables convenient comparison between the RMSE and the ensemble

spread, which is routinely done in NWP operations.
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4.1.3 Continuous Ranked Probability Score

The CRPS is a widely used metric that evaluates the full ensemble distribution of a

continuous scalar variable and penalises unsharp distributions. It is the integral of the

squared difference between the CDFs of the forecast and the verification:

CRPS(P, u) =

∫ ∞
−∞

(F (x)−Hu(x))2 dx, (4.10)

where F (x) is the CDF of P and Hu(x) is the Heaviside function at the verification value

u.

An equivalent expression for the CRPS, often known as the ‘kernel representa-

tion’ (Gneiting & Raftery 2007), is available for distributions P whose first moments are

finite:

CRPS(P, u) = EP [|U − u|]− 1

2
EP [|U − U ′|] , (4.11)

where U and U ′ are independent random variables drawn from the distribution P (Gneit-

ing & Raftery 2007). A proof of equivalence is provided in Appendix A.1.

Gneiting & Raftery (2007) noted that the CRPS is a strictly proper score over a

very general class of distributions, namely the class of Borel probability measures whose

first moments are finite. For the special case of normal distributions P = N (µP , σ
2
P ), an

explicit formula for CRPS(P, u) is available:

CRPS(P, u) =
σP√
π

(
−1 +

√
π
u− µP
σP

erf

(
u− µP√

2σP

)
+
√

2 exp

(
−1

2

(
u− µP
σP

)2
))

,

(4.12)

where ϕ(x) := 1√
2π

exp
(
−1

2
x2
)

is the probability density function (PDF) of a standard

normal random variable and Φ(x) :=
∫ x
−∞ ϕ(x′) dx′ is its CDF. Appendix A.2 provides a

derivation of such.

Equation 4.12 can be integrated over a normal N (µQ, σ
2
Q) kernel to yield a
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formula for the expected score CRPS(P,Q):

CRPS(P,Q) =

∫ ∞
−∞

CRPS(P, u)ϕ

(
u− µQ
σQ

)
1

σQ
du

=

∫ ∞
−∞

σQ
r2

√
π

(
−1 +

√
πx erf

(
x√
2

)
+
√

2 exp

(
−1

2
x2

))
ϕ (rx+ b) dx,

(4.13)

where the substitution x = u−µP
σP

is used, and r and b are as in Equations 4.6 and 4.7.

Appendix A.3 demonstrates that the integral can be simplified as

CRPS(P,Q) =
σQ√
π
f(b, r) (4.14)

where

f(b, r) = −r +
√

2(1 + r2) exp

(
− b2

2(1 + r2)

)
+
√
π b erf

(
b√

2(1 + r2)

)
. (4.15)

Note that provided the verifying distribution Q is fixed, the qualitative properties of

CRPS(P,Q) are fully determined by the function f(b, r). This formula for CRPS(P,Q)

agrees exactly with the one obtained by Leutbecher & Haiden (2020), who used the kernel

representation of the CRPS (Equation 4.11) as the starting point of their derivation.

To verify that the CRPS is indeed a strictly proper score over the class of normal

distributions, consider

∂f

∂b
=
√

2(1 + r2)

(
− b

1 + r2

)
exp

(
− b2

2(1 + r2)

)
+
√
π erf

(
b√

2(1 + r2)

)

+ 2b exp

(
− b2

2(1 + r2)

)
1√

2(1 + r2)

=
√
π erf

(
b√

2(1 + r2)

) (4.16)

which is zero if and only if b = 0. Since

∂2f

∂b2
=

√
2

1 + r2
exp

(
− b2

2(1 + r2)

)
> 0, (4.17)

f(b, r) attains a unique minimum at b = 0 for any given r. This suggests that on average,

and provided that distributions are normal, the best CRPS for any given spread ratio is
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attained when the ensemble is unbiased. Now, substituting b = 0 into Equation 4.15 and

differentiating with respect to r, we have

∂f

∂r
(0, r) = −1 +

√
2

1 + r2
r (4.18)

which implies ∂f
∂r

(0, r) = 0 if and only if r = 1 (note that r cannot be negative, since it is

a ratio of standard deviations). With

∂2f

∂r2
(0, r) =

√
2

1 + r2
−
√

2r2
(
1 + r2

)− 3
2 =
√

2
(
1 + r2

)− 3
2 (4.19)

so that ∂2f
∂r2 (0, 1) = 1

2
> 0, we can now conclude that (b, r) = (0, 1) is the unique global min-

imum of f(b, r). Therefore, for any verifying distribution Q that is normal, CRPS(P,Q)

is uniquely minimised when P = Q, assuming that P is also normal. This makes the

CRPS a strictly proper score over the class of normal distributions, which is graphically

confirmed in Figure 4.2.

4.2 Derivation of the CRPS-RMSE relationship

So far we have seen the basic mathematical properties of the CRPS and the RMSE. Since

the former is proper while the latter is improper, it is generally impossible to draw a one-

to-one correspondence between the two. However, if we restrict our attention to reliable

predictions (P = Q, or in other words (b, r) = (0, 1)) of normally distributed variables,

then the scores reduce to

CRPS(P, P ) =
1√
π
σP (4.20)

and

RMSE(P, P ) =
√

2σP , (4.21)

so that there exists a bijective relationship between the two:

CRPS(P, P ) =
1√
2π
RMSE(P, P ). (4.22)

What Equation 4.22 suggests is that on average, the CRPS and the RMSE are
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Figure 4.2: 1
σQ
CRPS(P,Q) as a function of relative bias b =

µP−µQ
σQ

and spread ratio

r = σP
σQ

.

related through a multiplicative factor of 1√
2π

as far as reliable predictions of normally

distributed scalar variables are concerned. The average, as defined in Sub-section 4.1.1,

refers to aggregation over a large number of reliable predictions which share the same

distribution P . The condition — as to what can be included in the average so that

Equation 4.22 holds — can be slightly relaxed here: since the scores for individual events

are invariant to translations2, one can achieve the same CRPS-RMSE relationship by

aggregating reliable predictions of scalar variables which are normally distributed and

share a certain variance σ2
P , but which need not share the same mean µP . Nevertheless,

standard NWP practice is to aggregate these scores across dimensions defined a priori

such as grid points and forecast start-dates, rather than by variance of the predictive

distribution. How can Equation 4.22 be modified to accommodate this?

2These scores do not depend on the mean µP of the predictive distribution alone but only through its
difference with the verification value u, see Equations 4.3 and 4.10.
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It is important to bear in mind that in the notation S(P,Q) for a given score S,

there is an implied conditioning on the predictive distribution being P , since S(P,Q) is

the average of S(P, u) over many P -distributed predictions. Q in this notation refers to

the distribution of the verification value u, but it is also conditional upon the predictive

distribution being P . To derive a formula for an aggregated score, it is therefore necessary

to include information about the heteroscedasticity of P — the relative frequency of

occurrence of different predictive distributions P . If we assume that P is from a certain

family of parametric distributions, then such heteroscedasticity can be interpreted as a

(joint) meta-distribution Θ of the parameter(s) θ of P . Then the aggregated score S∗ can

be written as

S∗ = EΘ [S(P,Q)] =

∫
Ω

S(P,Q)λ(θ) dθ, (4.23)

where λ is the PDF of the meta-distribution, and Ω is the parameter space to which θ

belongs.

Generally, S(P,Q) depends on θ as well as the parameters of Q, although the

conditionality of Q on P suggests that the parameters of Q also depend on θ. Without

further information on how θ and Q relate, it is impossible to simplify Equation 4.23, let

alone derive a relationship between various aggregated scores. However, in the case of

reliable predictions, the information is supplied by the equality P = Q. We thus have

S∗ = EΘ [S(P, P )] =

∫
Ω

S(P, P )λ(θ) dθ. (4.24)

Substituting CRPS for S and using Equation 4.20, this gives rise to

CRPS∗ =

∫ ∞
0

∫ ∞
−∞

1√
π
σPλ(µP , σP ) dµP dσP =

1√
π
EΣ [σP ] , (4.25)

where it has been assumed that µP and σP in the meta-distribution are independent, and

where Σ denotes the marginal distribution of the standard deviation σP . Bearing in mind

that the RMSE is a convenient proxy for the score MSE so that the expectation (in Θ) is

only taken after Equation 4.21 is squared, we similarly have

RMSE∗ =
√

EΘ [RMSE(P, P )2] =

√∫ ∞
0

∫ ∞
−∞

2σ2
Pλ(µP , σP ) dµP dσP =

√
2EΣ [σ2

P ]

(4.26)
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under the same assumption of independence.

Equations 4.25 and 4.26 thus provide expressions for the CRPS and the RMSE

aggregated under heteroscedastic conditions, where P ’s parameters can vary from grid

point to grid point, and from one forecast start-date to another. These expressions assume

the reliability of the ensemble, the normality of its distribution, and the independence of

ensemble mean and standard deviation in the frequency distribution of the parameters.

Combining these expressions and denoting

h :=
VarΣ [σP ]

(EΣ [σP ])2 (4.27)

for the relative heteroscedasticity, we have

CRPS∗

RMSE∗
=

1√
2π

EΣ [σP ]√
EΣ [σ2

P ]
=

1√
2π

1√
1 + h

, (4.28)

whence the inequality

CRPS∗

RMSE∗
≤ 1√

2π
(4.29)

holds. In the limit where the standard deviation σP is homoscedastic, i.e. VarΣ [σP ]→ 0,

the inequality becomes an equality, and Equation 4.22 is recovered.

4.3 Verifying the relationship on an idealised 2D tur-

bulence model

The CRPS-RMSE relationship for reliable predictions of normally distributed random

variables (Equation 4.28) is numerically tested in a perfect-model experiment involving

idealised 2D turbulence. The doubly periodic model discussed in Section 3.1 (including the

details of the stochastic forcing and the numerical dissipation) is reused, with a resolution

of kt = 1024 so that the mesoscale k−
5
3 spectrum may be reasonably well-resolved (Figure

3.1). Physically, it corresponds to a grid with 2kt = 2048 grid points in each direction.
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4.3.1 Experimental design

A control integration of Equation 3.1 is considered as the truth. When the turbulence is

fully developed and reaches a statistically stationary state, M0 = 4 independent perturbed

simulations are generated from the control, one of which is taken as the verification3 and

the remaining M := M0 − 1 = 3 as ensemble members. All M0 of them are perturbed

in the same way, using the procedure laid out in Sub-section 3.1.2, but with different

random seeds. The initial perturbation is introduced at a single small-scale wavenumber

kp = 512 = 1
2
kt outside the small-scale forcing and dissipation ranges. The control

integration is not used in any way other than to generate the perturbed simulations,

which is analogous to weather forecasting as the true atmospheric state is unknown and

therefore cannot be used in computing verification metrics. The perturbed simulations

are integrated for a fixed time-period of T = 150 non-dimensional units, allowing the

error to almost fully saturate by the end of it.

The experiment is repeated for N = 30 ‘start-dates’. This can be thought

of as N1 = 5 years, among which the control integrations are fully independent, and

N2 = N
N1

= 6 start-dates per year initialised at intervals of 0.1T .

The choice of a relatively small M and large N is inspired by Leutbecher (2019).

This paper suggests that if the CRPS is adjusted using

CRPS∗∞ :=
M

M + 1
CRPS∗ (4.30)

to remove the effects of the ensemble size being finite, then a reduction in the number of

ensemble members used for numerical experimentation returns more robust results than

a reduction in the number of start-dates, provided that the constraints in computational

cost are similar.

The experimental design guarantees a reliable ensemble, since the verification

is statistically indistinguishable from the remaining M simulations generated from the

control integration. As such, Equation 4.28 is expected to hold subject to P being a

3The verification is known as the analysis in NWP terminology.
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normal distribution, and µP and σP being independent.

The scalar variables of interest chosen for this study are the velocity components

u and v. For each start-date and grid point, the CRPS and the MSE are computed for

both velocity components in physical space. The computation for the CRPS is performed

using the algorithm set out by Hersbach (2000). These metrics are then aggregated over

Λ := G × S × D, where G represents the set of 20482 grid points, S the 30 start-dates

and D the two canonical directions (u and v), but remain as functions of the forecast

lead time. Isotropy of the turbulence enables the scores for u and v to be combined

without changing the quality of the results. Although the full dataset is included in

the calculation of the scores, the results are not expected to change if we sub-sample

in any of the aggregated dimensions, since the turbulence is homogeneous, isotropic and

statistically stationary. In real-world weather forecasts, however, the effects of the turbu-

lence’s inherent heteroscedasticity in relation to those of inhomogeneity, anisotropy and

non-stationarity could be more subtle.

When the metrics are aggregated, the quantity EΛ [S(P, ui)] is computed for each

lead time, where S can be CRPS or MSE, and where ui represents a generic velocity

component. The law of iterated expectations guarantees

EΛ [S(P, ui)] = EΘ [EP [S(P, ui)]] = EΘ [S(P, P )] = S∗, (4.31)

the last two equalities of which result from the definition of S and Equation 4.24 respec-

tively. In this way, CRPS∗ and RMSE∗ (the square-root of MSE∗) can be empirically

computed, which should satisfy Equation 4.28 subject to the assumptions. To account for

the finite ensemble size, the aggregated CRPS is corrected by Equation 4.30 before being

compared with the aggregated RMSE.

4.3.2 Results

For notational purposes in this sub-section, we denote the start-date by t0, and write

U(t, t0,x, e1) for u(t, t0,x) and U(t, t0,x, e2) for v(t, t0,x). A subscript f attached to

U(t, t0,x, ei), u(t, t0,x) or v(t, t0,x) (where i = 1 or 2) indicates a forecast, in which case
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the variable is understood to be a random variable with distribution P . The absence of

the subscript indicates the verification, which is also interpreted as a random variable but

with distribution Q.

Figure 4.3 illustrates the growth of the error energy spectrum. More precisely,

it is the spectrum of the ensemble-mean error energy aggregated over all grid points and

start-dates, i.e. the spectral decomposition of

EG×S
[
EP
[

1

2

(
(uf (t, t0,x)− u(t, t0,x))2 + (vf (t, t0,x)− v(t, t0,x))2

)]]
. (4.32)

In two spatial dimensions4 and where the ensemble is reliable (P = Q), this is equivalent

to the spectral decomposition of

EG×S×D
[
EP
[
(Uf (t, t0,x, ei)− U(t, t0,x, ei))

2
]]

= EΛ [MSE(P,U)]

=MSE∗

=RMSE∗2,

(4.33)

where Equations 4.2 and 4.31 have been used in the first two equalities respectively.

As such, Figure 4.3 may also be interpreted as the evolution of the power spectrum of

RMSE∗. Initially, the growth rate is more or less uniform in spatial scale and the error

spectrum peaks at the small scale. Later, as the k−
5
3 range saturates, a synoptic-scale peak

emerges in the k−3 range, and the growth slows down. These observations are consistent

with those reported earlier in Chapter 3.

Like RMSE∗, it is possible to spectrally decompose CRPS∗∞. To compute

CRPS∗∞ for a wavenumber or range of wavenumbers, one simply picks out the associated

waves in spectral space, transforms them to physical space, then aggregates the score

over Λ and applies Equation 4.30. Such CRPS∗∞ may be compared to RMSE∗ for the

same wavenumber(s) using Equation 4.28. Here, the verification metrics are decomposed

into the planetary scale (k ∈ [1, 8]), synoptic scale (k ∈ [9, 64]), mesoscale (k ∈ [65, 512])

4The equivalence between Expressions 4.32 and 4.33 is not extendable to higher spatial dimensions,
because it only happens in two dimensions that the factor 1

2 for the kinetic energy is also the factor used
to compute the average over D. In higher dimensions, the ensemble-mean error energy can be related to
the MSE of velocity components via a constant multiplicative factor.
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Figure 4.3: Growth of the ensemble-mean error energy spectrum, or equivalently the power
spectrum of RMSE∗ (blue curves from bottom to top, plotted at intervals of 0.1T ), whose
initial condition is indicated by the blue dot.

and sub-mesoscale (k ∈ [513, 1024]). The evolution of these metrics is shown in Figure

4.4. Generally speaking, they grow steadily (in exponential terms) by about ten orders of

magnitude throughout the simulations. In Figure 4.4(a), RMSE∗ is normalised by
√

2π so

that, according to Equation 4.28, the curves for the CRPS and the RMSE would coincide

if P were normal, σP were homoscedastic, and µP and σP were independent. While the

agreement appears to be reasonably good at first glance, the discrepancy between the two

curves is non-trivial between t = 30 (0.2T ) and t = 90 (0.6T ) although it remains within

an order of magnitude. To enable closer examination of the discrepancy, the ratio of the

two curves is plotted (Figure 4.4(b)). Evidently, the discrepancy is stronger at the smaller

scales. Beyond t = 90 (0.6T ), as the mesoscale error saturates and the error growth at

larger scales slows down, the CRPS and the normalised RMSE agree fairly well, especially

in the meso- and sub-mesoscale.

Figure 4.5 shows these curves and their ratio for the full field without decompo-

sition into wavebands. In addition, the evolution of the ratios for the N = 30 individual
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Figure 4.4: (a) CRPS∗∞(t) (solid) and 1√
2π
RMSE∗(t) (dashed) for the planetary (red),

synoptic (blue), meso- (green) and sub-mesoscale (black), up to T = 150. (b) The ratio√
2π CRPS∗∞(t)

RMSE∗(t)
between the solid and dashed curves of (a) for the respective colours.

start-dates, i.e. with Λ = G ×D instead of G × S ×D, is shown in the thin red curves.

Considerable variation in this ratio across the 30 cases is seen, not only during interme-

diate lead times when the CRPS-RMSE discrepancy is the largest, but also towards the

end of the integration when the errors at all but the few largest scales have saturated.

Furthermore, the ratio for the mean (the Λ = G × S ×D case) consistently favours the

lower end of the distribution of such ratio for individual start-dates. It is not clear why

this is so.
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Figure 4.5: As in Figure 4.4, but for the full field without the scale-decomposition (thick
red curves). The additional thick blue curve in (b) shows 1√

1+h
as a function of t for the

set of M0 = 51 simulations. The additional thin curves in (b) show
√

2πCRPS
∗
∞(t)

RMSE∗(t)
but for

Λ = G×D (i.e. for specific start-dates), for the M = 3 ensemble (red) and the M = 50
ensemble (blue).

According to Equation 4.28, the red curves in Figure 4.5(b) are expected to

108



coincide with EΣ[σP ]√
EΣ[σ2

P ]
= 1√

1+h
if the ensemble is normally distributed, and if µP and

σP are independent. Computing this ratio involves evaluating the ensemble’s standard

deviation σP , but the sample size (M = 3 or M0 = 4) is too small to estimate σP

robustly. To mitigate this, a larger set of M0 = 51 simulations is run to estimate the

ensemble’s heteroscedasticity. This is done for only a single start-date (N = 1) due to

limited computational resources. As shown in Figure 4.5(b), 1√
1+h

exhibits two local

minima throughout the integration, the more extreme of which corresponds to a relative

heteroscedasticity of h ≈ 1.8.

It is tempting to conclude that heteroscedasticity fully accounts for the dis-

crepancy between CRPS∗∞(t) and 1√
2π
RMSE∗(t) up to a lead time of 0.1T , and that the

ensemble is not normally distributed thereafter. But the argument would only stand if the

ratio
√

2π CRPS∗∞(t)
RMSE∗(t)

for Λ = G×D (i.e. for individual start-dates) were to behave similarly

between the M = 3 and M = 50 ensembles, and this is not the case (the thin red curves

versus the thin blue curve in Figure 4.5(b)). If the single realisation of
√

2π CRPS∗∞(t)
RMSE∗(t)

for

the larger ensemble is deemed representative of an infinite-size ensemble, then we may

conclude that the combined effects (the gap between the thick and thin blue curves) of

the ensemble’s non-normality and the possible dependence between µP and σP are felt

from the very beginning of the simulation and do not vary a lot throughout, except near

the end when they gradually reduce. It seems reasonable to speculate that the M = 3

ensemble is too small to accurately capture and manifest such effects, thereby showing an

apparent normality at small lead times.

The possible dependence between µP and σP is investigated by computing their

correlation over the large sample of 20482 grid points and the two velocity components.

This is done for the set of M0 = 51 simulations, so only one start-date is available. Figure

4.6 shows the Pearson correlation coefficient of µP and σP as a function of lead time. While

there is some indication that correlation is being built up as the simulation progresses, it

remains rather small and never exceeds 0.15 in magnitude. Yet, the apparent smallness

of the correlation coefficient alone does not provide sufficient indication for conclusive

statements about the observed correlation to be made, since no candidate distribution of

µP and σP is available and therefore an appropriate statistical test is lacking. Moreover,

even if µP and σP were found to be uncorrelated, it would not necessarily imply indepen-
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dence. Hence major questions remain regarding the validity of the µP -σP independence

assumption. The validity of the other assumption, however, can be rigorously checked, as

will be discussed in the next sub-section.
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Figure 4.6: The red curve shows the evolution of the Pearson correlation coefficient of µP
and σP over the sample of 20482 grid points and the two velocity components for the set
of M0 = 51 simulations. A black horizontal line indicating the level of zero correlation is
inserted for reference.

4.3.3 Non-normality of the ensemble distribution

In this sub-section we explore whether the larger (M0 = 51) set of simulations is indeed

not normally distributed by means of a statistical test. The Jarque-Bera test is chosen

for this purpose (Bowman & Shenton 1975, Jarque & Bera 1987). The test statistic

JB =
n

6

(
Ŝ2 +

1

4
(K̂ − 3)2

)
(4.34)

is a function of the sample size n, the sample skewness Ŝ and the sample kurtosis K̂. Under

the null hypothesis of normality, JB is expected to follow a chi-squared distribution with

two degrees of freedom (χ2
2) in the limit of large samples (n → ∞). It is known that at
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least n = O(1000) samples are needed for JB to reasonably converge to χ2
2 (Bowman &

Shenton 1975).

Since our sample size n = M0 = 51 is much smaller than the threshold required

for the convergence, the distribution of the test statistic under normality is approximated

via a Monte-Carlo simulation. 20482 × 51 standard normal random variables are divided

into groups of 51, and JB is evaluated for each group. A histogram showing the distri-

bution of JB across the 20482 groups is shown in Figure 4.7, which indicates that the

distribution of the test statistic for small samples is fatter-tailed than χ2
2.
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Figure 4.7: A histogram of JB for small (n = 51) samples of standard normal random
variables obtained via a Monte-Carlo Simulation. The histogram, in red, is normalised to
form a probability density. The black line shows the PDF of a χ2

2 distribution. Note that
only samples with JB ≤ 50 are shown, and the vertical axis is logarithmic.

Having computed the null-hypothesis distribution of JB, the test statistic is eval-

uated at various lead times for the M0 = 51-member ensemble of idealised 2D turbulence.

Its distribution over Λ = G×D is compared against the null-hypothesis distribution. The

two distributions are consistently different, as Figure 4.8 suggests, and the difference is

found to be statistically significant (with a p-value indistinguishable from zero at com-
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puter precision) after applying the two-sample Kolmogorov-Smirnov test (Wilks 2019).

The same conclusion has been reached individually for the sample skewness Ŝ and the

sample excess kurtosis K̂−3, whose distributions are shown in Figures 4.9 and 4.10 respec-

tively. Therefore, it is almost certain that the ensemble distribution is non-normal at all

lead times, and the difference between
√

2π CRPS∗∞(t)
RMSE∗(t)

and 1√
1+h

can indeed be attributed

to the non-normality of the ensemble distribution, although not necessarily solely (since

the possible dependence between µP and σP may also contribute to the difference). Yet it

remains unknown in quantitative terms how non-normality may affect the CRPS-RMSE

ratio.
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Figure 4.8: Histograms of JB taken over Λ = G×D for the M0 = 51-member ensemble
simulation of idealised 2D turbulence (the verification member included), for lead times
up to T = 150 at intervals of ∆t = 30 = 0.2T , in green and in the form of probability
densities. The red curves indicate the PDF of JB for n = 51 samples under the null
hypothesis of normality (as in the red histogram of Figure 4.7).
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Figure 4.9: As in Figure 4.8, but for the sample skewness Ŝ instead of JB.

4.4 Discussion and summary

In this chapter, we have derived a functional relationship between two forecast verification

metrics: the CRPS and the RMSE (Sections 4.1 and 4.2). The CRPS is a standard prob-

abilistic score that rewards forecasts that are both sharp and reliable. In fact, there exists

a decomposition of the aggregated CRPS into three parts representing respectively the

sharpness of the predictive distribution, the reliability of the ensemble, and the verifying

distribution’s uncertainty which does not depend on the predictive distribution (Hersbach

2000). On the other hand, the RMSE is the sum of the ensemble variance and the squared

error of the ensemble mean. In some contexts, only the latter contribution is included

in the definition of RMSE, which makes it a deterministic verification metric since the

ensemble mean can be interpreted as a deterministic prediction in its own right. The fact

that the CRPS and the RMSE can be functionally related provides a common theoretical

foundation between deterministic and probabilistic verification. The relationship, which

has only been derived for reliable predictions of normally distributed variables, comes in
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Figure 4.10: As in Figure 4.8, but for the sample excess kurtosis K̂ − 3 instead of JB.

the form

CRPS∗ =
1√
2π

1√
1 + h

RMSE∗, (4.35)

where h is the relative heteroscedasticity of the ensemble’s standard deviation σP as

defined in Equation 4.27. The heteroscedasticity refers to the variability of σP across the

dimensions over which the CRPS and the RMSE are aggregated. In addition to reliability

and normality, the relationship also requires that the ensemble mean µP be independent

of σP over the aggregated sample.

The relationship has been tested on simulations of idealised 2D turbulence (Sec-

tion 4.3), in which ensembles are reliable by the experimental design. Heteroscedastic

effects are present, yet they have already been minimised by virtue of the turbulence

being idealised. Had such heteroscedastic effects been absent, a simpler form of the rela-

tionship

CRPS∗ =
1√
2π
RMSE∗ (4.36)

would have held, thus making the CRPS a constant multiple of the RMSE. Equation
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4.36 turns out to be a reasonably good approximation of the CRPS-RMSE relationship

recorded in the numerical simulations. Deviations from this equation due to heteroscedas-

ticity, non-normality and the µP -σP dependence remain within an order of magnitude,

yet they are substantially larger than the discrepancies reported by Leutbecher & Haiden

(2020). The effects of heteroscedasticity are estimated by running a larger ensemble. The

results from the larger ensemble also suggest a possibility that the µP -σP independence

assumption may not hold in the numerical simulations, although we are unable to con-

firm or refute it. The last remaining source of discrepancy, namely the non-normality of

the ensemble distribution, has been independently verified by means of a statistical test.

This is hardly surprising, since non-normality is a known feature of 2D turbulence (Farge

et al. 1999). There is some evidence suggesting that the effects of non-normality could

be obscured by a small ensemble size, but further work would be needed to demonstrate

this rigorously.

The CRPS-RMSE relationship may be applied on any scalar meteorological vari-

able in the real world, provided that the distribution of the variable is not overly non-

normal. Inhomogeneity and anisotropy of the atmospheric flow imply that the results will

depend on the domain and direction of aggregation. Using this relationship, the results

of Chapter 3 on error growth and predictability properties in the infinite-resolution limit

may now be translated into statements about the CRPS. It would be particularly help-

ful in predicting the evolution of the CRPS for future model resolutions with the aid of

Lorenz’s 1969 model and this relationship. A realistic estimate of heteroscedasticity in

atmospheric flows would further improve such predictions.
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5 Conclusions and outlook

Predicting the weather accurately is a fundamental desire of human civilisation so that

advance preparations can be made to mitigate against losses brought by weather hazards.

While there had been such attempts over the course of history using various rudimentary

methods, it was not until the mid-20th century that weather forecasting was first made

possible on an industrial scale and in a systematic way backed by rigorous science. The

continued flourishing of knowledge in atmospheric-oceanic dynamics as both a mathe-

matical and physical discipline, coupled with scientific and computational advances in

the modelling of the Earth system, has since then contributed to substantial progress in

NWP in terms of reducing errors and enhancing predictability. However, the foundational

understanding about error growth and predictability as a discipline in its own right is less

complete and has been somewhat overlooked in the recent decades compared to the at-

tention it received before then. This thesis serves to fill several of these gaps by discussing

the relevant theoretical topics in detail.

First, a renewed understanding of the inherent finite-time barrier of atmospheric

predictability is presented (Chapter 2). This barrier makes it impossible to skilfully pre-

dict the instantaneous weather more than two or three weeks ahead no matter how small

the initial error is. Through a careful investigation of the analytic properties of the 2D

Navier-Stokes equations in relation to Lorenz (1969)’s classic result on limited predictabil-

ity, this study proposes that the theory of the predictability horizon as understood by the

meteorological community may only be valid so long as the inertial range of the energy

spectrum is concerned. Were it possible to make the initial error so small in scale that it

fell beyond the inertial range (i.e. within the viscous range), then further decreasing the

scale of the error would make it possible to extend the range of predictability indefinitely,
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thereby removing the predictability barrier. Hence, the predictability limit may be seen

as a result of the stringent requirements on the initial error magnitude as one goes deeper

into the inertial range.

In the second topic, the applicability of the classic results of error growth and

predictability to the hybrid k−3-k−
5
3 energy spectrum is discussed. The issue is becoming

more relevant as global NWP models begin to resolve the shallower k−
5
3 range of the hybrid

spectrum. Much of the existing theory on error growth and predictability properties rests

on an implicit assumption that the basic-state energy spectrum consists of only one inertial

range. As demonstrated in Chapter 3, extending these results to the hybrid spectrum is

not so straightforward because the dynamics pertaining to the two constituent inertial

ranges interact with each other. The k−3 range at the synoptic scale is found to largely

suppress the theoretically expected fast error growth characteristic of a k−
5
3 spectrum in

the first decade of wavenumbers beyond the spectral break, irrespective of the scale of

the initial error. It is only beyond that decade of wavenumbers that the fast mesoscale

error growth is expected to become visible. Physically, this corresponds to an effective

resolution of approximately 20 kilometres or a grid resolution of a few kilometres, which

will probably be reached by global NWP ensembles in the not-too-distant future. With

the hybrid spectrum, the predictability horizon on the global scale could be extended by

several days to a week when compared with Lorenz (1969)’s original estimates (Table 3.2).

The third topic considers the relationship between forecast verification metrics.

In the introductory Chapter 1, it was mentioned that the predictability horizon depends

on the choice of metric and the prescribed threshold of skilful prediction. In Lorenz

(1969)’s model, the metric in question is the error variance, which is closely related to the

RMSE, and the threshold (in his original formulation) is about 0.815 times the variance of

the basic-state flow. It is from these assumptions that he reached the famous conclusion

of the two-week predictability limit. Over the years, the two-week limit has been found to

be generalisable to other popular verification metrics and thresholds, such as the CRPS

with the threshold being the expected score of the climatological distribution. The gen-

eralisability is not trivial. It suggests that the verification metrics are somehow related.

Chapter 4 shows that there is indeed a quantifiable relationship between the RMSE and

the CRPS when predictions are reliable and normally distributed. To first order, the two
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quantities are related through a multiplicative constant. When they are aggregated over

heteroscedastic environments, an extra factor accounting for the flow’s heteroscedasticity

comes into play, but subject to an extra assumption on the meta-distribution of the pre-

dictive distribution’s moments. The relationship is tested on simulations of idealised 2D

turbulence, and discrepancies are discussed in light of the assumptions behind the derived

relationship.

It is important to recognise the limitations of this study while drawing conclu-

sions. The primary limitation throughout the work of this thesis is the use of idealised

models. These include Lorenz (1969)’s error growth model, the incompressible 2D Navier-

Stokes equations, and the 2D barotropic vorticity model. While these models are closely

related to each other, they represent a significant idealisation of Earth’s atmosphere whose

motion is governed by Equations 1.1 and 1.4–1.7. First and foremost, atmospheric flows

are 3D. The approximation of two-dimensionality adopted in these models reflects the

quasi-2D nature of large-scale atmospheric motions as a result of Earth’s rotation and

the atmosphere’s stratification. Yet, key to the discussion of predictability is the limiting

behaviour of error growth at small scales, where vertical motions become important and

the approximation breaks down. Although it is generally inappropriate to make inferences

on small-scale flows with 2D models, the issue could be mitigated in the context of error

growth and predictability properties by modelling the mesoscale k−
5
3 spectrum appropri-

ately, since the result by Rotunno & Snyder (2008) suggests that these properties are more

a function of the energy spectrum than of the model dynamics per se. Indeed, the resem-

blance of the results of Chapter 3 to the error growth pattern of Judt (2018)’s simulations

using a global convection-permitting NWP model illustrates this point. Another effect

of assuming flows to be 2D (and incompressible) is the dropping out of thermodynamic

effects from the equations. Physical processes such as convection and fronts can no longer

be explicitly represented in these models, although they are implicitly and collectively

represented in the k−
5
3 spectrum.

These idealised models also represent a simplification of Earth’s geometry and

rotational effects. Even if atmospheric flows were horizontal and thus 2D, the two-

dimensionality would refer to flows on a 2D manifold embedded in 3D space (the surface

of a sphere). Topologically, this is not equivalent to a doubly periodic domain in Carte-
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sian geometry which has been assumed throughout these models. It would therefore have

been more appropriate to characterise horizontal waves using spherical harmonics, the

counterpart of Fourier modes proper to the surface of a sphere. Moreover, these models

do not account for the apparent forces associated with Earth’s varying rate of rotation

across latitudes (the β-effect). These forces contribute to anisotropy of atmospheric flows,

which gives rise to the variation of error growth and predictability properties across lati-

tudinal zones (Judt 2020). The models considered in this thesis are too simple to capture

such variation, but rather considered these properties in a bulk sense. Also, they have

not accounted for seasonal changes in error growth characteristics that subtly affect the

predictability horizon (Selz 2019). These changes could have possibly been represented

in the numerical simulations of Chapter 3 by allowing the forcing amplitude Â to vary,

thereby mimicking the shift in location of the k−3-k−
5
3 spectral break from one season to

another. Furthermore, inhomogeneity of atmospheric flows arising from Earth’s complex

orography may not be well-represented in these models. For example, the scale-selective

forcing in the 2D barotropic vorticity model does not reflect the continuous spectrum of

orographic forcing.

It is also important to bear in mind that the results of Lorenz’s model are condi-

tional upon the quasi-normal turbulence closure scheme and a rather primitive mechanism

of incorporating the non-linear effects of turbulence. While the introduction of a closure

scheme is inevitable, other schemes such as the eddy-damped quasi-normal Markovian clo-

sure (Burgess & Shepherd 2013) might yield more realistic results. The non-linear effects

were treated in a better way in the more recent works of Durran & Gingrich (2014) and

Sun & Zhang (2020), an approach that has been decided against in this study in favour

of a more convenient analysis of the mathematical properties of the model. It remains to

be seen how the alternative treatment might have impacted the results.

Another limitation of the present study is the assumption of normal distributions

in the derivation of the CRPS-RMSE relationship. Some scalar meteorological variables

cannot be normally distributed. An example of such is rainfall, since it cannot take

negative values. The normality assumption limits the applicability of the results to these

variables. Although the relationship for normal distributions may to some extent be

followed in those cases, it is not clear how the discrepancy can be quantified in terms of
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measures of non-normality such as skewness or excess kurtosis.

In terms of the results, the relationship of the CRPS or the RMSE with other

verification metrics has not been discussed in a wider context. It would be useful to sys-

tematically find out how the most commonly used verification metrics in NWP operations

are related to each other. This could then provide an overview of the strengths and weak-

nesses of individual scores, and help forecasters and model developers choose the scores

best suited to their purposes of identifying specific types of peculiarities.

It is recommended that future theoretical work on weather predictability be ex-

panded along the lines of the limitations listed above. In my view, it would be most

interesting above all to derive the counterpart of Lorenz’s model for spherical harmonics

and observe how the dynamics of error growth could be better described using a more

appropriate geometry. On top of this, there could be further improvements by incorpo-

rating the effects of planetary rotation and introducing a vertical dimension, and with a

better treatment of turbulence closure and non-linearity. Such a more realistic version of

Lorenz’s model could help characterise the next level of essential aspects of error growth

beyond what has already been found in this thesis. While these characteristics are ex-

pected to be not very different from those observed in direct aqua-planet simulations,

the analysis of qualitative discrepancies between the two could further substantiate the

understanding of error growth mechanisms. The sensitivity of the error growth picture

to initial error profiles could also be studied in the context of these slightly more complex

models.

The effects of model errors is another interesting area to explore. In an earlier

work (Leung 2017), initial errors and model errors were shown to interact in such a way

that in principle, whichever error at the larger spatial scale would dominate the growth of

the overall error. Yet, the effects of small-scale convective parametrisations cannot be ig-

nored, since they can change the shape of the mesoscale spectrum (Wang & Sardeshmukh

2020) and therefore induce qualitative changes to the error growth behaviour, especially

within these small scales. Such effects on error growth may best be studied in simpli-

fied models, such as those in which convection can be represented by an additional term

controlled by a stochastic switch (Würsch & Craig 2014).
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Having said all this, the results contained in this thesis suggest that the study of

theoretical predictability is an inseparable part of the development of NWP. As is often

the case, simple models help provide guidance on future research directions involving state-

of-the-art models at a relatively modest cost. In the NWP context, they specifically have

the potential to advance scientific understanding of the dynamical mechanisms limiting

weather predictability. This thesis is a humble contribution to such, but much work is yet

to be done to consolidate this new knowledge. With further work along similar directions,

it is hoped that the understanding of predictability would become more complete, and

that it would lead to the eventual development of more skilful NWP models for the benefit

of mankind.
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Appendix A

Proofs and derivations of certain

formulae related to the Continuous

Ranked Probability Score

A.1 Equivalence of the CRPS and its kernel repre-

sentation

The equivalence between the original definition of the CRPS (Equation 4.10) and its kernel

representation (Equation 4.11) follows from the following two lemmata demonstrated by

Baringhaus & Franz (2004).

Lemma A.1. Let X and Y be independent real-valued scalar random variables with finite

expectations. Let F̃ be the CDF of X and G̃ be the CDF of Y . Then

EX,Y [|X − Y |] =

∫ ∞
−∞

F̃ (z)
(

1− G̃(z)
)

dz +

∫ ∞
−∞

G̃(z)
(

1− F̃ (z)
)

dz. (A.1)

Proof. Since X and Y are independent, we may write

|X − Y | =
∫ ∞
−∞

(I(X ≤ z < Y ) + I(Y ≤ z < X)) dz

=

∫ ∞
−∞

(I(X ≤ z)I(Y > z) + I(Y ≤ z)I(X > z)) dz,

(A.2)
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where I is the indicator function taking the value one if the condition in its argument is

satisfied and zero otherwise. Taking the joint expectation of Equation A.2 and applying

Fubini’s theorem1 yields

EX,Y [|X − Y |] =

∫ ∞
−∞

EX,Y [I(X ≤ z)I(Y > z) + I(Y ≤ z)I(X > z)] dz

=

∫ ∞
−∞

(EX [I(X ≤ z)]EY [I(Y > z)] + EY [I(Y ≤ z)]EX [I(X > z)]) dz

=

∫ ∞
−∞

F̃ (z)
(

1− G̃(z)
)

dz +

∫ ∞
−∞

G̃(z)
(

1− F̃ (z)
)

dz

(A.3)

as required. �

Lemma A.2. Let X1, X2, Y1 and Y2 be independent real-valued scalar random variables

with finite expectations. Let X1 and X2 be identically distributed with CDF F̃ , and Y1 and

Y2 be identically distributed with CDF G̃. Then

EX1,Y1 [|X1 − Y1|]−
1

2
EX1,X2 [|X1 −X2|]−

1

2
EY1,Y2 [|Y1 − Y2|] =

∫ ∞
−∞

(
F̃ (z)− G̃(z)

)2

dz.

(A.4)

Proof. Apply Lemma A.1 to the pairs (X1, Y1), (X1, X2), (Y1, Y2) of random variables

separately. Elementary calculations give the result. �

Equation 4.11 can now be established by applying Lemma A.2 to X1 = U ,

X2 = U ′, and both Y1 and Y2 being random variables with the Dirac delta distribution

at u. In this case, F̃ = F and G̃ = Hu. The third term on the left-hand-side of Equation

A.4 drops out since Y1 = Y2 almost-surely by virtue of them being point masses. Hence

we have

EP [|U − u|]− 1

2
EP [|U − U ′|] =

∫ ∞
−∞

(F (x)−Hu(x))2 dx, (A.5)

which shows the equivalence between the CRPS and its kernel representation.

1Fubini’s theorem allows the order of integration to be swapped provided that the absolute value of
the integrand integrates to a finite value.
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A.2 CRPS of a single event with a normal predictive

distribution

The explicit expression for CRPS(P, u) for normally distributed P = N (µP , σ
2
P ) shown

in Equation 4.12 can be obtained through repeated integration by parts. Denoting

ϕ(x) := 1√
2π

exp
(
−1

2
x2
)

for the PDF of a standard normal random variable and Φ(x) :=∫ x
−∞ ϕ(x′) dx′ for its CDF, and writing u′ := u−µP

σP
, we have

CRPS(P, u)

=

∫ u

−∞

(
Φ

(
x− µP
σP

))2

dx+

∫ ∞
u

(
1− Φ

(
x− µP
σP

))2

dx

=

∫ u′

−∞
(Φ(y))2 σP dy +

∫ ∞
u′

(1− Φ(y))2 σP dy

= σP

(
u′ (Φ(u′))

2 −
∫ u′

−∞
2yΦ(y)ϕ(y) dy − u′ (1− Φ(u′))

2
+

∫ ∞
u′

2y (1− Φ(y))ϕ(y) dy

)

= σP

(
u′ (Φ(u′))

2 − u′ (1− Φ(u′))
2

+

∫ ∞
u′

2yϕ(y) dy −
∫ ∞
−∞

2yΦ(y)ϕ(y) dy

)
= σP

(
u′ (2Φ(u′)− 1) +

∫ ∞
u′

1√
2π
e−

1
2
y2

d
(
y2
)
−
∫ ∞
−∞

Φ(y)
1√
2π
e−

1
2
y2

d
(
y2
))

= σP

(
u′ (2Φ(u′)− 1) + 2ϕ(u′) +

∫ ∞
−∞

√
2

π
Φ(y) d

(
e−

1
2
y2
))

= σP

(
u′ (2Φ(u′)− 1) + 2ϕ(u′)−

∫ ∞
−∞

√
2

π
e−

1
2
y2

ϕ(y) dy

)

= σP

(
u′ (2Φ(u′)− 1) + 2ϕ(u′)−

∫ ∞
−∞

1

π
e−y

2

dy

)
= σP

(
u− µP
σP

(
2Φ

(
u− µP
σP

)
− 1

)
+ 2ϕ

(
u− µP
σP

)
− 1√

π

)
=
σP√
π

(
−1 +

√
π
u− µP
σP

erf

(
u− µP√

2σP

)
+
√

2 exp

(
−1

2

(
u− µP
σP

)2
))

.

(A.6)

The last two lines of Equation A.6 are equivalent expressions of CRPS(P, u) by observing

an elementary property of the error function erf(z) := 2√
π

∫ z
0
e−y

2
dy that

erf

(
z√
2

)
= 2Φ(z)− 1. (A.7)
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A.3 Expected CRPS for normal predictive and veri-

fying distributions

The integral

∫ ∞
−∞

σQ
r2

√
π

(
−1 +

√
πx erf

(
x√
2

)
+
√

2 exp

(
−1

2
x2

))
ϕ (rx+ b) dx (A.8)

in Equation 4.13 can be simplified to provide an analytic expression for CRPS(P,Q), the

expected CRPS for normal predictive and verifying distributions. The integral will be

decomposed into three contributions according to the terms inside the outermost paren-

theses of the integrand. These contributions will be evaluated one by one. To begin,

∫ ∞
−∞

σQ
r2

√
π

(−ϕ (rx+ b)) dx = −σQ
r√
π

∫ ∞
−∞

ϕ (rx+ b) d(rx+ b) = −σQ
r√
π
. (A.9)

We also have∫ ∞
−∞

σQ
r2

√
π

√
2 exp

(
−1

2
x2

)
ϕ (rx+ b) dx

= σQ
r2

π

∫ ∞
−∞

exp

(
−1

2
(x2 + r2x2 + 2brx+ b2)

)
dx
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r2

π
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(
−1

2

(
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1 + r2

))∫ ∞
−∞
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(
−1

2
(1 + r2)

(
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1 + r2

)2
)

dx

= σQ
r2

π
exp

(
−1

2

b2

1 + r2

)√
2π

1 + r2

= σQr
2

√
2

π(1 + r2)
exp

(
−1

2

b2

1 + r2

)
.

(A.10)

As for the integral ∫ ∞
−∞

σQr
2x erf

(
x√
2

)
ϕ (rx+ b) dx, (A.11)

we proceed by first seeking an anti-derivative A(x) of xϕ (rx+ b), so that Expression A.11

can be written as

σQr
2 (A(∞) erf(∞)− A(−∞) erf(−∞))− σQr2

∫ ∞
−∞

A(x) d

(
erf

(
x√
2

))
. (A.12)
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To compute A, we have

A(x) =

∫ x

−∞
x′ϕ (rx′ + b) dx′ =

∫ x

−∞

1√
2π
x′ exp

(
−1

2
(rx′ + b)2

)
dx′

=

∫ rx+b
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(
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2
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)
1

r
dy

= − 1√
2πr2

exp

(
−1

2
(rx+ b)2

)
− b

r2
Φ(rx+ b),

(A.13)

so that A(∞) = − b
r2 and A(−∞) = 0. Substituting these into Expression A.12, the con-

tribution from σQr
2 (A(∞) erf(∞)− A(−∞) erf(−∞)) leaves us with only −bσQ, whereas

− σQr2

∫ ∞
−∞

A(x) d

(
erf

(
x√
2

))
= σQr

2

∫ ∞
−∞

(
1√

2πr2
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(
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2
(rx+ b)2

)
+

b

r2
Φ(rx+ b)

)
d(2Φ(x)− 1)

=
2σQ√

2π

∫ ∞
−∞

exp

(
−1

2
(rx+ b)2

)
ϕ(x) dx+ 2bσQ
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π
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exp
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2
(x2 + r2x2 + 2brx+ b2)

)
dx+ 2bσQ

∫ ∞
−∞

Φ(rx+ b)ϕ(x) dx.

(A.14)

In light of Equation A.10, the first term on the right-hand-side of Equation A.14 equals

σQ
√

2
π(1+r2)

exp
(
−1

2
b2

1+r2

)
. The following lemma will be useful for computing the second

term:

Lemma A.3. For any r, b ∈ R,

I(r, b) :=

∫ ∞
−∞

erf

(
rx+ b√

2

)
ϕ(x) dx = erf

(
b√

2(1 + r2)

)
. (A.15)

Proof. Using d
dz

erf(z) = 2√
π

exp (−z2), we have
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2
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) (A.16)

in light of Equation A.10. Since I(r, 0) = 0 (as the integrand is in that case an odd
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function), we can write

I(r, b) =

∫ b
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(A.17)

as required. �

The second term on the right-hand-side of Equation A.14 is therefore

2bσQ
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(A.18)

In this way, we can write Expression A.11 as
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(A.19)

Substituting this and Equations A.9 and A.10 into Expression A.8 and therefore Equation

4.13, we finally arrive at

CRPS(P,Q) =
σQ√
π
f(b, r) (A.20)

where

f(b, r) = −r +
√

2(1 + r2) exp

(
− b2

2(1 + r2)

)
+
√
π b erf

(
b√

2(1 + r2)

)
. (A.21)
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Žagar, N., Horvat, M., Zaplotnik, Ž. & Magnusson, L. (2017), ‘Scale-dependent estimates

of the growth of forecast uncertainties in a global prediction system’, Tellus A: Dynamic

Meteorology and Oceanography 69, 1287492.

Zhang, C. (2005), ‘Madden-Julian Oscillation’, Reviews of Geophysics 43, RG2003.

Zhang, F., Sun, Y. Q., Magnusson, L., Buizza, R., Lin, S.-J., Chen, J.-H. & Emanuel,

K. (2019), ‘What is the predictability limit of midlatitude weather?’, Journal of the

Atmospheric Sciences 76, 1077–1091.

139

https://ams.confex.com/ams/2020Annual/webprogram/Paper367785.html
https://ams.confex.com/ams/2020Annual/webprogram/Paper367785.html



	Declaration
	Acknowledgements
	Abstract
	List of Abbreviations
	Introduction
	The early days of weather forecasting
	Equations of motion
	The birth of numerical weather prediction
	The predictability horizon
	Probabilistic forecasts
	Estimates of the predictability horizon
	Practical predictability
	Predicting beyond the predictability horizon
	Thesis outline
	Publications

	Revisiting the inherent finite-time barrier
	Lorenz's model
	An evolution equation for the error energy spectrum
	Discretisation and reduction to a system of ODEs
	Solving the ODEs
	An argument for the finite predictability horizon
	A k-3 basic-state energy spectrum

	Aspects from PDE theory: the incompressible 2D Navier-Stokes equations
	Weak formulation
	Uniqueness of solutions and their continuous dependence on initial conditions
	Implications for predictability

	Reconciling the paradox
	Summary

	Impact of the mesoscale range on error growth and the predictability limit
	Numerical experiments using an idealised 2D turbulence model
	Construction of the hybrid k-3-k-53 energy spectrum
	Experimental design
	Numerics of the model
	Results

	Assessing the error growth rate
	Fitting the error growth to a parametric model
	Inferring predictability from the parameters

	Exploring the asymptotic behaviour using Lorenz's model
	Reproducing the results of the numerical experiments
	Error growth in the infinite-resolution limit
	The predictability horizon: a renewed estimate

	Other initial error profiles
	Summary

	Forecast verification: relating deterministic and probabilistic metrics
	Evaluating forecasts
	Proper Scoring rules
	root-mean-square error
	Continuous Ranked Probability Score

	Derivation of the CRPS-RMSE relationship
	Verifying the relationship on an idealised 2D turbulence model
	Experimental design
	Results
	Non-normality of the ensemble distribution

	Discussion and summary

	Conclusions and outlook
	Appendix Proofs and derivations of certain formulae related to the Continuous Ranked Probability Score
	Equivalence of the CRPS and its kernel representation
	CRPS of a single event with a normal predictive distribution
	Expected CRPS for normal predictive and verifying distributions

	Bibliography

